Anomalous Diamagnetic Behaviour of the 1H NMR Spectra of a Coordinated Imino Nitroxide Radical in Diamagnetic and Paramagnetic Lanthanide(III) Complexes

Toshiaki Tsukuda,[a] Masahiro Ogita,[a] Takayoshi Suzuki,[a] and Sumio Kaizaki*[a]

Keywords: 1H NMR / Imino nitroxide radical / Lanthanide complexes / LIS analysis / Diamagnetic NMR behaviour

Diamagnetic lanthanide(III) complexes with an imino nitroxide radical IM$_2$py [2-(2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl], [Ln(hfac)$_3$(IM$_2$py)] (Ln = Y and Lu; hfac = hexafluoroacetylacetonate), exhibit 1H NMR chemical shifts for the pyridyl protons of the coordinated IM$_2$py suggesting it behaves as if it were diamagnetic. To a series of paramagnetic lanthanide complexes of this type, the structural analyses of the lanthanide induced shifts (LIS) of the hfac 3-proton and pyridyl protons in IM$_2$py were successfully applied, showing not only the diamagnetic behaviour of the pyridyl protons in the IM$_2$py group, but also the dominant dipolar contribution and isostructural nature with apparent or effective axial symmetry in solution irrespective of the asymmetry in the solid state. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

Introduction

There have been a large number of studies of lanthanide complexes and/or radical complexes with much concomitant interest in their potential applications in luminescent probes[1,2] or as building blocks for molecular-based magnetic materials.[3,4] The lanthanide–radical complexes have been mainly investigated in order to reveal the magnetic properties in solid state or absorption and emission spectra.[4,5] Our recent magneto-optical investigations on the nitroxide radical metal complexes were concerned not only with transition metal ions, but also lanthanide(III) ions.[6–12] For the imino nitroxide radical lanthanide complexes, [Ln(hfac)$_3$(IM$_2$py)] [IM$_2$py = 2-(2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl][11] we examined the solution spectroscopic properties as well as the magnetic interaction between GdIII and the IM$_2$py radical which is antiferromagnetic, in contrast to the ferromagnetic case[4] of (NIT$_2$py)- and related (NIT)GdIII complexes[6a] (Scheme 1). In this study, the NMR spectra of (IM$_2$py)LnIII complexes were examined in order to substantiate the diamagnetic 1H NMR behaviour for the imino nitroxide radical ligands in diamagnetic CoIII or YIII and LuIII complexes.

Scheme 1. IM$_2$py

In this study, the NMR spectra of (IM$_2$py)LnIII complexes were examined in order to substantiate the diamag-

[a] Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Supporting information for this article is available on the WWW under http://www.eurjic.org or from the author.
netic NMR behaviour. Lanthanide induced paramagnetic shift (LIS) data of the paramagnetic LnIII complexes will be analysed in terms of the classical crystal field dependent and the recently developed crystal field independent methods. The resultant analyses will be compared with the influence of the imino radical on the diamagnetic behaviour as well as the solution structure.

Results and Discussions

Magnetic Properties in Solution

The magnetic moments of [Y(hfac)_3(IM2py)] and [Lu(hfac)_3(IM2py)] in the solid state at 300 K are 1.81 and 1.90 μB, respectively, and those in CDCl₃ solution are 2.17 and 2.20 μB, respectively. The theoretical value is 1.73 μB. The corresponding YbIII complex has values of 5.07 and 4.80 μB in the solid state and in solution, respectively, which are close to the theoretical value of 4.80 μB. These facts support the existence of the IM2py radical in the solid state and solution, in accordance with the UV/Vis spectra in solution.[11a]

In addition, the solution EPR spectrum of [Y(hfac)_3(IM2py)] displays hyperfine splittings to the YIII ion and both nitrogen atoms [N(1) for IM=N=N and N(2) for IM=N=O] of the IM moiety (Figure 1) where the unpaired electron resides. The coupling of YIII and N(1) is a result of the coordination. These hyperfine coupling constants were estimated by comparing them with the simulated spectra. The nitrogen hyperfine splittings are 4.9 G [N(1)] and 7.8 G [N(2)] for [Y(hfac)_3(IM2py)]. These values are in contrast to 4.25 G [N(1)] and 9.25 G [N(2)] for free IM2py.[17] This change is due to electron delocalisation from the ligand toward the YIII ion. With ⁸⁹Y having a nuclear spin of 1/2, the expected hyperfine splitting resulting from delocalisation onto the Y ion is only 0.4 G.

![Figure 1. X-band (9.31 GHz) ESR spectrum at 296 K of \([Y(hfac)_3(IM2py)]\)](image)

As previously reported,[11a] the UV/Vis spectroscopic changes with the variation of mixing ratios also revealed the stability of the radical LnIII complexes. In view of these results, it is certain that [Y(hfac)_3(IM2py)] remains paramagnetic due to the IM2py radical, even in solution.

¹H NMR Spectra of the Diamagnetic LnIII Complexes Containing the IM2py Radical

The ¹H NMR spectra of [Y(hfac)_3(IM2py)] and [Lu(hfac)_3(IM2py)] should exhibit additive patterns consisting of the signals for the methine proton of hfac (hfac-H) at the diamagnetic LnIII centre and those for the paramagnetic radical IM2py ligand, as if they were a mixture only of the Ln(hfac), and IM2py moieties. However, the ¹H NMR spectra of [Y(hfac)_3(IM2py)] and [Lu(hfac)_3(IM2py)] appear like those of diamagnetic species. As shown in Figure 2 (a, b), the ¹H NMR spectra of [Y(hfac)_3(IM2py)] and [Lu(hfac)_3(IM2py)] appear in the diamagnetic region (δ = 0 to +10 ppm) associated with line-broadening, whereas no splitting by spin-spin coupling was observed. There is no signal for these Ln complexes in the paramagnetic range at δ = +20 or -20 ppm, where the paramagnetic IM2py radical itself exhibits a typical paramagnetic NMR spectroscopic pattern [Figure 2 (c)]. A broad signal at δ = -15 ppm is due to the IM methyl groups and the signals at δ = +22, +13 and ca. +4 ppm are due to the pyridyl protons as inferred from the assignments for NIT radicals (4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-3-oxide-1-oxyl).[18]

The signals from δ = +7.5 to +8.5 ppm of the (IM2py)Y and -Lu complexes can be assigned to the pyridyl protons on the basis of the ¹H-¹H COSY spectrum. This exhibits two kinds of cross peaks for the pyridyl protons (Figure 3). There is a discrimination between two pairs of signals corresponding to each proton which are coupled with three (δ = +7.6, +7.9 and +8.5 ppm) and two protons (δ = +8.5 and +8.7 ppm), respectively. Apparently, the former two are due to the 4- and 5-protons of py (py-H4 and py-H5, respectively), the latter two to the 3- and 6-protons of py (py-H3 and py-H6, respectively) (Scheme 2). Since the signal at δ = +8.5 ppm is relatively broader than that at δ = +8.7 ppm, this can be assigned to py-H3 which is closer to the N=O radical moiety. Accordingly, the signals at δ = +7.91 and +7.62 ppm can be assigned to py-H4 and py-H5, respectively. A group of signals at δ = +1.5 ppm arises from the methyl protons of the imidazole ring in IM2py. These assignments are in accordance with the chemical shifts of the analogous diamagnetic complex, trans-[Co(acac)(NO₂)₂(IMH₂py)], where IMH₂py [2-(2'-pyridyl)-4,4,5,5-tetramethyl-1-hydroxyimidazoline] is a diamagnetic one electron reduced IM2py group.[9] The broad signal at δ = 6.0 ppm should be due to the methine proton of the hfac (hfac-H) function in the (IM2py)Y complex, since its position is close to that in the nonradical [Y(hfac)_3(bpy)] complex. The ¹H NMR line widths in [Y(hfac)_3(IM2py)] are similar to those of an equimolar mixture of [Y(hfac)_3(bpy)] and IM2py, both of which are about five times as large as those of the diamagnetic complex [Y(hfac)_3(bpy)]. Therefore, it can be observed that the relaxation times of the hfac methine proton as well as the py protons and imidazole methyl protons of IM2py become shorter by through-space or outer-sphere dipolar interactions with the proximate molecules in solution, substantiating the existence of the IM2py radical in solution.

Since the ⁸⁹Y NMR spectrum of [Y(hfac)_3(IM2py)] gives only a sharp singlet at δ = 72.5 ppm (Figure 1S, Supporting Informations; for Supporting Informations see footnote on the first page of this article), the YIII ion exists only as one
species coordinated by IM2py. Thus, the 1H and 89Y NMR spectroscopic behaviour originates from the radical complex itself, but not from complexes containing decomposed nonradical ligands such as $[\text{Y(hfac)}_3(\text{H}_2\text{O})]$ and/or $[\text{Y}(\text{hfac})_3(\text{IMH}_2\text{py})]$. It is clear that the protons in the IM2py moiety show diamagnetic 1H NMR behaviour with respect to chemical shift but remain paramagnetic in line-width due to the outer-sphere interaction.

In the 1H NMR spectra of diamagnetic trans-$\{\text{Co(acac)}_2(\text{NO}_2)(\text{IM}_3\text{py or IM}_4\text{py})\}$, only the methine and methyl proton signals of the acac ligand were previously considered when making the assessment of the geometrical structures. The coordinated pyridyl and imidazole protons of the IM$_n$py group were not considered.$^{[10]}$ A re-examination of the 1H NMR spectra of these CoIII complexes revealed the existence of the signals at $\delta \approx +8$ ppm and $\delta \approx +1.5$ ppm, respectively, which correspond to the diamagnetic pyridyl and imidazole protons both in terms of chemical shift and splitting pattern as trans-$\{\text{Co(acac)}(\text{NO}_2)_2(\text{IM}_2\text{py})\}$ and $[\text{Y- or Lu(hfac)}_3(\text{IM}_2\text{py})]$ [Figure 2 (a, b)]. Thus, it is from the coordination in the complexes containing diamagnetic metal ions that the diamagnetic NMR behaviour of IM radicals arises, but it does not necessarily depend on whether the coordination mode is monodentate or bidentate. The paramagnetic radicals coordinated in diamagnetic lanthanide and/or diamagnetic transition metal ions may hamper paramagnetic shifting of the 1H NMR signals in the radical compounds or make them behave as if they were diamagnetic. This gives the appearance of complete disappearance.
of the unpaired electron around the protons in the IM radicals with respect to the 1H NMR chemical shifts.

1H NMR Spectra of the Paramagnetic LnIII Complexes Containing the IM2py Radical

The 1H NMR spectra of the paramagnetic lanthanide complexes [Ln(hfac)$_3$(IM2py)] deserve examination in relation to the diamagnetic NMR behaviour of the coordinated IM2py ligand in the complexes. Slightly broad NMR signals were observed for [Yb(hfac)$_3$(IM2py)] with the chemical shifts ranging from $\delta = +60$ to -30 ppm [Figure 4 (a)]. If there were little or no magnetic interaction between YbIII and IM2py, the 1H NMR spectra would appear as a sum of each paramagnetically shifted signal due to the YbIII ion and IM2py. This is in contrast to the case of the paramagnetic NiII complexes, [Ni(β-diketonato)$_2$-NIT2py)], where the chemical shifts of the β-diketonato methine protons are given by a product of the NMR interaction of the complex. In order to assess this assumption, the 1H NMR spectra of [Yb(hfac)$_3$(IM2py)] and [Lu(hfac)$_3$(IM2py)] at $\delta = +60$ to -30 ppm are mostly unshifted relative to those of the corresponding nonradical IM2py complexes and the fractional contribution to the NiII moiety arising from the magnetic interaction between the NiII ion and the NIT2py radical.$^{[6a]}$ By analogy with the diamagnetic 1H NMR behaviour of [Y(hfac)$_3$(IM2py)] and [Lu(hfac)$_3$(IM2py)], it can be assumed that one unpaired electron of IM2py has no influence to the paramagnetic shift of LnIII. In other words, the 1H NMR signals of the IM2py coordinated to paramagnetic YbIII suggest it might behave as a diamagnetic ligand in the complex. In order to assess this assumption, the 1H NMR spectra could be analysed in the same manner as a series of isotostructural paramagnetic lanthanide(III) complexes with diamagnetic ligands. The methine protons of the hfac (hfac-H) moiety can be assigned readily by comparison with the 1H NMR spectra of the analogous nonradical complexes [Ln(hfac)$_3$(bpy)]. The NMR signals of the pyridyl protons of the IM2py group can be assigned in comparison with those of [Yb(hfac)$_3$(IM4- or -5Me$_2$py)] (IM4- or -5Me$_2$py = methyl-substituted pyridyl at the 4- or 5-position in IM2py). Though the 1H NMR spectra of the (IM4Me$_2$py)- and (IM5Me$_2$py)-YbIII complexes [Figure 4 (b, c)] are similar, on the whole, to that of [Yb(hfac)$_3$(IM2py)], the py-H4 and py-H5 signals of [Yb(hfac)$_3$(IM2py)] disappear in the NMR spectra of the (IM4Me$_2$py)- and (IM5Me$_2$py)YbIII complexes, respectively. In the same manner, the assignments of the py-H4 and py-H5 signals for other paramagnetic LnIII complexes were also made. The chemical shifts for py-H4 and -H5 in [Yb(hfac)$_3$(IM4Me$_2$py)] and [Yb(hfac)$_3$(IM5Me$_2$py)] are entirely different from those of free IM2py [Figure 4 (a)], whereas those of hfac-H in the (IM4Me$_2$py)YbIII complexes at $\delta \approx -10$ ppm are mostly unshifted relative to those of the corresponding nonradical YbIII complex as shown in Figure 4 (b, c). In view of the latter behaviour, there is little influence on the hfac-H signal from the IM2py unpaired electron in the coordinated IM2py, whereas a large magnetic interaction between the paramagnetic YbIII and the IM2py radical may be inferred from the significant change in the IM2py signals. This contradicts the fact that the magnetic interactions are very small, as deduced from the examination of the variable-temperature magnetic susceptibility measurements.$^{[11]}$ This discrepancy may be resolved by assuming that the 1H NMR spectra of the coordinated IM2py ligands are affected by the paramagnetism of the YbIII ion or the lanthanide induced shifts (LIS). In order to examine the 1H NMR spectroscopic behaviour of the IM2py moiety in the paramagnetic LnIII complexes, it is appropriate to make a quantitative structural analysis for the LIS of the NMR spectroscopic data on the basis of the above-mentioned assignments. The LIS, δ_l^{LIS}, is given as the difference between the chemical shifts (δpara) in the paramagnetic LnIII complexes and those (δdia) of the corresponding diamagnetic YIII complexes [Equation (1)].

$$\delta_l^{LIS} = \delta^{para} - \delta^{dia} \quad \text{(1)}$$

As a result of the dipolar and contact interactions between the electron spins on the LnIII and the proton nuclear spin of the ligand, the chemical shifts of a given proton are shifted from the position observed in the corresponding diamagnetic environment [Equation (2)].

$$\delta_l^{LIS} = \delta^{(contact)} + \delta^{(dipolar)} \quad \text{(2)}$$

The dipolar interaction contains the information on the geometrical positions in space of the ligand nuclei [Equation (3)], where F_i is the hyperfine coupling constant of the nucleus (i) in the ligand independent of LnIII ions.$^{[20]} <S_{i}>$, is the spin expectation value for Ln ions,$^{[22]} J_i$ is a magnetic constant proportional to Bleaney's constant C_i which is characteristic of a given LnIII ion, $<B^2>$ = $<A^2(r^2)>$ is a crystal field coefficient of the LnIII complex and G_i is a geometric function of the ligand nu-
cles which is equal to \((3\cos^2 \theta - 1)/r^3\) assuming the axial symmetric magnetic susceptibility.\cite{19–21}

\[
\delta_\sigma^\text{LIS} = F_i < S_x >_j + < B_i^2 > D_j < S_x >_j
\]

(3)

In order to obtain the dipolar and contact parts from the experimental LIS, the graphical separation methods or classical one-nucleus crystal field dependent methods are given [Equations (4) and (5)].\cite{19,20}

\[
\delta_\sigma^\text{LIS}/< S_x >_j = F_i + < B_i^2 > G_i D_j / < S_x >_j
\]

(4)

\[
\delta_\sigma^\text{LIS} / D_j = F_i < S_x >_j / D_j + < B_i^2 > G_i
\]

(5)

If the lanthanide complexes were isostructural, a plot of \(\delta_\sigma^\text{LIS}/< S_x >_j\) against \(D_j / < S_x >_j\) according to Equation (4) would be linear for a particular nucleus \((i)\) of the ligand in the corresponding complexes across the entire Ln series. A linear plot of Equations (4) and (5) can be assumed for the dominant dipolar and constant contribution, respectively. In the case of multi-spin systems such as [Ln(hfac)\(_3\) (IM2py)], the magnetic interaction between unpaired spins of Ln\(^{III}\) and IM2py must be taken into consideration. This could be significantly large, unless the plots were linear. Thus, the intramolecular magnetic interaction in the (IM2py)Ln\(^{III}\) complexes may be tested by the application of the LIS analysis for nonradical complexes to the NMR spectroscopic data of [Ln(hfac)\(_3\)(IM2py)] (Table IS, Supporting Information). In view of the correlation coefficients \((r)\) in Figure 5, the linearity was found to be excellent for hfac-H and fairly good for py-H5 and py-H4 in the IM2py moiety for a series of Ln\(^{III}\) complexes according to Equation (4). According to Equation (5), however, the plots deviate significantly from linearity for py-H4 \((r = 0.72)\) and hfac-H \((r = 0.76)\) but not for py-H5 \((r = 0.97)\). This suggests that the LIS for three protons are more dominantly contributed from the dipolar contribution than the contact one. The slopes for the two neighbouring protons (py-H4 and py-H5) in the plots of Equation (4) are similar to each other and have the same sign which is opposite to that of hfac-H, reflecting the differences in the geometrical dispositions of the three protons. The agreement factors \(\{AF_i = [\Sigma (\delta_i^\text{LIS} - \delta_{\text{calc.}}^\text{LIS})^2]/(\Sigma (\delta_i^\text{LIS})^2)^{1/2}\} \) were found to be 0.1, 0.6 and 0.48 for hfac-H, py-H4 and py-H5, respectively, from the plots of Equation (4). The small \(AF\) value for hfac-H shows no significant influence from the IM2py radical. The fairly large \(AF\) values for py-H4 and py-H5 may result from less invariance in the crystal field coefficient and/or the influence of the unpaired electron of the IM2py group.

In order to examine these causes, the two- and three-nuclei crystal field independent separation methods\cite{23} were applied to the LIS. These are represented by Equation (6)\cite{22} and Equation (7)\cite{23}, respectively.

\[
\delta_\sigma^\text{LIS}(\text{py-H}4) / < S_x >_j = (F_{\text{py-H}4} - F_{\text{hfac-H}}) R_i + R_i \delta_\sigma^\text{LIS}(\text{hfac-H}) / < S_x >_j
\]

(6)

where \(R_i = G_{\text{py-H}4}/G_{\text{hfac-H}}\).

\[
\delta_\sigma^\text{LIS}(\text{py-H}5) / \delta_\sigma^\text{LIS}(\text{hfac-H}) = \alpha \delta_\sigma^\text{LIS}(\text{py-H}4) / \delta_\sigma^\text{LIS}(\text{hfac-H}) + \beta
\]

(7)

where \(\alpha = (F_{\text{py-H}4}/F_{\text{hfac-H}} - R_i)/(F_{\text{py-H}4}/F_{\text{hfac-H}} - R_i)\) and \(\beta = [(F_{\text{py-H}4}/F_{\text{hfac-H}}) R_i - (F_{\text{py-H}4}/F_{\text{hfac-H}}) R_j] / (F_{\text{py-H}4}/F_{\text{hfac-H}} - R_j)\).

The plots for \(\delta_\sigma^\text{LIS}(\text{py-H}4) / < S_x >_j\) versus \(\delta_\sigma^\text{LIS}(\text{hfac-H}) / < S_x >_j\) according to Equation (6) for the two-nuclei crystal field independent analysis show fairly good linearity with high \(r\) values \((r = 0.95)\) for py-H4 and 0.93 for py-H5. In addition, the three-nuclei crystal field independent analysis given by a plot of \(\delta_\sigma^\text{LIS}(\text{py-H}4)/\delta_\sigma^\text{LIS}(\text{hfac-H})\) versus \(\delta_\sigma^\text{LIS}(\text{py-H}5)/\delta_\sigma^\text{LIS}(\text{hfac-H})\) in terms of Equation (7) exhibits good linearity \((r = 0.93)\), confirming the invariance of the crystal field coefficient and the isostructural nature of the Ln\(^{III}\) complexes. Moreover, in order to check the invariance in the hyperfine coupling constant and the geometric factor, a crystal field independent method was employed according to Equations (8) and (9). This is based on the shift modulation, \(Y\), using Yb\(^{III}\) as the reference Ln complex as defined in Equations (8) and (9).\cite{20d,25}

\[
Y_{\text{Ln,py-H}4} = \delta_\sigma^\text{LIS}(\text{Yb,py-H}4) / < S_x >_{\text{Yb}} / < S_x >_{\text{Yb}} - \delta_\sigma^\text{LIS}(\text{Ln,py-H}4)
\]

(8)

\[
Y_{\text{Ln,py-H}5} = Y_{\text{Ln,hfac-H}} G_{\text{py-H}4}/G_{\text{hfac-H}}
\]

(9)

The plots of \(Y_{\text{Ln,py-H}4}\) of py-H4 and py-H5 with reference to \(Y_{\text{Ln,hfac-H}}\) of hfac-H give excellent conformities (Figure 6). Internal conformity for the \(F_i\) and \(R = G_{\text{py-H}4}/G_{\text{hfac-H}}\) values was also found from Equations (4), (6) and (7) (Table 2S, Supporting Information), reconfirming the invariance of the parameters and isostructural pattern. From
these structural analyses of the LIS, no change in the geometrical structures or isostructure with axial symmetry in solution was found and little or negligible magnetic interactions between Ln and IM2py were observed through the Ln series. This fact means that there is little effect on the 1H NMR properties from the unpaired electron spin in the IM2py radical. Accordingly, the paramagnetic shifts of the IM2py ligand in the paramagnetic LnIII ions are induced only by unpaired 4f electrons in the LnIII ions and are hardly affected by the unpaired spin in IM2py. The present LIS analyses suggest that there is a difference in symmetry between the solid-state and solution structures of the complexes. That is, the present complexes in the solid state do not have actual axial symmetry as revealed by the X-ray analysis[11] and they exhibit no effect due to the magnetic asymmetry in solution. This can be re-emphasized from the fairly good linear relationships $[r = 0.80 \text{ (py-H4)}, 0.86 \text{ (py-H5)}, \text{ and } 0.98 \text{ (hfac-H)}]$ in terms of the structural analyses of the LIS analyses suggest that there is a difference in symmetry as found by the X-ray solution. This can be re-emphasized from the X-ray analysis[11] and they exhibit no effect due to the magnetic asymmetry in solution. This can be re-emphasized from the fairly good linear relationships $[r = 0.80 \text{ (py-H4)}, 0.86 \text{ (py-H5)}, \text{ and } 0.98 \text{ (hfac-H)}]$ in terms of the structural analyses of the LIS analyses suggest that there is a difference in symmetry as revealed by the X-ray analyses[11] and they exhibit no effect due to the magnetic asymmetry in solution. This can be re-emphasized from the fairly good linear relationships $[r = 0.80 \text{ (py-H4)}, 0.86 \text{ (py-H5)}, \text{ and } 0.98 \text{ (hfac-H)}]$ in terms of the structural analyses according to plots of δ_{1S}/D' versus D/D' derived from Equation (10), where D and G are given in Equation (3) and D' is an asymmetric magnetic constant and $G' = (\sin^2 \cos 2\phi)/r^{-3}$. [26]

$$\delta_{1S}/D' = D/D' G + G'$$ \hspace{1cm} (10)

The evidence for the effective magnetic axial symmetry of the Ln complexes can be accounted for by the intramolecular motions and/or rearrangements leading to the dynamic averaging on a faster time scale than that of NMR spectroscopy. This dynamic aspect is consistent with the observation of only one NMR signal for hfac-H, revealing the equivalence of three hfac ligands which are not symmetrically correlated in the solid state as found by the X-ray analysis[11].

Conclusions

It has been found that the 1H NMR spectra for the (IM2py)LnIII complexes behave as if the IM2py radical was diamagnetic. For the diamagnetic LnIII complexes, the 1H NMR signals of the coordinated IM2py radical come in the range observed for the diamagnetic compounds, whereas in the paramagnetic LnIII complexes their chemical shifts exhibit only shifts induced by the lanthanide ion’s unpaired 4f electron spin(s) and not by the IM2py radical spin. In order to elucidate the peculiar diamagnetic behaviour of the coordinated IM2py ligand, more NMR spectroscopic data are needed for the coordinated radicals in diamagnetic and/or paramagnetic metal complexes.

Experimental Section

General: All chemicals were reagent grade and were used without purification. Lanthanide or yttrium trichloride hexahydrate and Hffac were purchased from Wako Pure Chemical Industries Ltd. and Tokyo Chemical Industry Co. Ltd., respectively. The radical ligands IM2py, methyl-substituted pyridyl ligands IM$^\text{Me2py}$[27] and the complexes [Ln(hfac)$_3$(IM2py)]$^{[11]}$ were prepared by previously reported methods.

Measurements: Magnetic susceptibility data of solids and solutions were measured using a magnetic balance (Sherwood Scientific, MSB-AUTO) and the Evans method[29] (1H NMR spectra), respectively, at 23 $°C$. Pascal’s constants were used to determine the constituent atom diamagnetism. The EPR spectrum was measured using a JEOL-RE1X ESR spectrometer at 296 K in CH$_2$Cl$_2$ and was analysed with WinFonia EPR Spectrum Simulation Software Ver. 1.25 (Bruker Analytische Messtechnik GmbH, Germany, 1996). 1H NMR spectra were recorded with a JEOL EX-270 spectrometer in CDCl$_3$ at 23 $°C$ with concentrations of about 15 mm. The internal standard of tetramethylsilane (TMS) was assigned a chemical shift of $\delta = 0$ ppm. $^{89/91}$Y NMR spectra were recorded with a JEOL Lambda-500 spectrometer in CDCl$_3$ at 30 $°C$, where the external standard of Y(NO$_3$)$_3$ in D$_2$O was assigned a chemical shift of $\delta = 0$ ppm.

Supporting Information: See footnote on the first page of this article. Table 1S with lists of the chemical shifts and LIS values for the IM2py complexes; Table 2S with $F, B[G, R, (F_1 - RF)]$, α, β. Figure 1S with Y NMR spectra.
