

Windows* Sockets 2 � Service Provider �Interface

A Service Provider Interface for Transparent Network Programming under Microsoft Windows

Revision 2.2.1

May 2, 1997

�

Subject to Change Without Notice

�

Disclaimer and Usage Restriction

�THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION, BUT ONLY IN ITS ENTIRETY AND WITHOUT MODIFICATION. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED HEREIN.

INTEL, MICROSOFT, AND THE OTHER COMPANIES WHOSE CONTRIBUTIONS ARE ACKNOWLEDGED BELOW DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. SAID COMPANIES DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

* Third-party trademarks are the property of their respective owners.

�

Table of Contents

� TOC \o "1-3" �1. INTRODUCTION	� GOTOBUTTON _Toc387243518 � PAGEREF _Toc387243518 �1��

1.1. Intended Audience	� GOTOBUTTON _Toc387243519 � PAGEREF _Toc387243519 �1��

1.2. Document Organization	� GOTOBUTTON _Toc387243520 � PAGEREF _Toc387243520 �1��

1.3. Status of This Specification	� GOTOBUTTON _Toc387243521 � PAGEREF _Toc387243521 �2��

1.4. Document Version Conventions	� GOTOBUTTON _Toc387243522 � PAGEREF _Toc387243522 �2��

1.5. New And/Or Different in Version 2.2.1	� GOTOBUTTON _Toc387243523 � PAGEREF _Toc387243523 �2��

2. Windows Sockets 2 Architectural Overview	� GOTOBUTTON _Toc387243524 � PAGEREF _Toc387243524 �3��

2.1. Windows Sockets 2 as a WOSA Component	� GOTOBUTTON _Toc387243525 � PAGEREF _Toc387243525 �3��

2.2. WinSock 2 DLLs	� GOTOBUTTON _Toc387243526 � PAGEREF _Toc387243526 �3��

2.3. Function Interface Model	� GOTOBUTTON _Toc387243527 � PAGEREF _Toc387243527 �4��

2.3.1. Naming Conventions	� GOTOBUTTON _Toc387243528 � PAGEREF _Toc387243528 �4��

2.4. WinSock 2 Service Providers	� GOTOBUTTON _Toc387243529 � PAGEREF _Toc387243529 �5��

2.4.1. Transport Service Providers	� GOTOBUTTON _Toc387243530 � PAGEREF _Toc387243530 �5��

2.4.2. Name Space Service Providers	� GOTOBUTTON _Toc387243531 � PAGEREF _Toc387243531 �6��

2.5. WinSock 2 Identifiers	� GOTOBUTTON _Toc387243532 � PAGEREF _Toc387243532 �6��

2.6. Data Transport Providers	� GOTOBUTTON _Toc387243533 � PAGEREF _Toc387243533 �7��

2.6.1. Division of Responsibilities Between DLL and Service Providers	� GOTOBUTTON _Toc387243534 � PAGEREF _Toc387243534 �7��

2.6.2. Mapping Between API and SPI Functions	� GOTOBUTTON _Toc387243535 � PAGEREF _Toc387243535 �8��

2.6.3. Function Extension Mechanism	� GOTOBUTTON _Toc387243536 � PAGEREF _Toc387243536 �8��

2.6.4. Configuration and Installation	� GOTOBUTTON _Toc387243537 � PAGEREF _Toc387243537 �9��

2.6.5. Debug and Trace Facilities	� GOTOBUTTON _Toc387243538 � PAGEREF _Toc387243538 �10��

2.7. Name Resolution Providers	� GOTOBUTTON _Toc387243539 � PAGEREF _Toc387243539 �10��

2.7.1. Name Resolution Model	� GOTOBUTTON _Toc387243540 � PAGEREF _Toc387243540 �10��

2.7.2. Division of Responsibilities Between DLL and Service Providers	� GOTOBUTTON _Toc387243541 � PAGEREF _Toc387243541 �13��

2.7.3. Mapping Between API and SPI Functions	� GOTOBUTTON _Toc387243542 � PAGEREF _Toc387243542 �13��

2.7.4. Configuration and Installation	� GOTOBUTTON _Toc387243543 � PAGEREF _Toc387243543 �14��

3. WinSock 2 Transport Provider Requirements	� GOTOBUTTON _Toc387243544 � PAGEREF _Toc387243544 �15��

3.1. Service Provider Activation	� GOTOBUTTON _Toc387243545 � PAGEREF _Toc387243545 �15��

3.1.1. Initialization	� GOTOBUTTON _Toc387243546 � PAGEREF _Toc387243546 �15��

3.1.2. Cleanup	� GOTOBUTTON _Toc387243547 � PAGEREF _Toc387243547 �16��

3.2. Error Reporting and Parameter Validation	� GOTOBUTTON _Toc387243548 � PAGEREF _Toc387243548 �16��

3.3. Byte Ordering Assumptions	� GOTOBUTTON _Toc387243549 � PAGEREF _Toc387243549 �16��

3.4. Socket Creation and Descriptor Management	� GOTOBUTTON _Toc387243550 � PAGEREF _Toc387243550 �16��

3.4.1. Descriptor Allocation	� GOTOBUTTON _Toc387243551 � PAGEREF _Toc387243551 �16��

3.4.2. Socket Attribute Flags and Modes	� GOTOBUTTON _Toc387243552 � PAGEREF _Toc387243552 �17��

3.4.3. Closing Sockets	� GOTOBUTTON _Toc387243553 � PAGEREF _Toc387243553 �17��

3.5. Blocking Operations	� GOTOBUTTON _Toc387243554 � PAGEREF _Toc387243554 �18��

3.5.1. Pseudo vs. True Blocking	� GOTOBUTTON _Toc387243555 � PAGEREF _Toc387243555 �18��

3.5.2. Blocking Hook	� GOTOBUTTON _Toc387243556 � PAGEREF _Toc387243556 �18��

3.5.3. Canceling Blocking Operations	� GOTOBUTTON _Toc387243557 � PAGEREF _Toc387243557 �19��

3.6. Event Objects	� GOTOBUTTON _Toc387243558 � PAGEREF _Toc387243558 �19��

3.6.1. Creating Event Objects	� GOTOBUTTON _Toc387243559 � PAGEREF _Toc387243559 �19��

3.6.2. Using Event Objects	� GOTOBUTTON _Toc387243560 � PAGEREF _Toc387243560 �19��

3.6.3. Destroying Event Objects	� GOTOBUTTON _Toc387243561 � PAGEREF _Toc387243561 �19��

3.7. Notification of Network Events	� GOTOBUTTON _Toc387243562 � PAGEREF _Toc387243562 �19��

3.7.1. Selects	� GOTOBUTTON _Toc387243563 � PAGEREF _Toc387243563 �20��

3.7.2. Windows Messages	� GOTOBUTTON _Toc387243564 � PAGEREF _Toc387243564 �20��

3.7.3. Event Object Signaling	� GOTOBUTTON _Toc387243565 � PAGEREF _Toc387243565 �20��

3.8. Socket Groups	� GOTOBUTTON _Toc387243566 � PAGEREF _Toc387243566 �20��

3.8.1. Socket Group Operations	� GOTOBUTTON _Toc387243567 � PAGEREF _Toc387243567 �21��

3.8.2. Required Socket Grouping Behavior	� GOTOBUTTON _Toc387243568 � PAGEREF _Toc387243568 �21��

3.8.3. Recommended Socket Grouping Behavior	� GOTOBUTTON _Toc387243569 � PAGEREF _Toc387243569 �22��

3.9. Quality of Service	� GOTOBUTTON _Toc387243570 � PAGEREF _Toc387243570 �22��

3.9.1. Quality of Service Overview	� GOTOBUTTON _Toc387243571 � PAGEREF _Toc387243571 �22��

3.9.2. Usage Model	� GOTOBUTTON _Toc387243572 � PAGEREF _Toc387243572 �23��

3.9.3. QOS Updates	� GOTOBUTTON _Toc387243573 � PAGEREF _Toc387243573 �23��

3.9.4. The QOS Structure	� GOTOBUTTON _Toc387243574 � PAGEREF _Toc387243574 �24��

3.9.5. Default Values	� GOTOBUTTON _Toc387243575 � PAGEREF _Toc387243575 �26��

3.9.6. QOS Templates	� GOTOBUTTON _Toc387243576 � PAGEREF _Toc387243576 �27��

3.10. Socket Connections on Connection-Oriented Protocols	� GOTOBUTTON _Toc387243577 � PAGEREF _Toc387243577 �27��

3.10.1. Binding to a Local Address	� GOTOBUTTON _Toc387243578 � PAGEREF _Toc387243578 �27��

3.10.2. The Basics: Listen, Connect, Accept	� GOTOBUTTON _Toc387243579 � PAGEREF _Toc387243579 �27��

3.10.3. Determining local and remote names	� GOTOBUTTON _Toc387243580 � PAGEREF _Toc387243580 �28��

3.10.4. Enhanced Functionality at Connect Time	� GOTOBUTTON _Toc387243581 � PAGEREF _Toc387243581 �28��

3.10.5. Connection Shutdown	� GOTOBUTTON _Toc387243582 � PAGEREF _Toc387243582 �29��

3.11. Socket Connections on Connectionless Protocols	� GOTOBUTTON _Toc387243583 � PAGEREF _Toc387243583 �31��

3.11.1. Connecting to a Default Peer	� GOTOBUTTON _Toc387243584 � PAGEREF _Toc387243584 �31��

3.11.2. Reconnecting and Disconnecting	� GOTOBUTTON _Toc387243585 � PAGEREF _Toc387243585 �31��

3.11.3. Using sendto() while connected	� GOTOBUTTON _Toc387243586 � PAGEREF _Toc387243586 �31��

3.12. Socket I/O	� GOTOBUTTON _Toc387243587 � PAGEREF _Toc387243587 �31��

3.12.1. Blocking I/O	� GOTOBUTTON _Toc387243588 � PAGEREF _Toc387243588 �31��

3.12.2. Non-Blocking I/O	� GOTOBUTTON _Toc387243589 � PAGEREF _Toc387243589 �32��

3.12.3. Overlapped I/O	� GOTOBUTTON _Toc387243590 � PAGEREF _Toc387243590 �32��

3.12.4. Support for Scatter/Gather I/O	� GOTOBUTTON _Toc387243591 � PAGEREF _Toc387243591 �35��

3.12.5. Out-Of-Band data	� GOTOBUTTON _Toc387243592 � PAGEREF _Toc387243592 �35��

3.13. Shared Sockets	� GOTOBUTTON _Toc387243593 � PAGEREF _Toc387243593 �37��

3.13.1. Multiple Handles to a Single Socket	� GOTOBUTTON _Toc387243594 � PAGEREF _Toc387243594 �38��

3.13.2. Reference Counting	� GOTOBUTTON _Toc387243595 � PAGEREF _Toc387243595 �38��

3.13.3. Precedence Guidelines	� GOTOBUTTON _Toc387243596 � PAGEREF _Toc387243596 �38��

3.14. Protocol-Independent Multicast and Multipoint	� GOTOBUTTON _Toc387243597 � PAGEREF _Toc387243597 �38��

3.14.1. Multipoint Taxonomy and Glossary	� GOTOBUTTON _Toc387243598 � PAGEREF _Toc387243598 �39��

3.14.2. Multipoint attributes in WSAPROTOCOL_INFOW struct	� GOTOBUTTON _Toc387243599 � PAGEREF _Toc387243599 �40��

3.14.3. Multipoint Socket Attributes	� GOTOBUTTON _Toc387243600 � PAGEREF _Toc387243600 �40��

3.14.4. SIO_MULTIPOINT_LOOP ioctl	� GOTOBUTTON _Toc387243601 � PAGEREF _Toc387243601 �40��

3.14.5. SIO_MULTICAST_SCOPE ioctl	� GOTOBUTTON _Toc387243602 � PAGEREF _Toc387243602 �41��

3.14.6. Semantics for joining multipoint leaves	� GOTOBUTTON _Toc387243603 � PAGEREF _Toc387243603 �41��

3.14.7. Using WSPJoinLeaf()	� GOTOBUTTON _Toc387243604 � PAGEREF _Toc387243604 �41��

3.14.8. Semantic differences between multipoint sockets and regular sockets	� GOTOBUTTON _Toc387243605 � PAGEREF _Toc387243605 �42��

3.15.Socket Options and IOCTLs	� GOTOBUTTON _Toc387243606 � PAGEREF _Toc387243606 �43��

3.15.1. Summary of Socket Options	� GOTOBUTTON _Toc387243607 � PAGEREF _Toc387243607 �43��

3.15.2. Summary of Socket Ioctl Opcodes	� GOTOBUTTON _Toc387243608 � PAGEREF _Toc387243608 �45��

3.16. Summary of SPI Functions	� GOTOBUTTON _Toc387243609 � PAGEREF _Toc387243609 �47��

3.16.1. Generic Data Transport Functions	� GOTOBUTTON _Toc387243610 � PAGEREF _Toc387243610 �48��

3.16.2. Upcalls exposed by WinSock 2 DLL	� GOTOBUTTON _Toc387243611 � PAGEREF _Toc387243611 �49��

3.16.3. Installation and configuration functions exposed by WinSock 2 DLL	� GOTOBUTTON _Toc387243612 � PAGEREF _Toc387243612 �49��

4.Transport Provider Interface Reference	� GOTOBUTTON _Toc387243613 � PAGEREF _Toc387243613 �50��

4.1. Socket Routines	� GOTOBUTTON _Toc387243614 � PAGEREF _Toc387243614 �50��

4.1.1. WSPAccept()	� GOTOBUTTON _Toc387243615 � PAGEREF _Toc387243615 �50��

4.1.2. WSPAddressToString()	� GOTOBUTTON _Toc387243616 � PAGEREF _Toc387243616 �55��

4.1.3. WSPAsyncSelect()	� GOTOBUTTON _Toc387243617 � PAGEREF _Toc387243617 �57��

4.1.4. WSPBind()	� GOTOBUTTON _Toc387243618 � PAGEREF _Toc387243618 �63��

4.1.5. WSPCancelBlockingCall()	� GOTOBUTTON _Toc387243619 � PAGEREF _Toc387243619 �65��

4.1.6. WSPCleanup()	� GOTOBUTTON _Toc387243620 � PAGEREF _Toc387243620 �67��

4.1.7. WSPCloseSocket()	� GOTOBUTTON _Toc387243621 � PAGEREF _Toc387243621 �69��

4.1.8. WSPConnect()	� GOTOBUTTON _Toc387243622 � PAGEREF _Toc387243622 �71��

4.1.9. WSPDuplicateSocket()	� GOTOBUTTON _Toc387243623 � PAGEREF _Toc387243623 �75��

4.1.10. WSPEnumNetworkEvents()	� GOTOBUTTON _Toc387243624 � PAGEREF _Toc387243624 �78��

4.1.11. WSPEventSelect()	� GOTOBUTTON _Toc387243625 � PAGEREF _Toc387243625 �80��

4.1.12. WSPGetOverlappedResult()	� GOTOBUTTON _Toc387243626 � PAGEREF _Toc387243626 �84��

4.1.13. WSPGetPeerName()	� GOTOBUTTON _Toc387243627 � PAGEREF _Toc387243627 �86��

4.1.14. WSPGetQOSByName()	� GOTOBUTTON _Toc387243628 � PAGEREF _Toc387243628 �87��

4.1.15. WSPGetSockName()	� GOTOBUTTON _Toc387243629 � PAGEREF _Toc387243629 �88��

4.1.16. WSPGetSockOpt()	� GOTOBUTTON _Toc387243630 � PAGEREF _Toc387243630 �90��

4.1.17. WSPIoctl()	� GOTOBUTTON _Toc387243631 � PAGEREF _Toc387243631 �95��

4.1.18. WSPJoinLeaf()	� GOTOBUTTON _Toc387243632 � PAGEREF _Toc387243632 �103��

4.1.19. WSPListen()	� GOTOBUTTON _Toc387243633 � PAGEREF _Toc387243633 �108��

4.1.20. WSPRecv()	� GOTOBUTTON _Toc387243634 � PAGEREF _Toc387243634 �110��

4.1.21. WSPRecvDisconnect()	� GOTOBUTTON _Toc387243635 � PAGEREF _Toc387243635 �116��

4.1.22. WSPRecvFrom()	� GOTOBUTTON _Toc387243636 � PAGEREF _Toc387243636 �118��

4.1.23. WSPSelect()	� GOTOBUTTON _Toc387243637 � PAGEREF _Toc387243637 �124��

4.1.24. WSPSend()	� GOTOBUTTON _Toc387243638 � PAGEREF _Toc387243638 �127��

4.1.25. WSPSendDisconnect()	� GOTOBUTTON _Toc387243639 � PAGEREF _Toc387243639 �132��

4.1.26. WSPSendTo()	� GOTOBUTTON _Toc387243640 � PAGEREF _Toc387243640 �134��

4.1.27. WSPSetSockOpt()	� GOTOBUTTON _Toc387243641 � PAGEREF _Toc387243641 �140��

4.1.28. WSPShutdown()	� GOTOBUTTON _Toc387243642 � PAGEREF _Toc387243642 �144��

4.1.29. WSPSocket()	� GOTOBUTTON _Toc387243643 � PAGEREF _Toc387243643 �146��

4.1.30. WSPStartup()	� GOTOBUTTON _Toc387243644 � PAGEREF _Toc387243644 �150��

4.1.31. WSPStringToAddress()	� GOTOBUTTON _Toc387243645 � PAGEREF _Toc387243645 �155��

4.2. Upcalls	� GOTOBUTTON _Toc387243646 � PAGEREF _Toc387243646 �157��

4.2.1. WPUCloseEvent()	� GOTOBUTTON _Toc387243647 � PAGEREF _Toc387243647 �158��

4.2.2. WPUCloseSocketHandle()	� GOTOBUTTON _Toc387243648 � PAGEREF _Toc387243648 �159��

4.2.3. WPUCloseThread()	� GOTOBUTTON _Toc387243649 � PAGEREF _Toc387243649 �160��

4.2.4. WPUCompleteOverlappedRequest()	� GOTOBUTTON _Toc387243650 � PAGEREF _Toc387243650 �161��

4.2.5. WPUCreateEvent()	� GOTOBUTTON _Toc387243651 � PAGEREF _Toc387243651 �164��

4.2.6. WPUCreateSocketHandle()	� GOTOBUTTON _Toc387243652 � PAGEREF _Toc387243652 �165��

4.2.7. WPUFDIsSet()	� GOTOBUTTON _Toc387243653 � PAGEREF _Toc387243653 �167��

4.2.8. WPUGetProviderPath()	� GOTOBUTTON _Toc387243654 � PAGEREF _Toc387243654 �168��

4.2.9. WPUModifyIFSHandle()	� GOTOBUTTON _Toc387243655 � PAGEREF _Toc387243655 �169��

4.2.10. WPUOpenCurrentThread()	� GOTOBUTTON _Toc387243656 � PAGEREF _Toc387243656 �171��

4.2.11. WPUPostMessage()	� GOTOBUTTON _Toc387243657 � PAGEREF _Toc387243657 �172��

4.2.12. WPUQueryBlockingCallback()	� GOTOBUTTON _Toc387243658 � PAGEREF _Toc387243658 �173��

4.2.13. WPUQuerySocketHandleContext()	� GOTOBUTTON _Toc387243659 � PAGEREF _Toc387243659 �175��

4.2.14. WPUQueueApc()	� GOTOBUTTON _Toc387243660 � PAGEREF _Toc387243660 �176��

4.2.15. WPUResetEvent()	� GOTOBUTTON _Toc387243661 � PAGEREF _Toc387243661 �178��

4.2.16. WPUSetEvent()	� GOTOBUTTON _Toc387243662 � PAGEREF _Toc387243662 �179��

5. Name Resolution Service Provider Requirements	� GOTOBUTTON _Toc387243663 � PAGEREF _Toc387243663 �180��

5.1. Summary of Name Space Provider Functions	� GOTOBUTTON _Toc387243664 � PAGEREF _Toc387243664 �180��

5.1.1. Name Space Provider Configuration and Installation	� GOTOBUTTON _Toc387243665 � PAGEREF _Toc387243665 �180��

5.1.2. Name Space Provider Initialization and Cleanup	� GOTOBUTTON _Toc387243666 � PAGEREF _Toc387243666 �180��

5.1.3. Service Installation	� GOTOBUTTON _Toc387243667 � PAGEREF _Toc387243667 �180��

5.1.4. Service Query	� GOTOBUTTON _Toc387243668 � PAGEREF _Toc387243668 �181��

5.1.5. Helper Functions	� GOTOBUTTON _Toc387243669 � PAGEREF _Toc387243669 �181��

5.1.6. Name Resolution Data Structures	� GOTOBUTTON _Toc387243670 � PAGEREF _Toc387243670 �182��

5.2. WinSock 1.1 Compatibile Name Resolution for TCP/IP	� GOTOBUTTON _Toc387243671 � PAGEREF _Toc387243671 �184��

5.2.1. Introduction	� GOTOBUTTON _Toc387243672 � PAGEREF _Toc387243672 �184��

5.2.2. Basic Approach	� GOTOBUTTON _Toc387243673 � PAGEREF _Toc387243673 �185��

5.2.3. getprotobyname and getprotobynumber	� GOTOBUTTON _Toc387243674 � PAGEREF _Toc387243674 �185��

5.2.4. getservbyname() and getservbyport()	� GOTOBUTTON _Toc387243675 � PAGEREF _Toc387243675 �185��

5.2.5. gethostbyname()	� GOTOBUTTON _Toc387243676 � PAGEREF _Toc387243676 �185��

5.2.6. gethostbyaddr()	� GOTOBUTTON _Toc387243677 � PAGEREF _Toc387243677 �185��

5.2.7. gethostname()	� GOTOBUTTON _Toc387243678 � PAGEREF _Toc387243678 �186��

6. Name Resolution Interface Reference	� GOTOBUTTON _Toc387243679 � PAGEREF _Toc387243679 �187��

6.1. NSPCleanup()	� GOTOBUTTON _Toc387243680 � PAGEREF _Toc387243680 �187��

6.2. NSPGetServiceClassInfo()	� GOTOBUTTON _Toc387243681 � PAGEREF _Toc387243681 �188��

6.3. NSPInstallServiceClass()	� GOTOBUTTON _Toc387243682 � PAGEREF _Toc387243682 �189��

6.4. NSPLookupServiceBegin()	� GOTOBUTTON _Toc387243683 � PAGEREF _Toc387243683 �190��

6.5. NSPLookupServiceEnd()	� GOTOBUTTON _Toc387243684 � PAGEREF _Toc387243684 �193��

6.6. NSPLookupServiceNext()	� GOTOBUTTON _Toc387243685 � PAGEREF _Toc387243685 �194��

6.7. NSPRemoveServiceClass()	� GOTOBUTTON _Toc387243686 � PAGEREF _Toc387243686 �197��

6.8. NSPSetService()	� GOTOBUTTON _Toc387243687 � PAGEREF _Toc387243687 �198��

6.9. NSPStartup()	� GOTOBUTTON _Toc387243688 � PAGEREF _Toc387243688 �201��

7. Installation and Configuration Functions	� GOTOBUTTON _Toc387243689 � PAGEREF _Toc387243689 �203��

7.1. Transport Provider Configuration Functions	� GOTOBUTTON _Toc387243690 � PAGEREF _Toc387243690 �203��

7.1.1. WSCDeinstallProvider()	� GOTOBUTTON _Toc387243691 � PAGEREF _Toc387243691 �203��

7.1.2. WSCEnumProtocols()	� GOTOBUTTON _Toc387243692 � PAGEREF _Toc387243692 �204��

7.1.3. WSCGetProviderPath()	� GOTOBUTTON _Toc387243693 � PAGEREF _Toc387243693 �209��

7.1.4. WSCInstallProvider()	� GOTOBUTTON _Toc387243694 � PAGEREF _Toc387243694 �210��

7.2. Name Space Provider Configuration Functions	� GOTOBUTTON _Toc387243695 � PAGEREF _Toc387243695 �211��

7.2.1. WSCEnableNSProvider()	� GOTOBUTTON _Toc387243696 � PAGEREF _Toc387243696 �211��

7.2.2. WSCInstallNameSpace()	� GOTOBUTTON _Toc387243697 � PAGEREF _Toc387243697 �212��

7.2.3. WSCUnInstallNameSpace()	� GOTOBUTTON _Toc387243698 � PAGEREF _Toc387243698 �213��

Appendix A. Error Codes and Header Files	� GOTOBUTTON _Toc387243699 � PAGEREF _Toc387243699 �214��

A.1 Error Codes	� GOTOBUTTON _Toc387243700 � PAGEREF _Toc387243700 �214��

A.2 WinSock SPI Header File - WS2SPI.H	� GOTOBUTTON _Toc387243701 � PAGEREF _Toc387243701 �216��

Appendix B. Service Provider Ordering	� GOTOBUTTON _Toc387243702 � PAGEREF _Toc387243702 �217��

B.1 WSCWriteProviderOrder()	� GOTOBUTTON _Toc387243703 � PAGEREF _Toc387243703 �218��

�

�Acknowledgments �Windows Sockets Version 2

Since The WinSock Group started the Version 2 specification process in May 1994, hundreds of people, companies and organizations have cooperated and contributed to its design and specification. Several meetings, many emails and telephone conversations later, it’s appropriate to acknowledge the part played by everyone and certain contributors in particular.

Many individuals too numerous to mention have given time to the project and all of them are owed a debt of thanks for the roles they played in creating the most comprehensive open transport API designed to date. The commitment, dedication and energy of the following individuals and companies should be singled out for special attention.

First, the design of WinSock 2 was based on the input of multiple “Functionality Groups” whose leaders cajoled, steered, defined and refined each of their group’s technical proposals. Consequently, we’d like to recognize the following individuals and their employers for the time and effort they have given. It’s appropriate to thank Dave Andersen for the challenge he undertook, met and surpassed in defining the generic API set and pulling together the contributions of all the various Functionality Groups.

Functionality Group�Leader(s)�Email�Company��Generic API�Dave Andersen�andersen@ibeam.jf.intel.com�Intel��Operating Framework�Keith Moore�keithmo@microsoft.com�Microsoft��Specification Clarifications�Bob Quinn�rcq@ftp.com�FTP Software���Vikas Garg�vikas@distinct.com�Distinct���Paul Brooks�paul@turbosoft.com.au�Turbosoft��Name Resolution�Margaret Johnson�margretj@microsoft.com�Microsoft��Connection-Oriented Media�Charlie Tai�Charlie_Tai@ccm.jf.intel.com�Intel���Sanjay Agrawal�sanjaya@microsoft.com�Microsoft��Wireless�Dale Buchholz�drbuchholz@mot.com�Motorola��TCP/IP�Michael Khalandovsky�mlk@ftp.com�FTP Software��IPX/SPX�Tim Delaney�tdelaney@novell.com�Novell��DECnet�Cathy Bence�bence@ranger.enet.dec.com�DEC��OSI�Adrian Dawson�ald@oasis.icl.co.uk�ICL��

The following individuals moderated the WinSock 2 effort as a whole and provided the framework, technical guidance and administrative mechanisms for WinSock Version 2.

Moderator�Email�Company��Martin Hall�martinh@stardust.com�Stardust Technologies��Dave Treadwell�davidtr@microsoft.com�Microsoft��Mark Towfiq�towfiq@east.sun.com�SunSoft��

Special thanks to Microsoft and Intel for the amount of time these companies gave to the specification and especially to Dave Treadwell and Keith Moore at Microsoft and Dave Andersen and Charlie Tai at Intel for their considerable editorial effort on the WinSock 2 specifications.

The SDK for Windows NT and Windows 95 was a project in its own right and was brought about by a joint effort between Microsoft and the Intel Architecture Labs. The Microsoft team included Dave Treadwell, Steve Firebaugh, Keith Moore, Arnold Miller, Francis X. Langlois, Mosin Ahmed and Dave Beaver. The Intel team included Dave Andersen, Dave Doerner, Paul Drews, Charlie Tai, Dirk Brandewie, Dan Chou, Michael Grafton and Dan Ohlemacher.

This version would not, of course, have been possible without the effort of the contributors to WinSock Version 1.1 and the numerous products that implement and use it. Of special significance to the success of WinSock are the hundreds of shareware and freeware applications that have been developed and continue to emerge. The authors of these packages are some of WinSock’s unsung heroes. It’s fitting to recognize, at least, the role of and contribution made by Peter Tattam’s “Trumpet” WinSock implementation.

We’d like to thank Interop for hosting the kick-off meeting for WinSock Version 2, and Novell for kindly providing the facilities for the meeting that marked the consolidation effort which brought together the work of different groups into a coordinated API and SPI definition.

Sincerely,

Martin Hall

Stardust Technologies

�� AUTONUMLGL � INTRODUCTION

The Windows Sockets 2 specification is a superset of the widely deployed Windows Sockets 1.1 interface. While maintaining full backwards compatibility it extends the WinSock interface in a number of areas including

Access to protocols other than TCP/IP: WinSock 2 allows an application to use the familiar socket interface to achieve simultaneous access to any number of installed transport protocols.

Protocol-independent name resolution facilities: WinSock 2 includes a standardized set of APIs for querying and working with the myriad of name resolution domains that exist today (e.g. DNS, SAP, X.500, etc.)

Overlapped I/O with scatter/gather: following the model established in Win32 environments, WinSock 2 incorporates the overlapped paradigm for socket I/O and incorporates scatter/gather capabilities as well.

Quality of service: WinSock 2 establishes conventions for applications to negotiate required service levels for parameters such as bandwidth and latency. Other QOS-related enhancements include socket grouping and prioritization, and mechanisms for network-specific QOS extensions.

Protocol-independent multicast and multipoint: applications can discover what type of multipoint or multicast capabilities a transport provides and use these facilities in a generic manner.

Other frequently requested extensions: shared sockets, conditional acceptance, exchange of user data at connection setup/teardown time, protocol-specific extension mechanisms.

� AUTONUMLGL � Intended Audience

This document is targeted at persons who are developing WinSock 2 transport or name resolution service providers. Such providers conform to the Windows Sockets 2 Service Provider Interface and are thus accessible to Windows Sockets applications. It is assumed that service provider developers will be familiar with and will have access to the Windows Sockets 2 Application Programming Interface specification.

Persons who are interested in developing applications that will take advantage of WinSock 2’s capabilities will be primarily interested in the API specification. The Windows Sockets 2 API specification exists under separate cover.

� AUTONUMLGL � Document Organization

The complete Windows Sockets 2 specification consists of three separate documents:

Windows Sockets 2 Application Programming Interface

Windows Sockets 2 Protocol-Specific Annex

Windows Sockets 2 Service Provider Interface

This document (Windows Sockets 2 Service Provider Interface) is divided into seven main sections and two appendices.

Section 1�Introductory material about the specification as a whole��Section 2�Windows Sockets 2 Architectural Overview��Section 3�Transport service provider requirements��Section 4�Detailed reference information for transport service provider functions��Section 5�Name resolution service provider requirements��Section 6�Detailed reference information for name resolution service provider functions��Section 7�Installation and configuration functions for transport and name space providers��Appendix A�Information on WinSock SPI header files, error codes and data type definitions ��Appendix B�Service Provider Ordering��

The Windows Sockets 2 Protocol-Specific Annex contains information specific to a number of transport protocols that are accessible via Windows Sockets 2. The Windows Sockets 2 Application Programming Interface specifies the interface that WinSock applications use in order to take advantage of WinSock transports.

� AUTONUMLGL � Status of This Specification

Version 2.2.1 of the SPI specification is considered final with respect to functionality. Future revisions of this specification are contemplated only for the purpose of correcting errors or removing ambiguity, not as a means of incorporating additional functionality.

This document comprises only the SPI portion of the Windows Sockets 2 specification. The WinSock Group’s Operating Framework functionality group produced the initial versions of this document. Constructive comments and feedback on this material are always welcome and should be directed towards:

 	

David B. Andersen

Intel Architecture Labs

andersen@ibeam.jf.intel.com

� AUTONUMLGL � Document Version Conventions

Starting with release 2.0.6, the API and SPI documents have adopted a 3-part revision identification system. Each revision of the document will be clearly labeled with a release date and a revision identifier such as X.Y.Z where:

X is the major version of the WinSock specification (currently version 2)

Y is a major revision identifier that is incremented each time changes are made that impact binary compatibility with the previous spec revision (e.g. changes in a function’s parameter list or new functions being added)

Z is a minor revision indicator that is incremented when wording changes or clarifications have been made which do not impact binary compatibility with a previous revision.

Note that gaps in the minor revision indicator (Z) between successive releases of a document are not unusual, especially during the early stages of a document’s life when many changes are occurring.

� AUTONUMLGL � New And/Or Different in Version 2.2.1

Version 2.2.1 is being released primarily to correct errors and omissions from earlier versions of the specifications.

�� AUTONUMLGL � Windows Sockets 2 Architectural Overview

This chapter provides an overview of the Windows Sockets 2 architecture. It describes and illustrates the relationships between applications, the WinSock 2 DLL and WinSock service providers. A high-level view of the division of responsibilities between the WinSock 2 DLL and the WinSock service providers is also provided.

� AUTONUMLGL � Windows Sockets 2 as a WOSA Component

The Windows Sockets 2 network transport and name resolution services are provided as a WOSA (Windows Open Services Architecture) component. They consist of both an application programming interface (API) used by applications and service provider interfaces (SPI’s) implemented by service providers. This document defines the service provider interfaces for data transport and name resolution. While it is designed to be a stand-alone reference for the implementors of WinSock 2 service providers, developers are strongly encouraged to obtain and become familiar with the Windows Sockets 2 Application Programming Interface as well.

Windows Open Service Architecture (WOSA) provides a common set of interfaces for connecting front-end applications with back-end services. The front-end application and back-end services need not speak each other's language in order to communicate as long as they both know how to talk to their respective WOSA interfaces. As a result, WOSA allows application developers and vendors of back-end services to mix and match applications and services to build solutions that shield programmers and users from the underlying complexity of the system. WOSA defines an abstraction layer to heterogeneous computing resources through the WOSA set of APIs. Because this set of APIs is extensible, new services and their corresponding APIs can be added as needed. Applications written to the WOSA APIs have access not only to all the various computing environments supported today, but also to all additional environments as they become available. Moreover, applications don't have to be modified in any way to enjoy this support.

Each service recognized by WOSA also has a set of interfaces that service-provider vendors use to take advantage of the seamless interoperability that WOSA provides. In order to provide transparent access for applications, each implementation of a particular WOSA service simply needs to support the functions defined by its service provider interface.

Like most WOSA components, Windows Sockets 2 uses a Windows dynamic-link library (DLL) that allows applications and service providers software components to be bound together at runtime. In this way, applications are able to connect to services dynamically. An application needs to know only the definition of the interface, not its implementation.

� AUTONUMLGL � WinSock 2 DLLs

WinSock network services follow the WOSA model. This means that there exists a WinSock Application Programming Interface (API), which is the application programmer’s access to network services, WinSock Service Provider Interfaces (SPI’s) which are implemented by transport service provider and name resolution service provider vendors, and the WinSock 2 DLL. . WinSock 2’s WOSA compliant architecture is illustrated below in Figure 1.

� EMBED Word.Picture.6 ���

Figure 1

Note: hereafter, for simplicity’s sake, we will use the term WinSock 2 DLL in place of the more cumbersome (but more exact) WS2_32.DLL.

This SPI is intended to be usable within 32bit implementations and versions of Microsoft Windows including Windows NT and Windows 95.

� AUTONUMLGL � Function Interface Model

WinSock transport and name space service providers are DLLs with a single EXPORTED procedure entry point for the service provider initialization function WSPStartup() or NSPStartup(), respectively. All other service provider functions are made accessible to the WinSock 2 DLL via the service provider’s dispatch table. Service provider DLL’s are loaded into memory by the WinSock 2 DLL only when needed, and are unloaded when their services are no longer required.

The SPI also defines several circumstances in which a transport service provider calls up into the WinSock 2 DLL (“upcalls”) to obtain DLL support services. The transport service provider DLL is given the WinSock 2 DLL’s upcall dispatch table via the UpcallTable parameter to WSPStartup().

Service providers should have their file extension changed from ".DLL" to ".WSP" or ".NSP". This requirement is not strict. A service provider will still operate with the WinSock 2 DLL with any file extension.

� AUTONUMLGL � Naming Conventions

The WinSock SPI uses the following function prefix naming convention:�	WSP (WinSock Service Provider) - transport service provider entry points �	WPU (WinSock Provider Upcall) - WinSock 2 DLL entry points for service providers�	WSC (WinSock Configuration) - WinSock 2 DLL entry points for installation applets�	NSP (Name Space Provider) - name space provider entry points

As described above, these entry points are not exported (with the exception of WSPStartup() and NSPStartup()), but are accessed via an exchange of dispatch tables.

� AUTONUMLGL � WinSock 2 Service Providers

As shown in Figure 1, there are two basic types of service providers: transport providers and name space providers. Examples of transport providers include protocol stacks such as TCP/IP or IPX/SPX, while an example of a name space provider would be an interface to the Internet’s Domain Naming System (DNS). Separate sections of the service provider interface specification apply to each type of service provider.

WinSock 2 service providers utilize UNICODE for all strings. The WinSock 2 DLL performs the necessary conversions to allow applications to work with either ANSI or UNICODE.

Transport and name space service providers must be registered with the WinSock 2 DLL at the time they are installed. This registration need only be done once for each provider as the necessary information is retained in persistent storage.

� AUTONUMLGL � Transport Service Providers

A given transport service provider supports one or more protocols. For example, a TCP/IP provider would supply (as a minimum) the TCP and UDP protocols, while an IPX/SPX provider might supply IPX, SPX and SPX II. Each protocol supported by a particular provider is described by a WSAPROTOCOL_INFOW structure, and the total set of such structures can be thought of as the catalog of installed protocols. Applications can retrieve the contents of this catalog (see WSAEnumProtocols()), and by examining the available WSAPROTOCOL_INFO structs discover the communications attributes associated with each protocol.

� AUTONUMLGL � Layered Protocols and Protocol Chains

WinSock 2 accommodates the notion of a layered protocol. A layered protocol is one that implements only higher level communications functions, while relying on an underlying transport stack for the actual exchange of data with a remote endpoint. An example of such a layered protocol would be a security layer that adds protocol to the connection establishment process in order to perform authentication and to establish a mutually agreed upon encryption scheme. Such a security protocol would generally require the services of an underlying reliable transport protocol such as TCP or SPX. The term base protocol refers to a protocol such as TCP or SPX which is fully capable of performing data communications with a remote endpoint, and the term layered protocol is used to describe a protocol that cannot stand alone. A protocol chain would then be defined as one or more layered protocols strung together and anchored by a base protocol.

This stringing together of layered protocols and base protocols into chains can be accomplished by arranging for the layered protocols to support the WinSock 2 SPI at both their upper and lower edges. A special WSAPROTOCOL_INFOW struct is created which refers to the protocol chain as a whole, and which describes the explicit order in which the layered protocols are joined. This is illustrated in Figure 2.

�

�Figure 2 Layered Protocol Architecture

� AUTONUMLGL � Name Space Service Providers

A name space provider implements an interface mapping between the WinSock 2 name space SPI and the native programmatic interface of an existing name service such as DNS, X.500, Netware Directory Services (NDS), etc. While a name space provider supports exactly one name space, it is possible for multiple providers for a given name space to be installed. It is also possible for a single DLL to instantiate multiple different name space providers. As name space providers are installed, a catalog of WSANAMESPACE_INFO structs is maintained. An application may use WSAEnumNameSpaceProviders() to discover which name spaces are supported on a machine. Refer to Section 5. Name Resolution Service Provider Requirements for detailed information.

� AUTONUMLGL � WinSock 2 Identifiers

A WinSock 2 clearinghouse has been established for service provider vendors to obtain unique identifiers for new address families, socket types, and protocols. FTP and world-wide web servers are used to supply current identifier/value mappings, and email is used to request allocation of new ones. At the time of this writing the world-wide web URL for the Windows Sockets 2 Identifier Clearinghouse is�	

http://www.stardust.com/wsresource/winsock2/ws2ident.html

�� AUTONUMLGL � Data Transport Providers

The following sections apply only to data transport service providers and the data transport portion of the SPI.

� AUTONUMLGL � Division of Responsibilities Between DLL and Service Providers

This section provides an overview of the division of responsibility between the WinSock 2 DLL and transport service providers.

� AUTONUMLGL � WinSock 2 DLL Functionality

The major task of the data transport portion of the WinSock 2 DLL is to serve as a sort of "traffic manager" between service providers and applications. Consider several different service providers interacting with the same application. Each service provider interacts strictly with the WinSock 2 DLL. The WinSock 2 DLL takes care of (1) selecting an appropriate service provider for creating sockets based on a protocol description and (2) forwarding application procedure calls involving a socket to the appropriate service provider that created that controls that socket. Service providers are unaware that any of this is happening. They do not need to be concerned about the details of cooperating with one another or even the existence of other service providers. By abstracting the service providers into a consistent DLL interface and performing this automatic traffic routing function, the WinSock 2 DLL allows applications to interact with a variety of providers without requiring the applications to be aware of the divisions between providers, where different providers are installed, etc..

WinSock 2 DLL relies on the parameters of the API socket creation functions (socket() and WSASocket()) to determine which service provider to utilize. The selected transport service provider will be invoked via the WSPSocket() function. In the case of the socket() function, the WinSock 2 DLL finds the first entry in the set of installed WSAPROTOCOL_INFOW structs that matches the values supplied in the tuple formed by the (address family, socket type, protocol) parameters. To preserve backwards compatibility, the WinSock 2 DLL treats the value of zero for either address family or socket type as a wild card value. The value of zero for protocol is not considered a wild card value by the WinSock 2 DLL unless such behavior is indicated for a particular protocol by having the PFL_MATCHES_PROTOCOL_ZERO flag set in the WSAPROTOCOL_INFOW struct.

For the WSASocket() function, if NULL is supplied for lpProtocolInfo, the behavior is exactly as just described for socket(). If a WSAPROTOCOL_INFO struct is referenced, however, the WinSock 2 DLL does not perform any matching function but immediately relays the socket creation request to the transport service provider associated with the indicated WSAPROTOCOL_INFOW struct. The values for the (address family, socket type, protocol) tuple are supplied intact to the service provider in the WSPSocket() function. Service providers are free to ignore or pay attention to the values of the (address family, socket type, protocol) parameters as is appropriate, but they must not indicate an error condition when the value of either address family or socket type is zero. In addition, service providers must not indicate an error condition when the manifest constant FROM_PROTOCOL_INFO is contained in any of the (address family, socket type, protocol) parameters. This value simply indicates that the application wishes to use the values found in the corresponding fields of the WSAPROTOCOL_INFO struct: (iAddressFamily, iSocketType, iProtocol).

As part of socket creation a service provider informs the WinSock 2 DLL about the association between itself and the new socket by means of parameters passed to WPUCreateSocketHandle() or WPUModifyIFSHandle(). The WinSock 2 DLL keeps track of this association between socket handles and particular service providers. Whenever an application interface function that refers to a socket handle is called, the WinSock 2 DLL looks up the association and calls the corresponding service provider interface function of the appropriate service provider.

In addition to its major "traffic routing" service, the WinSock 2 DLL provides a number of other services such as protocol enumeration, socket descriptor management (allocation, deallocation, and context value association) for non-file-system service providers, blocking hook management on a per-thread basis, byte swapping utilities, queuing of asynchronous procedure calls (APCs) to facilitate invocation of I/O completion routines, and version negotiation between applications and the WinSock 2 DLL, as well as between the WinSock 2 DLL and service providers.

� AUTONUMLGL � Transport Service Provider Functionality

Service providers implement the actual transport protocol which includes such functions as setting up connections, transferring data, exercising flow control and error control, etc. The WinSock 2 DLL has no knowledge about how requests to service providers are realized; this is up to the service provider implementation. The implementation of such functions may differ greatly from one provider to another. Service providers hide the implementation-specific details of how network operations are accomplished.

Transport service providers can be broadly divided into two categories: those whose socket descriptors are real file system handles are hereafter referred to as Installable File System (IFS) providers. The remainder are referred to as non-IFS providers. The WinSock 2 DLL always passes the transport service provider’s socket descriptor on up to the WinSock application, so applications are free to take advantage of socket descriptors that are file system handles if they so choose.

To summarize: service providers implement the low-level network-specific protocols. The WinSock 2 DLL provides the medium-level traffic management that interconnects these transport protocols with applications. Applications in turn provide the policy of how these traffic streams and network-specific operations are used to accomplish the functions desired by the user.

� AUTONUMLGL � Mapping Between API and SPI Functions

The WinSock Transport SPI is similar to the WinSock API in that all the basic socket functions appear. When a new WinSock 2 version of a function and the original WinSock 1.1 version of a function both exist in the API, only the new version will show up in the SPI. For example, connect() and WSAConnect() both map to WSPConnect(), accept() and WSAAccept() map to WSPAccept(), and socket() and WSASocket() map to WSPSocket(). Other API functions that are collapsed into the enhanced versions in SPI include send(), sendto(), recv(), recvfrom(), and ioctlsocket().

Support functions like htonl(), htons(), ntohl(), and ntohs() are implemented in the WinSock 2 DLL, and are not passed down to service providers. The same holds true for the WSA versions of these functions.

WinSock service provider enumeration and the blocking hook related functions are realized in the WinSock 2 DLL, thus WSAEnumProtocols(), WSAIsBlocking(), WSASetBlockingHook(), and WSAUnhookBlockingHook() do not appear as SPI functions.

Since error codes are returned along with SPI functions, equivalents of WSAGetLastError() and WSASetLastError() are not needed in the SPI.

The event object manipulation and wait functions including WSACreateEvent(), WSACloseEvent(), WSASetEvent(), WSAResetEvent(), and WSAWaitForMultipleEvents() are mapped directly to native OS services, and thus are not present in the SPI.

All the TCP/IP specific name conversion and resolution functions in WinSock 1.1 such as getXbyY(), WSAAsyncGetXByY() and WSACancelAsyncRequest(), as well as gethostname() are implemented within the WinSock 2 DLL in terms of the new name resolution facilities. See 5.2. WinSock 1.1 Compatibile Name Resolution for TCP/IP for details.. Conversion functions such as inet_addr() and inet_ntoa() are implemented within the WinSock 2 DLL.

� AUTONUMLGL � Function Extension Mechanism

Since the WinSock DLL itself is no longer supplied by each individual stack vendor, it is no longer possible for a stack vendor to offer extended functionality by just adding entry points to the WinSock DLL. To overcome this limitation, WinSock 2 takes advantage of the new WSAIoctl() function to accommodate service providers who wish to offer provider-specific functionality extensions. This mechanism presupposes, of course, that an application is aware of a particular extension and understands both the semantics and syntax involved. Such information would typically be supplied by the service provider vendor.

In order to invoke an extension function, the application must first ask for a pointer to the desired function. This is done via the WSAIoctl() function using the SIO_GET_EXTENSION_FUNCTION_POINTER command code. The input buffer to the WSAIoctl() function contains an identifier for the desired extension function and the output buffer will contain the function pointer itself. The application can then invoke the extension function directly without passing through the WinSock 2 DLL.

The identifiers assigned to extension functions are globally unique identifiers (GUIDs) that are allocated by service provider vendors. Vendors who create extension functions are urged to publish full details about the function including the syntax of the function prototype. This makes it possible for common and/or popular extension functions to be offered by more than one service provider. An application can obtain the function pointer and use the function without needing to know anything about the particular service provider that implements the function.

� AUTONUMLGL � Configuration and Installation

In order for a transport protocol to be accessible via WinSock it must be properly installed on the system and registered with WinSock. When a transport service provider is installed by invoking a vendor’s installation program, configuration information must be added to a configuration database to give the WinSock 2 DLL required information regarding the service provider. The WinSock 2 DLL exports an installation function, WSCInstallProvider() for the vendor’s installation program to supply the relevant information about the to-be-installed service provider, e.g., the name and path to the service provider DLL and a list of WSAPROTOCOL_INFOW structures that this provider can support. Symmetrically, the WinSock 2 DLL also provides a function, WSCDeinstallProvider(), for a vendor’s deinstallation program to remove all the relevant information from the configuration database maintained by the WinSock 2 DLL. The exact location and format of this configuration information is private to the WinSock 2 DLL, and can only be manipulated by the above-mentioned functions.

The order in which transport service providers are initially installed governs the order in which they are enumerated through WSCEnumProtocols() at the service provider interface, or through WSAEnumProtocols() at the application interface. More importantly, this order also governs the order in which protocols and service providers are considered when a client requests creation of a socket based on its address family, type, and protocol identifier. WinSock 2 includes an applet called SPORDER.EXE that allows the catalog of installed protocols to be re-ordered interactively after protocols have already been installed. WinSock 2 also includes an auxiliary DLL, SPORDER.DLL, that exports a procedural interface for re-ordering protocols. This procedural interface is described in Appendix B, Service Provider Ordering.

� AUTONUMLGL � Installing Layered Protocols and Protocol Chains

The WSAPROTOCOL_INFOW struct supplied with each protocol to be installed indicates whether the protocol is a base protocol, layered protocol or protocol chain. The value of the ProtocolChain.ChainLen field is interpreted as follows:

0	Layered protocol

1	Base protocol (or chain with only one component)

>1	Protocol chain

Installation of protocol chains can only occur after successful installation of all of the constituent components (base protocols and layered protocols). The WSAPROTOCOL_INFOW struct for a protocol chain uses the ProtocolChain field to describe the length of the chain and the identity of each component. The individual protocols that make up a chain are listed in order in the ProtocolChain.ChainEntries array, with the zeroth element of the array corresponding to the first layered provider. Protocols are identified by their CatalogEntryID values which are assigned by the WinSock 2 DLL at protocol installation time, and can be found in the WSAPROTOCOL_INFOW struct for each protocol.

The values for the remaining fields in the protocol chain’s WSAPROTOCOL_INFOW struct should be chosen to reflect the attributes and identifiers that best characterize the protocol chain as a whole. When selecting these values, developers should bear in mind that communications over protocol chains can only occur when both endpoints have compatible protocol chains installed, and that applications must able to recognize the corresponding WSAPROTOCOL_INFO struct.

Note that when a base protocol is installed, it is not necessary to make any entries in the ProtocolChain.ChainEntries array. It is implicitly understood that the sole component of this chain is already identified in the CatalogEntryID field of the same WSAPROTOCOL_INFOW struct. Also note that protocol chains may not include multiple instances of the same layered protocol.

� AUTONUMLGL � Debug and Trace Facilities

When a software developer of a WinSock 2 application encounters a WinSock-related bug there is a need to isolate the bug to one of (1) the application, (2) the WinSock 2 DLL, or (3) the service provider. WinSock 2 addresses this need through a specially instrumented version of the WinSock 2 DLL and a separate debug/trace DLL. This combination allows all procedure calls across the WinSock 2 API or SPI to be monitored, and to some extent controlled.

Developers can use this mechanism to trace procedure calls, procedure returns, parameter values, and return values. Parameter values and return values can be altered on procedure-call or procedure-return. If desired, a procedure-call can even be prevented or redirected. With access to this level of information and control, it should be easy for a developer to isolate any problem to the application, WinSock 2 DLL or service provider.

The WinSock 2 SDK includes the instrumented WinSock 2 DLL, a sample debug/trace DLL and a document containing a detailed description of the above two components. The sample debug/trace DLL is provided in both source and object form. Developers are free to use the source to develop versions of the debug/trace DLL that meet their special needs.

� AUTONUMLGL � Name Resolution Providers

The following sections apply only to name resolution service providers and the name resolution portion of the SPI.

� AUTONUMLGL � Name Resolution Model

In developing a protocol-independent client/server application, there are two basic requirements that exist with respect to name resolution and registration:

The ability of the server half of the application (hereafter referred to as a service) to register its existence within (or become accessible to) one or more name spaces

The ability of the client application to find the service within a name space and obtain the required transport protocol and addressing information

For those accustomed to developing TCP/IP based applications, this may seem to involve little more than looking up a host address and then using an agreed upon port number. Other networking schemes, however, allow the location of the service, the protocol used for the service, and other attributes to be discovered at run time. To accommodate the broad diversity of capabilities found in existing name services, the WinSock 2 interface adopts the model described below.

A name space refers to some capability to associate (as a minimum) the protocol and addressing attributes of a network service with one or more human-friendly names. Many name spaces are currently in wide use including the Internet’s Domain Name System(DNS), Netware Directory Services (NDS), X.500, etc. These name spaces vary widely in how they are organized and implemented. Some of their properties are particularly important to understand from the perspective of WinSock name resolution.

� AUTONUMLGL � Types of Name Spaces

There are three different types of name spaces in which a service could be registered:

·	dynamic

·	static

·	persistent

Dynamic name spaces allow services to register with the name space on the fly, and for clients to discover the available services at run time. Dynamic name spaces frequently rely on broadcasts to indicate the continued availability of a network service. Examples of dynamic name spaces include the SAP name space used within a Netware environment and the NBP name space used by Appletalk.

Static name spaces require all of the services to be registered ahead of time, i.e. when the name space is created. The DNS is an example of a static name space. Although there is a programmatic way to resolve names, there is no programmatic way to register names.

Persistent name spaces allow services to register with the name space on the fly. Unlike dynamic name spaces however, persistent name spaces retain the registration information in non-volatile storage where it remains until such time as the service requests that it be removed. Persistent name spaces are typified by directory services such as X.500 and the NDS (Netware Directory Service). These environments allow the adding, deleting, and modification of service properties. In addition, the service object representing the service within the directory service could have a variety of attributes associated with the service. The most important attribute for client applications is the service’s addressing information.

� AUTONUMLGL � Name Space Organization

Many name spaces are arranged hierarchically. Some, such as X.500 and NDS, allow unlimited nesting. Others allow services to be combined into a single level of hierarchy or “group.” This is typically referred to as a workgroup. When constructing a query, it is often necessary to establish a context point within a name space hierarchy from which the search will begin.

� AUTONUMLGL � Name Space Provider Architecture

Naturally, the programmatic interfaces used to query the various types of name spaces and to register information within a name space (if supported) differ widely. A name space provider is a locally-resident piece of software that knows how to map between WinSock’s name space SPI and some existing name space (which could be implemented locally or be accessed via the network). This is illustrated as follows:

�

Figure 3 Name Space Provider Architecture

Note that it is possible for a given name space, say DNS, to have more than one name space provider installed on a given machine.

As mentioned above, the generic term service refers to the server-half of a client/server application. In WinSock, a service is associated with a service class, and each instance of a particular service has a service name which must be unique within the service class. Examples of service classes include FTP Server, SQL Server, XYZ Corp. Employee Info Server, etc. As the example attempts to illustrate, some service classes are “well known” while others are very unique and specific to a particular vertical application. In either case, every service class is represented by both a class name and a class ID. The class name does not necessarily need to be unique, but the class ID must be. Globally Unique Identifiers (GUIDs) are used to represent service class IDs. For well-known services, class names and class ID’s (GUIDs) have been pre-allocated, and macros are available to convert between, for example, TCP port numbers and the corresponding class ID GUIDs. For other services, the developer chooses the class name and uses the UUIDGEN.EXE utility to generate a GUID for the class ID.

The notion of a service class exists to allow a set of attributes to be established that are held in common by all instances of a particular service. This set of attributes is supplied to WinSock at the time the service class is defined, and is referred to as the service class schema information. The WinSock 2 DLL in turns relays this information to all active name space providers. When an instance of a service is installed and made available on a host machine, that service is considered instantiated, and its service name is used to distinguish this particular instance of the service from other instances which may be known to the name space.

Note that the installation of a service class only needs to occur on machines where the service executes, not on all of the clients which may utilize the service. Where possible, the WinSock 2 DLL will provide service class schema information to a name space provider at the time an instantiation of a service is to be registered or a service query is initiated. The WinSock 2 DLL does not, of course, store this information itself, but attempts to retrieve it from a name space provider that has indicated its ability to supply this data. Since there is no guarantee that the WinSock 2 DLL will be able to supply the service class schema, name space providers that need this information must have a fallback mechanism to obtain it through name space-specific means.

The Internet’s Domain Name System does not have a well-defined means to store service class schema information. As a result, DNS name space providers will only be able to accommodate well-known TCP/IP services for which a service class GUID has been preallocated. In practice this is not a serious limitation since service class GUIDs have been preallocated for the entire set of TCP and UDP ports, and macros are available to retrieve the GUID associated with any TCP or UDP port. Thus all of the familiar services such as ftp, telnet, whois, etc. are well supported. When querying for these services, by convention the host name of the target machine is the service instance name.

Continuing with our service class example, instance names of the ftp service may be “alder.intel.com” or “rhino.microsoft.com” while an instance of the XYZ Corp. Employee Info Server might be named “XYZ Corp. Employee Info Server Version 3.5”. In the first two cases, the combination of the service class GUID for ftp and the machine name (supplied as the service instance name) uniquely identify the desired service. In the third case, the host name where the service resides can be discovered at service query time, so the service instance name does not need to include a host name.

� AUTONUMLGL � Division of Responsibilities Between DLL and Service Providers

The following paragraphs describe how the WinSock 2 DLL and the name space providers cooperate together to implement the name resolution services supported by the WinSock 2 API.

� AUTONUMLGL � WinSock 2 DLL Functionality

The WinSock 2 DLL manages the registration and demand loading of individual name space provider DLLs. It also is responsible for routing name space operations from a WinSock 2 application to the appropriate set of name space providers. This mapping is governed by the value of name space and service provider ID parameters that are found in individual API functions. As a general rule, when a specific name space provider is referenced, the operation is only routed to identified provider. If the name space provider ID is NULL but a particular name space is referenced, the operation is routed to all name space providers that support the identified name space. If the name space provider ID is NULL and the name space identifier is given as NS_ALL, then the operation is routed to all active name space providers.

As part of starting a query to one or more service providers the WinSock 2 DLL allocates an object to keep track of the ongoing state of the query. An opaque handle representing this object is returned to the application that started the query. The application supplies this handle as a parameter each time it repetitively calls an application interface function to retrieve the next unit of data resulting from the query. In response to these application interface procedure calls, the WinSock 2 DLL uses the information it stores in the object make corresponding calls to the name space providers involved in the query. The WinSock 2 DLL updates the information in its object as each successive application interface call occurs so that the corresponding calls to name space providers progress appropriately through all of the name space providers involved in the query.

� AUTONUMLGL � Name Space Provider Functionality

Each name space provider is responsible for mapping the set of functions appearing in the WinSock 2 name resolution SPI to the appropriate transactions with the supported name space. In some cases, this is primarily a matter of mapping the SPI interface to whatever native interface exists for the name space. In others, the name space provider must conduct transactions with the name space provider over the network. Some name space providers will do this by making calls to the WinSock API, others will use private interfaces to associated transport stacks.

� AUTONUMLGL � Mapping Between API and SPI Functions

The installation of service classes, registration of service instantiations and basic query operations all map fairly directly from the API to the SPI. The WSAGetServiceClassNameByServiceClassId() function does not have a corresponding function in the SPI, as this function is implemented in the WinSock 2 DLL by making a call to NSPGetServiceClassInfo().

The helper functions WSAAddressToString() and WSAStringToAddress() are mapped to the corresponding functions in the transport API, as only a transport provider will necessarily know how to perform the translation on a sockaddr structure.

� AUTONUMLGL � Configuration and Installation

In order for a name space provider to be accessible via WinSock it must be properly installed on the system and registered with WinSock. When a name space provider is installed by invoking a vendor’s installation program, configuration information must be added to a configuration database to give the WinSock 2 DLL required information regarding the service provider. The WinSock 2 DLL exports an installation function, WSCInstallNameSpace(), for the vendor’s installation program to use in supplying the relevant information about the to-be-installed service provider. This includes the following:

Provider Name - A string representing the provider for display in the control panel

Provider Version - The version of this provider

Provider Path - A path name to the provider dll

Name Space - The name space supported by the provider

Provider GUID - A unique, vendor-supplied number representing this provider/name space combination. This is used as a key for all subsequent references to this provider, and for uninstall. These values are created using the UUIDGEN utility.

Stores all flag - a flag indicating whether this name space provider will be responsible for retaining all service class schema information for all service classes. If such a provider exists, the WinSock 2 DLL does not need to query each individual name space provider for this information.

Symmetrically, the WinSock 2 DLL also provides a function, WSCUnInstallNameSpace(), for a vendor’s deinstallation program to remove all the relevant information from the configuration database. The exact location and format of this configuration information is private to the WinSock 2 DLL, and can only be manipulated by the above-mentioned functions.

At any point in time a name space provider is considered to be either active or inactive, with this setting controlled via the WSCEnableNSProvider() function. Name space providers that are inactive continue to show up when enumerated via WSAEnumNameSpaceProviders(), but the WinSock 2 DLL will not route any query or service registration operations to these providers. This capability can be useful in situations where more than one of the installed name space providers can support a given name space.

When multiple name space providers are referenced in a single API function, the order in which the queries and registration operations are routed to name space providers is unspecified. The order is unrelated to the order in which name space providers are installed. There are two ways to control which name space providers are used to resolve a name query. First, the name space configuration function, WSCEnableNSProvider() can be used to enable and disable name spaces in a machine-wide, persistent way. Second, applications can direct an individual query to a particular provider by specifying that provider’s identifying GUID as part of the query.

�� AUTONUMLGL � WinSock 2 Transport Provider Requirements

The sections which follow provide a description of each of the functional areas which transport service providers are required to implement. Where appropriate, implementation considerations and guidelines are also provided.

� AUTONUMLGL � Service Provider Activation

The following sections describe the sequence of events involved in bringing a transport service provider DLL into memory, initializing it, and, eventually, de-initializing it.

� AUTONUMLGL � Initialization

The WinSock 2 DLL loads the service provider’s interface DLL into the system by using the standard Windows dynamic library loading mechanisms, and initializes it by calling WSPStartup(). This is usually triggered by an application calling either socket() or WSASocket() in order to create a new socket that is to be associated with a service provider whose interface DLL is not currently loaded into memory. The path to each service provider’s interface DLL is stored by the WinSock 2 DLL at the time the service provider is being installed. See section 2.6.4. Configuration and Installation for more information.

Over time, different versions may exist for the WinSock 2 DLLs, applications, and service providers. New versions may define new features, new fields to data structures and bit fields, etc. Version numbers therefore indicate how to interpret various data structures.

To allow optimal mixing and matching of different versions of applications, versions of the WinSock 2 DLL itself, and versions of service providers by different vendors, the SPI provides a version negotiation mechanism for use between the WinSock 2 DLL and the service providers. This version negotiation is handled by WSPStartup(). Basically, the WinSock 2 DLL passes to the service provider the highest version numbers it is compatible with. The service provider compares this with its own supported range of version numbers. If these ranges overlap, the service provider returns a value within the overlapping portion of the range as the result of the negotiation. Usually, this should be the highest possible value. If the ranges do not overlap, the two parties are incompatible and the function returns an error.

WSPStartup() must be called at least once by each client process, and may be called multiple times by WinSock 2 DLL or other entities. A matching WSPCleanup() must be called for each successful WSPStartup() call. The service provider should maintain a reference count on a per-process basis. On each WSPStartup() call, the caller may specify any version number supported by the SP DLL.

A service provider must store the pointer to the client’s upcall dispatch table that is received as a WSPStartup() parameter on a per-process basis. If a given process calls WSPStartup() multiple times, the service provider must use only the most recently supplied dispatch table pointer.

As part of the service provider initialization process WinSock 2 DLL retrieves the service provider’s dispatch table via the lpProcTable parameter in order to obtain entry points to the rest of the SPI functions specified in this document. Using a dispatch table (as opposed to the usual DLL mechanisms for accessing entry points) serves two purposes. First of all, it is more convenient for the WinSock 2 DLL since a single call can be made to discover the entire set of entry points. Secondly, this enables layered service providers formed into protocol chains to operate more efficiently.

� AUTONUMLGL � Initializing Protocol Chains

At the time the WSAPROTOCOL_INFOW struct for a protocol chain is installed, the path to the first layered provider in the chain is also specified. When a protocol chain is initialized, the WinSock 2 DLL uses this path to load the provider DLL and then invokes WSPStartup(). Since WSPStartup() includes a pointer to the chain’s WSAPROTOCOL_INFOW struct as one of its parameters, layered providers can determine what type of chain they are being initialized into, and who the next lower layer in the chain is. A layered provider would then in turn load the next protocol provider in the chain and initialize it with a call to WSPStartup(), and so forth. Whenever the next lower layer is another layered provider, the chain’s WSAPROTOCOL_INFOW struct must be referenced in the WSPStartup() call. When the next lower layer is a base protocol (signifying the end of the chain), the chain’s WSAPROTOCOL_INFOW struct is no longer propagated downward. Instead, the current layer must reference a WSAPROTOCOL_INFOW struct that corresponds to the protocol that the base provider should use. Thus, the base provider has no notion of being involved in a protocol chain.

The dispatch table provided by any given layered provider will, in many instances, duplicate the entry points of an underlying provider. The layered provider would only insert its own entry points for functions that it needed to be directly involved in. Note, however, that it is imperative that a layered provider not modify the contents of the upcall table that it received when calling WSPStartup() on the next lower layer in a protocol chain. These upcalls must be made directly to the WinSock 2 DLL.

� AUTONUMLGL � Cleanup

The WinSock 2 DLL (and layered protocols) will call WSPCleanup() once for each invocation of WSPStartup(). On each invocation, WSPCleanup() should decrement a per-process reference counter, and when the counter reaches zero the service provider must prepare itself to be unloaded from memory. The first order of business is to finish transmitting any unsent data on sockets that are configured for a graceful close. Thereafter, any and all resources held by the provider are to be freed. The service provider must be left in a state where it can be immediately re-initialized by a call to WSPStartup().

� AUTONUMLGL � Error Reporting and Parameter Validation

The scheme for error reporting differs between the SPI and API interfaces. WinSock service providers report errors along with the function returning, as opposed to the per-thread based approach utilized in the API. The WinSock DLL uses the service provider’s per-function error code to update the per-thread error value that is obtained via the WSAGetLastError() API function. Service providers are still required, however, to maintain the per-socket based error which can be retrieved via the SO_ERROR socket option.

The WinSock 2 DLL performs parameter validation only on function calls that are implemented entirely within itself. Service providers are responsible for performing all of their own parameter validation.

� AUTONUMLGL � Byte Ordering Assumptions

A service provider should treat all sockaddr components exclusive of the address family field as if they are in the network byte order, and the address family field as in the local machine’s byte order. It is the WinSock application’s responsibility to make sure that addresses contained in sockaddr structs are properly arranged. The WinSock API provides a number of conversion routines to simplify this task. Currently these routines understand conversion between the local host’s natural byte order and either “big-endian” or “little-endian” network byte ordering. WinSock’s architecture is such that other byte ordering schemes could be introduced in the future.

� AUTONUMLGL � Socket Creation and Descriptor Management

The sections which follow describe aspects of creating new sockets and the allocation of socket descriptors.

� AUTONUMLGL � Descriptor Allocation

While WinSock service providers are encouraged to implement sockets as installable file system (IFS) objects, the WinSock architecture also accommodates service providers whose socket handles are not IFS objects. Providers with IFS handles indicate this via the XP1_IFS_HANDLES attribute bit in the WSAPROTOCOL_INFOW struct. (Note: the XP1_IFS_HANDLES attribute bit was not included in release 2.0.8 of the API specification, but has since been added via the errata mechanism.) WinSock SPI clients may take advantage of providers whose socket descriptors are IFS handles by using these descriptors with standard Win32 I/O facilities such as ReadFile() and WriteFile().

Whenever an IFS provider creates a new socket descriptor, it is mandatory that the provider call WPUModifyIFSHandle() prior to supplying the new handle to a WinSock SPI client. This function takes a provider ID and a proposed IFS handle from the provider as input and returns a (possibly) modified handle. The IFS provider must supply only the modified handle to its client, and all requests from the client will reference only this modified handle. The modified handle is guaranteed to be indistinguishable from the proposed handle as far as the operating system is concerned. Thus in most instances, the service provider will simply choose to use only the modified handle in all of its internal processing. The purpose of this modification function is to allow the WinSock DLL to greatly streamline the process of identifying the service provider associated with a given socket.

Providers that do not return IFS handles must obtain a valid handle from the WinSock 2 DLL via the WPUCreateSocketHandle() call. The non-IFS provider must offer only a WinSock 2 DLL-supplied handle to its client, and all requests from the client will reference only these handles. As a convenience to service provider implementors, one of the input parameters supplied by a provider in WPUCreateSocketHandle() is a DWORD context value. The WinSock 2 DLL associates this context value with the allocated socket handle and allows a service provider to retrieve the context value at any time via the WPUQuerySocketHandleContext() call. A typical use for this context value would be to store a pointer to a service provider maintained data structure used to store socket state information.

� AUTONUMLGL � Socket Attribute Flags and Modes

There are several socket attributes which can be indicated via the flags parameter in WSPSocket(). The WSA_FLAG_OVERLAPPED flag indicates that a socket will be used for overlapped I/O operations. Support of this attribute is mandatory for all service providers. See 3.12.3. Overlapped I/O for more information. Note that creating a socket with the overlapped attribute has no impact on whether a socket is currently in the blocking or non-blocking mode. Sockets created with the overlapped attribute may be used to perform overlapped I/O, and doing so does not change the blocking mode of a socket. Since overlapped I/O operations do not block, the blocking mode of a socket is irrelevant for these operations.

Four additional attribute flags are used when creating sockets that are to be used for multipoint and/or multicast operations, and support for these attributes is optional. Providers that support multipoint attributes indicate this via the XP1_SUPPPORT_MULTIPOINT bit in their respective WSAPROTOCOL_INFOW structures. See WSPSocket() and section 3.14. Protocol-Independent Multicast and Multipoint for the definition and usage of each of these flags. Only sockets that are created with multipoint related attributes can be used in the WSPJoinLeaf() function for creating multipoint sessions.

A socket is in one of two modes, blocking and non-blocking, at any time. Sockets are created in the blocking mode by default, and can be changed to the non-blocking mode by calling WSPAsyncSelect(), WSPEventSelect, or WSPIoctl(). A socket can be switched back to the blocking mode by using WSPIoctl() if no WSPAsyncSelect() or WSPEventSelect() is active. The mode for a socket only affects those functions which may block, and therefore does not impact overlapped I/O operations. See section 3.5. Blocking Operations for more information.

� AUTONUMLGL � Closing Sockets

WSPCloseSocket() releases the socket descriptor so that any pending operations in any threads of the same process will be aborted, and any further reference to it will fail. Note that a reference count should be employed for shared sockets, and only if this is the last reference to an underlying socket, should the information associated with this socket be discarded, provided graceful close is not requested (i.e., SO_DONTLINGER is not set). In the case of SO_DONTLINGER being set, any data queued for transmission will be sent if possible before information associated with the socket is released. See WSPCloseSocket() for more information.

 For non-IFS service providers, WPUCloseSocketHandle() must be invoked to release the socket handle back to the WinSock 2 DLL.

� AUTONUMLGL � Blocking Operations

The notion of blocking in a Windows environment has historically been a very important one. In WinSock 1.1 3 environments, blocking WinSock calls were discouraged since they tend to disable ongoing interaction with the Windowing system, and since they employ a pseudo blocking technique which, for a variety of reasons, does not always work as intended. However, in preemptively scheduled Win32 environments such as Windows 95 and Windows NT, blocking calls make much more sense, can be implemented by native operating system services, and are in fact a generally preferred mechanism. The WinSock 2 API interface no longer support psuedo blocking, but because the WinSock 1.1 compatibility shims must continue to emulate this behavior, service providers must support this as described below...

� AUTONUMLGL � Pseudo vs. True Blocking

In Win16 environments, true blocking is not supported by the OS, thus a blocking operation which cannot be completed immediately is handled as follows. The service provider initiates the operation, and then enters a loop during which it dispatches any Windows messages (yielding the processor to another thread if necessary) and then checks for the completion of the WinSock function. If the function has completed, or if WSPCancelBlockingCall() has been invoked, the loop is terminated and the blocking function completes with an appropriate result. This is what is meant by the term “pseudo blocking”, and the loop referred to above is known as the “default blocking hook”.

� AUTONUMLGL � Blocking Hook

Although this mechanism is sufficient for simple applications, it cannot support the complex message-dispatching requirements of more advanced applications such as those using the Multiple Document Interface (MDI) model. For such applications, a thread-specific “blocking hook” may be installed by the application. This will be called by the service provider instead of the default blocking hook described above. A service provider must retrieve a pointer to the per-thread blocking hook from the WinSock 2 DLL by calling WPUQueryBlockingCallback(). If the application has not installed its own blocking hook a pointer to the default blocking hook function will be returned.

A WinSock service provider cannot assume that an application-supplied blocking hook allows message processing to continue as the default blocking hook does. Some applications cannot tolerate the possibility of reentrant messages while a blocking operation is outstanding. Such an application’s blocking hook function would simply return FALSE. If a service provider depends on messages for its internal operation, it may execute PeekMessage(hMyWnd...) before executing the application’s blocking hook so that it can get its own messages without affecting the rest of the system.

There is no default blocking hook installed in preemptive multithreaded versions of Windows. This is because other processes will not be blocked if a single application is waiting for an operation to complete (and hence not calling PeekMessage() or GetMessage() which causes the application to yield the processor in nonpreemptive Windows). When the service provider calls WPUQueryBlockingCallback() a null pointer will be returned indicating that the provider is to use native OS blocking functions. However, in order to preserve backwards compatibility, an application-supplied blocking hook can still be installed on a per-thread basis in 32 bit versions of Windows.

The WinSock service provider calls the blocking hook only if all of the following are true: the routine is one which is defined as being able to block, the specified socket is a blocking socket, and the request cannot be completed immediately. If only non-blocking sockets and WSPAsyncSelect()/WSPEventSelect() instead of WSPSelect() are used, then the blocking hook will never be called.

Important Note:	�If, during the time pseudo blocking is being used to block a thread, a Windows message is received for the thread, there is a risk that the thread will attempt to issue another WinSock call. Because of the difficulty of managing this condition safely, the WinSock 1.1 specification disallowed this behavior. It was not permissible for a given thread to make multiple nested Windows Sockets function calls. Only one outstanding function call is allowed for a particular thread. Any nested WinSock function calls fail with the error WSAEINPROGRESS. It should be emphasized that this restriction applies to both blocking and non-blocking operations, but only in WinSock 1.1 environments. There are a few exceptions to this rule, including two functions which allow an application to determine whether a pseudo blocking operation is in fact in progress, and to cancel such an operation if need be. These are described below.

� AUTONUMLGL � Canceling Blocking Operations

A thread may, at any time, call WSAIsBlocking() in order to determine whether or not a blocking call is currently in progress. (This function is implemented within the WinSock 1.1 compatibility shims and hence has no SPI counterpart.) Clearly this is only possible when pseudo blocking, as opposed to true blocking, is being employed by the service provider. When necessary, WSPCancelBlockingCall() may be called at any time to cancel any in-progress pseudo blocking operation.

� AUTONUMLGL � Event Objects

Event objects are introduced in WinSock 2 as a general synchronization mechanism between WinSock 2 service providers and applications. They are used for a number of purposes including indicating completion of overlapped operations and indicating the occurrence of one or more network events.

� AUTONUMLGL � Creating Event Objects

The WinSock 2 DLL provides facilities for event object creation to both applications and service providers, although in most instances event objects will be created by applications. Event object services are made available to WinSock service providers via WPUCreateEvent() simply as a convenience mechanism for any internal processing that may benefit from same. Note that the event object handle is only valid in the context of the calling process. In Win32 environments the realization of event objects is via the native event services provided by the operating system.

� AUTONUMLGL � Using Event Objects

WinSock event objects are fairly simple constructs which can be created and closed, set and cleared, waited upon and polled. The general usage model is for clients to create an event object and supply the handle as a parameter (or as a component of a parameter structure) in functions such as WSPSend() and WSPEventSelect(). When the nominated condition has occurred, the service provider uses the handle to set the event object by calling WPUSetEvent(). Meanwhile, the WinSock SPI client may either block and wait or poll until the event object becomes set (or as it is sometimes called: signaled). The client may subsequently clear or reset the event object and use it again.

� AUTONUMLGL � Destroying Event Objects

The entity which creates an event object (application or service provider) is responsible for destroying it when it is no longer required. Service providers do this via WPUCloseEvent().

� AUTONUMLGL � Notification of Network Events

One of the most important responsibilities of a data transport service provider is that of providing indications to the client when certain network events have occurred. The list of defined network events consists of the following:

FD_CONNECT - a connection to a remote host or to a multicast session has been completed

FD_ACCEPT - a remote host is making a connection request

FD_READ - network data has arrived which is available to be read

FD_WRITE - space has become available in the service provider’s buffers so that additional data may now be sent

FD_OOB - out of band data is available to be read

FD_CLOSE - the remote host has closed down the connection

FD_QOS - a change has occurred in negotiated quality of service levels

FD_GROOUP_QOS - a change has occurred in negotiated quality of service levels for the socket group

The set of network events enumerated above is sometimes referred to as the FD_XXX events. Indication that one or more of these network events have occurred may be given in a number of ways depending on how the client requests for notification.

� AUTONUMLGL � Selects

In the original BSD sockets interface the select() call was the standard (and only) means to obtain network event indications. For each socket, information on read, write, or error status can be polled or waited on. See WSPSelect() for more information. Note that network events FD_QOS and FD_GROUP_QOS cannot be obtained by this approach.

� AUTONUMLGL � Windows Messages

Windows Sockets 1.1 introduced the async select mechanism in order to provide network event indications in a manner that did not involve either polling or blocking. The WSPAsyncSelect() function is used to register an interest in one or more network events as listed above, and supply a window handle to be used for notification. When a nominated network event occurs, a client-specified Windows message is sent to the indicated window. The service provider must use the WPUPostMessage() function to accomplish this.

In Win32 environments, this may not be the most efficient notification mechanism, and is inconvenient for daemons and services which don’t want to open any windows. The event object signaling mechanism described below is introduced to solve this problem.

� AUTONUMLGL � Event Object Signaling

WSPEventSelect() behaves exactly like WSPAsyncSelect() except that, rather than cause a Windows message to be sent on the occurrence of any nominated FD_XXX network event (e.g.. FD_READ, FD_WRITE, etc.), a designated event object is set.

Also, the fact that a particular FD_XXX network event has occurred is “remembered” by the service provider. This is needed since the occurrence of any and all nominated network events will result in a single event object becoming signaled. A call to WSPEnumNetworkEvents() causes the current contents of the network event memory to be copied to a client-supplied buffer and the network event memory to be cleared. The client may also designate a particular event object to be cleared atomically along with the network event memory.

� AUTONUMLGL � Socket Groups

Reserved for future use with socket groups:�WinSock 2 introduces a number of function parameters, data types, structure members, and manifest constant values that are reserved for future use in grouping sockets together. As of the version 2.2.1 of the specification, the intended future use of these items is fully described, however, none of the group-related parameters is interpreted in software releases corresponding to the version 2.2.1 specification. Since a client always has the option to elect not to use socket groups, there are always default values and behaviors defined for group-related definitions. It is simple for an application that does not wish to use socket groups to use default values in such a fashion that the application will not be harmed if and when socket groups are “turned on” in the future. Definitions related to socket groups are marked in version 2.2.1 specification with the phrase: “Reserved for future use with socket groups” preceding the description of the intended future use.

WinSock 2 introduces the notion of a socket group as a means for an application to indicate to the service provider that a particular set of sockets are related and that the group thus formed has certain attributes. Group attributes include relative priorities of the individual sockets within the group and a group quality of service specification.

Applications needing to exchange multimedia streams over the network are benefited by being able to establish a specific relationship among the set of sockets being utilized. As a minimum, this includes a hint to the service provider about the relative priorities of the media streams being carried. For example, a conferencing application would want to have the socket used for carrying the audio stream be given higher priority than that of the socket used for the video stream. Furthermore, there are transport providers (e.g. digital telephony and ATM) which can utilize a group quality of service specification to determine the appropriate characteristics for the underlying call or circuit connection. The sockets within a group are then multiplexed in the usual manner over this call. By allowing the application to identify the sockets that make up a group and to specify the required group attributes, such service providers can operate with maximum effectiveness.

The following paragraphs define what a service provider must do in order to implement socket grouping.

� AUTONUMLGL � Socket Group Operations

While it is not mandatory that a service provider support socket groups, providers are strongly encouraged to do so. As shown below, implementing the minimum required behavior for socket grouping is almost trivial. The advantage to providing even a minimal grouping implementation is that applications may then depend on grouping operations being at least tolerated in all cases, with significant advantages being realized in particular cases. The paragraphs below briefly mention the SPI functions that are used to establish and utilize socket groups.

The WSPSocket() and WSPAccept()functions are used to explicitly create and/or join a socket group coincident with creating a new socket. Once joined, a socket remains in a socket group until the socket is closed. A socket group terminates if all of its member sockets are closed. Socket group IDs can be retrieved by using WSPGetSockOpt() with option SO_GROUP_ID. Relative priority can be accessed by using WSPGet/SetSockOpt() with option SO_GROUP_PRIORITY.

Group QOS can be stipulated in WSPConnect(), or WSPIoctl() with SIO_SET_GROUP_QOS, if the socket specified in these function is the creator of its associated socket group. WSPIoctl() with SIO_GET_GROUP_QOS can be used to retrieve the associated group QOS of the specified socket. See below for more information about the QOS specification.

� AUTONUMLGL � Required Socket Grouping Behavior

For providers that support socket groups, the following functionality is required as a minimum. The provider must be able to allocate new group IDs which need only be unique for a given service provider. At socket creation time, it must be possible to add the newly created socket to the membership of an existing group or to create a new group. If group quality of service is supported, the provider should remember which socket was the creator (i.e. originating member) of a group, and allow only that socket to specify group quality of service parameters.

There are two types of socket groups: constrained and unconstrained. Constrained groups have the property that all sockets which are members of the group must be connection-oriented and may only be connected to the same host address. The service provider should disallow a socket creation/group join operation to a constrained group if the new socket is not connection-oriented. Similarly, the service provider should disallow the connect operation if the destination address is not identical to the group’s destination address. A constrained group’s destination address is established when the first socket in the group becomes connected.

The only attribute that may be specified individually for grouped sockets is relative priority. Priority is only a hint. The service provider should record the assigned priority and allow this value to be retrieved, but is otherwise free to ignore it if there is no reasonable way to honor priority. Note that this specification does not define the priority relationship between grouped and ungrouped sockets, or between sockets that are members of different groups. Grouping may be (but is not required to be) a completely local mater. There is no requirement that grouping impact in any way the on-wire protocol of a transport.

It is not required for service providers that support grouping to also support group quality of service. However, a service provider is encouraged to enable this feature whenever it is supported by the underlying network technology. If group quality of service is supported, the minimum requirement is that a client must be able to set and query QOS requests. There is no requirement that the provider implement anything more than best effort service.

� AUTONUMLGL � Recommended Socket Grouping Behavior

It is recommended that a provider implement on a local basis a relative prioritization scheme for sockets within a group. This would not have any impact on the on-wire protocol and thus does not affect interoperability. The WinSock 2 prioritization scheme, which is defined only across the sockets within a single group, is both meaningful and useful when the information associated with group member sockets form an exclusive multiplex across an underlying point-to-point connection such as a telephone call, ATM switched virtual circuit, or other circuit switched connection. Decisions on how to establish a priority relationship between sockets not in the same group or not in any group are left up to the service provider implementor. Where the underlying transport protocol encompasses group semantics, it is advantageous to have the group prioritization scheme be implemented on a bilateral basis.

It is also recommended that a provider support group QOS for at least best effort service levels.

� AUTONUMLGL � Quality of Service

The basic QOS mechanism in WinSock 2 descends from the flow specification (or "flow spec") as described by Craig Partridge in RFC 1363, dated September 1992. A brief overview of this concept is as follows:

� AUTONUMLGL � Quality of Service Overview

Flow specs describe a set of characteristics about a proposed unidirectional flow through the network. An application may associate a pair of flowspecs with a socket (one for each direction) at the time a connection request is made via WSPConnect(), or at other times via WSPIoctl() with the SIO_SET_QOS/SIO_SET_GROUP_QOS command. Flowspecs indicate parametrically what level of service is required and provide a feedback mechanism for applications to use in adapting to network conditions.

The WinSock 2 flow specs divide QOS characteristics into the following general areas:

Source Traffic Description - The manner in which the application's traffic will be injected into the network. This specification is made in terms of the token bucket traffic model and includes values for the token rate, the token bucket size, and the peak bandwidth. (The token bucket model is described further below.) Note that the bandwidth requirement being expressed in terms of a token rate does not mean that hosts must implement token buckets. Any traffic management scheme that yields equivalent behavior is permitted.

Latency - Upper limits on the amount of delay and delay variation that are acceptable.

Level of service guarantee - Whether or not an absolute guarantee is required as opposed to best effort. Note that providers which have no feasible way to provide the level of service requested are expected to fail the connection attempt.

Provider-specific parameters - The flowspec itself can be extended in ways that are particular to specific providers.

� AUTONUMLGL � Usage Model

The usage model for QOS in WinSock 2 is as follows. QOS parameters for a socket are established using WSPIoctl() with SIO_SET_QOS/SIO_SET_GROUP_QOS. For connection-oriented protocols, however, it is often most convenient for an application to stipulate its QOS request at connect time. This is manifest to the service provider via the WSPConnect() function. Note that any QOS pre-set via WSPIoctl() for connection-oriented sockets will be overridden if the QOS parameters in WSPConnect() are non-null.

Regardless of which method is used to establish the QOS parameters, they are typically utilized by the service provider at the time a connect operation is performed. If the WSPConnect() function completes successfully the client knows that its QOS request has been honored by the network, and it is then free to use the socket for data exchange. If the connect operation fails because of limited resources an appropriate error indication is given. At this point the client may scale down its service request and try again or simply give up.

Connectionless sockets may also use WSPConnect() to establish a specified QOS level to a single designated peer. Otherwise the WSPIoctl() with SIO_SET_QOS/SIO_SET_GROUP_QOS could be used to stipulate the initial QOS request, and any subsequent QOS renegotiations.

� AUTONUMLGL � QOS Updates

After every connection attempt (successful or otherwise) transport providers update the associated flow spec structures in order to indicate, as well as possible, the existing network conditions. (Note that it is legal to update with the default values defined below to indicate that information about the current network conditions is not available.) This update from the service provider about current network conditions is especially useful for the case where the client’s QOS request consisted entirely of the default (i.e. unspecified) values, which any service provider should be able to agree to. Clients expect to be able to use this information about current network conditions to guide their use of the network, including any subsequent QOS requests. Note however, that information provided by the transport service provider in the updated flow spec structure is only a hint and may be little more than a rough estimate that only applies to the first hop as opposed to the complete end-to-end connection.

Even after a flow is established, conditions in the network may change or one of the communicating parties may invoke a QOS renegotiation which results in a reduction (or increase) in the available service level. A notification mechanism is included which utilizes the usual WinSock notification techniques for network events (FD_QOS and FD_GROUP_QOS events) to allow the service provider to indicate to the client that QOS levels have changed. The basic guideline for a service provider to generate FD_QOS/FD_GROUP_QOS notifications is when the current level of service supported is significantly different (especially, in the negative direction) from what was last reported. The client should use WSPIoctl() with SIO_GET_QOS and/or SIO_GET_GROUP_QOS to retrieve the corresponding flow specs and examine them in order to discover what aspect of the service level has changed. Note that the QOS structures should be updated as appropriate regardless of whether FD_QOS/FD_GROUP_QOS is registered and generated. If the updated level of service is not acceptable, the client may adjust itself to accommodate it, attempt to renegotiate QOS, or close the socket. If a renegotiation is attempted, a successful return from the WSPIoctl() function indicates that the revised QOS request was accepted, otherwise an appropriate error will be indicated.

� AUTONUMLGL � The QOS Structure

The WinSock 2 QOS structure is defined through a combination of the qos.h and winsock2.h header files. The relevant definitions are summarized here.

typedef struct_WSABUF {

 u_long len; /* the length of the buffer */

 char FAR * buf; /* the pointer to the buffer */

} WSABUF, FAR * LPWSABUF;

typedef uint32 SERVICETYPE;

typedef struct _flowspec

{

 uint32 TokenRate; /* In Bytes/sec */

 uint32 TokenBucketSize; /* In Bytes */

 uint32 PeakBandwidth; /* In Bytes/sec */

 uint32 Latency; /* In microseconds */

 uint32 DelayVariation; /* In microseconds */

 SERVICETYPE ServiceType;

 uint32 MaxSduSize; /* In Bytes */

 uint32 MinimumPolicedSize; /* In Bytes */

} FLOWSPEC, *PFLOWSPEC, FAR * LPFLOWSPEC;

typedef struct _QualityOfService

{

 FLOWSPEC SendingFlowspec; /* the flow spec for */

 /* data sending */

 FLOWSPEC ReceivingFlowspec; /* the flow spec for */

 /* data receiving */

 WSABUF ProviderSpecific; /* additional provider */

 /* specific stuff */

} QOS, FAR * LPQOS;

Definitions:

TokenRate/TokenBucketSize	A Token bucket model is used to specify the rate at which permission to send traffic (or credits) accrues. The value of -1 in these variables indicates that no rate limiting is in force. The TokenRate is expressed in bytes per second, and the TokenBucketSize in bytes.

	The concept of the token bucket is a bucket which has a maximum volume (token bucket size) and continuously fills at a certain rate (token rate). If the “bucket” contains sufficient credit, the application may send data; if it does, it reduces the available credit by that amount. If sufficient credits are not available, the application must wait or discard the extra traffic.

	If an application has been sending at a low rate for a period of time, it clearly may send a large burst of data all at once until it runs out of credit. Having done so, it must limit itself to sending at TokenRate until its data burst is exhausted.

	In video applications, the TokenRate is typically the average bit rate peak to peak, and the TokenBucketSize is the largest typical frame size. In constant rate applications, the TokenRate is equal to the PeakBandwidth, and the TokenBucketSize is chosen to accommodate small variations.

PeakBandwidth	This field, expressed in bytes/second, limits how fast packets may be sent back to back from the application. Some intermediate systems can take advantage of this information resulting in a more efficient resource allocation.

Latency	Latency is the maximum acceptable delay between transmission of a bit by the sender and its receipt by the intended receiver(s), expressed in microseconds. The precise interpretation of this number depends on the level of guarantee specified in the QOS request.

DelayVariation	This field is the difference, in microseconds, between the maximum and minimum possible delay that a packet will experience. This value is used by applications to determine the amount of buffer space needed at the receiving side in order to restore the original data transmission pattern.

ServiceType	This is the level of service being negotiated for. Values permitted for level of service are given below.

SERVICETYPE_NOTRAFFIC	�In either Sending or Receiving flowspec, indicates that there will be no traffic in this direction. On duplex capable media, this signals underlying software to setup unidirectional connections only.

SERVICETYPE_BESTEFFORT	�Indicates that the service provider, at minimum, takes the flow spec as a guideline and makes reasonable efforts to maintain the level of service requested, however without making any guarantees whatsoever.

SERVICETYPE_CONTROLLEDLOAD	�Indicates that end-to-end behavior provided to an application by a series of network elements tightly approximates the behavior visible to applications receiving best-effort service "under unloaded conditions" from the same series of network elements. Thus, applications using this service may assume that: (1) A very high percentage of transmitted packets will be successfully delivered by the network to the receiving end-nodes. (Packet loss rate will closely approximate the basic packet error rate of the transmission medium).; and (2) Transit delay experienced by a very high percentage of the delivered packets will not greatly exceed the minimum transit delay experienced by any successfully delivered packet at the speed of light.

SERVICETYPE_GUARANTEED	�Indicates that the service provider implements a queuing algorithm which isolates the flow from the effects of other flows as much as possible, and guarantees the flow the ability to propagate data at the TokenRate for the duration of the connection. If the sender sends faster than that rate, the network may delay or discard the excess traffic. If the sender does not exceed TokenRate over time, then latency is also guaranteed. This service type is designed for applications which require a precisely known quality of service but would not benefit from better service, such as real-time control systems.

SERVICETYPE_NETWORK_UNAVAILABLE	�In either a Sending or Receiving flowspec, this may be used by a service provider to indicate a loss of service in the corresponding direction.

SERVICETYPE_GENERAL_INFORMATION	�Indicates that all service types are supported for this traffic flow.

SERVICETYPE_NOCHANGE	�In either a Sending or Receiving flowspec, this requests that the QOS in the corresponding direction is not changed. This may be used when requesting a QOS change in one direction only, or when requesting a change only in the ProviderSpecific part of a QOS specification and not in the SendingFlowspec or the ReceivingFlowspec.

SERVICE_IMMEDIATE_TRAFFIC_CONTROL	�In either a Sending or Receiving flowspec, this may be combined using bit-wise OR with one of the other defined ServiceType values to request the service provider to activate traffic control coincident with provision of the flowspec.

MaxSduSize	The maximum packet size, in bytes, that is permitted or used in the traffic flow.

MinimumPolicedSize	The minimum packet size that will be given the level of service requested.

� AUTONUMLGL � Default Values

A default flow spec is associated with each eligible socket at the time it is created. Field values for this default flow spec are indicated below. In all cases these values indicate that no particular flow characteristics are being requested from the network. Applications only need to modify values for those fields which they are interested in, but must be aware that there exists some coupling between fields such as TokenRate and TokenBucketSize.

TokenRate =		0xFFFFFFFF (not specified)�TokenBucketSize = 	0xFFFFFFFF (not specified)�PeakBandwidth = 	0xFFFFFFFF (not specified)�Latency =		0xFFFFFFFF (not specified) �DelayVariation =		0xFFFFFFFF (not specified)�ServiceType =		SERVICETYPE_NOCHANGE�MaxSduSize =		0xFFFFFFFF (not specified)�MinimumPolicedSize =	0xFFFFFFFF (not specified)

� AUTONUMLGL � QOS Templates

Applications that don’t want to deal with detailed QOS structures directly and that utilize media types corresponding to well-known QOS template names can use WSPGetQOSByName() to retrieve the detailed QOS structure. For example, a video conferencing application which uses Indeo as its video codec and GSM as it audio codec may open two sockets, one for each media type, and get the detailed QOS structure by calling WSPGetQOSByname() with QOS_TEMPLATE_INDEO and QOS_TEMPLATE_GSM, respectively. Note that this function is implemented by the service provider associated with the specified socket descriptor, thus the QOS structures returned is provider dependent, and may include a provider-specific part.

As new QOS template names become available, they need to be registered with the WinSock 2 Clearing House. The documentation for WSPGetQOSByName() will be periodically updated with a list of flow specifications and general descriptions as they become well-known. WSPGetQOSByName() can also be used to enumerate the set of known QOS template names.

� AUTONUMLGL � Socket Connections on Connection-Oriented Protocols

The following paragraphs describe the semantics applicable to socket connections over connection-oriented protocols.

� AUTONUMLGL � Binding to a Local Address

Before a socket can be used to set up a connection or receive a connection request, it needs to be bound to a local address. This could be done explicitly by calling WSPBind(), or implicitly by WSPConnect() if the socket is unbound when this function is called.

� AUTONUMLGL � The Basics: Listen, Connect, Accept

The basic operations involved with establishing a socket connection can be most conveniently explained in terms of the client-server paradigm.

The server side will first create a socket, bind it to a well known local address (so that the client can find it), and put the socket in listening mode, via WSPListen(), in order to prepare for any incoming connection requests and to specify the length of the connection backlog queue. Service providers hold pending connection requests in a backlog queue until such time as they are acted upon by the server or are withdrawn (due to timeout) by the client. A service provider may silently ignore requests to extend the size of the backlog queue beyond a provider-defined upper limit.

At this point, if a blocking socket is being used, the server side may immediately call WSPAccept() which will block until a connection request is pending. Conversely, the server may also use one of the network event indication mechanisms discussed previously to arrange for notification of incoming connection requests. Depending on the notification mechanism selected, the provider will either issue a Windows message or signal an event object when connection requests arrive. See section 3.7. Notification of Network Events for how to register for the FD_ACCEPT network event.

The client side will create an appropriate socket, and initiate the connection by calling WSPConnect(), specifying the known server address. Clients usually do not perform an explicit bind() operation prior to initiating a connection, allowing the service provider to perform an implicit bind on their behalf. If the socket is in blocking mode, WSPConnect() will block until the server has received and acted upon the connection request (or until a timeout occurs). Otherwise, the client should use one of the network event indication mechanisms discussed previously to arrange for notification of a new connection being established. Depending on the notification mechanism selected, the provider will indicate this either via a Windows message or by signaling an event object.

When the server side invokes WSPAccept(), the service provider calls the application-supplied condition function, using function parameters to pass into the server information from the top entry in the connection request backlog queue. This information includes such things as address of connecting host, any available user data, and any available QOS information. Using this information the server’s condition function determines whether to accept the request, reject the request or defer making a decision until later. This decision is indicated via the return value of the condition function. See section 3.7. Notification of Network Events for how to register for the FD_CONNECT network event.

If the server decides to accept the request, the provider must create a new socket with all of the same attributes and event registrations as the listening socket. The original socket remains in the listening state so that subsequent connection requests can be received. Through output parameters of the condition function, the server may also supply any response user data, join the new socket to a new or existing socket group and assign QOS parameters (assuming that these operations are supported by the service provider).

� AUTONUMLGL � Determining local and remote names

WSPGetSockName() is used to retrieve the local address for bound sockets. This is especially useful when a WSPConnect() call has been made without doing a WSPBind() first; WSPGetSockName() provides the only means to determine the local association which has been set implicitly by the provider.

After a connection has been setup, WSPGetPeerName() can be used to determine the address of the peer to which a socket is connected.

� AUTONUMLGL � Enhanced Functionality at Connect Time

WinSock 2 offers an expanded set of operations that can occur coincident to establishing a socket connection. The service provider requirements for implementing these features are described below.

� AUTONUMLGL � Conditional Acceptance

As described previously, WSPAccept() invokes a client-supplied condition function that uses input parameters to supply information about the pending connection request. This information can be used by the client to accept or reject a connection request based on caller information such as caller ID, QOS, etc. If the condition function returns CF_ACCEPT, a new socket is created with the same properties as the listening socket, and a handle to the new socket is returned. If the condition function returns CF_REJECT, the connection request should be rejected. If the condition function returns CF_DEFER, the accept/reject decision cannot be made immediately, and the service provider must leave the connection request on the backlog queue. The client must call WSPAccept() again, when it is ready to make a decision, and arrange for the condition function to return either CF_ACCEPT or CF_REJECT. While a deferred connection request is at the top of the backlog queue, the service provider does not issue any further indications for pending connection requests.

� AUTONUMLGL � Exchanging User Data at Connect Time

Some protocols allow a small amount of user data to be exchanged at connect time. If such data has been received from the connecting host, it is placed in a service provider buffer, and a pointer to this buffer along with a length value are supplied to the WinSock SPI client via input parameters to the WSPAccept() condition function. If the WinSock SPI client has response data to return to the connecting host, it may copy this into a buffer that is supplied by the service provider. A pointer to this buffer and an integer indicating buffer size are also supplied as condition function input parameters (if supported by the protocol).

� AUTONUMLGL � Establishing Socket Groups

Reserved for future use with socket groups: In the case of the condition function returning CF_ACCEPT, a new socket is created as mentioned above. Coincident with this socket creation, a socket group may be created or joined, depending on the value of output parameter g of the condition function. See WSPAccept() for more information.

� AUTONUMLGL � Connection Shutdown

The paragraphs which follow will describe operations incident to shutting down an established socket connection.

� AUTONUMLGL � Initiating Shutdown Sequence

A socket connection can be taken down in one of several ways. WSPShutdown() (with how equal to SD_SEND or SD_BOTH), and WSPSendDisconnect() may be used to initiate a graceful connection shutdown. WSPCloseSocket() can be used to initiate either a graceful or an abortive shutdown depending on the linger options as a side effect of closing a socket. See below for more information about graceful and abortive shutdown, and linger options.

� AUTONUMLGL � Indicating Remote Shutdown

Service providers indicate connection teardown that is initiated by the remote party via the FD_CLOSE network event. Graceful shutdown is also be indicated via WSPRecv() when the number of bytes read is 0 for byte-stream protocols, or via a return error code of WSAEDISCON for message-oriented protocols. In any case, a WSPRecv() return error code of WSAECONNRESET indicates an abortive shutdown.

� AUTONUMLGL � Exchanging User Data at Shutdown Time

At connection teardown time, it is also possible (for protocols that support this) to exchange user data between the endpoints. The end that initiates the teardown can call WSPSendDisconnect() to indicate that no more data is to be sent and cause the connection teardown sequence to be initiated. For certain protocols, part of this teardown sequence is the delivery of disconnect data from the teardown initiator. After receiving notice that the remote end has initiated the teardown sequence (typically via the FD_CLOSE indication), the WSPRecvDisconnect() function may be called to receive the disconnect data (if any).

To illustrate how disconnect data might be used, consider the following scenario. The client half of a client/server application is responsible for terminating a socket connection. Coincident with the termination it provides (via disconnect data) the total number of transactions it processed with the server. The server in turn responds back with the cumulative grand total of transactions that it has processed with all clients. The sequence of calls and indications might occur as follows:

Client Side�Server Side��(1) invoke WSPSendDisconnect() to conclude session and supply transaction total����(2) get FD_CLOSE, or WSPRecv() with a return value of zero or WSAEDISCON indicating graceful shutdown in progress���(3) invoke WSPRecvDisconnect() to get client’s transaction total���(4) Compute cumulative grand total of all transactions���(5) invoke WSPSendDisconnect() to transmit grand total��(6) receive FD_CLOSE indication�(5’) invoke WSPClosesocket()��(7) invoke WSPRecvDisconnect() to receive and store cumulative grand total of transactions���(8) invoke WSPClosesocket()���

Note that step (5’) must follow step (5), but has no timing relationship with step (6), (7), or (8).

� AUTONUMLGL � Graceful Shutdown, Linger Options and Socket Closure

It is important to distinguish the difference between shutting down a socket connection and closing a socket. Shutting down a socket connection involves an exchange of protocol messages between the two endpoints which is hereafter referred to as a shutdown sequence. Two general classes of shutdown sequences are defined: graceful and abortive (also referred to as “hard”). In a graceful shutdown sequence, any data that has been queued but not yet transmitted can be sent prior to the connection being closed. In an abortive shutdown, any unsent data is lost. The occurrence of a shutdown sequence (graceful or abortive) can also be used to provide an FD_CLOSE indication to the associated applications signifying that a shutdown is in progress. Closing a socket, on the other hand, causes the socket handle to become deallocated so that the application can no longer reference or use the socket in any manner.

In Windows Sockets, both the WSPShutdown() function, and the WSPSendDisconnect() function can be used to initiate a shutdown sequence, while the WSPCloseSocket() function is used to deallocate socket handles and free up any associated resources. Some amount of confusion arises, however, from the fact that the WSPCloseSocket() function will implicitly cause a shutdown sequence to occur if it has not already happened. In fact, it has become a rather common programming practice to rely on this feature and use WSPCloseSocket() to both initiate the shutdown sequence and deallocate the socket handle.

To facilitate this usage, the sockets interface provides for controls via the socket option mechanism that allows the programmer to indicate whether the implicit shutdown sequence should be graceful or abortive, and also whether the WSPCloseSocket() function should linger (i.e. not complete immediately) to allow time for a graceful shutdown sequence to complete.

By establishing appropriate values for the socket options SO_LINGER and SO_DONTLINGER, the following types of behavior can be obtained with the WSPCloseSocket() function.

Abortive shutdown sequence, immediate return from WSPCloseSocket().

Graceful shutdown, delay return until either shutdown sequence completes or a specified time interval elapses. If the time interval expires before the graceful shutdown sequence completes, an abortive shutdown sequence occurs and WSPCloseSocket() returns.

Graceful shutdown, return immediately and allow the shutdown sequence to complete in the background. This is the default behavior. Note, however, that the application has no way of knowing when (or whether) the graceful shutdown sequence completes.

One technique that can be used to minimize the chance of problems occurring during connection teardown is to not rely on an implicit shutdown being initiated by WSPCloseSocket(). Instead one of the two explicit shutdown functions (WSPShutdown() or WSPSendDisconnect()) are used. This in turn will cause an FD_CLOSE indication to be received by the peer application indicating that all pending data has been received. To illustrate this, the following table shows the functions that would be invoked by the client and server components of an application, where the client is responsible for initiating a graceful shutdown.

Client Side�Server Side��(1) Invoke WSPShutdown(s, SD_SEND) to signal end of session and that client has no more data to send.����(2) Receive FD_CLOSE, indicating graceful shutdown in progress and that all data has been received.���(3) Send any remaining response data.��(5’) Get FD_READ and invoke recv() to get any response data sent by server�(4) Invoke WSPShutdown(s, SD_SEND) to indicate server has no more data to send.��(5) Receive FD_CLOSE indication�(4’) Invoke WSPCloseSocket()��(6) Invoke WSPCloseSocket()���

Note that the timing sequence is maintained from step (1) to step (6) between the client and the server, except for step (4’) and (5’) which only has local timing significance in the sense that step (5) follows step (5’) on the client side while step (4’) follows step (4) on the server side, with no timing relationship with the remote party.

� AUTONUMLGL � Socket Connections on Connectionless Protocols

The following sections describe the semantics of using connect operations on connectionless protocols such as UDP and IPX.

� AUTONUMLGL � Connecting to a Default Peer

For a socket bound to a connectionless protocol, the operation performed by WSPConnect() is merely to establish a default destination address so that the socket may be used with subsequent connection-oriented send and receive operations (WSPSend() and WSPRecv()). Any datagrams received from an address other than the destination address specified will be discarded.

� AUTONUMLGL � Reconnecting and Disconnecting

The default destination may be changed by simply calling WSPConnect() again, even if the socket is already "connected". Any datagrams queued for receipt are discarded if the new address is different from the address specified in a previous WSPConnect().

If the address supplied is all zeroes, the socket will be "dis-connected" - the default remote address will be indeterminate, so WSPSend() and WSPRecv() calls will return the error code WSAENOTCONN, although WSPSendTo() and WSPRecvFrom() may still be used.

� AUTONUMLGL � Using sendto() while connected

WSPSendTo() will always deliver the data to the specifies address, even though a designated peer for the sending socket has been established in WSPConnect().

� AUTONUMLGL � Socket I/O

There are three primary ways of doing I/O in WinSock 2: blocking I/O, non-blocking I/O along with asynchronous notification of network events, and overlapped I/O with completion indication. We describe each method in the following sections. Blocking I/O is the default behavior, non-blocking mode can be utilized on any socket that is placed into non-blocking mode, and overlapped I/O can only occur on sockets that are created with the overlapped attribute. It is also interesting to note that the two calls for sending: WSPSend() and WSPSendTo() and the two calls for receiving: WSPRecv() and WSPRecvFrom() each implement all three methods of I/O. Service providers determine how to perform the I/O operation based on socket modes and attributes and the input parameter values.

� AUTONUMLGL � Blocking I/O

The simplest form of I/O in WinSock 2 is blocking I/O. As mentioned in section 3.4.2. Socket Attribute Flags and Modes, sockets are created in blocking mode by default. Any I/O operation with a blocking socket will not return until the operation has been fully completed. Thus, any thread can only execute one I/O operation at a time. For example, if a thread issues a receive operation and no data is currently available, the thread will block until data becomes available and is placed into the thread’s buffer. Although this is simple, it is not necessarily the most efficient way to do I/O in all versions of Windows. In Win16 environments for example, blocking is strongly discouraged due to the non-preemptive nature of the operating system (see section 3.5.1. Pseudo vs. True Blocking for more information).

� AUTONUMLGL � Non-Blocking I/O

If a socket is in a non-blocking mode, any I/O operation must either complete immediately or return error code WSAEWOULDBLOCK indicating that the operation cannot be finished right away. In the latter case, a mechanism is needed to discover when it is appropriate to try the operation again with the expectation that the operation shall succeed. A set of network events have been defined for this purpose and these can be polled or waited on by using WSPSelect(), or be registered for asynchronous delivery by calling WSPAsyncSelect() or WSPEventSelect(). See section 3.7. Notification of Network Events for more information.

� AUTONUMLGL � Overlapped I/O

WinSock 2 introduces overlapped I/O and requires that all transport providers support this capability. Overlapped I/O can be performed only on sockets that were created via the WSPSocket() function with the WSA_FLAG_OVERLAPPED flag set, and follows the model established in Win32.

For receiving, a client uses WSPRecv() or WSPRecvFrom() to supply buffers into which data is to be received. If one or more buffers are posted prior to the time when data has been received by the network, it is possible that data will be placed into the user’s buffers immediately as it arrives and thereby avoid the copy operation that would otherwise occur. If data is already present when receive buffers are posted, it is copied immediately into the user’s buffers. If data arrives when no receive buffers have been posted by the application, the service provider resorts to the synchronous style of operation where the incoming data is buffered internally until such time as the client issues a receive call and thereby supplies a buffer into which the data may be copied. An exception to this would be if the application used WSPSetSockOpt() to set the size of the receive buffer to zero. In this instance, reliable protocols would only allow data to be received when application buffers had been posted, and data on unreliable protocols would be lost.

On the sending side, clients use WSPSend() or WSPSendTo() to supply pointers to filled buffers and then agree to not disturb the buffers in any way until such time as the network has consumed the buffer's contents.

Overlapped send and receive calls return immediately. A return value of zero indicates that the I/O operation completed immediately and that the corresponding completion indication has already occurred. That is, the associated event object has been signaled, or the completion routine has been queued via WPUQueueApc(). A return value of SOCKET_ERROR coupled with an error code of WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that a subsequent indication will be provided when send buffers have been consumed or when receive buffers are filled. Any other error code indicates that the overlapped operation was not successfully initiated and that no completion indication will be forthcoming.

Both send and receive operations can be overlapped. The receive functions may be invoked multiple times to post receive buffers in preparation for incoming data, and the send functions may be invoked multiple times to queue up multiple buffers to be sent. Note that while a series of overlapped send buffers will be sent in the order supplied, the corresponding completion indications may occur in a different order. Likewise, on the receiving side, buffers will be filled in the order they are supplied but the completion indications may occur in a different order.

The deferred completion feature of overlapped I/O is also available for WSPIoctl().

� AUTONUMLGL � Delivering Completion Indications

Service providers have two ways to indicate overlapped completion: setting a client-specified event object, or invoking a client-specified completion routine. In both cases a data structure, WSAOVERLAPPED, is associated with each overlapped operation. This structure is allocated by the client and used by it to indicate which event object (if any) is to be set when completion occurs. The WSAOVERLAPPED structure may be used by the service provider as a place to store a “handle” to the results (e.g. number of bytes transferred, updated flags, error codes, etc.) for a particular overlapped operation. To obtain these results clients must invoke WSPGetOverlappedResult(), passing in a pointer to the corresponding overlapped structure.

If event based completion indication is selected for a particular overlapped I/O request, the WSPGetOverlappedResult() routine may itself be used by clients to either poll or wait for completion of the overlapped operation. If completion routine based completion indication is selected for a particular overlapped I/O request, only the polling option of WSPGetOverlappedResult() is available. A client may also use other means to wait (such as using WSAWaitForMultipleEvents()) until the corresponding event object has been signaled or the specified completion routine has been invoked by the service provider. Once completion has been indicated, the client may invoke WSPGetOverlappedResult(), with the expectation that the call will complete immediately.

� AUTONUMLGL � Invoking socket I/O completion routines

If the lpCompletionRoutine parameter to an overlapped operation is not NULL, it is the service provider’s responsibility to arrange for invocation of the client-specified completion routine when the overlapped operation completes. Since the completion routine must be executed in the context of the same thread that initiated the overlapped operation, it cannot be invoked directly from the service provider. The WinSock DLL offers an asynchronous procedure call (APC) mechanism to facilitate invocation of completion routines.

A service provider arranges for a function to be executed in the proper thread and process context by calling WPUQueueApc(). This function can be called from any process and thread context, even a context different from the thread and process that was used to initiate the overlapped operation.()

WPUQueueApc() takes as input parameters a pointer to a WSATHREADID structure, a pointer to an APC function to be invoked, and a 32 bit context value that is subsequently passed to the APC function. Service providers are always supplied with a pointer to the proper WSATHREADID structure via the lpThreadId parameter to the overlapped function. The provider should store the WSATHREADID structure locally and supply a pointer to this copy of the WSATHREADID structure as an input parameter to WPUQueueApc(). Once the WPUQueueApc() function returns, the provider can dispose of its copy of the WSATHREADID.

The procedure WPUQueueApc() simply enqueues sufficient information to call the indicated APC function with the given parameters, but does not call it. When the target thread enters an alertable wait state, this information is dequeued and a call is made to the APC function in that target thread and process context. Because the APC mechanism supports only a single 32 bit context value, the APC function cannot itself be the client-specified completion routine, which involves more parameters. The service provider must instead supply a pointer to its own APC function which uses the supplied context value to access the needed result information for the overlapped operation, and then invokes the client-specified completion routine.

For service providers where a user-mode component implements overlapped I/O a typical usage of the APC mechanism is as follows. When the I/O operation completes, the provider allocates a small buffer and packs it with a pointer to the client-supplied completion procedure and parameter values to pass to the procedure. It queues an APC, specifying the pointer to the buffer as the context value and its own intermediate procedure as the target procedure. When the target thread eventually enters alertable wait state, the service provider’s intermediate procedure is called in the proper thread context. The intermediate procedure simply unpacks parameters, deallocates the buffer, and calls the client-supplied completion procedure.

For service providers where a kernel-mode component implements overlapped I/O a typical implementation is similar, except that the implementation would use standard kernel interfaces to enqueue the APC. Description of the relevant kernel interfaces is outside the scope of the WinSock 2 specification.

Important Note:�Service providers must allow WinSock 2 clients to invoke send and receive operations from within the context of the socket I/O completion routine, and guarantee that, for a given socket, I/O completion routines will not be nested.

Under some circumstances, a layered service provider may need to initiate and complete overlapped operations from within an internal worker thread. In this case a WSATHREADID would not be available from an incoming function call. The service provider interface provides an upcall, WPUOpenCurrentThread(), to obtain a WSATHREADID for the current thread. When this WSATHREADID is no longer needed, its resources should be returned by calling WPUCloseThread().

� AUTONUMLGL � WSAOVERLAPPED Details

The WSAOVERLAPPED structure provides a communication medium between the initiation of an overlapped I/O operation and its subsequent completion. The WSAOVERLAPPED structure is designed to be compatible with the Win32 OVERLAPPED structure:

typedef struct _WSAOVERLAPPED {

	DWORD		Internal;		// reserved

	DWORD		InternalHigh;	// reserved

	DWORD		Offset;		// reserved

	DWORD		OffsetHigh;		// reserved

	WSAEVENT	hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

Internal	This reserved field is used internally by the entity that implements overlapped I/O. For IFS providers, this field is used by the underlying operating system. Non-IFS providers are free to use this field as necessary.

InternalHigh	This reserved field is used internally by the entity that implements overlapped I/O. For IFS providers, this field is used by the underlying operating system. Non-IFS providers are free to use this field as necessary.

Offset	This field is reserved for service providers to use. (Note: this is different from version 2.0.8 of the API specification, which has since been updated via an errata.)

OffsetHigh	This field is reserved for service providers to use. (Note: this is different from version 2.0.8 of the API specification, which has since been updated via an errata.)

hEvent	If an overlapped I/O operation is issued without an I/O completion routine (lpCompletionRoutine is NULL), then this field must contain a valid handle to a WSAEVENT object. Otherwise (lpCompletionRoutine is non-NULL) the client is free to use this field as necessary.

� AUTONUMLGL � Summary of overlapped completion indication mechanisms

The following table summarizes the completion semantics for an overlapped socket, showing the various combination of lpOverlapped, hEvent, and lpCompletionRoutine:

lpOverlapped�hEvent�lpCompletionRoutine�Completion Indication��NULL�not applicable�ignored�Operation completes synchronously, i.e. it behaves as if it were a non-overlapped socket.��!NULL�NULL�NULL�Operation completes overlapped, but there is no WinSock 2 supported completion mechanism. The completion port mechanism (if supported) may be used in this case, otherwise there will be no completion notification.��!NULL�!NULL�NULL�Operation completes overlapped, notification by signaling event object.��!NULL�ignored�!NULL�Operation completes overlapped, notification by scheduling completion routine.��

� AUTONUMLGL � Support for Scatter/Gather I/O

The WSPSend(), WSPSendTo(), WSPRecv(), and WSPRecvFrom() routines all take an array of client buffers as input parameters and thus may be used for scatter/gather (or vectored) I/O. This can be very useful in instances where portions of each message being transmitted consist of one or more fixed length “header” components in addition to a message body. Such header components need not be concatenated into a single contiguous buffer prior to sending. Likewise on receiving, the header components can be automatically split off into separate buffers, leaving the message body “pure”.

Utilizing lists of buffers instead of a single buffer does not change the boundaries that apply to receive operations. For message-oriented protocols, a receive operation completes whenever a single message has been received, regardless of how many or few of the supplied buffers were utilized. Likewise for stream-oriented protocols, a receive completes when an unspecified quantity of bytes arrives over the network, not necessarily when all of the supplied buffers are full.

� AUTONUMLGL � Out-Of-Band data

The service providers which support the out-of-band data abstraction for the stream-style sockets must adhere to the semantics in this section. We will describe OOB data handling in a protocol-independent manner. Please refer to the Windows Sockets 2 Protocol-Specific Annex for a discussion of OOB data implemented using "urgent data" in TCP/IP service providers. Note that in the following, the use of WSPRecv() also implies WSPRecvFrom().

� AUTONUMLGL � Protocol Independent OOB data

OOB data is a logically independent transmission channel associated with each pair of connected stream sockets. OOB data may be delivered to the user independently of normal data. The abstraction defines that the OOB data facilities must support the reliable delivery of at least one OOB data block at a time. This data block may contain at least one byte of data, and at least one OOB data block may be pending delivery to the user at any one time. For communications protocols which support in-band signaling (i.e. TCP, where the "urgent data" is delivered in sequence with the normal data), the system normally extracts the OOB data from the normal data stream and stores it separately (leaving a gap in the "normal" data stream). This allows users to choose between receiving the OOB data in order and receiving it out of sequence without having to buffer all the intervening data. It is possible to "peek'' at out-of-band data.

A user can determine if there is any OOB data waiting to be read using the WSPIoctl(SIOCATMARK) function. For protocols where the concept of the "position" of the OOB data block within the normal data stream is meaningful (i.e. TCP), a Windows Sockets service provider will maintain a conceptual "marker" indicating the position of the last byte of OOB data within the normal data stream. This is not necessary for the implementation of the WSPIoctl(SIOCATMARK) functionality - the presence or absence of OOB data is all that is required.

For protocols where the concept of the "position" of the OOB data block within the normal data stream is meaningful an application may prefer to process out-of-band data "in-line", as part of the normal data stream. This is achieved by setting the socket option SO_OOBINLINE (see section 4.1.17. WSPIoctl()). For other protocols where the OOB data blocks are truly independent of the normal data stream, attempting to set SO_OOBINLINE will result in an error. An application can use the SIOCATMARK WSPIoctl() command (see section 4.1.17.) to determine whether there is any unread OOB data preceding the mark. For example, it might use this to resynchronize with its peer by ensuring that all data up to the mark in the data stream is discarded when appropriate.

With SO_OOBINLINE disabled (the default setting):

�SYMBOL 183 \f "Symbol" \s 10 \h�	The WinSock service provider notifies a client of an FD_OOB event, if the client registered for notification with WSPAsyncSelect(), in exactly the same way FD_READ is used to notify of the presence of normal data. That is, FD_OOB is posted when OOB data arrives and there was no OOB data previously queued, and also when data is read using the MSG_OOB flag, and some OOB data remains to be read after the read operation has returned. FD_READ messages are not posted for OOB data.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The WinSock service provider returns from WSPSelect() with the appropriate exceptfds socket set if OOB data is queued on the socket.

�SYMBOL 183 \f "Symbol" \s 10 \h�	the client can call WSPRecv() with MSG_OOB to read the urgent data block at any time. The block of OOB data "jumps the queue".

�SYMBOL 183 \f "Symbol" \s 10 \h�	the client can call WSPRecv() without MSG_OOB to read the normal data stream. The OOB data block will not appear in the data stream with "normal data." If OOB data remains after any call to WSPRecv(), the service provider notifies the client with FD_OOB or via exceptfds when using WSPSelect().

�SYMBOL 183 \f "Symbol" \s 10 \h�	For protocols where the OOB data has a position within the normal data stream, a single WSPRecv() operation will not span that position. One WSPRecv() will return the normal data before the "mark", and a second WSPRecv() is required to begin reading data after the "mark".

With SO_OOBINLINE enabled:

�SYMBOL 183 \f "Symbol" \s 10 \h�	FD_OOB messages are _NOT_ posted for OOB data - for the purpose of the WSPSelect() and WSPAsyncSelect() functions, OOB data is treated as normal data, and indicated by setting the socket in readfds or by sending an FD_READ message respectively.

�SYMBOL 183 \f "Symbol" \s 10 \h�	the client may not call WSPRecv() with the MSG_OOB flag set to read the OOB data block - the error code WSAEINVAL will be returned.

�SYMBOL 183 \f "Symbol" \s 10 \h�	the client can call WSPRecv() without the MSG_OOB flag set. Any OOB data will be delivered in its correct order within the "normal" data stream. OOB data will never be mixed with normal data - there must be three read requests to get past the OOB data. The first returns the normal data prior to the OOB data block, the second returns the OOB data, the third returns the normal data following the OOB data. In other words, the OOB data block boundaries are preserved.

The WSPAsyncSelect() routine is particularly well suited to handling notification of the presence of out-of-band-data when SO_OOBINLINE is off.

� AUTONUMLGL � Shared Sockets

Socket sharing between processes in WinSock is implemented as follows. A source process calls WSPDuplicateSocket() to obtain a special WSAPROTOCOL_INFOW structure. It uses some interprocess communications (IPC) mechanism to pass the contents of this structure to a target process. The target process then uses the WSAPROTOCOL_INFOW structure in a call to WSPSocket(). The socket descriptor returned by this function will be an additional socket descriptor to an underlying socket which thus becomes shared.

It is the service provider’s responsibility to perform whatever operations are needed in the source process context and to create a WSAPROTOCOL_INFOW structure that will be recognized when it subsequently appears as a parameter to WSPSocket() in the target processes’ context. The dwProviderReserved field of the WSAPROTOCOL_INFOW struct is available for the service provider’s use, and may be used to store any useful context information, including a duplicated handle.

This mechanism is designed to be appropriate for both single-threaded version of Windows (such as Windows 3.1) and preemptive multithreaded versions of Windows (such as Windows 95 and NT). Note however, that sockets may be shared amongst threads in a given process without using the WSPDuplicateSocket() function, since a socket descriptor is valid in all of a process’ threads.

As is described in section 3.4.1. Descriptor Allocation, when new socket descriptors are allocated IFS providers must call WPUModifyIFSHandle() and non-IFS providers must call WPUCreateSocketHandle().

One possible scenario for establishing and using a shared socket in a handoff mode is illustrated below:

Source Process�IPC�Destination Process��1) WSPSocket(), WSPConnect()����2) Request target process ID�(�����3) Receive process ID request and respond��4) Receive process ID�(���5) Call WSPDuplicateSocket() to get a special WSAPROTOCOL_INFOW structure����6) Send WSAPROTOCOL_INFOW structure to target�����(�7) Receive WSAPROTOCOL_INFOW structure����8) Call WSPSocket() to create shared socket descriptor.��10) WSPClosesocket()��9)Use shared socket for data exchange��

� AUTONUMLGL � Multiple Handles to a Single Socket

Since what is duplicated are the socket descriptors and not the underlying socket, all of the state associated with a socket is held in common across all the descriptors. For example a WSPSetSockOpt() operation performed using one descriptor is subsequently visible using a WSPGetSockOpt() from any or all descriptors.

Notification on shared sockets is subject to the usual constraints of WSPAsyncSelect() and WSPEventSelect(). Issuing either of these calls using any of the shared descriptors cancels any previous event registration for the socket, regardless of which descriptor was used to make that registration. Thus, for example, it would not be possible to have process A receive FD_READ events and process B receive FD_WRITE events. For situations when such tight coordination is required, it is suggested that developers consider using threads instead of separate processes.

� AUTONUMLGL � Reference Counting

A process may call WSPCloseSocket() on a duplicated socket and the descriptor will become deallocated. The underlying socket, however, will remain open until WSPCloseSocket() is called on the last remaining descriptor.

� AUTONUMLGL � Precedence Guidelines

The two (or more) descriptors that reference a shared socket may be used independently as far as I/O is concerned. However, the WinSock interface does not implement any type of access control, so it is up to the processes involved to coordinate their operations on a shared socket. A typical use for shared sockets is to have one process that is responsible for creating sockets and establishing connections, hand off sockets to other processes which are responsible for information exchange.

The general guideline for supporting multiple outstanding operations on shared sockets is that a service provider is encouraged to honor all simultaneous operations on shared sockets, especially the most recent operation on a socket object. If need be, this may occur at the expense of aborting some of the previous but still pending operations, which will return WSAEINTR in this case.

� AUTONUMLGL � Protocol-Independent Multicast and Multipoint

Just as WinSock 2 allows the basic data transport capabilities of numerous transport protocols to be accessed in a generic manner, it also provides a generic way to utilize multipoint and multicast capabilities of transports that implement these features. To simplify, the term multipoint is used hereafter to refer to both multicast and multipoint communications.

Current multipoint implementations (e.g. IP multicast, ST-II, T.120, ATM UNI, etc.) vary widely with respect to how nodes join a multipoint session, whether a particular node is designated as a central or root node, and whether data is exchanged between all nodes or only between a root node and the various leaf nodes. WinSock 2’s WSAPROTOCOL_INFOW struct is used to declare the various multipoint attributes of a protocol. By examining these attributes the programmer will know what conventions to follow in utilizing the applicable WinSock 2 functions to setup, utilize and teardown multipoint sessions.

The features of WinSock 2 that support multicast can be summarized as follows:

Three attribute bits in the WSAPROTOCOL_INFOW struct

Four flags defined for the dwFlags parameter of WSPSocket()

One function, WSPJoinLeaf(), for adding leaf nodes into a multipoint session

Two WSPIoctl() command codes for controlling multipoint loopback and establishing the scope for multicast transmissions. (The latter corresponds to the IP multicast time-to-live or TTL parameter.)

Note that the inclusion of these multipoint features in WinSock 2 does not preclude a service provider from also supporting an existing protocol-dependent interface, such as the Deering socket options for IP multicast.

� AUTONUMLGL � Multipoint Taxonomy and Glossary

The taxonomy described below first distinguishes the control plane that concerns itself with the way a multipoint session is established, from the data plane that deals with the transfer of data amongst session participants.

In the control plane, there are two distinct types of session establishment: rooted and non-rooted. In the case of rooted control, there exists a special participant, called c_root, that is different from the rest of the members of this multipoint session, each of which is called a c_leaf. The c_root must remain present for the whole duration of the multipoint session, as the session will be broken up in the absence of the c_root. The c_root usually initiates the multipoint session by setting up the connection to a c_leaf, or a number of c_leafs. The c_root may add more c_leafs, or (in some cases) a c_leaf can join the c_root at a later time. Examples of the rooted control plane can be found in ATM and ST-II.

For a non-rooted control plane, all the members belonging to a multipoint session are leaves, i.e., no special participant acting as a c_root exists. Each c_leaf needs to add itself to a pre-existing multipoint session that either is always available (as in the case of an IP multicast address), or has been set up through some out-of-band mechanism which is outside the scope of this discussion (and hence not addressed in the proposed WinSock extensions). Another way to look at this is that a c_root still exists, but can be considered to be in the network cloud as opposed to one of the participants. Because a control root still exists, a non-rooted control plane could also be considered to be implicitly rooted. Examples for this kind of implicitly rooted multipoint schemes are: a teleconferencing bridge, the IP multicast system, a Multipoint Control Unit (MCU) in a H.320 video conference, etc.

In the data plane, there are also two types of data transfer styles: rooted and non-rooted. In a rooted data plane, a special participant called d_root exists. Data transfer only occurs between the d_root and the rest of the members of this multipoint session, each of which is referred to as a d_leaf. The traffic could be uni-directional, or bi-directional. The data sent out from the d_root will be duplicated (if required) and delivered to every d_leaf, while the data from d_leafs will only go to the d_root. In the case of a rooted data plane, there is no traffic allowed among d_leafs. An example of a protocol that is rooted in the data plane is ST-II.

In a non-rooted data plane, all the participants are equal in the sense that any data they send will be delivered to all the other participants in the same multipoint session. Likewise each d_leaf node will be able to receive data from all other d_leafs, and in some cases, from other nodes which are not participating in the multipoint session as well. No special d_root node exists. IP-multicast is non-rooted in the data plane.

Note that the question of where data unit duplication occurs, or whether a shared single tree or multiple shortest-path trees are used for multipoint distribution are protocol issues, and are irrelevant to the interface the client would use to perform multipoint communications. Therefore these issues are not addressed by the WinSock interface.

The following table depicts the taxonomy described above and indicates how existing schemes fit into each of the categories. Note that there does not appear to be any multipoint schemes that employ a non-rooted control plane along with a rooted data plane.

�

rooted

control plane

�

non-rooted (implicit rooted)

control plane��

rooted

data plane�

ATM,

ST-II

�

No known examples.

��

non-rooted

data plane

�

T.120�

IP-multicast,

H.320 (MCU)��

� AUTONUMLGL � Multipoint attributes in WSAPROTOCOL_INFOW struct

Three attribute fields are defined in the WSAPROTOCOL_INFOW structure in order to distinguish the different schemes used in the control and data planes respectively :

XP1_SUPPORT_MULTIPOINT with a value of 1 indicates this protocol entry supports multipoint communications, and that the following two fields are meaningful.

XP1_MULTIPOINT_CONTROL_PLANE indicates whether the control plane is rooted (value = 1) or non-rooted (value = 0).

XP1_MULTIPOINT_DATA_PLANE indicates whether the data plane is rooted (value = 1) or non-rooted (value = 0).

Note that two WSAPROTOCOL_INFOW entries would be present if a multipoint protocol supported both rooted and non-rooted data planes, one entry for each.

� AUTONUMLGL � Multipoint Socket Attributes

In some instances sockets joined to a multipoint session may have some behavioral differences from point-to-point sockets. For example, a d_leaf socket in a rooted data plane scheme can only send information to the d_root participant. This creates a need for the client to be able to indicate the intended use of a socket coincident with its creation. This is done through four multipoint attribute flags that can be set via the dwFlags parameter in WSPSocket():

WSA_FLAG_MULTIPOINT_C_ROOT, for the creation of a socket acting as a c_root, and only allowed if a rooted control plane is indicated in the corresponding WSAPROTOCOL_INFOW entry.

WSA_FLAG_MULTIPOINT_C_LEAF, for the creation of a socket acting as a c_leaf, and only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding WSAPROTOCOL_INFOW entry.

WSA_FLAG_MULTIPOINT_D_ROOT, for the creation of a socket acting as a d_root, and only allowed if a rooted data plane is indicated in the corresponding WSAPROTOCOL_INFOW entry.

WSA_FLAG_MULTIPOINT_D_LEAF, for the creation of a socket acting as a d_leaf, and only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding WSAPROTOCOL_INFOW entry.

Note that when creating a multipoint socket, exactly one of the two control plane flags, and one of the two data plane flags must be set in WSPSocket()’s dwFlags parameter. Thus, the four possibilities for creating multipoint sockets are: “c_root/d_root”, “c_root/d_leaf”, “c_leaf/d_root”, or “c_leaf /d_leaf”.

� AUTONUMLGL � SIO_MULTIPOINT_LOOP ioctl

When d_leaf sockets are used in a non-rooted data plane, it is generally desirable to be able to control whether traffic sent out is also received back on the same socket. The SIO_MULTIPOINT_LOOP command code for WSPIoctl() is used to enable or disable loopback of multipoint traffic.

� AUTONUMLGL � SIO_MULTICAST_SCOPE ioctl

When multicasting is employed, it is usually necessary to specify the scope over which the multicast should occur. Here scope is defined to be the number of routed network segments to be covered. The SIO_MULTICAST_SCOPE command code for WSPIoctl() is used to control this. A scope of zero would indicate that the multicast transmission would not be placed “on the wire” but could be disseminated across sockets within the local host. A scope value of one (the default) indicates that the transmission will be placed on the wire, but will not cross any routers. Higher scope values determine the number of routers that may be crossed. Note that this corresponds to the time-to-live (TTL) parameter in IP multicasting.

� AUTONUMLGL � Semantics for joining multipoint leaves

In the following, a multipoint socket is frequently characterized by describing its role in one of the two planes (control or data). It should be understood that this same socket has a role in the other plane, but this is not mentioned in order to keep the references short. For example a reference to a “c_root socket” could refer to either a c_root/d_root or a c_root/d_leaf socket.

In rooted control plane schemes, new leaf nodes are added to a multipoint session in one or both of two different ways. In the first method, the root uses WSPJoinLeaf() to initiate a connection with a leaf node and invite it to become a participant. On the leaf node, the peer application must have created a c_leaf socket and used WSPListen() to set it into listen mode. The leaf node will receive an FD_ACCEPT indication when invited to join the session, and signals its willingness to join by calling WSPAccept(). The root application will receive an FD_CONNECT indication when the join operation has been completed.

In the second method, the roles are essentially reversed. The root client creates a c_root socket and sets it into listen mode. A leaf node wishing to join the session creates a c_leaf socket and uses WSPJoinLeaf() to initiate the connection and request admittance. The root client receives FD_ACCEPT when an incoming admittance request arrives, and admits the leaf node by calling WSPAccept(). The leaf node receives FD_CONNECT when it has been admitted.

In a non-rooted control plane, where all nodes are c_leaf’s, the WSPJoinLeaf() function is used to initiate the inclusion of a node into an existing multipoint session. An FD_CONNECT indication is provided when the join has been completed and the returned socket descriptor is useable in the multipoint session. In the case of IP multicast, this would correspond to the IP_ADD_MEMBERSHIP socket option. �

There are, therefore, three instances where a client would use WSPJoinLeaf():

Acting as a multipoint root and inviting a new leaf to join the session

Acting as a leaf making an admittance request to a rooted multipoint session

Acting as a leaf seeking admittance to a non-rooted multipoint session (e.g. IP multicast)

� AUTONUMLGL � Using WSPJoinLeaf()

As mentioned previously, WSPJoinLeaf() is used to join a leaf node into a multipoint session. WSPJoinLeaf() has the same parameters and semantics as WSPConnect() except that it returns a socket descriptor (as in WSPAccept()), and it has an additional dwFlags parameter. The dwFlags parameter is used to indicate whether the socket will be acting only as a sender, only as a receiver, or both. Only multipoint sockets may be used for input parameter s in this function. If the multipoint socket is in the non-blocking mode, the returned socket descriptor will not be useable until after a corresponding FD_CONNECT indication has been received. A root application in a multipoint session may call WSPJoinLeaf() one or more times in order to add a number of leaf nodes, however at most one multipoint connection request may be outstanding at a time.

The socket descriptor returned by WSPJoinLeaf() is different depending on whether the input socket descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the name parameter designates a particular leaf node to be added and the returned socket descriptor is a c_leaf socket corresponding to the newly added leaf node. It is not intended to be used for exchange of multipoint data, but rather is used to receive network event indications (e.g. FD_CLOSE) for the connection that exists to the particular c_leaf. Some multipoint implementations may also allow this socket to be used for “side chats” between the root and an individual leaf node. An FD_CLOSE indication should be given for this socket if the corresponding leaf node calls WSPCloseSocket() to drop out of the multipoint session. Symmetrically, invoking WSPClosesocket() on the c_leaf socket returned from WSPJoinLeaf() will cause the socket in the corresponding leaf node to get FD_CLOSE notification.

When WSPJoinLeaf() is invoked with a c_leaf socket, the name parameter contains the address of the root application (for a rooted control scheme) or an existing multipoint session (non-rooted control scheme), and the returned socket descriptor is the same as the input socket descriptor. In a rooted control scheme, the root client would put its c_root socket in the listening mode by calling WSPListen(). The standard FD_ACCEPT notification will be delivered when the leaf node requests to join itself to the multipoint session. The root client uses the usual WSPAccept() function to admit the new leaf node. The value returned from WSPAccept() is also a c_leaf socket descriptor just like those returned from WSPJoinLeaf(). To accommodate multipoint schemes that allow both root-initiated and leaf-initiated joins, it is acceptable for a c_root socket that is already in listening mode to be used as in input to WSPJoinLeaf().

A multipoint root client is generally responsible for the orderly dismantling of a multipoint session. Such an application may use WSPShutdown() or WSPClosesocket() on a c_root socket to cause all of the associated c_leaf sockets, including those returned from WSPJoinLeaf() and their corresponding c_leaf sockets in the remote leaf nodes, to get FD_CLOSE notification.

� AUTONUMLGL � Semantic differences between multipoint sockets and regular sockets

In the control plane, there are some significant semantic differences between a c_root socket and a regular point-to-point socket:

(1) the c_root socket can be used in WSPJoinLeaf() to join a new a leaf;

(2) placing a c_root socket into the listening mode (by callings WSPListen()) does not preclude the c_root socket from being used in a call to WSPJoinLeaf() to add a new leaf, or for sending and receiving multipoint data;

(3) the closing of a c_root socket will cause all the associated c_leaf sockets to get FD_CLOSE notification.

There is no semantic differences between a c_leaf socket and a regular socket in the control plane, except that the c_leaf socket can be used in WSPJoinLeaf(), and the use of c_leaf socket in WSPListen() indicates that only multipoint connection requests should be accepted.

In the data plane, the semantic differences between the d_root socket and a regular point-to-point socket are

(1) the data sent on the d_root socket will be delivered to all the leaves in the same multipoint session;

(2) the data received on the d_root socket may be from any of the leaves.

The d_leaf socket in the rooted data plane has no semantic difference from the regular socket, however, in the non-rooted data plane, the data sent on the d_leaf socket will go to all the other leaf nodes, and the data received could be from any other leaf nodes. As mentioned earlier, the information about whether the d_leaf socket is in a rooted or non-rooted data plane is contained in the corresponding WSAPROTOCOL_INFOW structure for the socket.

� AUTONUMLGL �Socket Options and IOCTLs

� AUTONUMLGL � Summary of Socket Options

The socket options for Winsock 2 are summarized in the following table. More detailed information is provided in section 4 under WSPGetSockOpt() and/or WSPSetSockOpt(). There are other new protocol-specific socket options which can be found in the protocol-specific annex.

A Windows Sockets service provider must recognize all of these options, and (for WSPGetSockOpt()) return plausible values for each. The default value for each option is shown in the following table.

Value�Type�Meaning�Default�Note��SO_ACCEPTCONN�BOOL�Socket is WSPListen()ing.�FALSE unless a WSPListen() has been performed���SO_BROADCAST�BOOL�Socket is configured for the transmission of broadcast messages.�FALSE���SO_DEBUG�BOOL�Debugging is enabled. �FALSE�(i)��SO_DONTLINGER�BOOL�If true, the SO_LINGER option is disabled.�TRUE���SO_DONTROUTE�BOOL�Routing is disabled.�FALSE�(i)��SO_ERROR�int�Retrieve error status and clear.�0���SO_GROUP_ID�GROUP�Reserved for future use with socket groups: The identifier of the group to which this socket belongs.�NULL�get only��SO_GROUP_PRIORITY�int�Reserved for future use with socket groups: The relative priority for sockets that are part of a socket group.�0���SO_KEEPALIVE�BOOL�Keepalives are being sent.�FALSE�(i)��SO_LINGER�struct linger�Returns the current linger options.�l_onoff is 0���SO_MAX_MSG_SIZE�int�Maximum outbound (send) size of a message for message-oriented socket types. There is no provision to determine the maximum inbound message size. Has no meaning for stream-oriented sockets.�Implementation dependent�get only��SO_OOBINLINE�BOOL�Out-of-band data is being received in the normal data stream. �FALSE���SO_PROTOCOL_INFOW�struct WSAPROTOCOL_INFOW�Description of protocol info for protocol that is bound to this socket.�protocol dependent�get only��SO_RCVBUF�int�Total per-socket buffer space reserved for receives. This is unrelated to SO_MAX_MSG_SIZE or the size of a TCP window.�Implementation dependent�(i)��SO_REUSEADDR�BOOL�The address to which this socket is bound can be used by others.�FALSE���SO_SNDBUF�int�Total per-socket buffer space reserved for sends. This is unrelated to SO_MAX_MSG_SIZE or the size of a TCP window.�Implementation dependent�(i)��SO_TYPE�int�The type of the socket (e.g. SOCK_STREAM).�As created via socket()���PVD_CONFIG�char FAR *�An opaque data structure object containing configuration information of the service provider.�Implementation dependent���TCP_NODELAY�BOOL�Disables the Nagle algorithm for send coalescing.�Implementation dependent���

Notes:

(i)	A service provider may silently ignore this option on WSPSetSockOpt() and return a constant value for WSPGetSockOpt(), or it may accept a value for WSPSetSockOpt() and return the corresponding value in WSPGetSockOpt() without using the value in any way.

� AUTONUMLGL � Summary of Socket Ioctl Opcodes

The socket ioctl opcodes for Winsock 2 are summarized in the following table. More detailed information is provided in section 4 under WSPIoctl(). There are other new protocol-specific ioctl opcodes which can be found in the protocol-specific annex.

Opcode�Input Type�Output Type�Meaning��FIONBIO�unsigned long�<non used>�Enable or disable non-blocking mode on the socket.��FIONREAD�<not used>�unsigned long�Determine the amount of data which can be read atomically from the socket.��SIOCATMARK�<not used>�BOOL�Determine whether or not all out-of-band data has been read.��SIO_ASSOCIATE_HANDLE�companion API dependent�<not used>�Associate the socket with the specified handle of a companion interface.��SIO_ENABLE_CIRCULAR_QUEUEING�<not used>�<not used>�Circular queuing is enabled.��SIO_FIND_ROUTE�struct sockaddr�<not used>�Request the route to the specified address to be discovered.��SIO_FLUSH�<not used>�<not used>�Discard current contents of the sending queue.��SIO_GET_BROADCAST_ADDRESS�<not used>�struct sockaddr�Retrieve the protocol-specific broadcast address to be used in WSPSendTo()��SIO_GET_QOS�<not used>�QOS�Retrieve current flow spec(s) for the socket.��SIO_GET_GROUP_QOS�<not used>�QOS�Reserved for future use with socket groups: Retrieve current group flow spec(s) for the group this socket belongs to.��SIO_MULTIPOINT_LOOKBACK�BOOL�<not used>�Control whether data sent in a multipoint session will also be received by the same socket on the local host.��SIO_MULTICAST_SCOPE�int�<not used>�Specify the scope over which multicast transmissions will occur.��SIO_SET_QOS�QOS�<not used>�Establish new flow spec(s) for the socket.��SIO_SET_GROUP_QOS�QOS�<not used>�Reserved for future use with socket groups: Establish new group flow spec(s) for the group this socket belongs to.��SIO_TRANSLATE_HANDLE�int�companion API dependent�Obtain a corresponding handle for socket s that is valid in the context of a companion interface.��

�� AUTONUMLGL � Summary of SPI Functions

The SPI functions for Winsock 2 are summarized in the following tables.

� AUTONUMLGL � Generic Data Transport Functions

WSPAccept()�An incoming connection is acknowledged and associated with an immediately created socket. The original socket is returned to the listening state. This function also allows for conditional acceptance and socket grouping.��WSPAsyncSelect()�Perform asynchronous version of WSPSelect()��WSPBind()�Assign a local name to an unnamed socket.��WSPCancelBlockingCall�Cancel an outstanding "blocking" WinSock call.��WSPCleanup()�Sign off from the underlying WinSock service provider.��WSPCloseSocket()�Remove a socket from the per-process object reference table. Only blocks if SO_LINGER is set with a non-zero timeout on a blocking socket.��WSPConnect()�Initiate a connection on the specified socket. This function also allows for exchange of connect data and QOS specification.��WSPDuplicateSocket()�Return a WSAPROTOCOL_INFOW structure that can be used to create a new socket descriptor for a shared socket.��WSPEnumNetworkEvents()�Discover occurrences of network events.��WSPEventSelect()�Associate network events with an event object.��WSPGetOverlappedResult()�Get completion status of overlapped operation.��WSPGetPeerName()�Retrieve the name of the peer connected to the specified socket.��WSPGetSockName()�Retrieve the local address to which the specified socket is bound.��WSPGetSockOpt()�Retrieve options associated with the specified socket.��WSPGetQOSByName()�Supply QOS parameters based on a well-known service name.��WSPIoctl()�Provide control for sockets.��WSPJoinLeaf()�Join a leaf node into a multipoint session.��WSPListen()�Listen for incoming connections on a specified socket.��WSPRecv()�Receive data from a connected or unconnected socket. This function accommodates scatter/gather I/O, overlapped sockets and provides the flags parameter as IN OUT.��WSPRecvDisconnect()�Terminate reception on a socket, and retrieve the disconnect data if the socket is connection-oriented.��WSPRecvFrom()�Receive data from either a connected or unconnected socket. This function accommodates scatter/gather I/O, overlapped sockets and provides the flags parameter as IN OUT.��WSPSelect()�Perform synchronous I/O multiplexing.��WSPSend()�Send data to a connected socket. This function also accommodates scatter/gather I/O and overlapped sockets.��WSPSendDisconnect()�Initiate termination of a socket connection and optionally send disconnect data.��WSPSendTo()�Send data to either a connected or unconnected socket. This function also accommodates scatter/gather I/O and overlapped sockets.��WSPSetSockOpt()�Store options associated with the specified socket.��WSPShutdown()�Shut down part of a full-duplex connection.��WSPSocket()�A socket creation function which takes a WSAPROTOCOL_INFOW struct as input and allows overlapped sockets to be created. Also allows socket groups to be formed.��WSPStartup()�Initialize the underlying WinSock service provider.��

� AUTONUMLGL � Upcalls exposed by WinSock 2 DLL

WPUCloseEvent()�Close an open event object handle��WPUCloseSocketHandle()�Close a socket handle allocated by the WinSock DLL��WPUCloseThread()�Close a thread Id for an internal service thread��WPUCreateEvent()�Create a new event object��WPUCreateSocketHandle()�Create a new socket handle for non-IFS providers��WPUFDIsSet()�Check the membership of the specified socket handle��WPUGetProviderPath()�Retrieve the DLL path for the specified provider��WPUModifyIFSHandle()�Receive a (possibly) modified IFS handle from the WinSock DLL��WPUOpenCurrentThread()�Open a thread Id for an internal service thread if one is needed to initiate and complete overlapped I/O.��WPUPostMessage()�Performs the standard PostMessage() function in a way that maintains backwards compatibility��WPUQueryBlockingCallback()�Return a pointer to a thread’s blocking hook function��WPUQuerySocketHandleContext()�Get a socket’s context value (non-IFS providers only)��WPUQueueApc()�Queue a user-mode APC to the specified thread��WPUResetEvent()�Reset an event object��WPUSetEvent()�Set an event object��

� AUTONUMLGL � Installation and configuration functions exposed by WinSock 2 DLL

WSCDeinstallProvider()�Unregister a service provider��WSCEnumProtocols()�Retrieve information about available transport protocols��WSCInstallProvider()�Register a new service provider��

�� AUTONUMLGL �Transport Provider Interface Reference

� AUTONUMLGL � Socket Routines

This chapter presents the service provider socket library routines in alphabetical order, and describes each routine in detail.

In each routine it is indicated that the header file WS2SPI.H must be included. The Windows header file WINDOWS.H is also needed, but WS2SPI.H will include it if necessary.

� AUTONUMLGL � WSPAccept()

Description	Conditionally accept a connection based on the return value of a condition function, and optionally create and/or join a socket group.

 	#include <ws2spi.h>

 	SOCKET WSPAPI �WSPAccept (�	IN		SOCKET 		s,

		OUT		struct sockaddr FAR * 	addr,�	IN OUT		LPINT 			addrlen, �	IN		LPCONDITIONPROC 	lpfnCondition,�	IN		DWORD 		dwCallbackData, �	OUT		LPINT 			lpErrno�);

s	A descriptor identifying a socket which is listening for connections after a WSPListen().

addr	An optional pointer to a buffer which receives the address of the connecting entity, as known to the service provider. The exact format of the addr argument is determined by the address family established when the socket was created.

addrlen	An optional pointer to an integer which contains the length of the address addr.

lpfnCondition	The procedure instance address of an optional, WinSock 2 client-supplied condition function which will make an accept/reject decision based on the caller information passed in as parameters, and optionally create and/or join a socket group by assigning an appropriate value to the result parameter, g, of this function.

dwCallbackData	Callback data to be passed back to the WinSock 2 client as the value of the dwCallbackData parameter of the condition function. This parameter is not interpreted by the service provider.

lpErrno	A pointer to the error code.

Remarks	This routine extracts the first connection on the queue of pending connections on s, and checks it against the condition function, provided the condition function is specified (i.e., not NULL). The condition function must be executed in the same thread as this routine is. If the condition function returns CF_ACCEPT, this routine creates a new socket and performs any socket grouping as indicated by the result parameter g in the condition function . Newly created sockets have the same properties as s including network events registered with WSPAsyncSelect() or with WSPEventSelect(), but not including the listening socket’s group ID, if any. As is described in section 3.4.1. Descriptor Allocation, when new socket descriptors are allocated IFS providers must call WPUModifyIFSHandle() and non-IFS providers must call WPUCreateSocketHandle().

	If the condition function returns CF_REJECT, this routine rejects the connection request. If the client’s accept/reject decision cannot be made immediately, the condition function will return CF_DEFER to indicate that no decision has been made, and no action about this connection request is to be taken by the service provider. When the client is ready to take action on the connection request, it will invoke WSPAccept() again and return either CF_ACCEPT or CF_REJECT as a return value from the condition function.

	For sockets which are in the (default) blocking mode, if no pending connections are present on the queue, WSPAccept() blocks the caller until a connection is present. For sockets in a non-blocking mode, if this function is called when no pending connections are present on the queue, WSPAccept() returns the error code WSAEWOULDBLOCK as described below. The accepted socket may not be used to accept more connections. The original socket remains open.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known to the service provider. The exact format of the addr parameter is determined by the address family in which the communication is occurring. The addrlen is a value-result parameter; it will initially contain the amount of space pointed to by addr. On return, it must contain the actual length (in bytes) of the address returned by the service provider. This call is used with connection-oriented socket types such as SOCK_STREAM. If addr and/or addrlen are equal to NULL, then no information about the remote address of the accepted socket is returned. Otherwise, these two parameters shall be filled in regardless of whether the condition function is specified or what it returns.

The prototype of the condition function is as follows:

int CALLBACK �ConditionFunc(�	IN	LPWSABUF 		lpCallerId, �	IN	LPWSABUF 		lpCallerData, �	IN OUT	LPQOS 		lpSQOS, �	IN OUT	LPQOS 		lpGQOS,�	IN	LPWSABUF 		lpCalleeId, �	IN	LPWSABUF 		lpCalleeData, �	OUT	GROUP FAR * 		g, 	�	IN	DWORD 		dwCallbackData�);

The lpCallerId and lpCallerData are value parameters which must contain the address of the connecting entity and any user data that was sent along with the connection request, respectively. If no caller ID or caller data is available, the corresponding parameter will be NULL. (Many network protocols do not support connect-time caller data. Most conventional network protocols can be expected to support caller ID information at connection-request time.) The “buf” part of the WSABUF pointed to by lpCallerId points to a SOCKADDR. The SOCKADDR is interpreted according to its address family (typically by casting the SOCKADDR to some type specific to the address family).

lpSQOS references the flow specs for socket s specified by the caller, one for each direction, followed by any additional provider-specific parameters. The sending or receiving flow spec values will be ignored as appropriate for any unidirectional sockets. A NULL value for lpSQOS indicates that there is no caller supplied QOS and that no negotiation is possible. A non-NULL lpSQOS pointer indicates that a QOS negotiation is to occur or that the provider is prepared to accept the QOS request without negotiation.

Reserved for future use with socket groups: lpGQOS references the flow specs for the socket group the caller is to create, one for each direction, followed by any additional provider-specific parameters. A NULL value for lpGQOS indicates no caller-supplied group QOS. QOS information may be returned if a QOS negotiation is to occur.

The lpCalleeId is a value parameter which contains the local address of the connected entity. The “buf” part of the WSABUF pointed to by lpCalleeId points to a SOCKADDR. The SOCKADDR is interpreted according to its address family (typically by casting the SOCKADDR to some type specific to the address family).

The lpCalleeData is a result parameter used by the condition function to supply user data back to the connecting entity. The storage for this data must be provided by the service provider. lpCalleeData->len initially contains the length of the buffer allocated by the service provider and pointed to by lpCalleeData->buf. A value of zero means passing user data back to the caller is not supported. The condition function will copy up to lpCalleeData->len bytes of data into lpCalleeData->buf , and then update lpCalleeData->len to indicate the actual number of bytes transferred. If no user data is to be passed back to the caller, the condition function will set lpCalleeData->len to zero. The format of all address and user data is specific to the address family to which the socket belongs.

Reserved for future use with socket groups: The result parameter g is assigned within the condition function to indicate the following actions:

	if &g is an existing socket group ID, add s to this group, provided all the 			requirements set by this group are met; or

	if &g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket 			group and have s as the first member; or

	if &g = SG_CONSTRAINED_GROUP, create a constrained socket group and 			have s as the first member; or

	if &g = zero, no group operation is performed.

Any set of sockets grouped together must be implemented by a single service provider. For unconstrained groups, any set of sockets may be grouped together. A constrained socket group may consist only of connection-oriented sockets, and requires that connections on all grouped sockets be to the same address on the same host. For newly created socket groups, the new group ID must be available for the WinSock SPI client to retrieve by calling WSPGetSockOpt() with option SO_GROUP_ID. A socket group and its associated ID remain valid until the last socket belonging to this socket group is closed. Socket group IDs are unique across all processes for a given service provider.

The dwCallbackData parameter value passed to the condition function is the value passed as the dwCallbackData parameter in the original WSPAccept() call. This value is interpreted only by the WinSock 2 client. This allows a client to pass some context information from the WSPAccept() call site through to the condition function. This gives the condition function any additional information required to determine whether to accept the connection or not. A typical usage is to pass a (suitably cast) pointer to a data structure containing references to application-defined objects with which this socket is associated.

Return Value	If no error occurs, WSPAccept() returns a value of type SOCKET which is a descriptor for the accepted socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific error code is available in lpErrno.

Error Codes	WSAECONNREFUSED	The connection request was forcefully rejected as indicated in the return value of the condition function (CF_REJECT).

WSAENETDOWN	The network subsystem has failed.

WSAEFAULT	The addrlen argument is too small or the lpfnCondition is not part of the user address space.

WSAEINTR	The (blocking) call was canceled via WSPCancelBlockingCall().

WSAEINPROGRESS	A blocking WinSock call is in progress.

WSAEINVAL	WSPListen() was not invoked prior to WSPAccept(), parameter g specified in the condition function is not a valid value, the source address of the incoming connection request is not consistent with that of the constrained group the parameter g is referring to, the return value of the condition function is not a valid one, or any case where the specified socket is in an invalid state.

WSAEMFILE	The queue is non-empty upon entry to WSPAccept() and there are no socket descriptors available.

WSAENOBUFS	No buffer space is available.

WSAENOTSOCK	The descriptor is not a socket.

WSAEOPNOTSUPP	The referenced socket is not a type that supports connection-oriented service.

WSATRY_AGAIN	The acceptance of the connection request was deferred as indicated in the return value of the condition function (CF_DEFER).

WSAEWOULDBLOCK	The socket is marked as non-blocking and no connections are present to be accepted.

WSAEACCES	The connection request that was offered has timed out or been withdrawn.

See Also	WSPAccept(), WSPBind(), WSPConnect(), WSPGetSockOpt(), WSPListen(), WSPSelect(), WSPSocket(), WSPAsyncSelect(), WSPEventSelect().

�� AUTONUMLGL � WSPAddressToString()

Description	WSPAddressToString() converts all components of a SOCKADDR structure into a human-readable numeric string representation of the address. This is used mainly for display purposes.

INT WSPAPI

WSPAddressToString(

	IN		LPSOCKADDR		 	lpsaAddress,

	IN		DWORD			dwAddressLength,

	IN		LPWSAPROTOCOL_INFOW	lpProtocolInfo,

	OUT		LPWSTR			lpszAddressString,

	IN OUT		LPDWORD			lpdwAddressStringLength,

	OUT		LPINT 				lpErrno

);

lpsaAddress	points to a SOCKADDR structure to translate into a string.

dwAddressLength	�the length of the Address SOCKADDR.

lpProtocolInfo	(required) the WSAPROTOCOL_INFOW struct associated with the provider that will do the translation.

lpszAddressString	�a buffer which receives the human-readable address string.

lpdwAddressStringLength	�the length of the AddressString buffer. Returns the length of the string actually copied into the buffer. If the supplied buffer is not large enough, the function fails with a specific error of WSAEFAULT and this parameter is updated with the required size in bytes.

lpErrno	A pointer to the error code.

Layered Service Provider considerations	�A layered service provider supplies an implementation of this function, but it is also a client of this function if and when it calls WSPAddressToString() of the next layer in the protocol chain. Some special considerations apply to this function’s lpProtocolInfo parameter as it is propagated down through the layers of the protocol chain.

If the next layer in the protocol chain is another layer then when the next layer’s WSPAddressToString() is called, this layer must pass to the next layer a lpProtocolInfo that references the same unmodified WSAPROTOCOL_INFOW structure with the same unmodified chain information. However, if the next layer is the base protocol (i.e., the last element in the chain), this layer performs a substitution when calling the base provider’s WSPAddressToString(). In this case, the base provider’s WSAPROTOCOL_INFOW structure should be referenced by the lpProtocolInfo parameter.

One vital benefit of this policy is that base service providers do not have to be aware of protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFOW structure through a layered sequence of other functions such as WSPDuplicateSocket(), WSPStartup(), WSPSocket(), or WSPStringToAddress().

Return Value	If no error occurs, WSPAddressToString() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Errors	WSAEFAULT	the specified AddressString buffer is too small. Pass in a larger buffer.

WSAEINVAL	the specified Address is not a valid socket address, or its address family is not supported by the provider, or the specified lpProtocolInfo did not refer to a WSAPROTOCOL_INFOW structure supported by the provider.

�� AUTONUMLGL � WSPAsyncSelect()

Description	Request Windows message-based event notification of network events for a socket.

 	#include <ws2spi.h>

	int WSPAPI �WSPAsyncSelect(�	IN	SOCKET 		s, �	IN	HWND 			hWnd, �	IN	unsigned int 		wMsg, �	IN	long 			lEvent, �	OUT	LPINT 			lpErrno�);

s	A descriptor identifying the socket for which event notification is required.

hWnd	A handle identifying the window which should receive a message when a network event occurs.

wMsg	The message to be sent when a network event occurs.

lEvent	A bitmask which specifies a combination of network events in which the WinSock SPI client is interested.

lpErrno	A pointer to the error code.

Remarks	This function is used to request that the service provider send a Window message to the client’s window hWnd whenever it detects any of the network events specified by the lEvent parameter. The service provider should use the WPUPostMessage() function to post the message. The message to be sent is specified by the wMsg parameter. The socket for which notification is required is identified by s.

This function automatically sets socket s to non-blocking mode, regardless of the value of lEvent. See WSPIoctl() about how to set the socket back to blocking mode.

The lEvent parameter is constructed by or'ing any of the values specified in the following list.

Value	Meaning

FD_READ	Issue notification of readiness for reading

FD_WRITE	Issue notification of readiness for writing

FD_OOB	Issue notification of the arrival of out-of-band data

FD_ACCEPT	Issue notification of incoming connections

FD_CONNECT	Issue notification of completed connection

FD_CLOSE	Issue notification of socket closure

FD_QOS	Issue notification of socket Quality of Service (QOS) changes

FD_GROUP_QOS	Reserved for future use with socket groups: Issue notification of socket group Quality of Service (QOS) changes

Invoking WSPAsyncSelect() for a socket cancels any previous WSPAsyncSelect() or WSPEventSelect() for the same socket. For example, to receive notification for both reading and writing, the WinSock SPI client must call WSPAsyncSelect() with both FD_READ and FD_WRITE, as follows:

rc = WSPAsyncSelect(s, hWnd, wMsg, FD_READ|FD_WRITE, &error);

It is not possible to specify different messages for different events. The following code will not work; the second call will cancel the effects of the first, and only FD_WRITE events will be reported with message wMsg2:

rc = WSPAsyncSelect(s, hWnd, wMsg1, FD_READ, &error);

rc = WSPAsyncSelect(s, hWnd, wMsg2, FD_WRITE, &error);

To cancel all notification - i.e., to indicate that the service provider should send no further messages related to network events on the socket - lEvent will be set to zero.

rc = WSPAsyncSelect(s, hWnd, 0, 0, &error);

Since a WSPAccept()'ed socket has the same properties as the listening socket used to accept it, any WSPAsyncSelect() events set for the listening socket apply to the accepted socket. For example, if a listening socket has WSPAsyncSelect() events FD_ACCEPT, FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also have FD_ACCEPT, FD_READ, and FD_WRITE events with the same wMsg value used for messages. If a different wMsg or events are desired, the WinSock SPI client must call WSPAsyncSelect(), passing the accepted socket and the desired new information.

When one of the nominated network events occurs on the specified socket s, the service provider uses WPUPostMessage() to send message wMsg to the WinSock SPI client's window hWnd. The wParam argument identifies the socket on which a network event has occurred. The low word of lParam specifies the network event that has occurred. The high word of lParam contains any error code. The error code be any error as defined in ws2spi.h.

The possible network event codes which may be indicated are as follows:

Value	Meaning

FD_READ	Socket s ready for reading

FD_WRITE	Socket s ready for writing

FD_OOB	Out-of-band data ready for reading on socket s

FD_ACCEPT	Socket s ready for accepting a new incoming connection

FD_CONNECT	Connection initiated on socket s completed

FD_CLOSE	Connection identified by socket s has been closed

FD_QOS	Quality of Service associated with socket s has changed

FD_GROUP_QOS	Reserved for future use with socket groups: Quality of Service associated with the socket group to which s belongs has changed

Return Value	The return value is 0 if the WinSock SPI client's declaration of interest in the network event set was successful. Otherwise the value SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Comments	Although WSPAsyncSelect() can be called with interest in multiple events, the service provider issues the same Windows message for each event.

A WinSock 2 provider shall not continually flood a WinSock SPI client with messages for a particular network event. Having successfully posted notification of a particular event to a WinSock SPI client window, no further message(s) for that network event will be posted to the WinSock SPI client window until the WinSock SPI client makes the function call which implicitly reenables notification of that network event.

Event	Re-enabling function

FD_READ	WSPRecv() or WSPRecvFrom()

FD_WRITE	WSPSend() or WSPSendTo()

FD_OOB	WSPRecv() or WSPRecvFrom()

FD_ACCEPT	WSPAccept() unless the error code returned is WSATRY_AGAIN indicating that the condition function returned CF_DEFER

FD_CONNECT	NONE

FD_CLOSE	NONE

FD_QOS	WSPIoctl() with SIO_GET_QOS

FD_GROUP_QOS	Reserved for future use with socket groups: WSPIoctl() with SIO_GET_GROUP_QOS

Any call to the reenabling routine, even one which fails, results in reenabling of message posting for the relevant event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is "level-triggered." This means that if the reenabling routine is called and the relevant condition is still met after the call, a WSPAsyncSelect() message is posted to the WinSock SPI client.

The FD_QOS and FD_GROUP_QOS events are considered edge triggered. A message will be posted exactly once when a QOS change occurs. Further messages will not be forthcoming until either the provider detects a further change in QOS or the WinSock SPI client renegotiates the QOS for the socket.

If any event has already happened when the WinSock SPI client calls WSPAsyncSelect() or when the reenabling function is called, then a message is posted as appropriate. For example, consider the following sequence: 1) a WinSock SPI client calls WSPListen(), 2) a connect request is received but not yet accepted, 3) the WinSock SPI client calls WSPAsyncSelect() specifying that it wants to receive FD_ACCEPT messages for the socket. Due to the persistence of events, the WinSock service provider posts an FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE message is posted when a socket is first connected with WSPConnect() (after FD_CONNECT, if also registered) or accepted with WSPAccept(), and then after a WSPSend() or WSPSendTo() fails with WSAEWOULDBLOCK and buffer space becomes available. Therefore, a WinSock SPI client can assume that sends are possible starting from the first FD_WRITE message and lasting until a send returns WSAEWOULDBLOCK. After such a failure the WinSock SPI client will be notified that sends are again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-band data separately. If the socket is configured to receive out-of-band data in-line, the out-of-band (expedited) data is treated as normal data and the WinSock SPI client must register an interest in FD_READ events, not FD_OOB events.

The error code in an FD_CLOSE message indicates whether the socket close was graceful or abortive. If the error code is 0, then the close was graceful; if the error code is WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE message is posted when a close indication is received for the virtual circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE is posted when the connection goes into the TIME WAIT or CLOSE WAIT states. This results from the remote end performing a WSPShutdown() on the send side or a WSPCloseSocket(). FD_CLOSE shall only be posted after all data is read from a socket.

In the case of a graceful close, the service provider shall only send an FD_CLOSE message to indicate virtual circuit closure after all the received data has been read. It shall NOT send an FD_READ message to indicate this condition.

The FD_QOS or FD_GROUP_QOS message is posted when any field in the flow spec associated with socket s or the socket group that s belongs to has changed, respectively. The service provider must update the QOS information available to the client via WSPIoctl() with SIO_GET_QOS and/or SIO_GET_GROUP_QOS.

Here is a summary of events and conditions for each asynchronous notification message:

·	FD_READ:

	1) when WSPAsyncSelect() called, if there is data currently available to receive,

	2) when data arrives, if FD_READ not already posted,

	3) after WSPRecv() or WSPRecvfrom() called (with or without MSG_PEEK), if data is still available to receive.

	(Note: when WSPSetSockOpt() SO_OOBINLINE is enabled "data" includes both normal data and out-of-band (OOB) data in the instances noted above.

·	FD_WRITE:

	1) when WSPAsyncSelect() called, if a WSPSend() or WSPSendTo() is possible,

	2) after WSPConnect() or WSPAccept() called, when connection established,

	3) after WSPSend() or WSPSendTo() fail with WSAEWOULDBLOCK, when 	WSPSend() or WSPSendTo() are likely to succeed,

	4) after WSPBind() on a connectionless socket. FD_WRITE may or may not occur at this time (implementation dependent). In any case, a connectionless socket is always writeable immediately after WSPBind().

·	FD_OOB: Only valid when WSPSetSockOpt() SO_OOBINLINE is disabled (default).

	 1) when WSPAsyncSelect() called, if there is OOB data currently available to receive with the MSG_OOB flag,

	2) when OOB data arrives, if FD_OOB not already posted,

	3) after WSPRecv() or WSPRecvfrom() called with or without MSG_OOB flag, if OOB data is still available to receive.

·	FD_ACCEPT:

	1) when WSPAsyncSelect() called, if there is currently a connection request available to accept,

	2) when a connection request arrives, if FD_ACCEPT not already posted,

	3) after WSPAccept() called, if there is another connection request available to accept.

·	FD_CONNECT:

	1) when WSPAsyncSelect() called, if there is currently a connection established,

	2) after WSPConnect() called, when connection is established (even when WSPConnect() succeeds immediately, as is typical with a datagram socket) , and even when it fails immediately).

	 3) after WSAJoinLeaf() called, when join operation completes.

	 4) after connect(), WSAConnect(), or WSAJoinLeaf() was called with a non-blocking, connection-oriented socket. The initial operation returned with a specific error of WSAEWOULDBLOCK, but the network operation went ahead. Whether the operation eventually succeeds or not, when the outcome has been determined, FD_CONNECT happens. The client should check the error code to determine whether the outcome was success or failure.

·	FD_CLOSE: Only valid on connection-oriented sockets (e.g. SOCK_STREAM)

	1) when WSPAsyncSelect() called, if socket connection has been closed,

	2) after remote system initiated graceful close, when no data currently available to receive (note: if data has been received and is waiting to be read when the remote system initiates a graceful close, the FD_CLOSE is not delivered until all pending data has been read),

	3) after local system initiates graceful close with WSPShutdown() and remote system has responded with "End of Data" notification (e.g. TCP FIN), when no data currently available to receive,

	4) when remote system aborts connection (e.g. sent TCP RST), and lParam will contain WSAECONNRESET error value.

	Note: FD_CLOSE is not posted after WSPClosesocket() is called.

·	FD_QOS:

	1) when WSPAsyncSelect() called, if the QOS associated with the socket has been changed,

	2) after WSPIoctl() with SIO_GET_QOS called, when the QOS is changed.

·	FD_GROUP_QOS: �Reserved for future use with socket groups:

	1) when WSPAsyncSelect() called, if the group QOS associated with the socket has been changed,

	2) after WSPIoctl() with SIO_GET_GROUP_QOS called, when the group QOS is changed.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEINVAL	Indicates that one of the specified parameters was invalid such as the window handle not referring to an existing window, or the specified socket is in an invalid state.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAENOTSOCK	The descriptor is not a socket.

Additional error codes may be set when the service provider issues a message to a WinSock SPI client’s window. This error code is embedded in the lParam field of the message. Possible error codes for each network event are:

Event: FD_CONNECT

Error Code		Meaning

WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.

WSAECONNREFUSED	The attempt to connect was forcefully rejected.

WSAENETUNREACH	The network can't be reached from this host at this time.

WSAEFAULT	The namelen argument is incorrect.

WSAEINVAL	The socket is already bound to an address.

WSAEISCONN	The socket is already connected.

WSAEMFILE	No more file descriptors are available.

WSAENOBUFS	No buffer space is available. The socket cannot be connected.

WSAENOTCONN	The socket is not connected.

WSAETIMEDOUT	Attempt to connect timed out without establishing a connection

Event: FD_CLOSE

Error Code		Meaning

WSAENETDOWN	The network subsystem has failed.

WSAECONNRESET	The connection was reset by the remote side.

WSAECONNABORTED	The connection was aborted due to timeout or other failure.

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code		Meaning

WSAENETDOWN	The network subsystem has failed.

See Also	WSPSelect()

�� AUTONUMLGL � WSPBind()

Description	Associate a local address (i.e. name) with a socket.

 	#include <ws2spi.h>

	int WSPAPI �WSPBind(�	IN	SOCKET 			s,�	IN	const struct sockaddr FAR * 	name, �	IN	int 				namelen, �	OUT	LPINT 				lpErrno�);

s	A descriptor identifying an unbound socket.

name	The address to assign to the socket. The sockaddr structure is defined as follows:

	struct sockaddr {

		u_short	sa_family;

		char		sa_data[14];

	};

	Except for the sa_family field, sockaddr contents are expressed in network byte order.

	NOTE: In WinSock 2, the name parameter is not strictly interpreted as a pointer to a "sockaddr" struct. It is cast this way for Windows Sockets compatibility. The actual structure is interpreted differently in the context of different address families. The only requirements are that the first u_short is the address family and the total size of the memory buffer in bytes is namelen

namelen	The length of the name.

lpErrno	A pointer to the error code.

Remarks	This routine is used on an unconnected connectionless or connection-oriented socket, before subsequent WSPConnect()s or WSPListen()s. When a socket is created with WSPSocket(), it exists in a name space (address family), but it has no name or local address assigned. WSPBind() establishes the local association of the socket by assigning a local name to an unnamed socket.

As an example, in the Internet address family, a name consists of three parts: the address family, a host address, and a port number which identifies the WinSock SPI client. In WinSock 2, the name parameter is not strictly interpreted as a pointer to a "sockaddr" struct. Service providers are free to regard it as a pointer to a block of memory of size namelen. The first two bytes in this block (corresponding to "sa_family" in the "sockaddr" declaration) must contain the address family that was used to create the socket. Otherwise the error WSAEFAULT shall be indicated.

If a WinSock 2 SPI client does not care what local address is assigned to it, it will specify the manifest constant value ADDR_ANY for the sa_data field of the name parameter. This instructs the service provider to use any appropriate network address. For TCP/IP, if the port is specified as 0, the service provider will assign a unique port to the WinSock SPI client with a value between 1024 and 5000. The SPI client may use WSPGetSockName() after WSPBind() to learn the address and the port that has been assigned to it, but note that if the Internet address is equal to INADDR_ANY, WSPGetSockOpt() will not necessarily be able to supply the address until the socket is connected, since several addresses may be valid if the host is multi-homed.

Return Value	If no error occurs, WSPBind() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEADDRINUSE 	Some process on the machine has already bound to the same fully-qualified address (e.g., IP address and port in the af_inet case) and the socket has not been marked to allow address re-use with SO_REUSEADDR. (See the SO_REUSEADDR socket option under WSPSetSockOpt().)

WSAEADDRNOTAVAIL	The specified address is not a valid address for this machine.

WSAEFAULT	The name or the namelen argument is not a valid part of the user address space, the namelen argument is too small, the name argument contains incorrect address format for the associated address family, or the first two bytes of the memory block specified by name does not match the address family associated with the socket descriptor s.

WSAEINPROGRESS	The function is invoked when a callback is in progress.

WSAEINVAL	The socket is already bound to an address.

WSAENOBUFS	Not enough buffers available, too many connections.

WSAENOTSOCK	The descriptor is not a socket.

See Also	WSPConnect(), WSPListen(), WSPGetSockName(), WSPSetSockOpt(), WSPSocket(), .

�� AUTONUMLGL � WSPCancelBlockingCall()

Description	Cancel a blocking call which is currently in progress.

 	#include <ws2spi.h>

 	int WSPAPI �WSPCancelBlockingCall (�	OUT	LPINT 		lpErrno�);

lpErrno	A pointer to the error code.

Remarks	This function cancels any outstanding blocking operation for this thread. It is normally used in two situations:

(1) A WinSock SPI client is processing a message which has been received while a service provider is implementing pseudo blocking. In this case, WSAIsBlocking() will be true.

(2) A blocking call is in progress, and the WinSock service provider has called back to the WinSock SPI client's "blocking hook" function (via the callback function retrieved from WPUQueryBlockingCallback()), which in turn is invoking this function. Such a situation might arise, for instance, in implementing a Cancel option for an operation which require an extended time to complete.

In each case, the original blocking call will terminate as soon as possible with the error WSAEINTR. (In (1), the termination will not take place until Windows message scheduling has caused control to revert back to the pseudo blocking routine in WinSock. In (2), the blocking call will be terminated as soon as the blocking hook function completes.)

In the case of a blocking WSPConnect() operation, WinSock will terminate the blocking call as soon as possible, but it may not be possible for the socket resources to be released until the connection has completed (and then been reset) or timed out. This is likely to be noticeable only if the WinSock SPI client immediately tries to open a new socket (if no sockets are available), or to WSPConnect() to the same peer.

Canceling an WSPAccept() or a WSPSelect() call does not adversely impact the sockets passed to these calls. Only the particular call fails; any operation that was legal before the cancel is legal after the cancel, and the state of the socket is not affected in any way.

Canceling any operation other than WSPAccept() and WSPSelect() can leave the socket in an indeterminate state. If a WinSock SPI client cancels a blocking operation on a socket, the only operation that the WinSock SPI client can depend on being able to perform on the socket is a call to WSPCloseSocket(), although other operations may work on some WinSock service providers. If a WinSock SPI client desires maximum portability, it must be careful not to depend on performing operations after a cancel. A WinSock SPI client may reset the connection by setting the timeout on SO_LINGER to 0 and calling WSPCloseSocket().

If a cancel operation compromised the integrity of a SOCK_STREAM's data stream in any way, the WinSock provider will reset the connection and fail all future operations other than WSPCloseSocket() with WSAECONNABORTED.

Return Value	The value returned by WSPCancelBlockingCall() is 0 if the operation was successfully canceled. Otherwise the value SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Comments	Note it is acceptable for WSPCancelBlockingCall() to return successfully if the blocking network operation completes prior to being canceled. In this case, the blocking operation will return successfully as if WSPCancelBlockingCall() had never been called. The only way for the WinSock SPI client to know with certainty that an operation was actually canceled is to check for a return code of WSAEINTR from the blocking call.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEINVAL	Indicates that there is no outstanding blocking call.

�� AUTONUMLGL � WSPCleanup()

Description	Terminate use of the WinSock service provider.

 	#include <ws2spi.h>

 	int WSPAPI �WSPCleanup(�	OUT	LPINT 		lpErrno�);

lpErrno	A pointer to the error code.

Remarks	The WinSock 2 SPI client is required to perform a successful WSPStartup() call before it can use WinSock service providers. When it has completed the use of WinSock service providers, the SPI client will call WSPCleanup() to deregister itself from a WinSock service provider and allow the service provider to free any resources allocated on behalf of the WinSock 2 client. It is permissible for SPI clients to make more than one WSPStartup() call. For each WSPStartup() call a corresponding WSPCleanup() call will also be issued. Only the final WSPCleanup() for the service provider does the actual cleanup; the preceding calls simply decrement an internal reference count in the WinSock service provider.

	When the internal reference count reaches zero and actual cleanup operations commence, any pending blocking or asynchronous calls issued by any thread in this process are canceled without posting any notification messages or signaling any event objects. Any pending overlapped send and receive operations (WSPSend()/WSPSendTo()/WSPRecv()/WSPRecvFrom() with an overlapped socket) issued by any thread in this process are also canceled without setting the event object or invoking the completion routine, if specified. In this case, the pending overlapped operations fail with the error status WSA_OPERATION_ABORTED. Any sockets open when WSPCleanup() is called are reset and automatically deallocated as if WSPClosesocket() was called; sockets which have been closed with WSPCloseSocket() but which still have pending data to be sent are not affected--the pending data is still sent.

	This function should not return until the service provider DLL is prepared to be unloaded from memory. In particular, any data remaining to be transmitted must either already have been sent or be queued for transmission by portions of the transport stack that will not be unloaded from memory along with the service provider’s DLL.

Return Value	The return value is 0 if the operation has been successfully initiated. Otherwise the value SOCKET_ERROR is returned, and a specific error number is available in lpErrno.

Comments	A WinSock service provider must be prepared to deal with a process which terminates without invoking WSPCleanup() - for example, as a result of an error. A WinSock service provider must ensure that WSPCleanup() leaves things in a state in which the WinSock 2 DLL can immediately invoke WSPStartup() to re-establish WinSock usage.

Error Codes	WSANOTINITIALISED	A successful WSPStartup() must occur before using this function.

WSAENETDOWN	The network subsystem has failed.

WSAEINVAL	The provider ID given to the name space provider is not managed by the name space provider.

See Also	WSPStartup(), WSPClosesocket(), WSPShutdown()

�� AUTONUMLGL � WSPCloseSocket()

Description	Close a socket.

 	#include <ws2spi.h>

	int WSPAPI �WSPCloseSocket(�	IN	SOCKET 		s, �	OUT	LPINT 			lpErrno�);

s	A descriptor identifying a socket.

lpErrno	A pointer to the error code.

Remarks	This function closes a socket. More precisely, it releases the socket descriptor s, so that further references to s should fail with the error WSAENOTSOCK. If this is the last reference to an underlying socket, the associated naming information and queued data are discarded. Any blocking or asynchronous calls pending on the socket (issued by any thread in this process) are canceled without posting any notification messages. Any pending overlapped operations issued by any thread in this process are also canceled. Whatever completion action was specified for these overlapped operations is performed (e.g., event, completion routine, or completion port). In this case, the pending overlapped operations fail with the error status WSA_OPERATION_ABORTED. FD_CLOSE will not be posted after WSPCloseSocket() is called.

WSPClosesocket() behavior is summarized as follows:

if SO_DONTLINGER enabled (the default setting) WSPCloseSocket() returns immediately - connection is gracefully closed "in the background"

if SO_LINGER enabled with a zero timeout: WSPCloseSocket() returns immediately - connection is reset/aborted

if SO_LINGER enabled with non-zero timeout:� - with blocking socket WSPCloseSocket() blocks until all data sent or timeout expires� - with non-blocking socket returns immediately indicating failure

The semantics of WSPCloseSocket() are affected by the socket options SO_LINGER and SO_DONTLINGER as follows:

Option		Interval		Type of close	Wait for close?

SO_DONTLINGER	Don't care	Graceful		No

SO_LINGER		Zero		Hard		No

SO_LINGER		Non-zero	Graceful		Yes

If SO_LINGER is set (i.e. the l_onoff field of the linger structure is non-zero) and the timeout interval, l_linger, is zero, WSPClosesocket() is not blocked even if queued data has not yet been sent or acknowledged. This is called a "hard" or "abortive" close, because the socket's virtual circuit is reset immediately, and any unsent data is lost. Any WSPRecv() call on the remote side of the circuit will fail with WSAECONNRESET.

If SO_LINGER is set with a non-zero timeout interval on a blocking socket, the WSPClosesocket() call blocks on a blocking socket until the remaining data has been sent or until the timeout expires. This is called a graceful disconnect. If the timeout expires before all data has been sent, the service provider should abort the connection before WSPClosesocket() returns.

Enabling SO_LINGER with a non-zero timeout interval on a non-blocking socket is not recommended. In this case, the call to WSPClosesocket() will fail with an error of WSAEWOULDBLOCK if the close operation cannot be completed immediately. If WSPClosesocket() fails with WSAEWOULDBLOCK the socket handle is still valid, and a disconnect is not initiated. The WinSock SPI client must call WSPClosesocket() again to close the socket, although WSPClosesocket() may continue to fail unless the WinSock SPI client disables SO_DONTLINGER, enables SO_LINGER with a zero timeout, or calls WSPShutdown() to initiate closure.

If SO_DONTLINGER is set on a stream socket (i.e. the l_onoff field of the linger structure is zero), the WSPClosesocket() call will return immediately and does not get WSAEWOULDBLOCK, whether the socket is blocking or non-blocking. However, any data queued for transmission will be sent if possible before the underlying socket is closed. This is called a graceful disconnect and is the default behavior. Note that in this case the WinSock provider is allowed to retain any resources associated with the socket until such time as the graceful disconnect has completed or the provider aborts the connection due to an inability to complete the operation in a provider-determined amount of time. This may affect Winsock clients which expect to use all available sockets. This is the default behavior (SO_DONTLINGER is set by default)

Return Value	If no error occurs, WSPCloseSocket() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAENOTSOCK	The descriptor is not a socket.

WSAEWOULDBLOCK	The socket is marked as nonblocking and SO_LINGER is set to a nonzero timeout value.

See Also	WSPAccept, WSPSocket(), WSPIoctl(), WSPSetSockOpt().

�� AUTONUMLGL � WSPConnect()

Description	Establish a connection to a peer, exchange connect data, and specify needed quality of service based on the supplied flow spec.

 	#include <ws2spi.h>

 	int WSPAPI �WSPConnect(�	IN	SOCKET 			s, �	IN	const struct sockaddr FAR * 	name, �	IN	int 				namelen, �	IN	LPWSABUF 			lpCallerData, �	OUT	LPWSABUF 			lpCalleeData, �	IN	LPQOS 			lpSQOS, �	IN	LPQOS 			lpGQOS, �	OUT	LPINT 				lpErrno�);

s	A descriptor identifying an unconnected socket.

name	The name of the peer to which the socket is to be connected.

namelen	The length of the name.

lpCallerData	A pointer to the user data that is to be transferred to the peer during connection establishment.

lpCalleeData	A pointer to a buffer into which may be copied any user data received from the peer during connection establishment.

lpSQOS	A pointer to the flow specs for socket s, one for each direction.

lpGQOS	Reserved for future use with socket groups: A pointer to the flow specs for the socket group (if applicable).

lpErrno	A pointer to the error code.

Remarks	This function is used to create a connection to the specified destination, and to perform a number of other ancillary operations that occur at connect time as well. If the socket, s, is unbound, unique values are assigned to the local association by the system, and the socket is marked as bound.

	For connection-oriented sockets (e.g., type SOCK_STREAM), an active connection is initiated to the specified host using name (an address in the name space of the socket; for a detailed description, please see WSPBind()). When this call completes successfully, the socket is ready to send/receive data. If the address field of the name structure is all zeroes, WSPConnect() will return the error WSAEADDRNOTAVAIL. Any attempt to re-connect an active connection will fail with the error code WSAEISCONN.

For connection-oriented, non-blocking sockets it is often not possible to complete the connection immediately. In such a case, this function returns with the error WSAEWOULDBLOCK but the operation proceeds. When the success or failure outcome becomes known, it may be reported in one of several ways depending on how the client registers for notification. If the client uses WSPSelect() success is reported in the writefds set and failure is reported in the exceptfds set. If the client uses WSPAsyncSelect() or WSPEventSelect(), the notification is announced with FD_CONNECT and the error code associated with the FD_CONNECT indicates either success or a specific reason for failure.

For a connectionless socket (e.g., type SOCK_DGRAM), the operation performed by WSPConnect() is to establish a default destination address so that the socket may be used with subsequent connection-oriented send and receive operations (WSPSend(),WSPRecv()). Any datagrams received from an address other than the destination address specified will be discarded. If the address field of the name structure is all zeroes, the socket will be "dis-connected" - the default remote address will be indeterminate, so WSPSend() and WSPRecv() calls will return the error code WSAENOTCONN, although WSPSendTo() and WSPRecvFrom() may still be used. The default destination may be changed by simply calling WSPConnect() again, even if the socket is already "connected". Any datagrams queued for receipt are discarded if name is different from the previous WSPConnect().

For connectionless sockets, name may indicate any valid address, including a broadcast address. However, to connect to a broadcast address, a socket must have WSPSetSockOpt() SO_BROADCAST enabled, otherwise WSPConnect() will fail with the error code WSAEACCES.

On connectionless sockets, exchange of user to user data is not possible and the corresponding parameters will be silently ignored.

The WinSock SPI client is responsible for allocating any memory space pointed to directly or indirectly by any of the parameters it specifies.

The lpCallerData is a value parameter which contains any user data that is to be sent along with the connection request. If lpCallerData is NULL, no user data will be passed to the peer. The lpCalleeData is a result parameter which will reference any user data passed back from the peer as part of the connection establishment. lpCalleeData->len initially contains the length of the buffer allocated by the WinSock SPI client and pointed to by lpCalleeData->buf. lpCalleeData->len will be set to 0 if no user data has been passed back. The lpCalleeData information will be valid when the connection operation is complete. For blocking sockets, this will be when the WSPConnect() function returns. For non-blocking sockets, this will be after the FD_CONNECT notification has occurred. If lpCalleeData is NULL, no user data will be passed back. The exact format of the user data is specific to the address family to which the socket belongs and/or the applications involved.

At connect time, a WinSock SPI client may use the lpSQOS and/or lpGQOS parameters to override any previous QOS specification made for the socket via WSPIoctl() with either the SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.

lpSQOS specifies the flow specs for socket s, one for each direction, followed by any additional provider-specific parameters. If either the associated transport provider in general or the specific type of socket in particular cannot honor the QOS request, an error will be returned as indicated below. The sending or receiving flow spec values will be ignored, respectively, for any unidirectional sockets. If no provider-specific parameters are supplied, the buf and len fields of lpSQOS->ProviderSpecific should be set to NULL and 0, respectively. A NULL value for lpSQOS indicates no application supplied QOS.

Reserved for future use with socket groups: lpGQOS specifies the flow specs for the socket group (if applicable), one for each direction, followed by any additional provider-specific parameters. If no provider-specific parameters are supplied, the buf and len fields of lpGQOS->ProviderSpecific should be set to NULL and 0, respectively. A NULL value for lpGQOS indicates no application-supplied group QOS. This parameter will be ignored if s is not the creator of the socket group.

Comments	When connected sockets break (i.e. become closed for whatever reason), they should be discarded and recreated. It is safest to assume that when things go awry for any reason on a connected socket, the WinSock SPI client must discard and recreate the needed sockets in order to return to a stable point.

Return Value	If no error occurs, WSPConnect() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

On a blocking socket, the return value indicates success or failure of the connection attempt. If the return error code indicates the connection attempt failed (i.e. WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the WinSock SPI client may call WSPConnect() again for the same socket.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEADDRINUSE	The socket’s local address is already in use and the socket was not marked to allow address reuse with SO_REUSEADDR. This error usually occurs at the time of bind(), but could be delayed until this function if the bind() was to a partially wild-card address (involving ADDR_ANY) and if a specific address needs to be “committed” at the time of this function.

WSAEINTR	The (blocking) call was canceled via WSPCancelBlockingCall().

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAEALREADY	A non-blocking WSPConnect() call is in progress on the specified socket. �Important Note: In order to preserve backwards compatibility, the WINSOCK.DLL and WSOCK32.DLL compatibility shims map this error to WSAEINVAL.

WSAEADDRNOTAVAIL	The remote address is not a valid address (e.g., ADDR_ANY).

WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.

WSAECONNREFUSED	The attempt to connect was rejected.

WSAEFAULT	The name or the namelen argument is not a valid part of the user address space, the namelen argument is too small, the buffer length for lpCalleeData, lpSQOS, and lpGQOS are too small, or the buffer length for lpCallerData is too large.

WSAEINVAL	The parameter s is a listening socket, or the destination address specified is not consistent with that of the constrained group the socket belongs to.

WSAEISCONN	The socket is already connected (connection-oriented sockets only).

WSAENETUNREACH	The network can't be reached from this host at this time.

WSAENOBUFS	No buffer space is available. The socket cannot be connected.

WSAENOTSOCK	The descriptor is not a socket.

WSAEOPNOTSUPP	The flow specs specified in lpSQOS and lpGQOS cannot be satisfied.

WSAEPROTONOSUPPORT	The lpCallerData augment is not supported by the service provider.

WSAETIMEDOUT	Attempt to connect timed out without establishing a connection.

WSAEWOULDBLOCK 	The socket is marked as non-blocking and the connection cannot be completed immediately. It is possible to WSPSelect() the socket while it is connecting by WSPSelect()ing it for writing.

WSAEACCES	Attempt to connect datagram socket to broadcast address failed because WSPSetSockOpt() SO_BROADCAST is not enabled.

See Also	WSPAccept(), WSPBind(), WSPGetSockName(), WSPGetSockOpt(), WSPSocket(), WSPSelect(), WSPEventSelect(), WSPEnumNetworkEvents().�� AUTONUMLGL � WSPDuplicateSocket()

Description	Return a WSAPROTOCOL_INFOW structure that can be used to create a new socket descriptor for a shared socket.

	#include <ws2spi.h>

 	int WSPAPI �WSPDuplicateSocket (�	IN	SOCKET 			s, �	IN	DWORD 			dwProcessId, �	OUT	LPWSAPROTOCOL_INFOW 	lpProtocolInfo, �	OUT	LPINT 				lpErrno �);

s	Specifies the local socket descriptor.

dwProcessId	Specifies the ID of the target process for which the shared socket will be used.

lpProtocolInfo	A pointer to a buffer allocated by the client that is large enough to contain a WSAPROTOCOL_INFOW struct. The service provider copies the protocol info struct contents to this buffer.

lpErrno	A pointer to the error code.

Remarks	A source process calls WSPDuplicateSocket() to obtain a special WSAPROTOCOL_INFOW structure. It uses some interprocess communications (IPC) mechanism to pass the contents of this structure to a target process, which in turn uses it in a call to WSPSocket() to obtain a descriptor for the duplicated socket. Note that the special WSAPROTOCOL_INFOW structure may only be used once by the target process.

	It is the service provider’s responsibility to perform whatever operations are needed in the source process context and to create a WSAPROTOCOL_INFOW structure that will be recognized when it subsequently appears as a parameter to WSPSocket() in the target processes’ context. The provider must then return a socket descriptor that references a common underlying socket. The dwProviderReserved field of the WSAPROTOCOL_INFOW struct is available for the service provider’s use, and may be used to store any useful context information, including a duplicated handle.

As is described in section 3.4.1. Descriptor Allocation, when new socket descriptors are allocated IFS providers must call WPUModifyIFSHandle() and non-IFS providers must call WPUCreateSocketHandle().

One possible scenario for establishing and using a shared socket in a handoff mode is illustrated below:

Source Process�IPC�Destination Process��1) WSPSocket(), WSPConnect()����2) Request target process ID�(�����3) Receive process ID request and respond��4) Receive process ID�(���5) Call WSPDuplicateSocket() to get a special WSAPROTOCOL_INFOW structure����6) Send WSAPROTOCOL_INFOW structure to target�����(�7) Receive WSAPROTOCOL_INFOW structure����8) Call WSPSocket() to create shared socket descriptor.��10) WSPClosesocket()��9)Use shared socket for data exchange��

Return Value	If no error occurs, WSPDuplicateSocket() returns zero. Otherwise, the value of SOCKET_ERROR is returned, and a specific error number is available in lpErrno.

Comments	The descriptors that reference a shared socket may be used independently as far as I/O is concerned. However, the WinSock interface does not implement any type of access control, so it is up to the processes involved to coordinate their operations on a shared socket. A typical use for shared sockets is to have one process that is responsible for creating sockets and establishing connections, hand off sockets to other processes which are responsible for information exchange.

Since what is duplicated are the socket descriptors and not the underlying socket, all of the state associated with a socket is held in common across all the descriptors. For example a WSPSetSockOpt() operation performed using one descriptor is subsequently visible using a WSPGetSockOpt() from any or all descriptors. A process may call WSPClosesocket() on a duplicated socket and the descriptor will become deallocated. The underlying socket, however, will remain open until WSPClosesocket() is called by the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of WSPAsyncSelect() and WSPEventSelect(). Issuing either of these calls using any of the shared descriptors cancels any previous event registration for the socket, regardless of which descriptor was used to make that registration. Thus, for example, a shared socket cannot deliver FD_READ events to process A and FD_WRITE events to process B. For situations when such tight coordination is required, it is suggested that developers use threads instead of separate processes.

Layered Service Provider considerations	�A layered service provider supplies an implementation of this function, but it is also a client of this function if and when it calls WSPDuplicateSocket() of the next layer in the protocol chain. Some special considerations apply to this function’s lpProtocolInfo parameter as it is propagated down through the layers of the protocol chain.

If the next layer in the protocol chain is another layer then when the next layer’s WSPDuplicateSocket() is called, this layer must pass to the next layer a lpProtocolInfo that references the same unmodified WSAPROTOCOL_INFOW structure with the same unmodified chain information. However, if the next layer is the base protocol (i.e., the last element in the chain), this layer performs a substitution when calling the base provider’s WSPDuplicateSocket(). In this case, the base provider’s WSAPROTOCOL_INFOW structure should be referenced by the lpProtocolInfo parameter.

One vital benefit of this policy is that base service providers do not have to be aware of protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFOW structure through a layered sequence of other functions such as WSPAddressToString(), WSPStartup(), WSPSocket(), or WSPStringToAddress().

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEINVAL	Indicates that one of the specified parameters was invalid.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAEMFILE	No more socket descriptors are available.

WSAENOBUFS	No buffer space is available. The socket cannot be created.

WSAENOTSOCK	The descriptor is not a socket.

See Also	WPUCreateSocketHandle(), WPUModifyIFSHandle()

�� AUTONUMLGL � WSPEnumNetworkEvents()

Description	Report occurrences of network events for the indicated socket.

	#include <ws2spi.h>

	int WSPAPI �WSPEnumNetworkEvents(�	IN	SOCKET 			s, �	IN	WSAEVENT 			hEventObject, �	OUT	LPWSANETWORKEVENTS 	lpNetworkEvents, �	OUT	LPINT 				lpErrno�);

s	A descriptor identifying the socket.

hEventObject	An optional handle identifying an associated event object to be reset.

lpNetworkEvents	A pointer to a WSANETWORKEVENTS struct which is filled with a record of occurred network events and any associated error codes. The WSANETWORKEVENTS structure is defined below.

lpErrno	A pointer to the error code.

Remarks	This function is used to report which network events have occurred for the indicated socket since the last invocation of this function. It is intended for use in conjunction with WSPEventSelect(), which associates an event object with one or more network events. Recording of network events commences when WSPEventSelect() is called with a non-zero lNetworkEvents parameter and remains in effect until another call is made to WSPEventSelect() with the lNetworkEvents parameter set to zero, or until a call is made to WSPAsyncSelect().

	WSPEnumNetworkEvents() only reports network activity and errors nominated through WSPEventSelect(). See the descriptions of WSPSelect() and WSPAsyncSelect() to find out how those functions report network activity and errors.

	The socket’s internal record of network events is copied to the structure referenced by lpNetworkEvents, whereafter the internal network events record is cleared. If hEventObject is non-null, the indicated event object is also reset. The WinSock provider guarantees that the operations of copying the network event record, clearing it and resetting any associated event object are atomic, such that the next occurrence of a nominated network event will cause the event object to become set. In the case of this function returning SOCKET_ERROR, the associated event object is not reset and the record of network events is not cleared.

The WSANETWORKEVENTS structure is defined as follows:

typedef struct _WSANETWORKEVENTS {

 long lNetworkEvents;

 int iErrorCode[FD_MAX_EVENTS];

} WSANETWORKEVENTS, FAR * LPWSANETWORKEVENTS;

The lNetworkEvent field of the structure indicates which of the FD_XXX network events have occurred. The iErrorCode array is used to contain any associated error codes, with array index corresponding to the position of event bits in lNetworkEvents. The identifiers FD_READ_BIT, FD_WRITE_BIT, etc. may be used to index the iErrorCode array.

The following error codes may be returned along with the respective network event:

Event: FD_CONNECT

Error Code		Meaning

WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.

WSAECONNREFUSED	The attempt to connect was forcefully rejected.

WSAENETUNREACH	The network can't be reached from this host at this time.

WSAENOBUFS	No buffer space is available. The socket cannot be connected.

WSAETIMEDOUT	Attempt to connect timed out without establishing a connection

Event: FD_CLOSE

Error Code		Meaning

WSAENETDOWN	The network subsystem has failed.

WSAECONNRESET	The connection was reset by the remote side.

WSAECONNABORTED	The connection was aborted due to timeout or other failure.

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code		Meaning

WSAENETDOWN	The network subsystem has failed.

Return Value	The return value is 0 if the operation was successful. Otherwise the value SOCKET_ERROR is returned, and a specific error number is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEINVAL	Indicates that one of the specified parameters was invalid.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAENOTSOCK	The descriptor is not a socket.

See Also	WSPEventSelect()

�� AUTONUMLGL � WSPEventSelect()

Description	Specify an event object to be associated with the supplied set of network events.

 	#include <ws2spi.h>

	int WSPAPI �WSPEventSelect(�	IN	SOCKET 			s, �	IN	WSAEVENT 			hEventObject, �	IN	long 				lNetworkEvents, �	OUT	LPINT 				lpErrno �);

s	A descriptor identifying the socket.

hEventObject	A handle identifying the event object to be associated with the supplied set of network events.

lNetworkEvents	A bitmask which specifies the combination of network events in which the WinSock SPI client has interest.

lpErrno	A pointer to the error code.

Remarks	This function is used to specify an event object, hEventObject, to be associated with the selected network events, lNetworkEvents. The socket for which an event object is specified is identified by s. The event object is set when any of the nominated network events occur.

WSPEventSelect() operates very similarly to WSPAsyncSelect(), the difference being in the actions taken when a nominated network event occurs. Whereas WSPAsyncSelect() causes a WinSock SPI client-specified Windows message to be posted, WSPEventSelect() sets the associated event object and records the occurrence of this event in an internal network event record. A WinSock SPI client can use WSPEnumNetworkEvents() to retrieve the contents of the internal network event record and thus determine which of the nominated network events have occurred.

WSPEventSelect() is the only function that causes network activity and errors to be recorded and retrievable through WSPEnumNetworkEvents(). See the descriptions of WSPSelect() and WSPAsyncSelect() to find out how those functions report network activity and errors.

This function automatically sets socket s to non-blocking mode, regardless of the value of lNetworkEvents.

The lNetworkEvents parameter is constructed by OR'ing any of the values specified in the following list.

Value	Meaning

FD_READ	Issue notification of readiness for reading

FD_WRITE	Issue notification of readiness for writing

FD_OOB	Issue notification of the arrival of out-of-band data

FD_ACCEPT	Issue notification of incoming connections

FD_CONNECT	Issue notification of completed connection

FD_CLOSE	Issue notification of socket closure

FD_QOS	Issue notification of socket Quality of Service (QOS) changes

FD_GROUP_QOS	Reserved for future use with socket groups: Issue notification of socket group Quality of Service (QOS) changes

Issuing a WSPEventSelect() for a socket cancels any previous WSPAsyncSelect() or WSPEventSelect() for the same socket and clears the internal network event record. For example, to associate an event object with both reading and writing network events, the WinSock SPI client must call WSPEventSelect() with both FD_READ and FD_WRITE, as follows:

rc = WSPEventSelect(s, hEventObject, FD_READ|FD_WRITE);

It is not possible to specify different event objects for different network events. The following code will not work; the second call will cancel the effects of the first, and only FD_WRITE network event will be associated with hEventObject2:

rc = WSPEventSelect(s, hEventObject1, FD_READ);

rc = WSPEventSelect(s, hEventObject2, FD_WRITE); //bad

To cancel the association and selection of network events on a socket, lNetworkEvents should be set to zero, in which case the hEventObject parameter will be ignored.

rc = WSPEventSelect(s, hEventObject, 0);

Closing a socket with WSPCloseSocket() also cancels the association and selection of network events specified in WSPEventSelect() for the socket. The WinSock SPI client, however, still must call WSACloseEvent() to explicitly close the event object and free any resources.

Since a WSPAccept()'ed socket has the same properties as the listening socket used to accept it, any WSPEventSelect() association and network events selection set for the listening socket apply to the accepted socket. For example, if a listening socket has WSPEventSelect() association of hEventOject with FD_ACCEPT, FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also have FD_ACCEPT, FD_READ, and FD_WRITE network events associated with the same hEventObject. If a different hEventObject or network events are desired, the WinSock SPI client should call WSPEventSelect(), passing the accepted socket and the desired new information.

Return Value	The return value is 0 if the WinSock SPI client's specification of the network events and the associated event object was successful. Otherwise the value SOCKET_ERROR is returned, and a specific error number is available in lpErrno.

Comments	Having successfully recorded the occurrence of the network event and signaled the associated event object, no further actions are taken for that network event until the WinSock SPI client makes the function call which implicitly reenables the setting of that network event and signaling of the associated event object.

Network Event	Re-enabling function

FD_READ	WSPRecv() or WSPRecvFrom()

FD_WRITE	WSPSend() or WSPSendTo()

FD_OOB	WSPRecv() or WSPRecvFrom()

FD_ACCEPT	WSPAccept() unless the error code returned is WSATRY_AGAIN indicating that the condition function returned CF_DEFER

FD_CONNECT	NONE

FD_CLOSE	NONE

FD_QOS	WSPIoctl() with SIO_QOS

FD_GROUP_QOS	Reserved for future use with socket groups: WSPIoctl() with SIO_GROUP_QOS

Any call to the reenabling routine, even one which fails, results in reenabling of recording and signaling for the relevant network event and event object, respectively.

For FD_READ, FD_OOB, and FD_ACCEPT network events, network event recording and event object signaling are "level-triggered." This means that if the reenabling routine is called and the relevant network condition is still valid after the call, the network event is recorded and the associated event object is signaled . This allows a WinSock SPI client to be event-driven and not be concerned with the amount of data that arrives at any one time. Consider the following sequence:

(i)	service provider receives 100 bytes of data on socket s, records the FD_READ network event and signals the associated event object.

(ii)	The WinSock SPI client issues WSPRecv(s, buffptr, 50, 0) to read 50 bytes.

(iii)	The service provider records the FD_READ network event and signals the associated event object again since there is still data to be read.

With these semantics, a WinSock SPI client need not read all available data in response to an FD_READ network event --a single WSPRecv() in response to each FD_READ network event is appropriate.

The FD_QOS and FD_GROUP_QOS events are considered edge triggered. A message will be posted exactly once when a QOS change occurs. Further indications will not be issued until either the service provider detects a further change in QOS or the WinSock SPI client renegotiates the QOS for the socket.

If a network event has already happened when the WinSock SPI client calls WSPEventSelect() or when the reenabling function is called, then a network event is recorded and the associated event object is signaled as appropriate. For example, consider the following sequence:

(i) 	a WinSock SPI client calls WSPListen()

(ii) 	a connect request is received but not yet accepted

(iii) 	the WinSock SPI client calls WSPEventSelect() specifying that it is interested in the FD_ACCEPT network event for the socket. The service provider records the FD_ACCEPT network event and signals the associated event object immediately.

The FD_WRITE network event is handled slightly differently. An FD_WRITE network event is recorded when a socket is first connected with WSPConnect() or accepted with WSPAccept(), and then after a WSPSend() or WSPSendTo() fails with WSAEWOULDBLOCK and buffer space becomes available. Therefore, a WinSock SPI client can assume that sends are possible starting from the first FD_WRITE network event setting and lasting until a send returns WSAEWOULDBLOCK. After such a failure the WinSock SPI client will find out that sends are again possible when an FD_WRITE network event is recorded and the associated event object is signaled .

The FD_OOB network event is used only when a socket is configured to receive out-of-band data separately. If the socket is configured to receive out-of-band data in-line, the out-of-band (expedited) data is treated as normal data and the WinSock SPI client should register an interest in, and will get, FD_READ network event, not FD_OOB network event. A WinSock SPI client may set or inspect the way in which out-of-band data is to be handled by using WSPSetSockOpt() or WSPGetSockOpt() for the SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was graceful or abortive. If the error code is 0, then the close was graceful; if the error code is WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the virtual circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE is recorded when the connection goes into the FIN WAIT or CLOSE WAIT states. This results from the remote end performing a WSPShutdown() on the send side or a WSPCloseSocket().

Service providers shall record ONLY an FD_CLOSE network event to indicate closure of a virtual circuit, they shall NOT record an FD_READ network event to indicate this condition.

The FD_QOS or FD_GROUP_QOS network event is recorded when any field in the flow spec associated with socket s or the socket group that s belongs to has changed, respectively. This change must be made available to WinSock SPI clients via the WSPIoctl() function with SIO_GET_QOS and/or SIO_GET_GROUP_QOS to retrieve the current QOS for socket s or for the socket group s belongs to, respectively.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEINVAL	Indicates that one of the specified parameters was invalid, or the specified socket is in an invalid state.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAENOTSOCK	The descriptor is not a socket.

See Also	WSPEnumNetworkEvents()

�� AUTONUMLGL � WSPGetOverlappedResult()

Description	Returns the results of an overlapped operation on the specified socket.

	#include <ws2spi.h>

	BOOL WSPAPI�WSPGetOverlappedResult(�	IN	SOCKET 			s, �	IN	LPWSAOVERLAPPED		lpOverlapped, �	OUT	LPDWORD 			lpcbTransfer, �	IN	BOOL 				fWait, �	OUT	LPDWORD			lpdwFlags, �	OUT	LPINT 				lpErrno �);

s	Identifies the socket. This is the same socket that was specified when the overlapped operation was started by a call to WSPRecv(), WSPRecvFrom(), WSPSend(), WSPSendTo(), or WSPIoctl().

lpOverlapped	Points to a WSAOVERLAPPED structure that was specified when the overlapped operation was started.

lpcbTransfer	Points to a 32-bit variable that receives the number of bytes that were actually transferred by a send or receive operation, or by WSPIoctl().

fWait	Specifies whether the function should wait for the pending overlapped operation to complete. If TRUE, the function does not return until the operation has been completed. If FALSE and the operation is still pending, the function returns FALSE and lpErrno is WSA_IO_INCOMPLETE. The fWait parameter may be set to TRUE only if the overlapped operation selected event-based completion notification.

lpdwFlags	Points to a 32-bit variable that will receive one or more flags that supplement the completion status. If the overlapped operation was initiated via WSPRecv() or WSPRecvFrom(), this parameter will contain the results value for lpFlags parameter.

lpErrno	A pointer to the error code.

Remarks	The results reported by the WSPGetOverlappedResult() function are those of the specified socket's last overlapped operation to which the specified WSAOVERLAPPED structure was provided, and for which the operation's results were pending. A pending operation is indicated when the function that started the operation returns SOCKET_ERROR, and the lpErrno is WSA_IO_PENDING. When an I/O operation is pending, the function that started the operation resets the hEvent member of the WSAOVERLAPPED structure to the nonsignaled state. Then when the pending operation has been completed, the system sets the event object to the signaled state.

	If the fWait parameter is TRUE, WSPGetOverlappedResult() determines whether the pending operation has been completed by blocking and waiting for the event object to be in the signaled state. A client may set fWait parameter to TRUE only if it selected event-based completion notification when the IO operation was requested. If another form of notification was selected, the usage of the hEvent member of the WSAOVERLAPPED structure is different, and setting fWait to TRUE causes unpredictable results.

Interaction with WPUCompleteOverlappedRequest()	

Note that the behavior of WPUCompleteOverlappedRequest() puts some constraints on how a service provider implements WSPGetOverlappedResult() since only the Offset and OffsetHigh members of the WSAOVERLAPPED structure are exclusively controlled by the service provider, yet three values (byte count, flags, and error) must be retrieved from the structure by WSPGetOverlappedResult(). A service provider may accomplish this any way it chooses as long as it interacts with the behavior of WPUCompleteOverlappedRequest() properly. However, a typical implementation is as follows:

	At the start of overlapped processing, the service provider sets Internal to WSS_OPERATION_IN_PROGRESS.

	When the IO operation has been completed, the provider sets OffsetHigh to the WinSock 2 error code resulting from the operation, sets Offset to the flags resulting from the IO operation, and calls WPUCompleteOverlappedRequest(), passing the transfer byte count as one of the parameters. WPUCompleteOverlappedRequest() eventually sets InternalHigh to the transfer byte count, then sets Internal to a value other than WSS_OPERATION_IN_PROGRESS.

	When WSPGetOverlappedResult() is called, the service provider checks Internal. If it is WSS_OPERATION_IN_PROGRESS, the provider waits on the event handle in the hEvent member or returns an error, based on the setting of the fWait flag of WSPGetOverlappedResult(). If not in progress, or after completion of waiting, the provider returns the values from InternalHigh, OffsetHigh, and Offset as the transfer count, operation result error code, and flags respectively.

Return Value	If WSPGetOverlappedResult() succeeds, the return value is TRUE. This means that the overlapped operation has completed successfully and that the value pointed to by lpcbTransfer has been updated. If WSPGetOverlappedResult() returns FALSE, this means that either the overlapped operation has not completed or the overlapped operation completed but with errors, or that completion status could not be determined due to errors in one or more parameters to WSPGetOverlappedResult(). On failure, the value pointed to by lpcbTransfer will not be updated. lpErrno indicates the cause of the failure (either of WSPGetOverlappedResult() or of the associated overlapped operation).

Error Codes	WSAENETDOWN	The network subsystem has failed.

	WSAENOTSOCK	The descriptor is not a socket.

WSA_INVALID_HANDLE	The hEvent field of the WSAOVERLAPPED structure does not contain a valid event object handle.

WSA_INVALID_PARAMETER	One of the parameters is unacceptable.

WSA_IO_INCOMPLETE	fWait is FALSE and the I/O operation has not yet completed.

See Also	WSPRecv(), WSPRecvFrom(), WSPSend(), WSPSendTo(), WSPConnect(), WSPAccept(), WSPIoctl(), WPUCompleteOverlappedRequest().

�� AUTONUMLGL � WSPGetPeerName()

Description	Get the address of the peer to which a socket is connected.

 	#include <ws2spi.h>

	int WSPAPI �WSPGetPeerName(�	IN		SOCKET 			s, �	OUT		struct sockaddr FAR *		 name, �	IN OUT		LPINT 				namelen, �	OUT		LPINT				 lpErrno�);

s	A descriptor identifying a connected socket.

name	A pointer to the structure which is to receive the name of the peer.

namelen	A pointer to an integer which, on input, indicates the size of the structure pointed to by name, and on output indicates the size of the returned name.

lpErrno	A pointer to the error code.

Remarks	WSPGetPeerName() supplies the name of the peer connected to the socket s and stores it in the struct sockaddr referenced by name. It may be used only on a connected socket. For datagram sockets, only the name of a peer specified in a previous WSPConnect() call will be returned - any name specified by a previous WSPSendTo() call will not be returned by WSPGetPeerName().

On return, the namelen argument contains the actual size of the name returned in bytes.

Return Value	If no error occurs, WSPGetPeerName() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEFAULT	The name or the namelen argument is not a valid part of the user address space, or the namelen argument is too small.

WSAEINPROGRESS	The function is invoked when a callback is in progress.

WSAENOTCONN	The socket is not connected.

WSAENOTSOCK	The descriptor is not a socket.

See Also	WSPBind(), WSPSocket(), WSPGetSockName().

�� AUTONUMLGL � WSPGetQOSByName()

Description	Initializes a QOS structure based on a named template, or retrieves an enumeration of the available template names.

	#include <ws2spi.h>

	BOOL WSPAPI �WSPGetQOSByName(�	IN		SOCKET 		s, �	IN OUT		LPWSABUF 		lpQOSName, �	OUT		LPQOS 		lpQOS, �	OUT		LPINT 			lpErrno�);

s	A descriptor identifying a socket.

lpQOSName	Specifies the QOS template name, or supplies a buffer to retrieve an enumeration of the available template names.

lpQOS	A pointer to the QOS structure to be filled.

lpErrno	A pointer to the error code.

Remarks	Clients may use this function to initialize a QOS structure to a set of known values appropriate for a particular service class or media type. These values are stored in a template which is referenced by a well-known name. The client may retrieve these values by setting the buf member of the WSABUF indicated by lpQOSName to point to a Unicode string of non-zero length specifying a template name. In this case the usage of lpQOSName is IN only, and results are returned through lpQOS.

Alternatively, the client may use this function to retrieve an enumeration of available template names. The client may do this by setting the buf member of the WSABUF indicated by lpQOSName to a zero-length null-terminated Unicode string. In this case the buffer indicated by buf is over-written with a sequence of as many null-terminated Unicode template name strings are available up to the number of bytes available in buf as indicated by the len member of the WSABUF indicated by lpQOSName. The list of names itself is terminated by a zero-length Unicode name string. When WSPGetQOSByName() is used to retrieve template names, the lpQOS parameter is ignored.

Return Value	If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAENOTSOCK	The descriptor is not a socket.

WSAEFAULT	The lpQOS argument is not a valid part of the user address space, or the buffer length for lpQOS is too small.

WSAEINVAL	The specified QOS template name is invalid.

See Also	WSPConnect(), WSPAccept(), WSPGetSockOpt().

�� AUTONUMLGL � WSPGetSockName()

Description	Get the local name for a socket.

 	#include <ws2spi.h>

 	int WSPAPI �WSPGetSockName(�	IN		SOCKET 			s, �	OUT		struct sockaddr FAR *		name,

		IN OUT		LPINT 				namelen, �	OUT		LPINT 				lpErrno�);

s	A descriptor identifying a bound socket.

name	A pointer to a structure used to supply the address (name) of the socket.

namelen	 A pointer to an integer which, on input, indicates the size of the structure pointed to by name, and on output indicates the size of the returned name.

lpErrno	A pointer to the error code.

Remarks	WSPGetSockName() retrieves the current name for the specified socket descriptor in name. It is used on a bound and/or connected socket specified by the s parameter. The local association is returned. This call is especially useful when a WSPConnect() call has been made without doing a WSPBind() first; as this call provides the only means by which the local association that has been set by the service provider can be determined.

If a socket was bound to an unspecified address (e.g., ADDR_ANY), indicating that any of the host's addresses within the specified address family should be used for the socket, WSPGetSockName() will not necessarily return information about the host address, unless the socket has been connected with WSPConnect() or WSPAccept. The WinSock SPI client must not assume that an address will be specified unless the socket is connected. This is because for a multi-homed host the address that will be used for the socket is unknown until the socket is connected.

Return Value	If no error occurs, WSPGetSockName() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEFAULT	The name or the namelen argument is not a valid part of the user address space, or the namelen argument is too small.

WSAEINPROGRESS	The function is invoked when a callback is in progress.

WSAENOTSOCK	The descriptor is not a socket.

WSAEINVAL	The socket has not been bound to an address with WSPBind(), or ADDR_ANY is specified in WSPBind() but connection has not yet occurs.

See Also	WSPBind(), WSPSocket(), WSPGetPeerName().

�� AUTONUMLGL � WSPGetSockOpt()

Description	Retrieve a socket option.

 	#include <ws2spi.h>

 	int WSPAPI �WSPGetSockOpt(�	IN		SOCKET 		s, �	IN		int 			level, �	IN		int 			optname,

		OUT		char FAR * 		optval, �	IN OUT		LPINT 			optlen, �	OUT		LPINT 			lpErrno�);

s	A descriptor identifying a socket.

level	The level at which the option is defined; the supported levels include SOL_SOCKET (See annex for more protocol-specific levels.)

optname	The socket option for which the value is to be retrieved.

optval	A pointer to the buffer in which the value for the requested option is to be returned.

optlen	A pointer to the size of the optval buffer.

lpErrno	A pointer to the error code.

Remarks	WSPGetSockOpt() retrieves the current value for a socket option associated with a socket of any type, in any state, and stores the result in optval. Options may exist at multiple protocol levels, but they are always present at the uppermost "socket'' level. Options affect socket operations, such as the routing of packets, out-of-band data transfer, etc.

The value associated with the selected option is returned in the buffer optval. The integer pointed to by optlen should originally contain the size of this buffer; on return, it will be set to the size of the value returned. For SO_LINGER, this will be the size of a struct linger; for most other options it will be the size of an integer.

The WinSock SPI client is responsible for allocating any memory space pointed to directly or indirectly by any of the parameters it specifies.

If the option was never set with WSPSetSockOpt(), then WSPGetSockOpt() returns the default value for the option.

level = SOL_SOCKET�����Value�Type�Meaning�Default��SO_ACCEPTCONN�BOOL�Socket is listen()ing.�FALSE unless a WSPListen() has been performed��SO_BROADCAST�BOOL�Socket is configured for the transmission of broadcast messages.�FALSE��SO_DEBUG�BOOL�Debugging is enabled. �FALSE��SO_DONTLINGER�BOOL�If true, the SO_LINGER option is disabled.�TRUE��SO_DONTROUTE�BOOL�Routing is disabled.�FALSE��SO_ERROR�int�Retrieve error status and clear.�0��SO_GROUP_ID�GROUP�Reserved for future use with socket groups: The identifier of the group to which this socket belongs. �NULL��SO_GROUP_PRIORITY�int�Reserved for future use with socket groups: The relative priority for sockets that are part of a socket group.�0��SO_KEEPALIVE�BOOL�Keepalives are being sent.�FALSE��SO_LINGER�struct linger �Returns the current linger options.�l_onoff is 0��SO_MAX_MSG_SIZE�unsigned int�Maximum outbound (send) size of a message for message-oriented socket types (e.g., SOCK_DGRAM). There is no provision for finding out the maximum inbound message size. Has no meaning for stream-oriented sockets.�Implementation dependent��SO_OOBINLINE�BOOL�Out-of-band data is being received in the normal data stream.�FALSE��SO_PROTOCOL_INFOW�WSAPROTOCOL_INFOW�Description of protocol info for protocol that is bound to this socket.�protocol dependent��SO_RCVBUF�int�Total per-socket buffer space reserved for receives. This is unrelated to SO_MAX_MSG_SIZE or the size of a TCP window.�Implementation dependent��SO_REUSEADDR�BOOL�The socket may be bound to an address which is already in use.�FALSE��SO_SNDBUF�int�Total per-socket buffer space reserved for sends. This is unrelated to SO_MAX_MSG_SIZE or the size of a TCP window.�Implementation dependent��SO_TYPE�int�The type of the socket (e.g. SOCK_STREAM).�As created via socket()��PVD_CONFIG�Service Provider Dependent�An "opaque" data structure object from the service provider associated with socket s. This object stores the current configuration information of the service provider. The exact format of this data structure is service provider specific.�Implementation dependent��

Calling WSPGetSockOpt() with an unsupported option will result in an error code of WSAENOPROTOOPT being returned in lpErrno.

SO_DEBUG

WinSock service providers are encouraged (but not required) to supply output debug information if the SO_DEBUG option is set by a WinSock SPI client. The mechanism for generating the debug information and the form it takes are beyond the scope of this specification.

SO_ERROR

The SO_ERROR option returns and resets the per-socket based error code (which is not necessarily the same as the per-thread error code that is maintained by the WinSock 2 DLL). A successful WinSock call on the socket does not reset the socket-based error code returned by the SO_ERROR option.

SO_GROUP_ID

Reserved for future use with socket groups: This is a get-only socket option which supplies the identifier of the group this socket belongs to. Note that socket group IDs are unique across all processes for a give service provider. If this socket is not a group socket, the value is NULL.

SO_GROUP_PRIORITY

Reserved for future use with socket groups: Group priority indicates the priority of the specified socket relative to other sockets within the socket group. Values are non-negative integers, with zero corresponding to the highest priority. Priority values represent a hint to the service provider about how potentially scarce resources should be allocated. For example, whenever two or more sockets are both ready to transmit data, the highest priority socket (lowest value for SO_GROUP_PRIORITY) should be serviced first, with the remainder serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error code is indicated for non group sockets or for service providers which do not support group sockets.

SO_KEEPALIVE

A WinSock SPI client may request that a TCP/IP service provider enable the use of "keep-alive" packets on TCP connections by turning on the SO_KEEPALIVE socket option. A WinSock provider need not support the use of keep-alives: if it does, the precise semantics are implementation-specific but should conform to section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts -- Communication Layers. If a connection is dropped as the result of "keep-alives" the error code WSAENETRESET is returned to any calls in progress on the socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER

SO_LINGER controls the action taken when unsent data is queued on a socket and a WSPCloseSocket() is performed. See WSPCloseSocket() for a description of the way in which the SO_LINGER settings affect the semantics of WSPCloseSocket(). The WinSock SPI client obtains the desired behavior by creating a struct linger (pointed to by the optval argument) with the following elements:

struct linger {

	u_short	l_onoff;

	u_short	l_linger;

}

SO_MAX_MSG_SIZE

This is a get-only socket option which indicates the maximum size of an outbound (send) message for message-oriented socket types (e.g. SOCK_DGRAM) as implemented by the service provider. It has no meaning for byte stream oriented sockets. There is no provision to determine the maximum inbound message size.

SO_PROTOCOL_INFOW

This is a get-only option which supplies the WSAPROTOCOL_INFOW structure associated with this socket. See WSPEnumProtocols() for more information about this structure.

SO_RCVBUF

SO_SNDBUF

When a WinSock service provider supports the SO_RCVBUF and SO_SNDBUF options, a WinSock SPI client may use WSPSetSockOpt() to request different buffer sizes (larger or smaller). The call may succeed even though the service provider did not make available the entire amount requested. A WinSock SPI client must call this function with the same option to check the buffer size actually provided.

SO_REUSEADDR

By default, a socket may not be bound (see WSPBind()) to a local address which is already in use. On occasions, however, it may be desirable to "re-use" an address in this way. Since every connection is uniquely identified by the combination of local and remote addresses, there is no problem with having two sockets bound to the same local address as long as the remote addresses are different. To inform the WinSock provider that a WSPBind() on a socket should be allowed to bind to a local address that is already in use by another socket, the WinSock SPI client should set the SO_REUSEADDR socket option for the socket before issuing the WSPBind(). Note that the option is interpreted only at the time of the WSPBind(): it is therefore unnecessary (but harmless) to set the option on a socket which is not to be bound to an existing address, and setting or resetting the option after the WSPBind() has no effect on this or any other socket.

PVD_CONFIG

This option retrieves an "opaque" data structure object from the service provider associated with socket s. This object stores the current configuration information of the service provider. The exact format of this data structure is service provider specific.

Return Value	If no error occurs, WSPGetSockOpt() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEFAULT	One of the optval or the optlen arguments is not a valid part of the user address space, or the optlen argument is too small.

WSAEINVAL	level is unknown or invalid.

WSAEINPROGRESS	The function is invoked when a callback is in progress.

WSAENOPROTOOPT	The option is unknown or unsupported by the indicated protocol family.

WSAENOTSOCK	The descriptor is not a socket.

See Also	WSPSetSockOpt(),WSPSocket().

�� AUTONUMLGL � WSPIoctl()

Description	Control the mode of a socket.

 	#include <ws2spi.h>

 	int WSPAPI �WSPIoctl (�	IN	SOCKET 				s, �	IN	DWORD 				dwIoControlCode, �	IN	LPVOID 				lpvInBuffer, �	IN	DWORD 				cbInBuffer, �	OUT	LPVOID 				lpvOutBuffer, �	IN	DWORD 				cbOutBuffer, �	OUT	LPDWORD 				lpcbBytesReturned,�	IN	LPWSAOVERLAPPED 			lpOverlapped,�	IN	LPWSAOVERLAPPED_COMPLETION_ROUTINE�						 	lpCompletionRoutine,�	IN	LPWSATHREADID 			lpThreadId, 	�	OUT	LPINT 					lpErrno�);

s		 Handle to a socket

dwIoControlCode	Control code of operation to perform

lpvInBuffer	 	Address of input buffer

cbInBuffer		Size of input buffer

lpvOutBuffer		Address of output buffer

cbOutBuffer		Size of output buffer

lpcbBytesReturned	A pointer to the size of output buffer’s contents.

lpOverlapped 		Address of WSAOVERLAPPED structure (ignored for non-	overlapped sockets)

lpCompletionRoutine	A pointer to the completion routine called when the operation 	has been completed. (ignored for non-overlapped sockets)

lpThreadId	A pointer to a thread ID structure to be used by the provider in a subsequent call to WPUQueueApc(). The provider should store the referenced WSATHREADID structure (not the pointer to same) until after the WPUQueueApc() function returns.

lpErrno	A pointer to the error code.

Remarks	This routine is used to set or retrieve operating parameters associated with the socket, the transport protocol, or the communications subsystem.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be treated as a non-overlapped socket.

	For non-overlapped sockets, lpOverlapped and lpCompletionRoutine parameters are ignored, and this function may block if socket s is in the blocking mode. Note that if socket s is in the non-blocking mode, this function may return WSAEWOULDBLOCK if the specified operation cannot be finished immediately. In this case, the WinSock SPI client should change the socket to the blocking mode and reissue the request. For overlapped sockets, operations that cannot be completed immediately will be initiated, and completion will be indicated at a later time. The final completion status is retrieved via the WSPGetOverlappedResult().

Any ioctl may block indefinitely, depending on the service provider’s implementation. If the WinSock SPI client cannot tolerate blocking in a WSPIoctl() call, overlapped I/O would be advised for ioctls that are especially likely to block including:

	SIO_FINDROUTE�SIO_FLUSH�SIO_GET_QOS�SIO_GET_GROUP_QOS�SIO_SET_QOS�SIO_SET_GROUP_QOS

Some protocol-specific ioctls may also be especially likely to block. Check the relevant protocol-specific annex for any available information.

In as much as the dwIoControlCode parameter is now a 32 bit entity, it is possible to adopt an encoding scheme that provides a convenient way to partition the opcode identifier space. The dwIoControlCode parameter is architected to allow for protocol and vendor independence when adding new control codes, while retaining backward compatibility with Windows Sockets 1.1 and Unix control codes. The dwIoControlCode parameter has the following form:

3�3�2�2 2�2 2 2 2 2 2 2 1 1 1 1�1 1 1 1 1 1��1�0�9�8 7�6 5 4 3 2 1 0 9 8 7 6�5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0��I�O�V�T�Vendor/Address Family�Code��

I is set if the input buffer is valid for the code, as with IOC_IN.

O is set if the output buffer is valid for the code, as with IOC_OUT. Note that for codes with both input and output parameters, both I and O will be set.

V is set if there are no parameters for the code, as with IOC_VOID.

T is a two-bit quantity which defines the type of ioctl. The following values are defined:

0 - The ioctl is a standard Unix ioctl code, as with FIONREAD, FIONBIO, etc.

1 - The ioctl is a generic Windows Sockets 2 ioctl code. New ioctl codes defined for Windows Sockets 2 will have T == 1.

2 - The ioctl applies only to a specific address family.

3 - The ioctl applies only to a specific vendor's provider. This type allows companies to be assigned a vendor number which appears in the

Vendor/Address Family field, and then the vendor can define new ioctls specific to

that vendor without having to register the ioctl with a clearinghouse,

thereby providing vendor flexibility and privacy.

Vendor/Address Family - An 11-bit quantity which defines the vendor who owns the code (if T == 3) or which contains the address family to which the code applies (if T == 2). If this is a Unix ioctl code (T == 0) then this field has the same value as the code on Unix. If this is a generic Windows Sockets 2 ioctl (T == 1) then this field can be used as an extension of the "code" field to provide additional code values.

Code - The specific ioctl code for the operation.

	The following Unix commands are supported:

Command	Semantics

FIONBIO	Enable or disable non-blocking mode on socket s. lpvInBuffer points at an unsigned long, which is non-zero if non-blocking mode is to be enabled and zero if it is to be disabled. When a socket is created, it operates in blocking mode (i.e. non-blocking mode is disabled). This is consistent with BSD sockets.

	The WSPAsyncSelect() or WSPEventSelect() routine automatically sets a socket to nonblocking mode. If WSPAsyncSelect() or WSPEventSelect() has been issued on a socket, then any attempt to use WSPIoctl() to set the socket back to blocking mode will fail with WSAEINVAL. To set the socket back to blocking mode, a WinSock SPI client must first disable WSPAsyncSelect() by calling WSPAsyncSelect() with the lEvent parameter equal to 0, or disable WSPEventSelect() by calling WSPEventSelect() with the lNetworkEvents parameter equal to 0.

FIONREAD	Determine the amount of data which can be read atomically from socket s. lpvOutBuffer points at an unsigned long in which WSPIoctl() stores the result. If s is stream-oriented (e.g., type SOCK_STREAM), FIONREAD returns the total amount of data which may be read in a single receive operation; this is normally the same as the total amount of data queued on the socket. If s is message-oriented (e.g., type SOCK_DGRAM), FIONREAD returns the size of the first datagram (message) queued on the socket.

SIOCATMARK	Determine whether or not all out-of-band data has been read. This applies only to a socket of stream style (e.g., type SOCK_STREAM) which has been configured for in-line reception of any out-of-band data (SO_OOBINLINE). If no out-of-band data is waiting to be read, the operation returns TRUE. Otherwise it returns FALSE, and the next receive operation performed on the socket will retrieve some or all of the data preceding the "mark"; the WinSock SPI client should use the SIOCATMARK operation to determine whether any remains. If there is any normal data preceding the "urgent" (out of band) data, it will be received in order. (Note that receive operations will never mix out-of-band and normal data in the same call.) lpvOutBuffer points at a BOOL in which WSPIoctl() stores the result.

	The following WinSock 2 commands are supported:

Command	Semantics

SIO_ASSOCIATE_HANDLE (opcode setting: I, T==1)�Associate this socket with the specified handle of a companion interface. The input buffer contains the integer value corresponding to the manifest constant for the companion interface (e.g., TH_NETDEV, TH_TAPI, etc.), followed by a value which is a handle of the specified companion interface, along with any other required information. Refer to the appropriate section in the Windows Sockets 2 Protocol-Specific Annex and/or documentation for the particular companion interface for additional details. The total size is reflected in the input buffer length. No output buffer is required. The WSAENOPROTOOPT error code is indicated for service providers which do not support this ioctl. The handle associated by this ioctl can be retrieved using SIO_TRANSLATE_HANDLE.

	A companion interface might be used, for example, if a particular provider provides (1) a great deal of additional controls over the behavior of a socket and (2) the controls are provider-specific enough that they don’t map to existing WinSock functions or ones likely to be defined in the future. It is recommend that the Component Object Model (COM) be used instead of this ioctl to discover and track other interfaces that might be supported by a socket. This ioctl is present for (reverse) compatibility with systems where COM is not available or cannot be used for some other reason.

SIO_ENABLE_CIRCULAR_QUEUEING (opcode setting: V, T==1)�Indicates to a message-oriented service provider that a newly arrived message should never be dropped because of a buffer queue overflow. Instead, the oldest message in the queue should be eliminated in order to accommodate the newly arrived message. No input and output buffers are required. Note that this ioctl is only valid for sockets associated with unreliable, message-oriented protocols. The WSAENOPROTOOPT error code is indicated for service providers which do not support this ioctl.

SIO_FIND_ROUTE (opcode setting: O, T==1)�When issued, this ioctl requests that the route to the remote address specified as a sockaddr in the input buffer be discovered. If the address already exists in the local cache, its entry is invalidated. In the case of Novell’s IPX, this call initiates an IPX GetLocalTarget (GLT), which queries the network for the given remote address.

SIO_FLUSH (opcode setting: V, T==1)	�Discards current contents of the sending queue associated with this socket. No input and output buffers are required. The WSAENOPROTOOPT error code is indicated for service providers which do not support this ioctl.

SIO_GET_BROADCAST_ADDRESS (opcode setting: O, T==1)�This ioctl fills the output buffer with a sockaddr struct containing a suitable broadcast address for use with WSPSendTo().

SIO_GET_EXTENSION_FUNCTION_POINTER (opcode setting: O, I, T==1)�Retrieve a pointer to the specified extension function supported by the associated service provider. The input buffer contains a GUID whose value identifies the extension function in question. The pointer to the desired function is returned in the output buffer. Extension function identifiers are established by service provider vendors and should be included in vendor documentation that describes extension function capabilities and semantics.

SIO_GET_QOS (opcode setting: O,I, T==1)�Retrieve the QOS structure associated with the socket. The input buffer is optional. Some protocols (e.g. RSVP) allow the input buffer to be used to qualify a QOS request. The QOS structure will be copied into the output buffer. The output buffer must be sized large enough to be able to contain the full QOS struct. The WSAENOPROTOOPT error code is indicated for service providers which do not support QOS.

SIO_GET_GROUP_QOS	(opcode setting: O,I, T==1)�Reserved for future use with socket groups: Retrieve the QOS structure associated with the socket group to which this socket belongs. The input buffer is optional. Some protocols (e.g. RSVP) allow the input buffer to be used to qualify a QOS request. The QOS structure will be copied into the output buffer. If this socket does not belong to an appropriate socket group, the SendingFlowspec and ReceivingFlowspec fields of the returned QOS struct are set to NULL. The WSAENOPROTOOPT error code is indicated for service providers which do not support QOS.

SIO_MULTIPOINT_LOOPBACK (opcode setting: I, T==1)�Controls whether data sent in a multipoint session will also be received by the same socket on the local host. A value of TRUE causes loopback reception to occur while a value of FALSE prohibits this.

SIO_MULTICAST_SCOPE (opcode setting: I, T==1)

	Specifies the scope over which multicast transmissions will occur. Scope is defined as the number of routed network segments to be covered. A scope of zero would indicate that the multicast transmission would not be placed “on the wire” but could be disseminated across sockets within the local host. A scope value of one (the default) indicates that the transmission will be placed on the wire, but will not cross any routers. Higher scope values determine the number of routers that may be crossed. Note that this corresponds to the time-to-live (TTL) parameter in IP multicasting.

SIO_SET_QOS (opcode setting: I, T==1)�Associate the supplied QOS structure with the socket. No output buffer is required, the QOS structure will be obtained from the input buffer. The WSAENOPROTOOPT error code is indicated for service providers which do not support QOS.

SIO_SET_GROUP_QOS	(opcode setting: I, T==1)�Reserved for future use with socket groups: Establish the supplied QOS structure with the socket group to which this socket belongs. No output buffer is required, the QOS structure will be obtained from the input buffer. The WSAENOPROTOOPT error code is indicated for service providers which do not support QOS, or if the socket descriptor specified is not the creator of the associated socket group.

SIO_TRANSLATE_HANDLE (opcode setting: I, O, T==1)�To obtain a corresponding handle for socket s that is valid in the context of a companion interface (e.g., TH_NETDEV, TH_TAPI, etc.). A manifest constant identifying the companion interface along with any other needed parameters are specified in the input buffer. The corresponding handle will be available in the output buffer upon completion of this function. Refer to the appropriate section in the Windows Sockets 2 Protocol-Specific Annex and/or documentation for the particular companion interface for additional details. The WSAENOPROTOOPT error code is indicated for service providers which do not support this ioctl for the specified companion interface. This ioctl retrieves the handle associated using SIO_TRANSLATE_HANDLE.

	It is recommend that the Component Object Model (COM) be used instead of this ioctl to discover and track other interfaces that might be supported by a socket. This ioctl is present for (reverse) compatibility with systems where COM is not available or cannot be used for some other reason.

If an overlapped operation completes immediately, this function returns a value of zero and the lpcbBytesReturned parameter is updated with the number of bytes in the output buffer. If the overlapped operation is successfully initiated and will complete later, this function returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case, lpcbBytesReturned is not updated. When the overlapped operation completes the amount of data in the output buffer is indicated either via the cbTransferred parameter in the completion routine (if specified), or via the lpcbTransfer parameter in WSPGetOverlappedResult().

When called with an overlapped socket, the lpOverlapped parameter must be valid for the duration of the overlapped operation. The WSAOVERLAPPED structure has the following form:

	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// reserved

		DWORD		OffsetHigh;		// reserved

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the service provider signals the hEvent field of lpOverlapped when the overlapped operation completes if it contains a valid event object handle. The WinSock SPI client can use WSPGetOverlappedResult() to poll or wait on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the WinSock SPI client to pass context information to the completion routine. A client that passes a non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the same overlapped IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the hEvent field would produce unpredictable results.

It is the service provider’s responsibility to arrange for invocation of the client-specified completion routine when the overlapped operation completes. Since the completion routine must be executed in the context of the same thread that initiated the overlapped operation, it cannot be invoked directly from the service provider. The WinSock DLL offers an asynchronous procedure call (APC) mechanism to facilitate invocation of completion routines.

A service provider arranges for a function to be executed in the proper thread and process context by calling WPUQueueApc(). This function can be called from any process and thread context, even a context different from the thread and process that was used to initiate the overlapped operation.()()

WPUQueueApc() takes as input parameters a pointer to a WSATHREADID structure (supplied to the provider via the lpThreadId input parameter), a pointer to an APC function to be invoked, and a 32 bit context value that is subsequently passed to the APC function. Because only a single 32 bit context value is available, the APC function cannot itself be the client-specified completion routine. The service provider must instead supply a pointer to its own APC function which uses the supplied context value to access the needed result information for the overlapped operation, and then invokes the client-specified completion routine.

The prototype for the client-supplied completion routine is as follows:

void CALLBACK �CompletionRoutine(�	IN	DWORD 		dwError, �	IN	DWORD 		cbTransferred, �	IN	LPWSAOVERLAPPED	lpOverlapped, �	IN	DWORD 		dwFlags �);

CompletionRoutine is a placeholder for a client supplied function. dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred specifies the number of bytes returned. Currently there are no flag values defined and dwFlags will be zero. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this socket. The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed.

Compatibility	The ioctl codes with T == 0 are a subset of the ioctl codes used in Berkeley sockets. In particular, there is no command which is equivalent to FIOASYNC.

Return Value	If no error occurs and the operation has completed immediately, WSPIoctl() returns 0. Note that in this case the completion routine, if specified, will have already been queued. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno. The error code WSA_IO_PENDING indicates that an overlapped operation has been successfully initiated and that completion will be indicated at a later time. Any other error code indicates that no overlapped operation was initiated and no completion indication will occur.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEFAULT	The lpvInBuffer, lpvOutBuffer or lpcbBytesReturned argument is not totally contained in a valid part of the user address space, or the cbInBuffer or cbOutBuffer argument is too small.

WSAEINVAL	dwIoControlCode is not a valid command, or a supplied input parameter is not acceptable, or the command is not applicable to the type of socket supplied.

WSAEINPROGRESS	The function is invoked when a callback is in progress.

WSAENOTSOCK	The descriptor s is not a socket.

WSAEOPNOTSUPP	The specified ioctl command cannot be realized, e.g., the flow specs specified in SIO_SET_QOS or SIO_SET_GROUP_QOS cannot be satisfied.

WSA_IO_PENDING	An overlapped operation was successfully initiated and completion will be indicated at a later time.

WSAEWOULDBLOCK	The socket is marked as non-blocking and the requested operation would block.

See Also	WSPSocket(), WSPSetSockOpt(), WSPGetSockOpt(), WPUQueueApc

�� AUTONUMLGL � WSPJoinLeaf()

Description	Join a leaf node into a multipoint session, exchange connect data, and specify needed quality of service based on the supplied flow specs.

 	#include <ws2spi.h>

 	SOCKET WSPAPI �WSPJoinLeaf (�	IN	SOCKET 			s, �	IN	const struct sockaddr FAR * 	name, �	IN	int 				namelen, �	IN	LPWSABUF 			lpCallerData, �	OUT	LPWSABUF 			lpCalleeData,�	IN	LPQOS 			lpSQOS, �	IN	LPQOS 			lpGQOS, �	IN	DWORD 			dwFlags, �	OUT	LPINT 				lpErrno �);

s	A descriptor identifying a multipoint socket.

name	The name of the peer to which the socket is to be joined.

namelen	The length of the name.

lpCallerData	A pointer to the user data that is to be transferred to the peer during multipoint session establishment.

lpCalleeData	A pointer to the user data that is to be transferred back from the peer during multipoint session establishment.

lpSQOS	A pointer to the flow specs for socket s, one for each direction.

lpGQOS	Reserved for future use with socket groups: A pointer to the flow specs for the socket group (if applicable).

dwFlags	Flags to indicate that the socket is acting as a sender, receiver, or both.

lpErrno	A pointer to the error code.

Remarks	This function is used to join a leaf node to a multipoint session, and to perform a number of other ancillary operations that occur at session join time as well. If the socket, s, is unbound, unique values are assigned to the local association by the system, and the socket is marked as bound.

	WSPJoinLeaf() has the same parameters and semantics as WSPConnect() except that it returns a socket descriptor (as in WSPAccept()), and it has an additional dwFlags parameter. Only multipoint sockets created using WSPSocket() with appropriate multipoint flags set may be used for input parameter s in this function. If the socket is in the non-blocking mode, the returned socket descriptor will not be useable until after a corresponding FD_CONNECT indication on the original socket s has been received, except that closesocket() may be invoked on this new socket descriptor to cancel a pending join operation. A root node in a multipoint session may call WSPJoinLeaf() one or more times in order to add a number of leaf nodes, however at most one multipoint connection request may be outstanding at a time. Refer to section 3.14. Protocol-Independent Multicast and Multipoint for additional information.

For non-blocking sockets it is often not possible to complete the connection immediately. In such a case, this function returns an as-yet unusable socket descriptor and the operation proceeds. There is no error code such as WSAEWOULDBLOCK in this case, since the function has effectively returned a “successful start” indication. When the final outcome success or failure becomes known, it may be reported through WSPAsyncSelect() or WSPEventSelect() depending on how the client registers for notification on the original socket s. In either case, the notification is announced with FD_CONNECT and the error code associated with the FD_CONNECT indicates either success or a specific reason for failure. Note that WSPSelect() cannot be used to detect completion notification for WSAJoinLeaf().

	The socket descriptor returned by WSPJoinLeaf() is different depending on whether the input socket descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the name parameter designates a particular leaf node to be added and the returned socket descriptor is a c_leaf socket corresponding to the newly added leaf node. (As is described in section 3.4.1. Descriptor Allocation, when new socket descriptors are allocated IFS providers must call WPUModifyIFSHandle() and non-IFS providers must call WPUCreateSocketHandle()). The newly created socket has the same properties as s including asynchronous events registered with WSPAsyncSelect() or with WSPEventSelect(), but not including the c_root socket’s group ID, if any. It is not intended to be used for exchange of multipoint data, but rather is used to receive network event indications (e.g. FD_CLOSE) for the connection that exists to the particular c_leaf. Some multipoint implementations may also allow this socket to be used for “side chats” between the root and an individual leaf node. An FD_CLOSE indication will be received for this socket if the corresponding leaf node calls WSPCloseSocket() to drop out of the multipoint session. Symmetrically, invoking WSPCloseSocket() on the c_leaf socket returned from WSPJoinLeaf() will cause the socket in the corresponding leaf node to get FD_CLOSE notification.

	When WSPJoinLeaf() is invoked with a c_leaf socket, the name parameter contains the address of the root node (for a rooted control scheme) or an existing multipoint session (non-rooted control scheme), and the returned socket descriptor is the same as the input socket descriptor. In other words, a new socket descriptor is not allocated. In a rooted control scheme, the root application would put its c_root socket in the listening mode by calling WSPListen(). The standard FD_ACCEPT notification will be delivered when the leaf node requests to join itself to the multipoint session. The root application uses the usual WSPAccept() functions to admit the new leaf node. The value returned from WSPAccept() is also a c_leaf socket descriptor just like those returned from WSPJoinLeaf(). To accommodate multipoint schemes that allow both root-initiated and leaf-initiated joins, it is acceptable for a c_root socket that is already in listening mode to be used as an input to WSPJoinLeaf().

The WinSock SPI client is responsible for allocating any memory space pointed to directly or indirectly by any of the parameters it specifies.

The lpCallerData is a value parameter which contains any user data that is to be sent along with the multipoint session join request. If lpCallerData is NULL, no user data will be passed to the peer. The lpCalleeData is a result parameter which will contain any user data passed back from the peer as part of the multipoint session establishment. lpCalleeData->len initially contains the length of the buffer allocated by the WinSock SPI client and pointed to by lpCalleeData->buf. lpCalleeData->len will be set to 0 if no user data has been passed back. The lpCalleeData information will be valid when the multipoint join operation is complete. For blocking sockets, this will be when the WSPJoinLeaf() function returns. For non-blocking sockets, this will be after the FD_CONNECT notification has occurred on the original socket s. If lpCalleeData is NULL, no user data will be passed back. The exact format of the user data is specific to the address family to which the socket belongs and/or the applications involved.

At multipoint session establishment time, a WinSock SPI client may use the lpSQOS and/or lpGQOS parameters to override any previous QOS specification made for the socket via WSPIoctl() with either the SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.

lpSQOS specifies the flow specs for socket s, one for each direction, followed by any additional provider-specific parameters. If either the associated transport provider in general or the specific type of socket in particular cannot honor the QOS request, an error will be returned as indicated below. The sending or receiving flow spec values will be ignored, respectively, for any unidirectional sockets. If no provider-specific parameters are supplied, the buf and len fields of lpSQOS->ProviderSpecific should be set to NULL and 0, respectively. A NULL value for lpSQOS indicates no application supplied QOS.

Reserved for future use with socket groups: lpGQOS specifies the flow specs for the socket group (if applicable), one for each direction, followed by any additional provider-specific parameters. If no provider-specific parameters are supplied, the buf and len fields of lpGQOS->ProviderSpecific should be set to NULL and 0, respectively. A NULL value for lpGQOS indicates no application-supplied group QOS. This parameter will be ignored if s is not the creator of the socket group.

The dwFlags parameter is used to indicate whether the socket will be acting only as a sender (JL_SENDER_ONLY), only as a receiver (JL_RECEIVER_ONLY), or both (JL_BOTH).

Comments	When connected sockets break (i.e. become closed for whatever reason), they should be discarded and recreated. It is safest to assume that when things go awry for any reason on a connected socket, the WinSock SPI client must discard and recreate the needed sockets in order to return to a stable point.

Return Value	If no error occurs, WSPJoinLeaf() returns a value of type SOCKET which is a descriptor for the newly created multipoint socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific error code is available in lpErrno.

On a blocking socket, the return value indicates success or failure of the join operation.

With a non-blocking socket, successful initiation of a join operation is indicated by a return value of a valid socket descriptor.. Subsequently, an FD_CONNECT indication is given on the original socket s when the join operation completes, either successfully or otherwise. The error code associated with the FD_CONNECT indicates the success or failure of the WSPJoinLeaf().

Also, until the multipoint session join attempt completes all subsequent calls to WSPJoinLeaf() on the same socket will fail with the error code WSAEALREADY. After the WSAJoinLeaf() completes successfully a subsequent attempt will usually fail with the error code WSAEISCONN. An exception to the WSAEISCONN rule occurs for a c_root socket that allows root-initiated joins. In such a case another join may be initiated after a prior WSAJoinLeaf() completes.

If the return error code indicates the multipoint session join attempt failed (i.e. WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the WinSock SPI client may call WSPJoinLeaf() again for the same socket.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEADDRINUSE	The socket’s local address is already in use and the socket was not marked to allow address reuse with SO_REUSEADDR. This error usually occurs at the time of bind(), but could be delayed until this function if the bind() was to a partially wild-card address (involving ADDR_ANY) and if a specific address needs to be “committed” at the time of this function.

WSAEINTR	The (blocking) call was canceled via WSPCancelBlockingCall().

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAEALREADY	A non-blocking WSPJoinLeaf() call is in progress on the specified socket.

WSAEADDRNOTAVAIL	The remote address is not a valid address (e.g., ADDR_ANY).

WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.

WSAECONNREFUSED	The attempt to join was forcefully rejected.

WSAEFAULT	The name or the namelen argument is not a valid part of the user address space, the namelen argument is too small, the buffer length for lpCalleeData, lpSQOS, and lpGQOS are too small, or the buffer length for lpCallerData is too large.

WSAEISCONN	The socket is already member of the multipoint session.

WSAENETUNREACH	The network can't be reached from this host at this time.

WSAENOBUFS	No buffer space is available. The socket cannot be joined.

WSAENOTSOCK	The descriptor is not a socket.

WSAEOPNOTSUPP	The flow specs specified in lpSQOS and lpGQOS cannot be satisfied.

WSAEPROTONOSUPPORT	The lpCallerData augment is not supported by the service provider.

WSAETIMEDOUT	Attempt to join timed out without establishing a multipoint session.

See Also	WSPBind(), WSPSelect(), WSPAccept(), WSPAsyncSelect(), WSPEventSelect(), WSPSocket().�� AUTONUMLGL � WSPListen()

Description	Establish a socket to listen for incoming connections.

 	#include <ws2spi.h>

 	int WSPAPI �WSPListen(�	IN	SOCKET 	s, �	IN	int 		backlog, �	OUT	LPINT 		lpErrno�);

s	A descriptor identifying a bound, unconnected socket.

backlog	The maximum length to which the queue of pending connections may grow. If this value is SOMAXCONN, then the service provider should set the backlog to a maximum “reasonable” value. There is no standard provision to find out the actual backlog value used.

lpErrno	A pointer to the error code.

Remarks	To accept connections, a socket is first created with WSPSocket() bound to a local address with WSPBind(), a backlog for incoming connections is specified with WSPListen(), and then the connections are accepted with WSPAccept. WSPListen() applies only to sockets that are connection-oriented (e.g., SOCK_STREAM). The socket s is put into "passive'' mode where incoming connection requests are acknowledged and queued pending acceptance by the WinSock SPI client.

This function is typically used by servers that could have more than one connection request at a time: if a connection request arrives with the queue full, the client will receive an error with an indication of WSAECONNREFUSED.

WSPListen() should continue to function rationally when there are no available descriptors. It should accept connections until the queue is emptied. If descriptors become available, a later call to WSPListen() or WSPAccept() will re-fill the queue to the current or most recent "backlog'', if possible, and resume listening for incoming connections.

A WinSock SPI client may call WSPListen() more than once on the same socket. This has the effect of updating the current backlog for the listening socket. Should there be more pending connections than the new backlog value, the excess pending connections will be reset and dropped.

Compatibility	backlog is limited (silently) to a reasonable value as determined by the service provider. Illegal values are replaced by the nearest legal value. There is no standard provision to find out the actual backlog value used.

Return Value	If no error occurs, WSPListen() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEADDRINUSE	The socket’s local address is already in use and the socket was not marked to allow address reuse with SO_REUSEADDR. This error usually occurs at the time of bind(), but could be delayed until this function if the bind() was to a partially wild-card address (involving ADDR_ANY) and if a specific address needs to be “committed” at the time of this function.

WSAEINPROGRESS	The function is invoked when a callback is in progress.

WSAEINVAL	The socket has not been bound with WSPBind().

WSAEISCONN	The socket is already connected.

WSAEMFILE	No more socket descriptors are available.

WSAENOBUFS	No buffer space is available.

WSAENOTSOCK	The descriptor is not a socket.

WSAEOPNOTSUPP	The referenced socket is not of a type that supports the WSPListen() operation.

See Also	WSPAccept, WSPConnect(), WSPSocket().

�� AUTONUMLGL � WSPRecv()

Description	Receive data on a socket.

 	#include <ws2spi.h>

 	int WSPAPI �WSPRecv(�	IN		SOCKET 			s, �	IN OUT		LPWSABUF 			lpBuffers, �	IN		DWORD 			dwBufferCount, �	OUT		LPDWORD 			lpNumberOfBytesRecvd, �	IN OUT		LPDWORD 			lpFlags, �	IN		LPWSAOVERLAPPED		lpOverlapped,�	IN		LPWSAOVERLAPPED_COMPLETION_ROUTINE�							lpCompletionRoutine,�	IN		LPWSATHREADID 		lpThreadId, �	OUT		LPINT 				lpErrno�);

s	A descriptor identifying a connected socket.

lpBuffers	A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer.

	typedef struct __WSABUF {

		u_long	len;	// buffer length

		char FAR *	buf;	// pointer to buffer

	} WSABUF, FAR * LPWSABUF;

dwBufferCount	The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd	A pointer to the number of bytes received by this call.

lpFlags	A pointer to flags.

lpOverlapped	A pointer to a WSAOVERLAPPED structure. (ignored for non-overlapped sockets)

lpCompletionRoutine	A pointer to the completion routine called when the receive operation has been completed. (ignored for non-overlapped sockets)

lpThreadId	A pointer to a thread ID structure to be used by the provider in a subsequent call to WPUQueueApc(). The provider should store the referenced WSATHREADID structure (not the pointer to same) until after the WPUQueueApc() function returns.

lpErrno	A pointer to the error code.

Remarks	WSPRecv() is used on connected sockets or bound connectionless sockets specified by the s parameter and is used to read incoming data. The socket’s local address must be known. This may be done explicitly through WSPBind() or implicitly through WSPAccept(), WSPConnect(), WSPSendTo(), or WSPJoinLeaf().

For connected, connectionless sockets, this function restricts the addresses from which received messages are accepted. The function only returns messages from the remote address specified in the connection. Messages from other addresses are (silently) discarded.

For overlapped sockets WSPRecv() is used to post one or more buffers into which incoming data will be placed as it becomes available, after which the WinSock SPI client-specified completion indication (invocation of the completion routine or setting of an event object) occurs. If the operation does not complete immediately, the final completion status is retrieved via the completion routine or WSPGetOverlappedResult().

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be treated as a non-overlapped socket.

For non-overlapped sockets, the lpOverlapped, lpCompletionRoutine, and lpThreadId parameters are ignored. Any data which has already been received and buffered by the transport will be copied into the supplied user buffers. For the case of a blocking socket with no data currently having been received and buffered by the transport, the call will block until data is received. WinSock 2 does not define any standard blocking timeout mechanism for this function. For protocols acting as byte-stream protocols the stack tries to return as much data as possible subject to the supplied buffer space and amount of received data available. However, receipt of a single byte is sufficient to unblock the caller. There is no guarantee that more than a single byte will be returned. For protocols acting as message-oriented, a full message is required to unblock the caller.

Whether or not a protocol is acting as byte-stream is determined by the setting of XP1_MESSAGE_ORIENTED and XP1_PSEUDO_STREAM in its WSAPROTOCOL_INFO structure and the setting of the MSG_PARTIAL flag passed in to this function (for protocols that support it). The relevant combinations are summarized in the following table (an asterisk (*) indicates that the setting of this bit does not matter in this case).

XP1_MESSAGE_ORIENTED�XP1_PSEUDO_STREAM�MSG_PARTIAL�Acts as��not set�*�*�byte-stream��*�set�*�byte-stream��set�not set�set�byte-stream��set�not set�not set�message-oriented��

The supplied buffers are filled in the order in which they appear in the array pointed to by lpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this operation completes in an overlapped manner, it is the service provider’s responsibility to capture this array of pointers to WSABUF structures before returning from this call. This enables WinSock SPI clients to build stack-based WSABUF arrays.

For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed into the buffers until the buffers are filled, the connection is closed, or internally buffered data is exhausted. Regardless of whether or not the incoming data fills all the buffers, the completion indication occurs for overlapped sockets. For message-oriented sockets (e.g., type SOCK_DGRAM), an incoming message is placed into the supplied buffers, up to the total size of the buffers supplied, and the completion indication occurs for overlapped sockets. If the message is larger than the buffers supplied, the buffers are filled with the first part of the message. If the MSG_PARTIAL feature is supported by the service provider, the MSG_PARTIAL flag is set in lpFlags and subsequent receive operation(s) may be used to retrieve the rest of the message. If MSG_PARTIAL is not supported but the protocol is reliable, WSPRecv() generates the error WSAEMSGSIZE and a subsequent receive operation with a larger buffer can be used to retrieve the entire message. Otherwise (i.e. the protocol is unreliable and does not support MSG_PARTIAL), the excess data is lost, and WSPRecv() generates the error WSAEMSGSIZE.

For connection-oriented sockets, WSPRecv() can indicate the graceful termination of the virtual circuit in one of two ways, depending on whether the socket is a byte stream or message-oriented. For byte streams, zero bytes having been read indicates graceful closure and that no more bytes will ever be read. For message-oriented sockets, where a zero byte message is often allowable, a return error code of WSAEDISCON is used to indicate graceful closure. In any case a return error code of WSAECONNRESET indicates an abortive close has occurred.

lpFlags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket. That is, the semantics of this function are determined by the socket options and the lpFlags parameter. The latter is constructed by or-ing any of the following values:

Value	Meaning

MSG_PEEK	Peek at the incoming data. The data is copied into the buffer but is not removed from the input queue. This flag is valid only for non-overlapped sockets.

MSG_OOB	Process out-of-band data (See section 3.12.5. Out-Of-Band data for a discussion of this topic.)

MSG_PARTIAL	This flag is for message-oriented sockets only. On output, indicates that the data supplied is a portion of the message transmitted by the sender. Remaining portions of the message will be supplied in subsequent receive operations. A subsequent receive operation with MSG_PARTIAL flag cleared indicates end of sender’s message.

	

	As an input parameter, MSG_PARTIAL indicates that the receive operation should complete even if only part of a message has been received by the service provider.

Overlapped socket I/O:

If an overlapped operation completes immediately, WSPRecv() returns a value of zero and the lpNumberOfBytesRecvd parameter is updated with the number of bytes received and the flag bits pointed by the lpFlags parameter are also updated. If the overlapped operation is successfully initiated and will complete later, WSPRecv() returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case, lpNumberOfBytesRecvd and lpFlags are not updated. When the overlapped operation completes the amount of data transferred is indicated either via the cbTransferred parameter in the completion routine (if specified), or via the lpcbTransfer parameter in WSPGetOverlappedResult(). Flag values are obtained either via the dwFlags parameter of the completion routine, or by examining the lpdwFlags parameter of WSPGetOverlappedResult().

Providers must allow this function to be called from within the completion routine of a previous WSPRecv(), WSPRecvFrom(), WSPSend() or WSPSendTo() function. However, for a given socket, I/O completion routines may not be nested. This permits time-sensitive data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If multiple I/O operations are simultaneously outstanding, each must reference a separate overlapped structure. The WSAOVERLAPPED structure has the following form:

	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// reserved

		DWORD		OffsetHigh;		// reserved

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the service provider signals the hEvent field of lpOverlapped when the overlapped operation completes if it contains a valid event object handle. The WinSock SPI client can use WSPGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the WinSock SPI client to pass context information to the completion routine. A client that passes a non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the same overlapped IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the hEvent field would produce unpredictable results.

It is the service provider’s responsibility to arrange for invocation of the client-specified completion routine when the overlapped operation completes. Since the completion routine must be executed in the context of the same thread that initiated the overlapped operation, it cannot be invoked directly from the service provider. The WinSock DLL offers an asynchronous procedure call (APC) mechanism to facilitate invocation of completion routines.

A service provider arranges for a function to be executed in the proper thread and process context by calling WPUQueueApc(). This function can be called from any process and thread context, even a context different from the thread and process that was used to initiate the overlapped operation.()()

WPUQueueApc() takes as input parameters a pointer to a WSATHREADID structure (supplied to the provider via the lpThreadId input parameter), a pointer to an APC function to be invoked, and a 32 bit context value that is subsequently passed to the APC function. Because only a single 32 bit context value is available, the APC function cannot itself be the client-specified completion routine. The service provider must instead supply a pointer to its own APC function which uses the supplied context value to access the needed result information for the overlapped operation, and then invokes the client-specified completion routine.

The prototype for the client-supplied completion routine is as follows:

void CALLBACK �CompletionRoutine(�	IN	DWORD 		dwError, �	IN	DWORD 		cbTransferred, �	IN	LPWSAOVERLAPPED	lpOverlapped, �	IN	DWORD 		dwFlags �);

CompletionRoutine is a placeholder for a client-supplied function name. dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred specifies the number of bytes received. dwFlags contains information that would have appeared in lpFlags if the receive operation had completed immediately. This function does not return a value.

The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed. However, the posted buffers are guaranteed to be filled in the same order they are supplied.

Return Value	If no error occurs and the receive operation has completed immediately, WSPRecv() returns 0. Note that in this case the completion routine, if specified, will have already been queued. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno. The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time. Any other error code indicates that no overlapped operations was initiated and no completion indication will occur.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAENOTCONN	The socket is not connected.

WSAEINTR	The (blocking) call was canceled via WSPCancelBlockingCall().

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAENETRESET	The connection has been broken due to “keep-alive” activity detecting a failure while the operation was in progress.

WSAENOTSOCK	The descriptor is not a socket.

WSAEFAULT	The lpBuffers argument is not totally contained in a valid part of the user address space.

WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only send operations.

WSAESHUTDOWN	The socket has been shutdown; it is not possible to WSPRecv() on a socket after WSPShutdown() has been invoked with how set to SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK	Overlapped sockets: There are too many outstanding overlapped I/O requests. Non-overlapped sockets: The socket is marked as non-blocking and the receive operation cannot be completed immediately.

WSAEMSGSIZE	The message was too large to fit into the specified buffer and (for unreliable protocols only) any trailing portion of the message that did not fit into the buffer has been discarded.

WSAEINVAL	The socket has not been bound (e.g., with WSPBind()), or the socket is not created with the overlapped flag.

WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET	The virtual circuit was reset by the remote side.

WSAEDISCON	Socket s is message oriented and the virtual circuit was gracefully closed by the remote side.

WSA_IO_PENDING	An overlapped operation was successfully initiated and completion will be indicated at a later time.

WSA_OPERATION_ABORTED	The overlapped operation has been canceled due to the closure of the socket.

See Also	WPUCloseEvent(),WPUCreateEvent(), WSPGetOverlappedResult(), WSPSocket(), WPUQueueApc()

�� AUTONUMLGL � WSPRecvDisconnect()

Description	Terminate reception on a socket, and retrieve the disconnect data if the socket is connection-oriented.

 	#include <ws2spi.h>

 	int WSPAPI �WSPRecvDisconnect (�	IN	SOCKET 		s, �	OUT	LPWSABUF 		lpInboundDisconnectData, �	OUT	LPINT 			lpErrno�);

s			A descriptor identifying a socket.

lpInboundDisconnectData		A pointer to a buffer into which disconnect data is to 			be copied.

lpErrno			A pointer to the error code.

Remarks	WSPRecvDisconnect() is used on connection-oriented sockets to disable reception, and retrieve any incoming disconnect data from the remote party.

After this function has been successfully issued, subsequent receives on the socket will be disallowed. This has no effect on the lower protocol layers. For TCP, the TCP window is not changed and incoming data will be accepted (but not acknowledged) until the window is exhausted. For UDP, incoming datagrams are accepted and queued. In no case will an ICMP error packet be generated.

To successfully receive incoming disconnect data, a WinSock SPI client must use other mechanisms to determine that the circuit has been closed. For example, a client needs to receive an FD_CLOSE notification, or get a 0 return value, or a WSAEDISCON error code from WSPRecv().

Note that WSPRecvDisconnect() does not close the socket, and resources attached to the socket will not be freed until WSPCloseSocket() is invoked.

Comments	WSPRecvDisconnect() does not block regardless of the SO_LINGER setting on the socket.

A WinSock SPI client should not rely on being able to re-use a socket after it has been WSPRecvDisconnect()ed. In particular, a WinSock provider is not required to support the use of WSPConnect() on such a socket.

Return Value	If no error occurs, WSPRecvDisconnect() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEFAULT	The buffer referenced by the parameter lpInboundDisconnectData is too small.

WSAENOPROTOOPT	The disconnect data is not supported by the indicated protocol family.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAENOTCONN	The socket is not connected (connection-oriented sockets only).

WSAENOTSOCK	The descriptor is not a socket.

See Also	WSPConnect(), WSPSocket().

�� AUTONUMLGL � WSPRecvFrom()

Description	Receive a datagram and store the source address.

 	#include <ws2spi.h>

	int WSPAPI �WSPRecvFrom(�	IN		SOCKET 			s, �	IN OUT		LPWSABUF 			lpBuffers, �	IN		DWORD 			dwBufferCount, �	OUT		LPDWORD 			lpNumberOfBytesRecvd,�	IN OUT		LPDWORD 			lpFlags, �	OUT		struct sockaddr FAR * 		lpFrom, �	IN OUT		LPINT 				lpFromlen, �	IN		LPWSAOVERLAPPED 		lpOverlapped, �	IN		LPWSAOVERLAPPED_COMPLETION_ROUTINE�							lpCompletionRoutine, �	IN		LPWSATHREADID 		lpThreadId, �	OUT		LPINT 				lpErrno�);

s	A descriptor identifying a socket.

lpBuffers	A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer.

	typedef struct __WSABUF {

		u_long	len;	// buffer length

		char FAR *	buf;	// pointer to buffer

	} WSABUF, FAR * LPWSABUF;

dwBufferCount	The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd	A pointer to the number of bytes received by this call.

lpFlags	A pointer to flags.

lpFrom	An optional pointer to a buffer which will hold the source address upon the completion of the overlapped operation.

lpFromlen	A pointer to the size of the from buffer, required only if lpFrom is specified.

lpOverlapped	A pointer to a WSAOVERLAPPED structure. (ignored for non-overlapped sockets)

lpCompletionRoutine	A pointer to the completion routine called when the receive operation has been completed. (ignored for non-overlapped sockets)

lpThreadId	A pointer to a thread ID structure to be used by the provider in a subsequent call to WPUQueueApc().The provider should store the referenced WSATHREADID structure (not the pointer to same) until after the WPUQueueApc() function returns.

lpErrno	A pointer to the error code.

Remarks	WSPRecvFrom() is used primarily on a connectionless socket specified by s. The socket must not be connected. The socket’s local address must be known. This may be done explicitly through WSPBind() or implicitly through WSPSendTo(), or WSPJoinLeaf().

For overlapped sockets, this function is used to post one or more buffers into which incoming data will be placed as it becomes available on a (possibly connected) socket, after which the client-specified completion indication (invocation of the completion routine or setting of an event object) occurs. If the operation does not complete immediately, the final completion status is retrieved via the completion routine or WSPGetOverlappedResult(). Also note that the values pointed to by lpFrom and lpFromlen are not updated until completion is indicated. Applications must not use or disturb these values until they have been updated, therefore the client must not use automatic (i.e stack-based) variables for these parameters.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be treated as a non-overlapped socket.

For non-overlapped sockets, the lpOverlapped, lpCompletionRoutine, and lpThreadId parameters are ignored. Any data which has already been received and buffered by the transport will be copied into the supplied user buffers. For the case of a blocking socket with no data currently having been received and buffered by the transport, the call will block until data is received according to the blocking semantics defined for WSPRecv().

The supplied buffers are filled in the order in which they appear in the array pointed to by lpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this operation completes in an overlapped manner, it is the service provider’s responsibility to capture this array of pointers to WSABUF structures before returning from this call. This enables WinSock SPI clients to build stack-based WSABUF arrays.

For connectionless socket types, the address from which the data originated is copied to the buffer pointed by lpFrom. On input, the value pointed to by lpFromlen is initialized to the size of this buffer, and is modified on completion to indicate the actual size of the address stored there. As noted previously for overlapped sockets, the lpFrom and lpFromlen parameters are not updated until after the overlapped I/O has completed. The memory pointed to by these parameters must, therefore, remain available to the service provider and cannot be allocated on the WinSock SPI client’s stack frame. The lpFrom and lpFromlen parameters are ignored for connection-oriented sockets.

For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed into the buffers until the buffers are filled, the connection is closed, or internally buffered data is exhausted. Regardless of whether or not the incoming data fills all the buffers, the completion indication occurs for overlapped sockets. For message-oriented sockets, a single incoming message is placed into the supplied buffers, up to the total size of the buffers supplied, and the completion indication occurs for overlapped sockets. If the message is larger than the buffers supplied, the buffers are filled with the first part of the message. If the MSG_PARTIAL feature is supported by the service provider, the MSG_PARTIAL flag is set in lpFlags and subsequent receive operation(s) will retrieve the rest of the message. If MSG_PARTIAL is not supported but the protocol is reliable, WSPRecvFrom() generates the error WSAEMSGSIZE and a subsequent receive operation with a larger buffer can be used to retrieve the entire message. Otherwise (i.e. the protocol is unreliable and does not support MSG_PARTIAL), the excess data is lost, and WSPRecvFrom() generates the error WSAEMSGSIZE.

lpFlags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket. That is, the semantics of this function are determined by the socket options and the lpFlags parameter. The latter is constructed by or-ing any of the following values:

Value	Meaning

MSG_PEEK	Peek at the incoming data. The data is copied into the buffer but is not removed from the input queue. This flag is valid only for non-overlapped sockets.

MSG_OOB	Process out-of-band data (See section 3.12.5. Out-Of-Band data for a discussion of this topic.)

MSG_PARTIAL	This flag is for message-oriented sockets only. On output, indicates that the data supplied is a portion of the message transmitted by the sender. Remaining portions of the message will be supplied in subsequent receive operations. A subsequent receive operation with MSG_PARTIAL flag cleared indicates end of sender’s message.

	

	As an input parameter, MSG_PARTIAL indicates that the receive operation should complete even if only part of a message has been received by the service provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial message is received. If a complete message is received, MSG_PARTIAL is cleared in lpFlags. In the case of delayed completion, the value pointed to by lpFlags is not updated. When completion has been indicated the WinSock SPI client should call WSPGetOverlappedResult() and examine the flags pointed to by the lpdwFlags parameter.

Overlapped socket I/O:

If an overlapped operation completes immediately, WSPRecv() returns a value of zero and the lpNumberOfBytesRecvd parameter is updated with the number of bytes received and the flag bits pointed by the lpFlags parameter are also updated. If the overlapped operation is successfully initiated and will complete later, WSPRecv() returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case, lpNumberOfBytesRecvd and lpFlags is not updated. When the overlapped operation completes the amount of data transferred is indicated either via the cbTransferred parameter in the completion routine (if specified), or via the lpcbTransfer parameter in WSPGetOverlappedResult(). Flag values are obtained by examining the lpdwFlags parameter of WSPGetOverlappedResult().

Providers must allow this function to be called from within the completion routine of a previous WSPRecv(), WSPRecvFrom(), WSPSend() or WSPSendTo() function. However, for a given socket, I/O completion routines may not be nested. This permits time-sensitive data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If multiple I/O operations are simultaneously outstanding, each must reference a separate overlapped structure. The WSAOVERLAPPED structure has the following form:

	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// reserved

		DWORD		OffsetHigh;		// reserved

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the service provider signals the hEvent field of lpOverlapped when the overlapped operation completes if it contains a valid event object handle. A WinSock SPI client can use WSPGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the WinSock SPI client to pass context information to the completion routine. A client that passes a non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the same overlapped IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the hEvent field would produce unpredictable results.

It is the service provider’s responsibility to arrange for invocation of the client-specified completion routine when the overlapped operation completes. Since the completion routine must be executed in the context of the same thread that initiated the overlapped operation, it cannot be invoked directly from the service provider. The WinSock DLL offers an asynchronous procedure call (APC) mechanism to facilitate invocation of completion routines.

A service provider arranges for a function to be executed in the proper thread and process context by calling WPUQueueApc(). This function can be called from any process and thread context, even a context different from the thread and process that was used to initiate the overlapped operation.()()

WPUQueueApc() takes as input parameters a pointer to a WSATHREADID structure (supplied to the provider via the lpThreadId input parameter), a pointer to an APC function to be invoked, and a 32 bit context value that is subsequently passed to the APC function. Because only a single 32 bit context value is available, the APC function cannot itself be the client-specified completion routine. The service provider must instead supply a pointer to its own APC function which uses the supplied context value to access the needed result information for the overlapped operation, and then invokes the client-specified completion routine.

The prototype for the client-supplied completion routine is as follows:

void CALLBACK �CompletionRoutine(�	IN	DWORD 		dwError, �	IN	DWORD 		cbTransferred, �	IN	LPWSAOVERLAPPED	lpOverlapped, �	IN	DWORD 		dwFlags �);

CompletionRoutine is a placeholder for a client-supplied function name. dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred specifies the number of bytes received. dwFlags contains information that would have appeared in lpFlags if the receive operation had completed immediately. This function does not return a value.

The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed. However, the posted buffers are guaranteed to be filled in the same order they are supplied.

Return Value	If no error occurs and the receive operation has completed immediately, WSPRecvFrom() returns 0. Note that in this case the completion routine, if specified will have already been queued. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno. The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time. Any other error code indicates that no overlapped operations was initiated and no completion indication will occur.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEFAULT	The lpFromlen argument was invalid: the lpFrom buffer was too small to accommodate the peer address, or lpBuffers is not totally contained within a valid part of the user address space.

WSAEINTR	The (blocking) call was canceled via WSPCancelBlockingCall().

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAEINVAL	The socket has not been bound (e.g., with WSPBind()), or the socket is not created with the overlapped flag.

WSAEISCONN	The socket is connected. This function is not permitted with a connected socket, whether the socket is connection-oriented or connectionless.

WSAENETRESET	The connection has been broken due to “keep-alive” activity detecting a failure while the operation was in progress.

WSAENOTSOCK	The descriptor is not a socket.

WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only send operations.

WSAESHUTDOWN	The socket has been shutdown; it is not possible to WSPRecvFrom() on a socket after WSPShutdown() has been invoked with how set to SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK	Overlapped sockets: There are too many outstanding overlapped I/O requests. Non-overlapped sockets: The socket is marked as non-blocking and the receive operation cannot be completed immediately.

WSAEMSGSIZE	The message was too large to fit into the specified buffer and (for unreliable protocols only) any trailing portion of the message that did not fit into the buffer has been discarded.

WSAECONNRESET	The virtual circuit was reset by the remote side executing a “hard” or “abortive” close. The application should close the socket as it is no longer useable. On a UDP datagram socket this error would indicate that a previous send operation resulted in an ICMP "Port Unreachable" message.

WSAEDISCON	Socket s is message oriented and the virtual circuit was gracefully closed by the remote side.

WSA_IO_PENDING	An overlapped operation was successfully initiated and completion will be indicated at a later time.

WSA_OPERATION_ABORTED	The overlapped operation has been canceled due to the closure of the socket.

See Also	WSPSocket(), WSPGetOverlappedResult(), WPUQueueApc()

�� AUTONUMLGL � WSPSelect()

Description	Determine the status of one or more sockets.

 	#include <ws2spi.h>

 	int WSPAPI �WSPSelect(�	IN		int 				nfds, �	IN OUT		fd_set FAR * 			readfds, �	IN OUT		fd_set FAR * 			writefds, �	IN OUT		fd_set FAR * 			exceptfds, �	IN		const struct timeval FAR * 	timeout, �	OUT		LPINT 				lpErrno�);

nfds	This argument is ignored and included only for the sake of compatibility.

readfds	An optional pointer to a set of sockets to be checked for readability.

writefds	An optional pointer to a set of sockets to be checked for writability

exceptfds	An optional pointer to a set of sockets to be checked for errors.

timeout	The maximum time for WSPSelect() to wait, or NULL for a blocking operation.

lpErrno	A pointer to the error code.

Remarks	This function is used to determine the status of one or more sockets. For each socket, the caller may request information on read, write or error status. The set of sockets for which a given status is requested is indicated by an fd_set structure. All entries in an fd_set correspond to sockets created by the service provider (that is, the WSAPROTOCOL_INFOW structures describing their protocols have the same providerId value). Upon return, the structures are updated to reflect the subset of these sockets which meet the specified condition, and WSPSelect() returns the total number of sockets meeting the conditions. A set of macros is provided for manipulating an fd_set. These macros are compatible with those used in the Berkeley software, but the underlying representation is completely different.

The parameter readfds identifies those sockets which are to be checked for readability. If the socket is currently WSPListen()ing, it will be marked as readable if an incoming connection request has been received, so that a WSPAccept() is guaranteed to complete without blocking. For other sockets, readability means that queued data is available for reading so that a WSPRecv() or WSPRecvfrom() is guaranteed not to block.

For connection-oriented sockets, readability may also indicate that a close request has been received from the peer. If the virtual circuit was closed gracefully, then a WSPRecv() will return immediately with 0 bytes read. If the virtual circuit was reset, then a WSPRecv() will complete immediately with an error code, such as WSAECONNRESET. The presence of out-of-band data will be checked if the socket option SO_OOBINLINE has been enabled (see WSPSetSockOpt()).

The parameter writefds identifies those sockets which are to be checked for writability. If a socket is WSPConnect()ing, writability means that the connection establishment successfully completed. If the socket is not in the process of WSPConnect()ing, writability means that a WSPSend() or WSPSendTo() are guaranteed to succeed. However, they may block on a blocking socket if the len exceeds the amount of outgoing system buffer space available.. [It is not specified how long these guarantees can be assumed to be valid, particularly in a multithreaded environment.]

The parameter exceptfds identifies those sockets which are to be checked for the presence of out-of-band data (see section 3.12.5. Out-Of-Band data for a discussion of this topic) or any exceptional error conditions. Note that out-of-band data will only be reported in this way if the option SO_OOBINLINE is FALSE. If a socket is WSPConnect()ing (non-blocking), failure of the connect attempt is indicated in exceptfds. This specification does not define which other errors will be included.

Any two of readfds, writefds, or exceptfds may be given as NULL if no descriptors are to be checked for the condition of interest. At least one must be non-NULL, and any non-NULL descriptor set must contain at least one socket descriptor.

Summary: A socket will be identified in a particular set when WSPSelect() returns if:

readfds:	* If WSPListen()ing, a connection is pending, WSPAccept() will succeed

	* Data is available for reading (includes OOB data if SO_OOBINLINE is enabled)

	* Connection has been closed/reset/aborted

writefds:	* If WSPConnect()ing (non-blocking), connection has succeeded.

	* Data may be sent

exceptfds:	* If WSPConnect()ing (non-blocking), connection attempt failed.

	* OOB data is available for reading (only if SO_OOBINLINE is disabled)

Three macros and one upcall function are defined in the header file ws2spi.h for manipulating and checking the descriptor sets. The variable FD_SETSIZE determines the maximum number of descriptors in a set. (The default value of FD_SETSIZE is 64, which may be modified by #defining FD_SETSIZE to another value before #including ws2spi.h.) Internally, socket handles in a fd_set are not represented as bit flags as in Berkeley Unix. Their data representation is opaque. Use of these macros will maintain software portability between different socket environments. The macros to manipulate and check fd_set contents are:

FD_CLR(s, *set)		Removes the descriptor s from set.

FD_SET(s, *set)		Adds descriptor s to set.

FD_ZERO(*set)		Initializes the set to the NULL set.

The upcall function used to check the membership is:

	int WPUFDIsSet (SOCKET s, FD_SET FAR * set);

which will return nonzero if s is a member of the set, or zero otherwise.

The parameter timeout controls how long the WSPSelect() may take to complete. If timeout is a null pointer, WSPSelect() will block indefinitely until at least one descriptor meets the specified criteria. Otherwise, timeout points to a struct timeval which specifies the maximum time that WSPSelect() should wait before returning. When WSPSelect() returns, the contents of the struct timeval are not altered. If the timeval is initialized to {0, 0}, WSPSelect() will return immediately; this is used to "poll" the state of the selected sockets. If this is the case, then the WSPSelect() call is considered nonblocking and the standard assumptions for nonblocking calls apply. For example, the blocking hook will not be called, and the WinSock provider will not yield.

Return Value	WSPSelect() returns the total number of descriptors which are ready and contained in the fd_set structures, or SOCKET_ERROR if an error occurred. If the return value is SOCKET_ERROR, a specific error code is available in lpErrno.

Comments	WSPSelect() has no effect on the persistence of socket events registered with WSPAsyncSelect() or WSPEventSelect().

Error Codes	WSAEFAULT	The WinSock service provider was unable to allocated needed resources for its internal operations, or the readfds, writefds, exceptfds or timeval parameters are not part of the user address space.

WSAENETDOWN	The network subsystem has failed.

WSAEINVAL	The timeout value is not valid, or all three descriptor parameters were NULL.

WSAEINTR	The (blocking) call was canceled via WSPCancelBlockingCall().

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAENOTSOCK	One of the descriptor sets contains an entry which is not a socket.

See Also	WSPAccept(), WSPConnect(), WSPRecv(), WSPRecvFrom(), WSPSend(), WSPSendTo(), WSPEventSelect()

�� AUTONUMLGL � WSPSend()

Description	Send data on a connected socket.

 	#include <ws2spi.h>

	int WSPAPI �WSPSend(�	IN	SOCKET 				s, �	IN	LPWSABUF 				lpBuffers, �	IN	DWORD 				dwBufferCount, �	OUT	LPDWORD 				lpNumberOfBytesSent, �	IN	DWORD 				dwFlags, �	IN	LPWSAOVERLAPPED 			lpOverlapped,�	IN	LPWSAOVERLAPPED_COMPLETION_ROUTINE�							lpCompletionRoutine�	IN	LPWSATHREADID			lpThreadId, �	OUT	LPINT 					lpErrno �);

s	A descriptor identifying a connected socket.

lpBuffers	A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer. This array must remain valid for the duration of the send operation.

	typedef struct __WSABUF {

		u_long	len;	// buffer length

		char FAR *	buf;	// pointer to buffer

	} WSABUF, FAR * LPWSABUF;

dwBufferCount	The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesSent	A pointer to the number of bytes sent by this call.

dwFlags	Specifies the way in which the call is made.

lpOverlapped	A pointer to a WSAOVERLAPPED structure. (ignored for non-overlapped sockets)

lpCompletionRoutine	A pointer to the completion routine called when the send operation has been completed. (ignored for non-overlapped sockets)

lpThreadId	A pointer to a thread ID structure to be used by the provider in a subsequent call to WPUQueueApc().The provider should store the referenced WSATHREADID structure (not the pointer to same) until after the WPUQueueApc() function returns.

lpErrno	A pointer to the error code.

Remarks	WSPSend() is used to write outgoing data from one or more buffers on a connection-oriented socket specified by s. It may also be used, however, on connectionless sockets which have a stipulated default peer address established via the WSPConnect() function.

For overlapped sockets (created using WSPSocket() with flag WSA_FLAG_OVERLAPPED) this will occur using overlapped I/O, unless both lpOverlapped and lpCompletionRoutine are NULL in which case the socket is treated as a non-overlapped socket. A completion indication will occur (invocation of the completion routine or setting of an event object) when the supplied buffer(s) have been consumed by the transport. If the operation does not complete immediately, the final completion status is retrieved via the completion routine or WSPGetOverlappedResult().

For non-overlapped sockets, the parameters lpOverlapped, lpCompletionRoutine, and lpThreadId are ignored and WSPSend() adopts the regular synchronous semantics. Data is copied from the supplied buffer(s) into the transport’s buffer. If the socket is non-blocking and stream-oriented, and there is not sufficient space in the transport’s buffer, WSPSend() will return with only part of the supplied buffers having been consumed. Given the same buffer situation and a blocking socket, WSPSend() will block until all of the supplied buffer contents have been consumed.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this operation completes in an overlapped manner, it is the service provider’s responsibility to capture these WSABUF structures before returning from this call. This enables applications to build stack-based WSABUF arrays.

	

For message-oriented sockets, care must be taken not to exceed the maximum message size of the underlying provider, which can be obtained by getting the value of socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSPSend() does not indicate that the data was successfully delivered.

dwFlags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket. That is, the semantics of this function are determined by the socket options and the dwFlags parameter. The latter is constructed by or-ing any of the following values:

Value	Meaning

MSG_DONTROUTE�Specifies that the data should not be subject to routing. A WinSock service provider may choose to ignore this flag;.

MSG_OOB	Send out-of-band data (stream style socket such as SOCK_STREAM only).

MSG_PARTIAL	Specifies that lpBuffers only contains a partial message. Note that the error code WSAEOPNOTSUPP will be returned which do not support partial message transmissions.

Overlapped socket I/O:

If an overlapped operation completes immediately, WSPSend() returns a value of zero and the lpNumberOfBytesSent parameter is updated with the number of bytes sent. If the overlapped operation is successfully initiated and will complete later, WSPSend() returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case, lpNumberOfBytesSent is not updated. When the overlapped operation completes the amount of data transferred is indicated either via the cbTransferred parameter in the completion routine (if specified), or via the lpcbTransfer parameter in WSPGetOverlappedResult().

Providers must allow this function to be called from within the completion routine of a previous WSPRecv(), WSPRecvFrom(), WSPSend() or WSPSendTo() function. However, for a given socket, I/O completion routines may not be nested. This permits time-sensitive data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If multiple I/O operations are simultaneously outstanding, each must reference a separate overlapped structure. The WSAOVERLAPPED structure has the following form:

	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// reserved

		DWORD		OffsetHigh;		// reserved

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the service provider signals the hEvent field of lpOverlapped when the overlapped operation completes if it contains a valid event object handle. The WinSock SPI client can use WSPGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the WinSock SPI client to pass context information to the completion routine. A client that passes a non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the same overlapped IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the hEvent field would produce unpredictable results.

It is the service provider’s responsibility to arrange for invocation of the client-specified completion routine when the overlapped operation completes. Since the completion routine must be executed in the context of the same thread that initiated the overlapped operation, it cannot be invoked directly from the service provider. The WinSock DLL offers an asynchronous procedure call (APC) mechanism to facilitate invocation of completion routines.

A service provider arranges for a function to be executed in the proper thread and process context by calling WPUQueueApc(). This function can be called from any process and thread context, even a context different from the thread and process that was used to initiate the overlapped operation.()()

WPUQueueApc() takes as input parameters a pointer to a WSATHREADID structure (supplied to the provider via the lpThreadId input parameter), a pointer to an APC function to be invoked, and a 32 bit context value that is subsequently passed to the APC function. Because only a single 32 bit context value is available, the APC function cannot itself be the client-specified completion routine. The service provider must instead supply a pointer to its own APC function which uses the supplied context value to access the needed result information for the overlapped operation, and then invokes the client-specified completion routine.

The prototype for the client-supplied completion routine is as follows:

void CALLBACK �CompletionRoutine(�	IN	DWORD 		dwError, �	IN	DWORD 		cbTransferred, �	IN	LPWSAOVERLAPPED	lpOverlapped, �	IN	DWORD 		dwFlags �);

CompletionRoutine is a placeholder for a client supplied function name. dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred specifies the number of bytes sent. No flag values are currently defined and the dwFlags value will be zero. This function does not return a value.

The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed. However, the service provider guarantees to the client that posted buffers are sent in the same order they are supplied.

Return Value	If no error occurs and the send operation has completed immediately, WSPSend() returns 0. Note that in this case the completion routine, if specified, will have already been queued. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno. The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time. Any other error code indicates that no overlapped operation was initiated and no completion indication will occur.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEACCES	The requested address is a broadcast address, but the appropriate flag was not set.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAEFAULT	The lpBuffers argument is not totally contained in a valid part of the user address space.

WSAENETRESET	The connection has been broken due to “keep-alive” activity detecting a failure while the operation was in progress.

WSAENOBUFS	The WinSock provider reports a buffer deadlock.

WSAENOTCONN	The socket is not connected.

WSAENOTSOCK	The descriptor is not a socket.

WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, MSG_PARTIAL is not supported, or the socket is unidirectional and supports only receive operations.

WSAESHUTDOWN	The socket has been shutdown; it is not possible to WSPSend() on a socket after WSPShutdown() has been invoked with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK	Overlapped sockets: There are too many outstanding overlapped I/O requests. Non-overlapped sockets: The socket is marked as non-blocking and the send operation cannot be completed immediately.

WSAEMSGSIZE	The socket is message-oriented, and the message is larger than the maximum supported by the underlying transport.

WSAEINVAL	The socket has not been bound with WSPBind(), or the socket is not created with the overlapped flag.

WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET	The virtual circuit was reset by the remote side.

WSA_OPERATION_ABORTED	The overlapped operation has been canceled due to the closure of the socket, or the execution of the SIO_FLUSH command in WSPIoctl().

See Also	WSPSocket(), WSPGetOverlappedResult(), WPUQueueApc()

�� AUTONUMLGL � WSPSendDisconnect()

Description	Initiate termination of the connection for the socket and send disconnect data.

 	#include <ws2spi.h>

	int WSPAPI �WSPSendDisconnect (�	IN	SOCKET 			s, �	IN	LPWSABUF 			lpOutboundDisconnectData,�	OUT	LPINT 				lpErrno �);

s			A descriptor identifying a socket.

lpOutboundDisconnectData	A pointer to the outgoing disconnect data.

lpErrno		A pointer to the error code.

Remarks	WSPSendDisconnect() is used on connection-oriented sockets to disable transmission, and to initiate termination of the connection along with the transmission of disconnect data, if any.

	After this function has been successfully issued, subsequent sends are disallowed.

lpOutboundDisconnectData, if not NULL, points to a buffer containing the outgoing disconnect data to be sent to the remote party.

Note that WSPSendDisconnect() does not close the socket, and resources attached to the socket will not be freed until WSPCloseSocket() is invoked.

Comments	WSPSendDisconnect() does not block regardless of the SO_LINGER setting on the socket.

A WinSock SPI client should not rely on being able to re-use a socket after it has been WSPSendDisconnect()ed. In particular, a WinSock provider is not required to support the use of WSPConnect() on such a socket.

Return Value	If no error occurs, WSPSendDisconnect() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAENOPROTOOPT	The parameter lpOutboundDisconnectData is not NULL, and the disconnect data is not supported by the service provider.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAENOTCONN	The socket is not connected (connection-oriented sockets only).

WSAENOTSOCK	The descriptor is not a socket.

WSAEFAULT	The lpOutboundDisconnectData argument is not totally contained in a valid part of the user address space.

See Also	WSPConnect(), WSPSocket().

�� AUTONUMLGL � WSPSendTo()

Description	Send data to a specific destination using overlapped I/O.

 	#include <ws2spi.h>

	int WSPAPI �WSPSendTo(�	IN	SOCKET 				s, �	IN	LPWSABUF 				lpBuffers, �	IN	DWORD 				dwBufferCount, �	OUT	LPDWORD 				lpNumberOfBytesSent, �	IN	DWORD 				dwFlags, �	IN	const struct sockaddr FAR * 		lpTo, �	IN	int					iTolen, �	IN	LPWSAOVERLAPPED			lpOverlapped, �	IN	LPWSAOVERLAPPED_COMPLETION_ROUTINE�							lpCompletionRoutine,� 	IN	LPWSATHREADID 			lpThreadId, �	OUT	LPINT 					lpErrno�);

s	A descriptor identifying a (possibly connected) socket.

lpBuffers	A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer. This array must remain valid for the duration of the send operation.

	typedef struct __WSABUF {

		u_long	len;	// buffer length

		char FAR *	buf;	// pointer to buffer

	} WSABUF, FAR * LPWSABUF;

dwBufferCount	The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesSent	A pointer to the number of bytes sent by this call.

dwFlags	Specifies the way in which the call is made.

lpTo	An optional pointer to the address of the target socket.

iTolen	The size of the address in lpTo.

lpOverlapped	A pointer to a WSAOVERLAPPED structure. (ignored for non-overlapped sockets)

lpCompletionRoutine	A pointer to the completion routine called when the send operation has been completed. (ignored for non-overlapped sockets)

lpThreadId	A pointer to a thread ID structure to be used by the provider in a subsequent call to WPUQueueApc().The provider should store the referenced WSATHREADID structure (not the pointer to same) until after the WPUQueueApc() function returns.

lpErrno	A pointer to the error code.

Remarks	WSPSendTo() is normally used on a connectionless socket specified by s to send a datagram contained in one or more buffers to a specific peer socket identified by the lpTo parameter. Even if the connectionless socket has been previously connect()ed to a specific address, lpTo overrides the destination address for that particular datagram only. On a connection-oriented socket, the lpTo and iToLen parameters are ignored; in this case the WSPSendTo() is equivalent to WSPSend().

For overlapped sockets (created using WSPSocket() with flag WSA_FLAG_OVERLAPPED) this will occur using overlapped I/O, unless both lpOverlapped and lpCompletionRoutine are NULL in which case the socket is treated as a non-overlapped socket. A completion indication will occur (invocation of the completion routine or setting of an event object) when the supplied buffer(s) have been consumed by the transport. If the operation does not complete immediately, the final completion status is retrieved via the completion routine or WSPGetOverlappedResult().

For non-overlapped sockets, the parameters lpOverlapped, lpCompletionRoutine, and lpThreadId are ignored and WSPSendTo() adopts the regular synchronous semantics. Data is copied from the supplied buffer(s) into the transport’s buffer. If the socket is non-blocking and stream-oriented, and there is not sufficient space in the transport’s buffer, WSPSendTo() will return with only part of the WinSock SPI client’s buffers having been consumed. Given the same buffer situation and a blocking socket, WSPSendTo() will block until all of the WinSock SPI client’s buffer contents have been consumed.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this operation completes in an overlapped manner, it is the service provider’s responsibility to capture these WSABUF structures before returning from this call. This enables applications to build stack-based WSABUF arrays.

	For message-oriented sockets, care must be taken not to exceed the maximum message size of the underlying transport, which can be obtained by getting the value of socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSPSendTo() does not indicate that the data was successfully delivered.

iFlags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket. That is, the semantics of this function are determined by the socket options and the dwFlags parameter. The latter is constructed by OR-ing any of the following values:

Value	Meaning

MSG_DONTROUTE�Specifies that the data should not be subject to routing. A WinSock service provider may choose to ignore this flag.

MSG_OOB	Send out-of-band data (stream style socket such as SOCK_STREAM only; see also section 3.12.5. Out-Of-Band data)

MSG_PARTIAL	Specifies that lpBuffers only contains a partial message. Note that the error code WSAEOPNOTSUPP will be returned by transports which do not support partial message transmissions.

Overlapped socket I/O:

If an overlapped operation completes immediately, WSPSendTo() returns a value of zero and the lpNumberOfBytesSent parameter is updated with the number of bytes sent. If the overlapped operation is successfully initiated and will complete later, WSPSendTo() returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case, lpNumberOfBytesSent is not updated. When the overlapped operation completes the amount of data transferred is indicated either via the cbTransferred parameter in the completion routine (if specified), or via the lpcbTransfer parameter in WSPGetOverlappedResult().

Providers must allow this function to be called from within the completion routine of a previous WSPRecv(), WSPRecvFrom(), WSPSend() or WSPSendTo() function. However, for a given socket, I/O completion routines may not be nested. This permits time-sensitive data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If multiple I/O operations are simultaneously outstanding, each must reference a separate overlapped structure. The WSAOVERLAPPED structure has the following form:

	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// reserved

		DWORD		OffsetHigh;		// reserved

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the service provider signals the hEvent field of lpOverlapped when the overlapped operation completes if it contains a valid event object handle. WinSock SPI clients can use WSPGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the WinSock SPI client to pass context information to the completion routine. A client that passes a non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the same overlapped IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the hEvent field would produce unpredictable results.

It is the service provider’s responsibility to arrange for invocation of the client-specified completion routine when the overlapped operation completes. Since the completion routine must be executed in the context of the same thread that initiated the overlapped operation, it cannot be invoked directly from the service provider. The WinSock DLL offers an asynchronous procedure call (APC) mechanism to facilitate invocation of completion routines.

A service provider arranges for a function to be executed in the proper thread and process context by calling WPUQueueApc(). This function can be called from any process and thread context, even a context different from the thread and process that was used to initiate the overlapped operation.()()

WPUQueueApc() takes as input parameters a pointer to a WSATHREADID structure (supplied to the provider via the lpThreadId input parameter), a pointer to an APC function to be invoked, and a 32 bit context value that is subsequently passed to the APC function. Because only a single 32 bit context value is available, the APC function cannot itself be the client-specified completion routine. The service provider must instead supply a pointer to its own APC function which uses the supplied context value to access the needed result information for the overlapped operation, and then invokes the client-specified completion routine.

The prototype for the client-supplied completion routine is as follows:

void CALLBACK �CompletionRoutine(�	IN	DWORD 		dwError, �	IN	DWORD 		cbTransferred, �	IN	LPWSAOVERLAPPED	lpOverlapped, �	IN	DWORD 		dwFlags �);

CompletionRoutine is a placeholder for a client supplied function name. dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred specifies the number of bytes sent. No flag values are currently defined and the dwFlags value will be zero. This function does not return a value.

The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed. However, the service provider guarantees to the client that posted buffers are sent in the same order they are supplied.

Return Value	If no error occurs and the receive operation has completed immediately, WSPSendTo() returns 0. Note that in this case the completion routine, if specified, will have already been queued. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno. The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time. Any other error code indicates that no overlapped operation was initiated and no completion indication will occur.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEACCES	The requested address is a broadcast address, but the appropriate flag was not set.

WSAEINTR	The (blocking) call was canceled via WSPCancelBlockingCall().

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAEFAULT	The lpBuffers or lpTo parameters are not part of the user address space, or the lpTo argument is too small.

WSAENETRESET	The connection has been broken due to “keep-alive” activity detecting a failure while the operation was in progress.

WSAENOBUFS	The WinSock provider reports a buffer deadlock.

WSAENOTCONN	The socket is not connected (connection-oriented sockets only)

WSAENOTSOCK	The descriptor is not a socket.

WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, MSG_PARTIAL is not supported, or the socket is unidirectional and supports only receive operations.

WSAESHUTDOWN	The socket has been shutdown; it is not possible to WSPSendTo() on a socket after WSPShutdown() has been invoked with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK	Overlapped sockets: There are too many outstanding overlapped I/O requests. Non-overlapped sockets: The socket is marked as non-blocking and the send operation cannot be completed immediately.

WSAEMSGSIZE	The socket is message-oriented, and the message is larger than the maximum supported by the underlying transport.

WSAEINVAL	The socket has not been bound with WSPBind(), or the socket is not created with the overlapped flag.

WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET	The virtual circuit was reset by the remote side.

WSAEADDRNOTAVAIL	The remote address is not a valid address (e.g., ADDR_ANY).

WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.

WSAEDESTADDRREQ	A destination address is required.

WSAENETUNREACH	The network can't be reached from this host at this time.

WSA_OPERATION_ABORTED	The overlapped operation has been canceled due to the closure of the socket, or the execution of the SIO_FLUSH command in WSPIoctl().

See Also	WSPSocket(), WSPGetOverlappedResult(), WPUQueueApc()

�� AUTONUMLGL � WSPSetSockOpt()

Description	Set a socket option.

 	#include <ws2spi.h>

 	int WSPAPI �WSPSetSockOpt(�	IN	SOCKET 		s, �	IN	int 			level, �	IN	int			optname,

		IN	const char FAR * 	optval, �	IN	int 			optlen, �	OUT	LPINT 			lpErrno�);

s	A descriptor identifying a socket.

level	The level at which the option is defined; the supported levels include SOL_SOCKET. (See annex for more protocol-specific levels.)

optname	The socket option for which the value is to be set.

optval	A pointer to the buffer in which the value for the requested option is supplied.

optlen	The size of the optval buffer.

lpErrno	A pointer to the error code.

Remarks	WSPSetSockOpt() sets the current value for a socket option associated with a socket of any type, in any state. Although options may exist at multiple protocol levels, they are always present at the uppermost "socket'' level. Options affect socket operations, such as whether broadcast messages may be sent on the socket, etc.

There are two types of socket options: Boolean options that enable or disable a feature or behavior, and options which require an integer value or structure. To enable a Boolean option, optval points to a nonzero integer. To disable the option optval points to an integer equal to zero. optlen should be equal to sizeof(int) for Boolean options. For other options, optval points to the an integer or structure that contains the desired value for the option, and optlen is the length of the integer or structure.

level = SOL_SOCKET����Value�Type�Meaning��SO_BROADCAST�BOOL�Allow transmission of broadcast messages on the socket.��SO_DEBUG�BOOL�Record debugging information. ��SO_DONTLINGER�BOOL�Don't block close waiting for unsent data to be sent. Setting this option is equivalent to setting SO_LINGER with l_onoff set to zero.��SO_DONTROUTE�BOOL�Don't route: send directly to interface.��SO_GROUP_PRIORITY�int�Reserved for future use with socket groups: Specify the relative priority to be established for sockets that are part of a socket group.��SO_KEEPALIVE�BOOL�Send keepalives��SO_LINGER�struct linger�Linger on close if unsent data is present��SO_OOBINLINE�BOOL�Receive out-of-band data in the normal data stream. ��SO_RCVBUF�int�Specify the total per-socket buffer space reserved for receives. This is unrelated to SO_MAX_MSG_SIZE or the size of a TCP window.��SO_REUSEADDR�BOOL�Allow the socket to be bound to an address which is already in use. (See bind().) ��SO_SNDBUF�int�Specify the total per-socket buffer space reserved for sends. This is unrelated to SO_MAX_MSG_SIZE or the size of a TCP window.��PVD_CONFIG�Service Provider Dependent�This object stores the configuration information for the service provider associated with socket s. The exact format of this data structure is service provider specific.������Calling WSPGetSockOpt() with an unsupported option will result in an error code of WSAENOPROTOOPT being returned in lpErrno.

SO_DEBUG

WinSock service providers are encouraged (but not required) to supply output debug information if the SO_DEBUG option is set by a WinSock SPI client. The mechanism for generating the debug information and the form it takes are beyond the scope of this specification.

SO_GROUP_PRIORITY

Reserved for future use with socket groups: Group priority indicates the priority of the specified socket relative to other sockets within the socket group. Values are non-negative integers, with zero corresponding to the highest priority. Priority values represent a hint to the service provider about how potentially scarce resources should be allocated. For example, whenever two or more sockets are both ready to transmit data, the highest priority socket (lowest value for SO_GROUP_PRIORITY) should be serviced first, with the remainder serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error is indicated for non group sockets or for service providers which do not support group sockets.

SO_KEEPALIVE

An WinSock SPI client may request that a TCP/IP provider enable the use of "keep-alive" packets on TCP connections by turning on the SO_KEEPALIVE socket option. A WinSock provider need not support the use of keep-alives: if it does, the precise semantics are implementation-specific but should conform to section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts -- Communication Layers. If a connection is dropped as the result of "keep-alives" the error code WSAENETRESET is returned to any calls in progress on the socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER

SO_LINGER controls the action taken when unsent data is queued on a socket and a WSPCloseSocket() is performed. See WSPCloseSocket() for a description of the way in which the SO_LINGER settings affect the semantics of WSPCloseSocket(). The WinSock SPI client sets the desired behavior by creating a struct linger (pointed to by the optval argument) with the following elements:

struct linger {

	u_short	l_onoff;

	u_short	l_linger;

}

To enable SO_LINGER, a WinSock SPI client should set l_onoff to a non-zero value, set l_linger to 0 or the desired timeout (in seconds), and call WSPSetSockOpt(). To enable SO_DONTLINGER (i.e. disable SO_LINGER) l_onoff should be set to zero and WSPSetSockOpt() should be called. Note that enabling SO_LINGER with a non-zero timeout on a non-blocking socket is not recommended (see section 4.1.7. WSPCloseSocket() for details).

Enabling SO_LINGER also disables SO_DONTLINGER, and vice versa. Note that if SO_DONTLINGER is DISABLED (i.e. SO_LINGER is ENABLED) then no timeout value is specified. In this case the timeout used is implementation dependent. If a previous timeout has been established for a socket (by enabling SO_LINGER), then this timeout value should be reinstated by the service provider.

SO_REUSEADDR

By default, a socket may not be bound (see WSPBind()) to a local address which is already in use. On occasions, however, it may be desirable to "re-use" an address in this way. Since every connection is uniquely identified by the combination of local and remote addresses, there is no problem with having two sockets bound to the same local address as long as the remote addresses are different. To inform the WinSock provider that a WSPBind() on a socket should be allowed to bind to a local address that is already in use by another socket, the WinSock SPI client should set the SO_REUSEADDR socket option for the socket before issuing the WSPBind(). Note that the option is interpreted only at the time of the WSPBind(): it is therefore unnecessary (but harmless) to set the option on a socket which is not to be bound to an existing address, and setting or resetting the option after the WSPBind() has no effect on this or any other socket.

SO_RCVBUF

SO_SNDBUF

When a Windows Sockets implementation supports the SO_RCVBUF and SO_SNDBUF options, a WinSock SPI client may request different buffer sizes (larger or smaller). The call may succeed even though the service provider did not make available the entire amount requested. A WinSock SPI client must call WSPGetSockOpt() with the same option to check the buffer size actually provided.

PVD_CONFIG

This object stores the configuration information for the service provider associated with socket s. The exact format of this data structure is service provider specific.

Return Value	If no error occurs, WSPSetSockOpt() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEFAULT	optval is not in a valid part of the process address space or optlen argument is too small.

WSAEINPROGRESS	The function is invoked when a callback is in progress.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAEINVAL	level is not valid, or the information in optval is not valid.

WSAENETRESET	The connection has been broken due to “keep-alive” activity detecting a failure while the operation was in progress.

WSAENOPROTOOPT	The option is unknown or unsupported for the specified provider.

WSAENOTCONN	Connection has been reset when SO_KEEPALIVE is set.

WSAENOTSOCK	The descriptor is not a socket.

See Also	WSPBind(), WSPGetSockOpt(), WSPIoctl (), WSPSocket(), WSPEventSelect().

�� AUTONUMLGL � WSPShutdown()

Description	Disable sends and/or receives on a socket.

 	#include <ws2spi.h>

 	int WSPAPI �WSPShutdown(�	IN	SOCKET 	s, �	IN	int 		how, �	OUT	LPINT 		lpErrno�);

s	A descriptor identifying a socket.

how	A flag that describes what types of operation will no longer be allowed.

lpErrno	A pointer to the error code.

Remarks	WSPShutdown() is used on all types of sockets to disable reception, transmission, or both.

If how is SD_RECEIVE, subsequent receives on the socket will be disallowed. This has no effect on the lower protocol layers. For TCP sockets, if there is still data queued on the socket waiting to be received, or data arrives subsequently, the connection is reset, since the data cannot be delivered to the user. For UDP sockets, incoming datagrams are accepted and queued. In no case will an ICMP error packet be generated.

If how is SD_SEND, subsequent sends on the socket are disallowed. For TCP sockets, a FIN will be sent. Setting how to SD_BOTH disables both sends and receives as described above.

Note that WSPShutdown() does not close the socket, and resources attached to the socket will not be freed until WSPCloseSocket() is invoked.

Comments	WSPShutdown() does not block regardless of the SO_LINGER setting on the socket. A WinSock SPI client should not rely on being able to re-use a socket after it has been shut down. In particular, a WinSock service provider is not required to support the use of WSPConnect() on such a socket.

Return Value	If no error occurs, WSPShutdown() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEINVAL	how is not valid, or is not consistent with the socket type, e.g., SD_SEND is used with a UNI_RECV socket type.

WSAEINPROGRESS	The function is invoked when a callback is in progress.

WSAENOTCONN	The socket is not connected (connection-oriented sockets only).

WSAENOTSOCK	The descriptor is not a socket.

See Also	WSPConnect(), WSPSocket().

�� AUTONUMLGL � WSPSocket()

Description	Create a socket, optionally create and/or join a socket group.

	#include <ws2spi.h>

 	SOCKET WSPAPI �WSPSocket(�	IN	int 				af, �	IN	int 				type, �	IN	int 				protocol, �	IN	LPWSAPROTOCOL_INFOW 	lpProtocolInfo, �	IN	GROUP 			g, �	IN	DWORD 			dwFlags, �	OUT	LPINT 				lpErrno�);

af	An address family specification.

type	A type specification for the new socket.

protocol	A particular protocol to be used with the socket which is specific to the indicated address family.

lpProtocolInfo	A pointer to a WSAPROTOCOL_INFOW struct that defines the characteristics of the socket to be created.

g	Reserved for future use with socket groups: The identifier of the socket group which the new socket is to join.

dwFlags	The socket attribute specification.

lpErrno	A pointer to the error code.

Remarks	WSPSocket() causes a socket descriptor and any related resources to be allocated. By default, the created socket will not have the overlapped attribute. WinSock providers are encouraged to be realized as Windows installable file systems, and supply system file handles as socket descriptors. These providers must call WPUModifyIFSHandle() prior to returning from this function For non-file-system WinSock providers, WPUCreateSocketHandle() must be used to acquire a unique socket descriptor from the WinSock 2 DLL prior to returning from this function. See section 3.4.1. Descriptor Allocation for more information.

The values for af, type and protocol are those supplied by the application in the corresponding API functions socket() or WSASocket(). A service provider is free to ignore or pay attention to any or all of these values as is appropriate for the particular protocol. However, the provider must be willing to accept the value of zero for af and type, since the WinSock 2 DLL considers these to be wild card values. Also the value of manifest constant FROM_PROTOCOL_INFO must be accepted for any of af, type and protocol. This value indicates that the WinSock 2 application wishes to use the corresponding values from the indicated WSAPROTOCOL_INFOW struct: (iAddressFamily, iSocketType, iProtocol).

Reserved for future use with socket groups: Parameter g is used to indicate the appropriate actions on socket groups:

	if g is an existing socket group ID, join the new socket to this group, provided 			all the requirements set by this group are met; or

	if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket 			group and have the new socket be the first member; or

	if g = SG_CONSTRAINED_GROUP, create a constrained socket group and 			have the new socket be the first member; or

	if g = zero, no group operation is performed

Any set of sockets grouped together must be implemented by a single service provider. For unconstrained groups, any set of sockets may be grouped together. A constrained socket group may consist only of connection-oriented sockets, and requires that connections on all grouped sockets be to the same address on the same host. For newly created socket groups, the new group ID must be available for the WinSock SPI client to retrieve by calling WSPGetSockOpt() with option SO_GROUP_ID. A socket group and its associated ID remain valid until the last socket belonging to this socket group is closed. Socket group IDs are unique across all processes for a given service provider.

The dwFlags parameter may be used to specify the attributes of the socket by OR-ing any of the following Flags:

Flag	Meaning

WSA_FLAG_OVERLAPPED�This flag causes an overlapped socket to be created. Overlapped sockets may utilize WSPSend(), WSPSendTo(), WSPRecv(), WSPRecvFrom() and WSPIoctl() for overlapped I/O operations, which allows multiple operations to be initiated and in progress simultaneously. All functions that allow overlapped operation (WSPSend(), WSPRecv(),WSPSendTo(), WSPRecvFrom(), WSPIoctl()) also support non-overlapped usage on an overlapped socket if the values for parameters related to overlapped operation are NULL.

WSA_FLAG_MULTIPOINT_C_ROOT�Indicates that the socket created will be a c_root in a multipoint session. Only allowed if a rooted control plane is indicated in the protocol’s WSAPROTOCOL_INFOW struct.

WSA_FLAG_MULTIPOINT_C_LEAF�Indicates that the socket created will be a c_leaf in a multicast session. Only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the protocol’s WSAPROTOCOL_INFOW struct.

WSA_FLAG_MULTIPOINT_D_ROOT�Indicates that the socket created will be a d_root in a multipoint session. Only allowed if a rooted data plane is indicated in the protocol’s WSAPROTOCOL_INFOW struct.

WSA_FLAG_MULTIPOINT_D_LEAF�Indicates that the socket created will be a d_leaf in a multipoint session. Only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the protocol’s WSAPROTOCOL_INFOW struct.

Important note: for multipoint sockets, exactly one of WSA_FLAG_MULTIPOINT_C_ROOT or WSA_FLAG_MULTIPOINT_C_LEAF must be specified, and exactly one of WSA_FLAG_MULTIPOINT_D_ROOT or WSA_FLAG_MULTIPOINT_D_LEAF must be specified. Refer to Section 3.14. Protocol-Independent Multicast and Multipoint for additional information.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections, and must be in a connected state before any data may be sent or received on them. A connection to another socket is created with a WSPConnect() call. Once connected, data may be transferred using WSPSend() and WSPRecv() calls. When a session has been completed, a WSPCloseSocket() must be performed.

The communications protocols used to implement a reliable, connection-oriented socket ensure that data is not lost or duplicated. If data for which the peer protocol has buffer space cannot be successfully transmitted within a reasonable length of time, the connection is considered broken and subsequent calls will fail with the error code set to WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to and from arbitrary peers using WSPSendTo() and WSPRecvFrom(). If such a socket is WSPConnect()ed to a specific peer, datagrams may be sent to that peer using WSPSend() and may be received from (only) this peer using WSPRecv().

Support for sockets with type SOCK_RAW is not required but service providers are encouraged to support raw sockets whenever it makes sense to do so.

Shared Sockets	When a special WSAPROTOCOL_INFOW struct (obtained via the WSPDuplicateSocket() function and used to create additional descriptors for a shared socket) is passed as an input parameter to WSPSocket(), the g and dwFlags parameters are ignored.

Layered Service Provider considerations	�A layered service provider supplies an implementation of this function, but it is also a client of this function if and when it calls WSPSocket() of the next layer in the protocol chain. Some special considerations apply to this function’s lpProtocolInfo parameter as it is propagated down through the layers of the protocol chain.

If the next layer in the protocol chain is another layer then when the next layer’s WSPSocket() is called, this layer must pass to the next layer a lpProtocolInfo that references the same unmodified WSAPROTOCOL_INFOW structure with the same unmodified chain information. However, if the next layer is the base protocol (i.e., the last element in the chain), this layer performs a substitution when calling the base provider’s WSPSocket(). In this case, the base provider’s WSAPROTOCOL_INFOW structure should be referenced by the lpProtocolInfo parameter.

One vital benefit of this policy is that base service providers do not have to be aware of protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFOW structure through a layered sequence of other functions such as WSPAddressToString(), WSPDuplicateSocket(), WSPStartup(), or WSPStringToAddress().

Return Value	If no error occurs, WSPSocket() returns a descriptor referencing the new socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific error code is available in lpErrno.

Error Codes	WSAENETDOWN	The network subsystem has failed.

WSAEAFNOSUPPORT	The specified address family is not supported.

WSAEINPROGRESS	A blocking WinSock call is in progress, or the service provider is still processing a callback function.

WSAEMFILE	No more socket descriptors are available.

WSAENOBUFS	No buffer space is available. The socket cannot be created.

WSAEPROTONOSUPPORT	The specified protocol is not supported.

WSAEPROTOTYPE	The specified protocol is the wrong type for this socket.

WSAESOCKTNOSUPPORT	The specified socket type is not supported in this address family.

WSAEINVAL	The parameter g specified is not valid.

See Also	WSPAccept, WSPBind(), WSPConnect(), WSPGetSockName(), WSPGetSockOpt(), WSPSetSockOpt(), WSPListen(), WSPRecv(), WSPRecvFrom(), WSPSend(), WSPSendTo(), WSPShutdown(), WSPIoctl(), WPUCreateSocketHandle().

�� AUTONUMLGL � WSPStartup()

Description	Initiate use of a WinSock service provider by a client.

 	#include <ws2spi.h>

 	int WSPAPI �WSPStartup(�	IN	WORD 				wVersionRequested, �	OUT	LPWSPDATA			lpWSPData, �	IN	LPWSAPROTOCOL_INFOW	lpProtocolInfo,�	IN	WSPUPCALLTABLE 		UpcallTable,�	OUT	LPWSPPROC_TABLE		lpProcTable�);

wVersionRequested	The highest version of WinSock SPI support that the caller can use. The high order byte specifies the minor version (revision) number; the low-order byte specifies the major version number.

lpWSPData	A pointer to the WSPDATA data structure that is to receive details of the WinSock service provider.

lpProtocolInfo	A pointer to a WSAPROTOCOL_INFOW struct that defines the characteristics of the desired protocol. This is especially useful when a single provider DLL is capable of instantiating multiple different service providers..

UpcallTable	The WinSock 2 DLL’s upcall dispatch table.

lpProcTable	A pointer to the table of SPI function pointers.

Remarks	This function MUST be the first WinSock SPI function called by a WinSock SPI client on a per-process basis. It allows the client to specify the version of WinSock SPI required and to provide its upcall dispatch table. All upcalls, i.e., functions prefixed with WPU, made by the WinSock service provider are invoked via the client’s upcall dispatch table. This function also allows the client to retrieve details of the specific WinSock service provider implementation. The WinSock SPI client may only issue further WinSock SPI functions after a successful WSPStartup() invocation. A table of pointers to the rest of the SPI functions is retrieved via the lpProcTable parameter.

In order to support future versions of the WinSock SPI and the WinSock 2 DLL which may have functionality differences from the current WinSock SPI, a negotiation takes place in WSPStartup(). The caller of WSPStartup() (either the WinSock 2 DLL or a layered protocol) and the WinSock service provider indicate to each other the highest version that they can support, and each confirms that the other's highest version is acceptable. Upon entry to WSPStartup(), the WinSock service provider examines the version requested by the client. If this version is equal to or higher than the lowest version supported by the service provider, the call succeeds and the service provider returns in wHighVersion the highest version it supports and in wVersion the minimum of its high version and wVersionRequested. The WinSock service provider then assumes that the WinSock SPI client will use wVersion. If the wVersion field of the WSPDATA structure is unacceptable to the caller, it should call WSPCleanup() and either search for another WinSock service provider or fail to initialize.

This negotiation allows both a WinSock service provider and a WinSock SPI client to support a range of WinSock versions. A client can successfully utilize a WinSock service provider if there is any overlap in the version ranges. The following chart gives examples of how WSPStartup() works in conjunction with different WinSock DLL and WinSock service provider (SP) versions:

DLL versions�SP Versions�wVersionRequested�wVersion�wHighVersion�End Result ��1.1�1.1�1.1�1.1�1.1�use 1.1��1.0 1.1�1.0�1.1�1.0�1.0�use 1.0 ��1.0�1.0 1.1�1.0�1.0�1.1�use 1.0��1.1�1.0 1.1�1.1�1.1�1.1�use 1.1��1.1�1.0�1.1�1.0�1.0�DLL fails��1.0�1.1�1.0�---�---�WSAVERNOTSUPPORTED��1.0 1.1�1.0 1.1�1.1�1.1�1.1�use 1.1��1.1 2.0�1.1�2.0�1.1�1.1�use 1.1��2.0�2.0�2.0�2.0�2.0�use 2.0��

The following code fragment demonstrates how a WinSock SPI client which supports only version 2.2 of WinSock SPI makes a WSPStartup() call:

WORD wVersionRequested;

WSPDATA WSPData;

int err;

WSPUPCALLTABLE upcallTable =

{

	/* initialize upcallTable with function pointers */

};

LPWSPPROC_TABLE lpProcTable =

{

	/* allocate memory for the ProcTable */

};

wVersionRequested = MAKEWORD(2, 2);

err = WSPStartup(wVersionRequested, &WSPData, lpProtocolBuffer, upcallTable, lpProcTable);

if (err != 0) {

 /* Tell the user that we couldn't find a useable */

 /* WinSock service provider. */

 return;

}

/* Confirm that the WinSock service provider supports 2.2.*/

/* Note that if the service provider supports versions */

/* greater than 2.2 in addition to 2.2, it will still */

/* return 2.2 in wVersion since that is the version we */

/* requested. */

if (LOBYTE(WSPData.wVersion) != 2 ||

 HIBYTE(WSPData.wVersion) != 2) {

 /* Tell the user that we couldn't find a useable */

 /* WinSock service provider. */

 WSPCleanup();

 return;

}

/* The WinSock service provider is acceptable. Proceed. */

And this code fragment demonstrates how a WinSock service provider which supports only version 2.2 performs the WSPStartup() negotiation:

/* Make sure that the version requested is >= 2.2. */

/* The low byte is the major version and the high */

/* byte is the minor version. */

if ((LOBYTE(wVersionRequested) < 2) ||

 ((LOBYTE(wVersionRequested) == 2) &&

 (HIBYTE(wVersionRequested) < 2))) {

 return WSAVERNOTSUPPORTED;

}

/* Since we only support 2.2, set both wVersion and */

/* wHighVersion to 2.2. */

lpWSPData->wVersion = MAKEWORD(2, 2);

lpWSPData->wHighVersion = MAKEWORD(2, 2);

Once the WinSock SPI client has made a successful WSPStartup() call, it may proceed to make other WinSock SPI calls as needed. When it has finished using the services of the WinSock service provider, the client must call WSPCleanup() in order to allow the WinSock service provider to free any resources allocated for the client.

Details of how WinSock service provider information is encoded in the WSPData structure is as follows:

typedef struct WSPData {

	WORD			wVersion;

	WORD			wHighVersion;

	WCHAR 		szDescription[WSPDESCRIPTION_LEN+1];

} WSPDATA, FAR * LPWSPDATA;

The members of this structure are:

Element	Usage

wVersion	The version of the WinSock SPI specification that the WinSock service provider expects the caller to use.

wHighVersion	The highest version of the WinSock SPI specification that this service provider can support (also encoded as above). Normally this will be the same as wVersion.

szDescription	A null-terminated Unicode string into which the WinSock provider copies a description of itself. The text (up to 256 characters in length) may contain any characters except control and formatting characters: the most likely use that a SPI client will put this to is to display it (possibly truncated) in a status message.

A WinSock SPI client may call WSPStartup() more than once if it needs to obtain the WSPData structure information more than once. On each such call the client may specify any version number supported by the provider.

There must be one WSPCleanup() call corresponding to every successful WSPStartup() call to allow third-party DLLs to make use of a WinSock provider. This means, for example, that if WSPStartup() is called three times, the corresponding call to WSPCleanup() must occur three times. The first two calls to WSPCleanup() do nothing except decrement an internal counter; the final WSPCleanup() call does all necessary resource deallocation.

Note that this function (and most other service provider functions) can be invoked in a thread that started out as a 16-bit process if the client is a 16-bit WinSock 1.1 client. One important limitation of 16-bit processes is that a 16-bit process cannot create threads. This is significant to service provider implementers that plan to use an internal service thread as part of the implementation.

Fortunately, there are usually only two areas where the desire for a service thread is strong: (1) in the implementation of overlapped I/O completion, and (2) in the implementation of WSPEventSelect(). Both of these areas are only accessible through new WinSock 2 functions, which can only be invoked by 32-bit processes. A service thread can be safely used if several design rules are carefully followed: (1) Use a service thread only for functionality that is unavailable to 16-bit WinSock 1.1 clients, and (2) create the service thread only on demand.

Several other cautions apply to the use of internal service threads. First, threads generally carry some performance penalty. Use as few as possible, and avoid thread transitions wherever possible. Second, your code should always check for errors in creating threads and fail gracefully and informatively (e.g., with WSAEOPNOTSUPP) in case some execution scenario you did not expect results in a 16-bit process executing a code path that needs threads.

Layered Service Provider considerations	�A layered service provider supplies an implementation of this function, but it is also a client of this function when it calls WSPStartup() to initialize the next layer in the protocol chain. The call to the next layer’s WSPStartup() may happen during the execution of this layer’s WSPStartup() or it may be delayed and called on demand, such as when WSPSocket() is called. In any case, some special considerations apply to this function’s lpProtocolInfo parameter as it is propagated down through the layers of the protocol chain.

The layered provider searches the ProtocolChain of the structure referenced by lpProtocolInfo to determine its own location in the chain (by searching for the layer’s own catalog entry Id) and the identity of the next element in the chain. If the next element is another layer then when the next layer’s WSPStartup() is called, this layer must pass to the next layer a lpProtocolInfo that references the same unmodified WSAPROTOCOL_INFOW structure with the same unmodified chain information. However, if the next layer is the base protocol (i.e., the last element in the chain), this layer performs a substitution when calling the base provider’s WSPStartup(). In this case, the base provider’s WSAPROTOCOL_INFOW structure should be referenced by the lpProtocolInfo parameter.

One vital benefit of this policy is that base service providers do not have to be aware of protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFOW structure through a layered sequence of other functions such as WSPAddressToString(), WSPDuplicateSocket(), WSPSocket(), or WSPStringToAddress().

Return Value	WSPStartup() returns zero if successful. Otherwise it returns one of the error codes listed below.

Error Codes	WSASYSNOTREADY	Indicates that the underlying network subsystem is not ready for network communication.

WSAVERNOTSUPPORTED	The version of WinSock SPI support requested is not provided by this particular WinSock service provider.

WSAEINPROGRESS	A blocking Windows Sockets operation is in progress.

WSAEPROCLIM	Limit on the number of clients supported by the Windows Sockets implementation has been reached.

WSAEFAULT	The lpWSPData or lpProcTable parameter is invalid.

See Also	WSPSend(), WSPSendTo(), WSPCleanup()

�� AUTONUMLGL � WSPStringToAddress()

Description	WSPStringToAddress() converts a human-readable numeric string to a socket address structure (SOCKADDR) suitable for passing to Windows Sockets routines which take such a structure. Any missing components of the address will be defaulted to a reasonable value if possible. For example, a missing port number will be defaulted to zero.

INT WSPAPI

WSPStringToAddress(

	IN 		LPWSTR 			AddressString,

	IN 		INT 				AddressFamily,

	IN 		LPWSAPROTOCOL_INFOW 	lpProtocolInfo,

	OUT		LPSOCKADDR			lpAddress,

	IN OUT		LPINT 				lpAddressLength

	OUT		LPINT 				lpErrno

);

AddressString	points to the zero-terminated human-readable string to convert.

AddressFamily	the address family to which the string belongs, or AF_UNSPEC if it is unknown.

lpProtocolInfo	(required) the provider’s WSAPROTOCOL_INFOW struct.

lpAddress	a buffer which is filled with a single SOCKADDR structure.

lpAddressLength	The length of the Address buffer. Returns the size of the resultant SOCKADDR structure. If the supplied buffer is not large enough, the function fails with a specific error of WSAEFAULT and this parameter is updated with the required size in bytes.

lpErrno	A pointer to the error code.

Layered Service Provider considerations	�A layered service provider supplies an implementation of this function, but it is also a client of this function if and when it calls WSPStringToAddress() of the next layer in the protocol chain. Some special considerations apply to this function’s lpProtocolInfo parameter as it is propagated down through the layers of the protocol chain.

If the next layer in the protocol chain is another layer then when the next layer’s WSPStringToAddress() is called, this layer must pass to the next layer a lpProtocolInfo that references the same unmodified WSAPROTOCOL_INFOW structure with the same unmodified chain information. However, if the next layer is the base protocol (i.e., the last element in the chain), this layer performs a substitution when calling the base provider’s WSPStringToAddress(). In this case, the base provider’s WSAPROTOCOL_INFOW structure should be referenced by the lpProtocolInfo parameter.

One vital benefit of this policy is that base service providers do not have to be aware of protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFOW structure through a layered sequence of other functions such as WSPAddressToString(), WSPDuplicateSocket(), WSPStartup(), or WSPSocket().

Return Value	If no error occurs, WSPStringToAddress() returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Errors	WSAEFAULT	the specified Address buffer is too small. Pass in a larger buffer.

WSAEINVAL	unable to translate the string into a SOCKADDR, or the provider was unable to support the indicated address family, or the specified lpProtocolInfo did not refer to a WSAPROTOCOL_INFOW structure supported by the provider.

�� AUTONUMLGL � Upcalls

This section describes the “upcalls” that service providers may make into the Windows Sockets client. Service providers receive an upcall dispatch table as a parameter to WSPStartup(), and use entries in this table to make the upcalls. Therefore, a client does not need to export its “WPU” functions.

It is not mandatory that providers utilize all of these upcalls. The following table indicates which upcalls must be used and which are optional.

WPUCloseEvent()�Optional. The provider may use an appropriate OS call instead.��WPUCloseThread()�Optional. Most providers perform overlapped I/O in the context of the client thread, and do not need to open and close a separate thread Id.��WPUCloseSocketHandle()�Required. The WinSock 2 DLL needs to query and/or modify internal state information associated with the socket handle.��WPUCreateEvent()�Optional. The provider may use an appropriate OS call instead.��WPUCreateSocketHandle()�Required for non-IFS providers. The WinSock 2 DLL needs to query and/or modify internal state information associated with the socket handle.��WPUFDIsSet()�Optional. This is just a convenience function that knows how to dig through fd set structures. A provider may need to dig through these structures explicitly anyway. ��WPUGetProviderPath()�Required, since only the WinSock 2 DLL would know where an adjacent protocol layer (potentially from another vendor) has been installed.��WPUModifyIFSHandle()�Required for IFS providers. The WinSock 2 DLL needs to query and/or modify internal state information associated with the socket handle.��WPUOpenCurrentThread()�Optional. Most providers perform overlapped I/O in the context of the client thread, and do not need to open and close a separate thread Id.��WPUPostMessage()�Required for NT only, Win95 allows post message from kernel mode.��WPUQueryBlockingCallback()�Required. There is no corresponding OS functionality. Only the WinSock 2 DLL has the information to accomplish this.��WPUQuerySocketHandleContext()�Required for non-IFS providers. The WinSock 2 DLL needs to query and/or modify internal state information associated with the socket handle.��WPUQueueApc()�Optional. Win 32’s QueueUserApc() may also be used.��WPUResetEvent()�Optional. The provider may use an appropriate OS call instead.��WPUSetEvent()�Optional. The provider may use an appropriate OS call instead.��

�

� AUTONUMLGL � WPUCloseEvent()

Description	Closes an open event object handle.

	#include <ws2spi.h>

	BOOL WSPAPI �WPUCloseEvent(�	IN	WSAEVENT 	hEvent, �	OUT	LPINT 		lpErrno �);

hEvent	Identifies an open event object handle.

lpErrno	A pointer to the error code.

Return Value	If the function succeeds, the return value is TRUE.

	If the function fails, the return value is FALSE and a specific error code is available in lpErrno.

Error Codes	WSA_INVALID_HANDLE	hEvent is not a valid event object handle.

See Also	WPUCreateEvent().

�� AUTONUMLGL � WPUCloseSocketHandle()

Description	Closes an existing socket handle.

 	#include <ws2spi.h>

	int WSPAPI �WPUCloseSocketHandle(�	IN	SOCKET 	s, �	OUT	LPINT 		lpErrno�);

s	Identifies a socket handle created with WPUCreateSocketHandle().

lpErrno	A pointer to the error code.

Remarks	This routine closes an existing socket handle created by WPUCreateSocketHandle(). This function removes the socket from WinSock 2 DLL’s internal socket table. The owning service provider is responsible for releasing any resources associated with the socket.

Return Value	If no error occurs, WPUCreateSocketHandle() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAENOTSOCK	The descriptor is not a socket created by WPUCreateSocketHandle().

See Also	WPUCreateSocketHandle().

�� AUTONUMLGL � WPUCloseThread()

Description	Closes a thread opened via WPUOpenCurrentThread().

 	#include <ws2spi.h>

int WSPAPI�WPUCloseThread(�	IN	LPWSATHREADID	lpThreadId,�	OUT	LPINT			lpErrno�);

lpThreadId	A pointer to a WSATHREADID structure that identifies the thread context. This structure must have been initialized by a previous call to WPUOpenCurrentThread().

lpErrno	A pointer to the error code.

Return Value	If no error occurs, WPUCloseThread() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

See Also	WPUOpenCurrentThread().

�� AUTONUMLGL � WPUCompleteOverlappedRequest()

Description	Performs overlapped I/O completion notification for overlapped I/O operations where the client-specified completion mechanism is something other than user mode Asynchronous Procedure Call (APC). This function can only be used for socket handles created by WPUCreateSocketHandle().

Important Note	�This function is different from other functions with the “WPU” prefix in that it is NOT accessed through the upcall table. Instead, it is exported directly by WS2_32.DLL. Service providers that need to call this function should link with WS2_32.LIB or use appropriate Operating System functions such as LoadLibrary() and GetProcAddress() to retrieve the function pointer.

 	#include <ws2spi.h>

	int WSPAPI�WPUCompleteOverlappedRequest(�	IN	SOCKET			s,�	IN	LPWSAOVERLAPPED		lpOverlapped,�	IN	DWORD			dwError,�	IN	DWORD			cbTransferred,�	OUT	LPINT				lpErrno�);

s	Service provider socket created by WPUCreateSocketHandle()

lpOverlapped	A pointer to a WSAOVERLAPPED structure associated with the overlapped I/O operation whose completion is to be notified.

dwError	Completion status of the overlapped I/O operation whose completion is to be notified.

cbTransferred	Number of bytes transferred to or from client buffers (the direction of the transfer depends on the send or receive nature of the overlapped I/O operation whose completion is to be notified).

lpErrno	A pointer to the error code resulting from execution of this function.

Remarks	The function WPUCompleteOverlappedRequest() is used by service provider that do not implement Installable File System (IFS) functionality directly for the socket handles they expose. It performs completion notification for any overlapped I/O request for which the specified completion notification is other than a user-mode APC. WPUCompleteOverlappedRequest() is supported only for the socket handles created by WPUCreateSocketHandle() and not for sockets created by a service provider directly.

If the client selects a user-mode APC as the notification method, the service provider should use WPUQueueApc() or an other appropriate operating system function to perform the completion notification. If user-mode APC is not selected by the client, a service provider that does not implement IFS functionality directly cannot determine whether or not the client has associated a completion port with the socket handle. Thus it cannot determine whether the completion notification method should be queuing a completion status record to a completion port or signaling an event found in the WSAOVERLAPPED structure. The WinSock 2 architecture keeps track of any completion port association with a socket created by WPUCreateSocketHandle() and can make a correct decision between completion port based notification or event based notification.

When WPUCompleteOverlappedRequest() queues a completion indication, it sets the InternalHigh member of the WSAOVERLAPPED structure to the count of bytes transferred. Then it sets the Internal member to some OS-dependent value other than the special value WSS_OPERATION_IN_PROGRESS. There may be some slight delay after WPUCompleteOverlappedRequest() returns before these values appear, since processing may occur asynchronously. However, the InternalHigh value (byte count) is guaranteed to be set by the time Internal is set.

WPUCompleteOverlappedRequest() is available both on Windows 95 and Windows NT. It works as stated (performs the completion notification as requested by the client) whether or not the socket handle has been associated with a completion port.

Interaction with WSPGetOverlappedResult()	

Note that the behavior of WPUCompleteOverlappedRequest() puts some constraints on how a service provider implements WSPGetOverlappedResult() since only the Offset and OffsetHigh members of the WSAOVERLAPPED structure are exclusively controlled by the service provider, yet three values (byte count, flags, and error) must be retrieved from the structure by WSPGetOverlappedResult(). A service provider may accomplish this any way it chooses as long as it interacts with the behavior of WPUCompleteOverlappedRequest() properly. However, a typical implementation is as follows:

	At the start of overlapped processing, the service provider sets Internal to WSS_OPERATION_IN_PROGRESS.

	When the IO operation has been completed, the provider sets OffsetHigh to the WinSock 2 error code resulting from the operation, sets Offset to the flags resulting from the IO operation, and calls WPUCompleteOverlappedRequest(), passing the transfer byte count as one of the parameters. WPUCompleteOverlappedRequest() eventually sets InternalHigh to the transfer byte count, then sets Internal to a value other than WSS_OPERATION_IN_PROGRESS.

	When WSPGetOverlappedResult() is called, the service provider checks Internal. If it is WSS_OPERATION_IN_PROGRESS, the provider waits on the event handle in the hEvent member or returns an error, based on the setting of the fWait flag of WSPGetOverlappedResult(). If not in progress, or after completion of waiting, the provider returns the values from InternalHigh, OffsetHigh, and Offset as the transfer count, operation result error code, and flags respectively.

Return Value	If no error occurs, WPUCompleteOverlappedRequest() returns 0 and notifies completion of the overlapped I/O operation according to the mechanism selected by the client (signals an event found in the WSAOVERLAPPED structure referenced by lpOverlapped and/or queues a completion status report to the completion port associated with the socket if a completion port is associated). Otherwise, WPUCompleteOverlappedRequest() returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAEINVAL	The socket s is not a socket created by WPUCreateSocketHandle().

See Also	WSPGetOverlappedRequest(), WPUCreateSocketHandle(), WPUQueueApc()

�� AUTONUMLGL � WPUCreateEvent()

Description	Creates a new event object.

	#include <ws2spi.h>

	WSAEVENT WSPAPI �WPUCreateEvent(�	OUT	LPINT		 lpErrno�);

lpErrno	A pointer to the error code.

Remarks	The event object created by this function is manual reset, with an initial state of nonsignaled. If a Win32 service provider desires auto reset events, it may call the native CreateEvent() Win32 API directly.

Return Value	If the function succeeds, the return value is the handle of the event object.

	If the function fails, the return value is WSA_INVALID_EVENT and a specific error code is available in lpErrno.

Error Codes	WSA_NOT_ENOUGH_MEMORY Not enough free memory available to create the event object.

See Also	WPUCloseEvent().

�� AUTONUMLGL � WPUCreateSocketHandle()

Description	Creates a new socket handle.

 	#include <ws2spi.h>

	SOCKET WSPAPI �WPUCreateSocketHandle(�	IN	DWORD 		dwCatalogEntryId, �	IN	DWORD 		dwContext, �	OUT	LPINT 			lpErrno �);

dwCatalogEntryId	Identifies the calling service provider.

dwContext	A context value to associate with the new socket handle.

lpErrno	A pointer to the error code.

Remarks	This routine creates a new socket handle for the specified provider. The handles created by WPUCreateSocketHandle() are indistinguishable from true file system handles. This is significant in two respects. First, the WinSock 2 architecture takes care of redirecting the file system functions ReadFile() and WriteFile() to this service provider’s WSPRecv() and WSPSend() functions, respectively. Second, in operating systems that support completion ports, the WinSock 2 architecture supports associating a completion port with the socket handle and using it to report overlapped IO completion.

Note, however, that the mechanism for redirecting ReadFile() and WriteFile() necessarily involves a user-to-kernel transition to get to the redirector, followed by a kernel-to-user transition to get to WSPRecv() or WSPSend(). On return, these transitions are retraced in reverse. This can be a significant performance penalty. Any service provider that uses WPUCreateSocketHandle() to create its socket handles should not set XP1_IFS_HANDLES in its WSAPROTOCOL_INFOW structure. Clients should take the absence of XP1_IFS_HANDLES as guidance to avoid the use of ReadFile() and WriteFile().

There is no exceptional performance penalty for using the completion port mechanism with socket handles created with WPUCreateSocketHandle(). A service provider should use WPUCompleteOverlappedRequest() to announce completion of overlapped IO operations that may involve a completion port. Clients may freely use operating system functions to create, associate, and use a completion port for completion notification (e.g., CreateIoCompletionPort(), GetQueuedCompletionStatus(), see relevant OS documentation for details). Note that completion ports are not integrated with the other asynchronous notification mechanisms offered by WinSock 2. That is, a client can do a multiple-wait that includes multiple events and completion callbacks, but there is no predefined way for the multiple-wait to include completion ports.

Layered Service Provider considerations	�This procedure is of particular interest to Layered Service Providers. A layered service provider may use this procedure, instead of WPUModifyIFSHandle() to create the socket handles it exposes to its client. The advantage of using this procedure is that all IO requests involving the socket can be guaranteed to go through this service provider. This is true even if the client assumes that the sockets are file system handles and calls the file system functions ReadFile() and WriteFile() (although it would pay a performance penalty for this assumption).

The guarantee that all IO goes through this layer is a requirement for layers that need to process the IO stream either before or after the actual IO operation. Creating socket handles using WPUCreateSocketHandle() and specifying an appropriate service provider interface procedure dispatch table at the time of WSPStartup() makes sure that the layer has the chance to get involved in starting each IO operation. When the client requests overlapped IO operations this service provider layer will usually have to arrange to get into the path of IO completion notification as well.

To see why this is true, consider what happens if the client associates a completion port with the socket handle for the purpose of overlapped IO completion notification. The port is associated with the socket handle exposed by this layer, not the next layer’s socket handle. There is no way for this layer to determine if a completion port has been associated or what the port is. When this layer calls the next layer’s IO operation, it uses the next layer’s socket handle. The next layer’s socket handle will not have the same completion port association. The client’s expected completion-port notification will not happen without some extra help.

The usual way a layered service provider takes care of this is to substitute a different overlapped IO structure and different overlapped IO parameters when invoking an IO operation in the next layer. The substitute overlapped IO structure references the client’s stored overlapped structure and parameters. The invocation of the next layer sets up a callback notification. When the callback notification occurs, this layer performs any post-processing desired, retrieves the overlapped IO information it stored on behalf of the client, discards the substitute structures, and forwards an appropriate completion notification to the client.

Return Value	If no error occurs, WPUCreateSocketHandle() returns the new socket handle. Otherwise, it returns INVALID_SOCKET, and a specific error code is available in lpErrno.

Error Codes	WSAENOBUFS	Not enough buffers available, too many sockets.

See Also	WPUCloseSocketHandle(), WPUQuerySocketHandleContext(), WPUModifyIFSHandle(), WPUCompleteOverlappedRequest()

�� AUTONUMLGL � WPUFDIsSet()

Description	Check the membership of the specified socket handle.

 	#include <ws2spi.h>

	int WSPAPI �WPUFDIsSet (�	IN	SOCKET		s,�	IN	FD_SET FAR *		set,�);

s	Specifies the socket descriptor.

set	Specifies the socket descriptor set.

Return Value	Return nonzero if s is a member of the set, or zero otherwise.

See Also	WSPSelect().

�� AUTONUMLGL � WPUGetProviderPath()

Description	Retrieve the DLL path for the specified provider.

 	#include <ws2spi.h>

	int WSPAPI �WPUGetProviderPath(�	IN		LPGUID 		lpProviderId, �	OUT		LPWSTR		lpszProviderDllPath,�	IN OUT		LPINT 			lpProviderDllPathLen,�	OUT		LPINT 			lpErrno�);

lpProviderId	The locally unique identifier of the provider. This must be a value obtained by using WSCEnumProtocols().

lpszProviderDllPath	A Pointer to a buffer into which the provider DLL’s path string is returned. This path is a null-terminated string, and any embedded environment strings (such as %SystemRoot%) have not been expanded.

lpProviderDllPathLen	The size of the buffer pointed to by lpszProviderDllPath.

lpErrno	A pointer to the error code.

Remarks	This routine retrieves the DLL path for the specified provider. The DLL path may contain embedded environment strings (such as %SystemRoot%), and thus should be expanded prior to being used with LoadLibrary().

Return Value	If no error occurs, WPUGetProviderPath() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAEINVAL	lpProviderId does not specify a valid provider.

	WSAEFAULT	lpszProviderDllPath or lpErrno is not in a valid part of the user address space, or lpProviderDllPathLen is too small.

See Also	WSCInstallProvider(), WSCEnumProtocols().

�� AUTONUMLGL � WPUModifyIFSHandle()

Description	Receive (possibly) modified IFS handle from WinSock DLL.

 	#include <ws2spi.h>

	SOCKET WSPAPI �WPUModifyIFSHandle(�	IN	DWORD 	dwCatalogEntryId, �	IN	SOCKET 	ProposedHandle, �	OUT	LPINT 		lpErrno�);

dwCatalogEntryId	Identifies the calling service provider.

ProposedHandle	An Installable File System(IFS) handle allocated by the provider.

lpErrno	A pointer to the error code.

Remarks	This routine allows the WinSock DLL to streamline its internal operations by returning a possibly modified version of the supplied IFS handle. It is guaranteed that the returned handle is indistinguishable from the proposed handle as far as the operating system is concerned. IFS providers must call this function before returning any newly created socket descriptor to a WinSock SPI client. WinSock SPI clients will only use the modified handle for any subsequent socket operations.

This routine is only used by IFS providers whose socket descriptors are real Installable File System handles.

Layered Service Provider considerations	�This procedure may also be used by a layered provider that is layered on top of a base IFS provider and wants to expose the base provider’s socket handles as its own instead of creating them with the WPUCreateSocketHandle() call. A layered provider that wishes to “pass through” the IFS socket handles it receives from the next layer in the chain can call WPUModifyIFSHandle(), passing its own catalog entry Id as dwCatalogEntryId. This informs the WinSock DLL that this layer, and not the next layer, should be the target for SPI calls involving that socket handle.

	 There are several limitations a layered provider should observe if it takes this approach.:

	The provider should expose base provider entry points for WSPSend() and WSPRecv() in the procedure dispatch table it returns at the time of WSPStartup() to make sure the WinSock SPI client’s access to these functions is as efficient as possible.

	The provider can not rely on its WSPSend() and WSPRecv() functions being invoked for all IO, particularly in the case of the IO system functions ReadFile() and WriteFile(). These functions would bypass the layered provider and invoke the base IFS provider’s implementation directly even if the layered provider puts its own entry points for these functions into the procedure dispatch table.

	The provider can not rely on any ability to post-process overlapped IO using WSPSend(), WSPSendTo(), WSPRecv(), WSPRecvFrom(), or WSPIoctl(). Post-processing notification may happen through completion ports and bypass the layered provider entirely. A layered provider has no way to determine that a completion port was used or determine what port it is. The layered provider has no way to insert itself into the notification sequence.

	The provider should pass through all overlapped IO requests directly to the base provider using the original overlapped parameters (e.g., WSAOVERLAPPED structure and completion routine pointer). The provider should expose the base provider entry point for WSPGetOverlappedResult(). Since some overlapped IO requests can bypass the layered provider completely the layered provider cannot reliably mark WSAOVERLAPPED structures to determine which ones it can report results for, and which ones would have to be passed through to the underlying provider’s WSPGetOverlappedResult(). This effectively means that WSPIoctl() has to be a pass-through operation to the underlying provider.

Return Value	If no error occurs, WPUModifyIFSHandle() returns the modified socket handle. Otherwise, it returns INVALID_SOCKET, and a specific error code is available in lpErrno.

Error Codes	WSAEINVAL	The proposed handle is invalid

See Also	WPUCreateSocketHandle()

�� AUTONUMLGL � WPUOpenCurrentThread()

Description	Opens the current thread. This is intended to be used by layered service providers that wish to initiate overlapped IO from non-application threads.

 	#include <ws2spi.h>

	int WSPAPI �WPUOpenCurrentThread(�	OUT	LPWSATHREADID	lpThreadId,�	OUT	LPINT			lpErrno�);

lpThreadId	A pointer to a WSATHREADID structure that will receive the thread data.

LpErrno	A pointer to the error code.

Return Value	If no error occurs, WPUOpenCurrentThread() returns 0 and the caller is responsible for (eventually) closing the thread by calling WPUCloseThread(). Otherwise, WPUOpenCurrentThread() returns SOCKET_ERROR and a specific error code is available in lpErrno.

See Also	WPUCloseThread().

�� AUTONUMLGL � WPUPostMessage()

Description	Performs the standard PostMessage() function in a way that maintains backwards compatibility with older versions of WSOCK32.DLL.

 	#include <ws2spi.h>

	BOOL WSPAPI �WPUPostMessage (�	IN	HWND 			hWnd,�	IN	UINT 			Msg,�	IN	WPARAM 		wParam,�	IN	LPARAM 		lParam �);

hWnd	Identifies the window whose window procedure is to receive the message.

Msg	Specifies the message to be posted.

wParam	Specifies additional message-specific information.

lParam	Specifies additional message-specific information.

Return Value	Returns TRUE if the function succeeds, FALSE otherwise.

See Also	PostMessage().

�� AUTONUMLGL � WPUQueryBlockingCallback()

Description	Returns a pointer to a callback function the service provider should invoke periodically while servicing blocking operations.

 	#include <ws2spi.h>

	int WSPAPI �WPUQueryBlockingCallback(�	IN	DWORD 				dwCatalogEntryId,�	OUT	LPBLOCKINGCALLBACK FAR * 	lplpfnCallback, �	OUT	LPDWORD 				lpdwContext, �	OUT	LPINT 					lpErrno �);

dwCatalogEntryId	Identifies the calling service provider.

lplpfnCallback	Receives a pointer to the blocking callback function.

lpdwContext	Receives a context value the service provider must pass into the blocking callback.

lpErrno	A pointer to the error code.

Remarks	This routine returns a pointer to a callback function in lpfnCallback to be invoked periodically during blocking operations. This routine also returns a context value in lpdwContext to be passed into the blocking callback.

Under Win32, this routine may return NULL in lpfnCallback, indicating that no user-defined blocking hook is installed. In this case, the service provider should use the native Win32 synchronization objects to implement blocking.

LPBLOCKINGCALLBACK is defined as follows:

typedef BOOL (CALLBACK FAR * LPBLOCKINGCALLBACK)(DWORD dwContext);

The blocking callback will return TRUE if the service provider is to continue waiting for the blocking operation to complete, FALSE if the blocking operation has been canceled with the WSPCancelBlockingCall().

If this call is invoked while a WSPSelect() operation is in progress, the provider may specify the dwCatalogEntryId for any of the protocols being operated upon.

Return Value	If no error occurs, WPUQueryBlockingCallback() returns 0 and stores a pointer to a blocking callback function in lpfnCallback, and an associated context value in lpdwContext. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAEFAULT	The lpfnCallback or the lpdwContext argument is not a valid part of the process address space.

WSAEINVAL	dwCatalogEntryId is invalid.

See Also	WSPCancelBlockingCall().

�� AUTONUMLGL � WPUQuerySocketHandleContext()

Description	Queries the context value associated with the specified socket handle.

 	#include <ws2spi.h>

	int WSPAPI �WPUQuerySocketHandleContext(�	IN	SOCKET 		s, �	OUT	LPDWORD 		lpContext, �	OUT	LPINT 			lpErrno �);

s	Identifies the socket whose context is to be queried.

lpContext	A pointer to an DWORD that will receive the context value.

lpErrno	A pointer to the error code.

Remarks	This routine queries the current context value associated with the specified socket handle. Service providers typically use this function to retrieve a pointer to provider-specific data associated with the socket. For example, a service provider may use the socket context to store a pointer to a structure containing the socket’s state, local and remote transport addresses, event objects for signaling network events, etc.

This routine is only used by non-IFS providers since IFS providers are not able to supply a context value..

Return Value	If no error occurs, WPUQuerySocketHandleContext() returns 0 and stores the current context value in lpContext. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAENOTSOCK	The descriptor is not a socket created by WPUCreateSocketHandle().

See Also	WPUCreateSocketHandle()

�� AUTONUMLGL � WPUQueueApc()

Description	Queues a user-mode APC to the specified thread in order to facilitate invocation of overlapped I/O completion routines.

 	#include <ws2spi.h>

	int WSPAPI �WPUQueueApc(�	IN	LPWSATHREADID 		lpThreadId, �	IN	LPWSAUSERAPC 		lpfnUserApc, �	IN	DWORD 			dwContext, �	OUT	LPINT 				lpErrno �);

lpThreadId	A pointer to a WSATHREADID structure that identifies the thread context. A pointer to this structure is supplied to the service provider by the WinSock 2 DLL as in input parameter to an overlapped operation. The provider should store the WSATHREADID structure locally and provide a pointer to this local store. The local copy of WSATHREADID is no longer needed once WPUQueueApc() returns.

lpfnUserApc	Points to the APC function to be called.

dwContext	A 32 bit context value which is subsequently supplied as an input parameter to the APC function.

lpErrno	A pointer to the error code.

Remarks	This function queues an APC function against the specified thread. Under Win32, this will be done using a user mode asynchronous procedure call (APC). The APC will only execute when the specified thread is blocked in an alertable wait. For Win16, a callback will be made directly. In Win16 environments, this call is safe for use within “interrupt context”.

LPWSAUSERAPC is defined as follows:

typedef void (CALLBACK FAR * LPWSAUSERAPC)(DWORD dwContext);

Because the APC mechanism supports only a single 32 bit context value, lpfnUserApc cannot itself be the client-specified completion routine, which involves more parameters. The service provider must instead supply a pointer to its own APC function which uses the supplied dwContext value to access the needed result information for the overlapped operation, and then invokes the client-specified completion routine.

For service providers where a user-mode component implements overlapped I/O a typical usage of the APC mechanism is as follows. When the I/O operation completes, the provider allocates a small buffer and packs it with a pointer to the client-supplied completion procedure and parameter values to pass to the procedure. It queues an APC, specifying the pointer to the buffer as the dwContext value and its own intermediate procedure as the target procedure lpfnUserApc. When the target thread eventually enters alertable wait state, the service provider’s intermediate procedure is called in the proper thread context. The intermediate procedure simply unpacks parameters, deallocates the buffer, and calls the client-supplied completion procedure.

Return Value	If no error occurs, WPUQueueApc() returns 0 and queues the completion routine for the specified thread. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAEFAULT	dwThreadId does not specify a valid thread.

See Also	WSPSend(), WSPSendTo(), WSPRecv(), WSPRecvFrom(), WSPIoctl()

�� AUTONUMLGL � WPUResetEvent()

Description	Resets the state of the specified event object to nonsignaled. In Win16 environments, this call is safe for use within “interrupt context”.

	#include <ws2spi.h>

	BOOL WSPAPI �WPUResetEvent(�	IN	WSAEVENT 		hEvent, �	OUT	LPINT 			lpErrno �);

hEvent	Identifies an open event object handle.

lpErrno	A pointer to the error code.

Return Value	If the function succeeds, the return value is TRUE.

	If the function fails, the return value is FALSE and a specific error code is available in lpErrno.

Error Codes	WSA_INVALID_HANDLE	hEvent is not a valid event object handle.

See Also	WPUCreateEvent(), WPUSetEvent(), WPUCloseEvent().

�� AUTONUMLGL � WPUSetEvent()

Description	Sets the state of the specified event object to signaled. In Win16 environments, this call is safe for use within “interrupt context”.

	#include <ws2spi.h>

	BOOL WSPAPI �WPUSetEvent(�	IN	WSAEVENT 		hEvent, �	OUT	LPINT 			lpErrno �);

hEvent	Identifies an open event object handle.

lpErrno	A pointer to the error code.

Return Value	If the function succeeds, the return value is TRUE.

	If the function fails, the return value is FALSE and a specific error code is available in lpErrno.

Error Codes	ERROR_INVALID_HANDLE	hEvent is not a valid event object handle.

See Also	WPUCreateEvent(), WPUResetEvent(), WPUCloseEvent().

�� AUTONUMLGL � Name Resolution Service Provider Requirements

The sections which follow provide a description of each of the functional areas which name space providers are required to implement. Where appropriate, implementation considerations and guidelines are also provided.

� AUTONUMLGL � Summary of Name Space Provider Functions

The name space service provider functions can be grouped into five categories: Name space provider configuration and installation, provider initialization, service installation, client queries, and helper functions (and macros). The sections that follow identify the functions in each category and briefly describe their intended use. Key data structures are also described.

� AUTONUMLGL � Name Space Provider Configuration and Installation

WSCInstallNameSpace()

WSCUnInstallNameSpace()

WSCEnableNSProvider()

As mentioned previously, the installation applet for a name space provider must call WSCInstallNameSpace () to register with the WinSock 2 DLL and supply static configuration information. The WinSock 2 DLL uses this information to accomplish its routing function and in its implementation of WSAEnumNameSpaceProviders(). The WSCUnInstallNameSpace () function is used to de-register a name space provider, and the WSCEnableNSProvider() function is used to toggle a provider between the active and inactive states.

Note that the results of these three operations are not visible to applications that are currently loaded and running. Only applications that begin executing after these operations have occurred will be affected by them.

This architecture explicitly supports the instantiation of multiple name space providers within a single DLL, however each such provider must have a unique name space provider ID (i.e. GUID) allocated, and a separate call to WSCInstallNameSpaceProvider() must occur for each instantiation. Such a provider can determine which instantiation is being invoked because the name space provider ID appears as a parameter in every NSP function.

� AUTONUMLGL � Name Space Provider Initialization and Cleanup

NSPStartup()

NSPCleanup()

As is the case for the transport SPI, a name space provider is initialized with a call to NSPStartup() and is terminated with a final call to NSPCleanup(). Calls to the startup function may be nested, but will be matched by corresponding calls to the cleanup function. A provider should employ reference counting to determine when the final call to NSPCleanup() has occurred.

� AUTONUMLGL � Service Installation

NSPInstallServiceClass()

NSPRemoveServiceClass()

NSPSetService()

When the required service class does not already exist, a name space SPI client uses NSPInstallServiceClass() to install a new service class by supplying a service class name, a GUID for the service class ID, and a series of WSANSCLASSINFO structures. These structures are each specific to a particular name space, and supply common values such as recommended TCP port numbers or Netware SAP Identifiers. A service class can be removed by calling NSPRemoveServiceClass() and supplying the GUID corresponding to the class ID.

Once a service class exists, specific instances of a service can be installed or removed via NSPSetService(). This function takes a WSAQUERYSET structure as an input parameter along with an operation code and operation flags. The operation code indicates whether the service is being installed or removed. The WSAQUERYSET structure provides all of the relevant information about the service including service class ID, service name (for this instance), applicable name space identifier and protocol information, and a set of transport addresses at which the service listens.

� AUTONUMLGL � Service Query

NSPLookupServiceBegin()

NSPLookupServiceNext()

NSPLookupServiceEnd()

A name service query involves a series of calls: NSPLookupServiceBegin(), followed by one or more calls to NSPLookupServiceNext() and ending with a call to NSPLookupServiceEnd(). NSPLookupServiceBegin() takes a WSAQUERYSET structure as input in order to define the query parameters along with a set of flags to provide additional control over the search operation. It returns a query handle which is used in the subsequent calls to NSPLookupServiceNext() and NSPLookupServiceEnd().

The name space SPI client invokes NSPLookupServiceNext() to obtain query results, with results supplied in an client-supplied WSAQUERYSET buffer. The client continues to call NSPLookupServiceNext() until the error code WSA_E_NO_MORE is returned indicating that all results have been retrieved. The search is then terminated by a call to NSPLookupServiceEnd(). The NSPLookupServiceEnd() function can also be used to cancel a currently pending NSPLookupServiceNext() when called from another thread.

In WinSock 2, conflicting error codes are defined for WSAENOMORE (10102) and WSA_E_NO_MORE (10110). The error code WSAENOMORE will be removed in a future version and only WSA_E_NO_MORE will remain. Name Space Providers should switch to using the WSA_E_NO_MORE error code as soon as possible to maintain compatibility with the widest possible range of applications.

� AUTONUMLGL � Helper Functions

NSPGetServiceClassInfo()

The NSPGetServiceClassInfo() function retrieves service class schema information that has been retained by a name space provider. It is also used by the Winsock 2 DLL in its implementation of WSAGetServiceClassNameByClassId().

The following macros from Winsock2.h are available and can aid in mapping between well known service classes and these name spaces.

SVCID_TCP(Port)

SVCID_UDP(Port)

SVCID_NETWARE(Object Type)�Given a port for TCP/IP or UDP/IP or the object type in the case of Netware, return the GUID��IS_SVCID_TCP(GUID)

IS_SVCID_UDP(GUID)

IS_SVCID_NETWARE(GUID)�Returns TRUE if the GUID is within the allowable range��PORT_FROM_SVCID_TCP(GUID)

PORT_FROM_SVCID_UDP(GUID)

SAPID_FROM_SVCID_NETWARE(GUID)�Returns the port or object type associated with the GUID��

� AUTONUMLGL � Name Resolution Data Structures

There are several important data structures that are used extensively throughout the name resolution functions. These are described below.

� AUTONUMLGL � Query-Related Data Structures

The WSAQUERYSET structure is used to form queries for NSPLookupBegin(), and used to deliver query results for NSPLookupNext(). It is a complex structure since it contains pointers to several other structures, some of which reference still other structures. The relationship between WSAQUERYSET and the structures it references is illustrated as follows:

� EMBED Word.Picture.6 ���

Figure 3 WSAQUERYSET and Friends

Within the WSAQUERYSET structure, most of the fields are self explanatory, but some deserve additional explanation. The dwSize will be filled in with sizeof(WSAQUERYSET), and can be used by name space providers to detect and adapt to different versions of the WSAQUERYSET structure that may appear over time.

The dwOutputFlags field is used by a name space provider to provide additional information about query results. For details, see NSPLookupServiceNext().

The WSAECOMPARATOR structure referenced by lpversion is used for both query constraint and results. For queries, the dwVersion field indicates the desired version of the service. The ecHow field is an enumerated type which specifies how the comparison will be made. The choices are COMP_EQUALS which requires that an exact match in version occurs, or COMP_NOTLESS which specifies that the service’s version number be no less than the value of dwVersion.

The interpretation of dwNameSpace and lpNSProviderId depends upon how the structure is being used and is described further in the individual function descriptions that utilize this structure.

The lpszContext field applies to hierarchical name spaces, and specifies the starting point of a query or the location within the hierarchy where the service resides. The general rules are:

A value of NULL, blank (“”) will start the search at the default context.

A value of “\” starts the search at the top of the name space.

Any other value starts the search at the designated point.

Providers that do not support containment may return an error if anything other than “” or “\” is specified. Providers that support limited containment, such as groups, should accept “”, ‘\”, or a designated point. Contexts are name space specific. If dwNameSpace is NS_ALL, then only “” or “\” should be passed as the context since these are recognized by all name spaces.

The lpszQueryString field is used to supply additional, name space-specific query information such as a string describing a well-known service and transport protocol name, as in “ftp/tcp”.

The AFPROTOCOLS structure referenced by lpafpProtocols is used for query purposes only, and supplies a list of protocols to constrain the query. These protocols are represented as (address family, protocol) pairs, since protocol values only have meaning within the context of an address family.

The array of CSADDR_INFO structure referenced by lpcsaBuffer contain all of the information needed to for either a service to use in establishing a listen, or a client to use in establishing a connection to the service. The LocalAddr and RemoteAddr fields both directly contain a SOCKET_ADDRESS structure. A service would create a socket using the tuple (LocalAddr.lpSockaddr->sa_family, iSocketType, iProtocol). It would bind the socket to a local address using LocalAddr.lpSockaddr, and LocalAddr.lpSockaddrLength. The client creates its socket with the tuple (RemoteAddr.lpSockaddr->sa_family, iSocketType, iProtocol), and uses the combination of RemoteAddr.lpSockaddr, and RemoteAddr.lpSockaddrLength when making a remote connection.

� AUTONUMLGL � Service Class Data Structures

When a new service class is installed, a WSASERVICECLASSINFO structure must be prepared and supplied. This structure also consists of substructures which contain a series of parameters that apply to specific name spaces.

� EMBED Word.Picture.6 ���

Figure 4 Class Info Data Structures

For each service class, there is a single WSASERVICECLASSINFO structure. Within the WSASERVICECLASSINFO structure, the service class’ unique identifier is contained in lpServiceClassId, and an associated display string is referenced by lpServiceClassName.

The lpClassInfos field in the WSASERVICECLASSINFO structure references an array of WSANSCLASSINFO structures, each of which supplies a named and typed parameter that applies to a specified name space. Examples of values for the lpszName field include: “SapId”, “TcpPort”, “UdpPort”, etc. These strings are generally specific to the name space identified in dwNameSpace. Typical values for dwValueType might be REG_DWORD, REG_SZ, etc. The dwValueSize field indicates the length of the data item pointed to by lpValue.

The entire collection of data represented in a WSASERVICECLASSINFO structure is provided to each name space provider via NSPInstallServiceClass(). Each individual name space provider then sifts through the list of WSANSCLASSINFO structures and retain the information applicable to it. This architecture also envisions the future existence of a special name space provider that would retain all of the service class schema information for all of the name spaces. The WinSock 2 DLL would query this provider to obtain the WSASERVICECLASSINFO data needed to supply to name space providers when NSPLookupBegin() is invoked to initiate a query, and when NSPSetService() is invoked to register a service. Name space provider should not rely on this capability for the time being, and should instead have a provider-specific means to obtain any needed service class schema information. In the absence of a provider that stores all service class schema for all name spaces, the WinSock 2 DLL will use NSPGetServiceClassInfo() to obtain such information from each individual name space provider.

� AUTONUMLGL � WinSock 1.1 Compatibile Name Resolution for TCP/IP

� AUTONUMLGL � Introduction

Windows Sockets 1.1 defined a number of routines that were used for name resolution with TCP/IP networks. These are customarily referred to as the getXbyY() functions and include the following:

gethostname()

gethostbyaddr()

gethostbyname()

getprotobyname()

getprotobynumber()

getservbyname()

getservbyport()

Asynchronous versions of these functions were also defined:

WSAAsyncGetHostByAddr()

WSAAsyncGetHostByName()

WSAAsyncGetProtoByName()

WSAAsyncGetProtoByNumber()

WSAAsyncGetServByName()

WSAAsyncGetSetvByPort()

These functions are specific to TCP/IP networks and developers of protocol-independent applications are discouraged from continuing to utilize these transport-specific functions. However, in order to retain strict backwards compatibility with WinSock 1.1, all of the above functions continue to be supported as long as at least one name space provider is present that supports the AF_INET address family.

The WinSock 2 DLL implements these compatibility functions in terms of the new, protocol-independent name resolution facilities using an appropriate sequence of WSALookupServiceBegin/Next/End() function calls. The details of how the getXbyY() functions are mapped to name resolution functions are provided below. Note that the WinSock 2 DLL handles the differences between the asynchronous and synchronous versions of the getXbyY() functions, so only the implementation of the synchronous getXbyY() functions are discussed.

� AUTONUMLGL � Basic Approach

Most getXbyY() functions are translated by the WinSock 2 DLL to a WSAServiceLookupBegin/Next/End() sequence that uses one of a set of special GUIDs as the service class. These GUIDs identify the type of getXbyYoperation that is being emulated. The query is constrained to those NSPs that support AF_INET. Whenever a getXbyY function returns a hostent or servent structure, the WinSock 2 DLL will specify the LUP_RETURN_BLOB flag in WSALookupServiceBegin() so that the desired information will be returned by the NSP. These structures must be modified slightly in that the pointers contained within must be replaced with offsets that are relative to the start of the blob's data. All values referenced by these pointer fields must, of course, be completely contained within the blob, and all strings are ASCII.

� AUTONUMLGL � getprotobyname and getprotobynumber

These functions are implemented within the WinSock 2 DLL by consulting a local protocols database. They do not result in any name resolution query.

� AUTONUMLGL � getservbyname() and getservbyport()

The WSAServiceLookupBegin() query uses SVCID_INET_SERVICEBYNAME as the service class GUID. The lpszServiceInstanceName field references a string which indicates the service name or service port, and (optionally) the service protocol. The formatting of the string is illustrated as "ftp/tcp" or "21/tcp" or just "ftp". The string is not case sensitive. The slash mark, if present, separates the protocol identifier from the preceding part of the string. The WinSock 2 DLL will specify LUP_RETURN_BLOB and the NSP will place a servent struct in the blob (using offsets instead of pointers as described above). NSPs should honor these other LUP_RETURN_* flags as well:

LUP_RETURN_NAME -> return the s_name field from servent struct in lpszServiceInstanceName

LUP_RETURN_TYPE -> return canonical GUID in lpServiceClassId It is understood that a service identified either as "ftp" or "21" may in fact be on some other port according to locally established conventions. The s_port field of the servent struct should indicate where the service can be contacted in the local environment. The canonical GUID returned when LUP_RETURN_TYPE is set should be one of the predefined GUID from svcs.h that corresponds to the port number indicated in the servent structure.

� AUTONUMLGL � gethostbyname()

The WSAServiceLookupBegin() query uses SVCID_INET_HOSTADDRBYNAME as the service class GUID. The host name is supplied in lpszServiceInstanceName. The WinSock 2 DLL specifies LUP_RETURN_BLOB and the NSP places a hostent struct in the blob (using offsets instead of pointers as described above). NSPs should honor these other LUP_RETURN_* flags as well:

LUP_RETURN_NAME -> return the h_name field from hostent struct in lpszServiceInstanceName

LUP_RETURN_ADDR -> return addressing info from hostent in CSADDR_INFO structs, port information is defaulted to zero. Note that this routine does not resolve host names that consist of a dotted internet address.

� AUTONUMLGL � gethostbyaddr()

The WSAServiceLookupBegin() query uses SVCID_INET_HOSTNAMEBYADDR as the service class GUID. The host address is supplied in lpszServiceInstanceName as a dotted internet string (e.g. "192.9.200.120"). The WinSock 2 DLL specifies LUP_RETURN_BLOB and the NSP places a hostent struct in the blob (using offsets instead of pointers as described above). NSPs should honor these other LUP_RETURN_* flags as well:

LUP_RETURN_NAME -> return the h_name field from hostent struct in lpszServiceInstanceName

LUP_RETURN_ADDR -> return addressing info from hostent in CSADDR_INFO structs, port information is defaulted to zero

� AUTONUMLGL � gethostname()

The WSAServiceLookupBegin() query uses SVCID_HOSTNAME as the service class GUID. If lpszServiceInstanceName is NULL or references a NULL string (i.e. ""), the local host is to be resolved. Otherwise, a lookup on a specified host name shall occur. For the purposes of emulating gethostname() the WinSock 2 DLL will specify a null pointer for lpszServiceInstanceName, and specify LUP_RETURN_NAME so that the host name is returned in the lpszServiceInstanceName field. If an application uses this query and specifies LUP_RETURN_ADDR then the host address will be provided in a CSADDR_INFO struct. The LUP_RETURN_BLOB action is undefined for this query. Port information will be defaulted to zero unless the lpszQueryString references a service such as "ftp", in which case the complete transport address of the indicated service will be supplied.

�� AUTONUMLGL � Name Resolution Interface Reference

This chapter presents the name space service provider routines in alphabetical order, and describes each routine in detail.

� AUTONUMLGL � NSPCleanup()

Description	Terminate use of a WinSock name space service provider.

 	#include <ws2spi.h>

	INT WSPAPI�NSPCleanup (�	IN	LPGUID		lpProviderId�);��lpProviderId	Indicates the provider to be cleaned up

Remarks	The WinSock 2 name resolution SPI client is required to perform a successful NSPStartup() call before it can use WinSock name space providers. When it has completed the use of a WinSock name space provider, the SPI client will call NSPCleanup() to deregister itself from a WinSock service provider and allow the service provider to free any resources allocated on behalf of the WinSock 2 client. It is permissible for SPI clients to make more than one NSPStartup() call. For each NSPStartup() call a corresponding NSPCleanup() call will also be issued. Only the final NSPCleanup() for the service provider does the actual cleanup; the preceding calls simply decrement an internal reference count in the service provider.

	This function should not return until the service provider DLL is prepared to be unloaded from memory.

. �

Return Value	The return value is NO_ERROR (0) if the routine succeeds, otherwise SOCKET_ERROR (-1) is returned and the provider must set the appropriate error code using SetLastError().

Errors	WSAEINVAL	lpProviderId does not specify a valid provider.

WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

�� AUTONUMLGL � NSPGetServiceClassInfo()

Description	NSPGetServiceClassInfo() is used to retrieve all of the class information (schema) pertaining to the service from the name space providers. This call retrieves any name space specific information that is common to all instances of the service, including connection information for SAP, or port information for SAP or TCP.

	INT WSPAPI

	NSPGetServiceClassInfo(

	 IN		LPGUID			lpProviderId,

	 IN OUT	LPDWORD			lpdwBufSize,

	 IN OUT	LPWSASERVICECLASSINFOW lpServiceClassInfo

);

lpProviderId	Pointer to the GUID of the specific name space provider that this service class schema is to be retrieved from.

lpdwBufferLength	on input, the number of bytes contained in the buffer pointed to by lpServiceClassInfos. On output - if the API fails, and the error is WSAEFAULT, then it contains the minimum number of bytes to pass for the lpServiceClassInfo to retrieve the record.

lpServiceClasslnfo	returns service class to name space specific mapping information. The lpServiceClassId field must be filled in to indicate which SERVICECLASSINFOW record should be returned.

Remarks	The Winsock DLL uses this function to implement the WSAGetServiceClassNameByClassId() function, as well as to retrieve the name space specific information passed into the NSPLookupServiceBegin() and NSPSetService().

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSAEACCES	The calling routine does not have sufficient privileges to access the information.

WSAEFAULT	The lpServiceClass buffer was too small to contain a WSASERVICECLASSINFOW.

WSAEINVAL	the specified service class ID or name space provider ID is invalid.

WSATYPE_NOT_FOUND	The specified class was not found.

WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

�� AUTONUMLGL � NSPInstallServiceClass()

Description	NSPInstallServiceClass() is used to register service class schema within the name space providers. The schema includes the class name, class id, and any name space specific type information that is common to all instances of the service, such as SAP ID or object ID. A dynamic name space provider is expected to store any class info associated with that namespace, other name space providers should do whatever makes sense.

	INT WSPAPI

	NSPInstallServiceClass(

		IN	LPGUID				lpProviderId,

		IN 	LPWSASERVICECLASSINFOW	lpServiceClassInfo

);

lpProviderId	Pointer to the GUID of the specific name space provider that this service class schema is being registered in.

lpServiceClasslnfo	contains service class schema information.

Remarks	Name space providers are encouraged, but not required, to store information that is specific to the name space that they support.

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSAEACCES	The calling routine does not have sufficient privileges to perform this operation.

WSAEALREADY	Service class information has already been registered for this service class ID. To modify service class info, first use NSPRemoveServiceClass(), and then re-install with updated class info data.

WSAEINVAL	The service class information was invalid or improperly structured.

WSA_INVALID_PARAMETER	The name space provider cannot supply the requested class information.

WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

�� AUTONUMLGL � NSPLookupServiceBegin()

Description	WSALookupServiceBegin() is used to initiate a client query that is constrained by the information contained within a WSAQUERYSET structure. WSALookupServiceBegin() only returns a handle, which should be used by subsequent calls to WSALookupServiceNext() to get the actual results. Note that since this operation can not be canceled, it should be implemented so as to execute quickly. While it is acceptable to initiate a network query, this function should not require a response in order to return successfully.

	INT WSPAPI

	NSPLookupServiceBegin (

		IN	LPGUID				lpProviderId,

		IN 	LPWSAQUERYSETW			lpqsRestrictions,

		IN	LPWSASERVICECLASSINFOW	lpServiceClassInfo,

		IN 	DWORD				dwControlFlags,

		OUT	LPHANDLE				lphLookup

);

lpProviderId 	Contains the specific provider ID that should be used for the query.

lpqsRestrictions 	contains the search criteria. See below for more information.

lpServiceClassInfo	A WSASERVICECLASSINFOW structure which contains all of the schema information for the service.

dwControlFlags	controls the depth of the search:

LUP_DEEP�Query deep as opposed to just the first level.��LUP_CONTAINERS�Return containers only��LUP_NOCONTAINERS�Don’t return any containers��LUP_FLUSHCACHE�If the provider has been caching information, ignore the cache and go query the name space itself.��LUP_FLUSHPREVIOUS�Used as a value for the dwControlFlags argument in NSPLookupServiceNext(). Setting this flag instructs the provider to discard the last result set, which was too large for the supplied buffer, and move on to the next result set.��LUP_NEAREST�If possible, return results in the order of distance. The measure of distance is provider specific.��LUP_RES_

RESERVICE�indicates whether prime response is in the remote or local part of CSADDR_INFO structure. The other part needs to be "useable" in either case.��LUP_RETURN_ALIASES�Any available alias information is to be returned in successive calls to NSPLookupServiceNext(), and each alias returned will have the RESULT_IS_ALIAS flag set.��LUP_RETURN_NAME�Retrieve the name as lpszServiceInstanceName��LUP_RETURN_TYPE�Retrieve the type as lpServiceClassId��LUP_RETURN_VERSION�Retrieve the version as lpVersion��LUP_RETURN_COMMENT�Retrieve the comment as lpszComment��LUP_RETURN_ADDR�Retrieve the addresses as lpcsaBuffer��LUP_RETURN_BLOB�Retrieve the private data as lpBlob��LUP_RETURN_QUERY_STRING�Retrieve unparsed remainder of the service instance name as lpszQueryString��LUP_RETURN_ALL�Retrieve all of the information��

		

lphLookup	Handle to be used in subsequent calls to NSPLookupServiceNext in order to retrieve the results set.

Remarks	If LUP_CONTAINERS is specified in a call, all other restriction values should be avoided. If any are supplied, it is up to the name service provider to decide if it can support this restriction over the containers. If it cannot, it should return an error.

Some name service providers may have other means of finding containers. For example, containers might all be of some well-known type, or of a set of well-known types, and therefore a query restriction may be created for finding them. No matter what other means the name service provider has for locating containers, LUP_CONTAINERS and LUP_NOCONTAINERS take precedence. Hence, if a query restriction is given that includes containers, specifying LUP_NOCONTAINERS will prevent the container items from being returned. Similarly, no matter the query restriction, if LUP_CONTAINERS is given, only containers should be returned. If a name space does not support containers, and LUP_CONTAINERS is specified, it should simply return WSANO_DATA.

The preferred method of obtaining the containers within another container, is the call:

dwStatus = NSPLookupServiceBegin(

	lpqsRestrictions,

	LUP_CONTAINERS,

	lphLookup);

followed by the requisite number of NSPLookupServiceNext calls. This will return all containers contained immediately within the starting context; that is, it is not a deep query. With this, one can map the address space structure by walking the hierarchy, perhaps enumerating the content of selected containers. Subsequent uses of NSPLookupServiceBegin use the containers returned from a previous call.

Forming Queries	

As mentioned above, a WSAQUERYSET structure is used as an input parameter to NSPLookupBegin() in order to qualify the query. The following table indicates how the WSAQUERYSET is used to construct a query. When a field is marked as (Optional) a NULL pointer may be supplied, indicating that the field will not be used as a search criteria. See section 5.1.6.1. Query-Related Data Structures for additional information.

WSAQUERYSET Field Name�Query Interpretation��dwSize�Will be set to sizeof(WSAQUERYSET). This is a versioning mechanism.��DwOuputFlags�Ignored for queries��lpszServiceInstanceName�(Optional) Referenced string contains service name. The semantics for wildcarding within the string are not defined, but may be supported by certain name space providers.��LpServiceClassId�(Required) The GUID corresponding to the service class.��lpVersion�(Optional) References desired version number and provides version comparison semantics (i.e. version must match exactly, or version must be not less than the value supplied).��LpszComment�Ignored for queries.��DwNameSpace�Identifier of a single name space in which to constrain the search, or NS_ALL to include all name spaces.��LpNSProviderId�(Optional) References the GUID of a specific name space provider, and limits the query to this provider only.��LpszContext�(Optional) Specifies the starting point of the query in a hierarchical name space.��DwNumberOfProtocols�Size of the protocol constraint array, may be zero.��LpafpProtocols�(Optional) References an array of AFPROTOCOLS structure. Only services that utilize these protocols will be returned. It is legal for the value AF_UNSPEC to appear as a protocol family value, signifying a wild card. Name space providers may supply information on any service that uses the corresponding protocol, regardless of address family.��LpszQueryString�(Optional) Some namespaces (such as whois++) support enriched SQL like queries which are contained in a simple text string. This parameter is used to specify that string.��DwNumberOfCsAddrs�Ignored for queries.��LpcsaBuffer�Ignored for queries.��LpBlob�(Optional) This is a pointer to a provider-specific entity.��

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSAEINVAL	One or more parameters were invalid for this provider or missing.

	WSANO_DATA	The name was found in the database but it does not have the correct associated data being resolved for.

WSASERVICE_NOT_FOUND	No such service is known. The service cannot be found in the specified name space.

WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

�� AUTONUMLGL � NSPLookupServiceEnd()

Description	NSPLookupServiceEnd() is called to free the handle after previous calls to NSPLookupServiceBegin() and NSPLookupServiceNext(). It is possible to receive a NSPLookupServiceEnd() call on another thread while processing a NSPLookupServiceNext(). This indicates that the client has canceled the request, and the provider should close the handle and return from the NSPLookupServiceNext() call as well, setting the last error to WSA_E_CANCELLED.

	INT WSPAPI

	NSPLookupServiceEnd (

		IN 	HANDLE	hLookup,

);

hLookup	Handle previously obtained by calling NSPLookupServiceBegin().

Remarks	In WinSock 2, conflicting error codes are defined for WSAECANCELLED (10103) and WSA_E_CANCELLED (10111). The error code WSAECANCELLED will be removed in a future version and only WSA_E_CANCELLED will remain. Name Space Providers should switch to using the WSA_E_CANCELLED error code as soon as possible to maintain compatibility with the widest possible range of applications.

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSA_INVALID_HANDLE	The Handle is not valid

WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

�� AUTONUMLGL � NSPLookupServiceNext()

Description	NSPLookupServiceNext() is called after obtaining a Handle from a previous call to NSPLookupServiceBegin() in order to retrieve the requested service information. The provider will pass back a WSAQUERYSET structure in the lpqsResults buffer. The client should continue to call this API until it returns WSA_E_NOMORE, indicating that all of the WSAQUERYSET have been returned.

INT NSPAPI

WSALookupServiceNext (

	IN 		HANDLE		hLookup,

	IN		DWORD		dwControlFlags,

	IN OUT		LPDWORD		lpdwBufferLength,

	OUT 		LPWSAQUERYSET	lpqsResults

);

hLookup	Handle returned from the previous call to WSALookupServiceBegin().

dwControlFlags	Flags to control the next operation. Currently only LUP_FLUSHPREVIOUS is defined as a means to cope with a result set which is too large. If an application does not wish to (or cannot) supply a large enough buffer, setting LUP_FLUSHPREVIOUS instructs the provider to discard the last result set - which was too large - and move on to the next set for this call.

lpdwBufferLength	on input, the number of bytes contained in the buffer pointed to by lpqsResults. On output - if the API fails, and the error is WSAEFAULT, then it contains the minimum number of bytes to pass for the lpqsResults to retrieve the record.

lpqsResults	a pointer to a block of memory, which will contain one result set in a WSAQUERYSET structure on return.

Remarks	The dwControlFlags specified in this function and the ones specified at the time of NSPLookupServiceBegin() are treated as “restrictions” for the purpose of combination. The restrictions are combined between the ones at NSPLookupServiceBegin() time and the ones at NSPLookupServiceNext() time. Therefore the flags at NSPLookupServiceNext() can never increase the amount of data returned beyond what was requested at NSPLookupServiceBegin(), although it is NOT an error to specify more or fewer flags. The flags specified at a given NSPLookupServiceNext() apply only to that call.

The dwControlFlags LUP_FLUSHPREVIOUS and LUP_RES_SERVICE are exceptions to the “combined restrictions” rule (because they are “behavior” flags instead of “restriction” flags). If either of these flags are used in NSPLookupServiceNext() they have their defined effect regardless of the setting of the same flags at NSPLookupServiceBegin().

For example, if LUP_RETURN_VERSION is specified at NSPLookupServiceBegin() the service provider retrieves records including the “version”. If LUP_RETURN_VERSION is NOT specified at NSPLookupServiceNext(), the returned information does not include the “version”, even though it was available. No error is generated.

Also for example, if LUP_RETURN_BLOB is NOT specified at NSPLookupServiceBegin() but is specified at NSPLookupServiceNext(), the returned information does not include the private data. No error is generated.

Query Results	

The following table describes how the query results are represented in the WSAQUERYSET structure. Refer to section 5.1.6.1. Query-Related Data Structures for additional information.

WSAQUERYSET Field Name�Result Interpretation��dwSize�Will be set to sizeof(WSAQUERYSET). This is used as a versioning mechanism.��DwOuputFlags�RESULT_IS_ALIAS flag indicates this is an alias result.��LpszServiceInstanceName�Referenced string contains service name.��LpServiceClassId�The GUID corresponding to the service class.��LpVersion�References version number of the particular service instance.��LpszComment�Optional comment string supplied by service instance.��DwNameSpace�Name space in which the service instance was found.��LpNSProviderId�Identifies the specific name space provider that supplied this query result.��LpszContext�Specifies the context point in a hierarchical name space at which the service is located.��DwNumberOfProtocols�Undefined for results.��LpafpProtocols�Undefined for results, all needed protocol information is in the CSADDR_INFO structures.��LpszQueryString�When dwControlFlags includes LUP_RETURN_QUERY_STRING, this field returns the unparsed remainder of the lpszServiceInstanceName specified in the original query. For example, in a name space that identifies services by hierarchical names that specify a host name and a file path within that host, the address returned might be the host address and the unparsed remainder might be the file path. If the lpszServiceInstanceName is fully parsed and LUP_RETURN_QUERY_STRING is used, this field is NULL or points to a zero-length string.��DwNumberOfCsAddrs�Indicates the number of elements in the array of CSADDR_INFO structures.��LpcsaBuffer�A pointer to an array of CSADDR_INFO structures, with one complete transport address contained within each element.��LpBlob�(Optional) This is a pointer to a provider-specific entity.��

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSA_E_NO_MORE	There is no more data available.

		In WinSock 2, conflicting error codes are defined for WSAENOMORE (10102) and WSA_E_NO_MORE (10110). The error code WSAENOMORE will be removed in a future version and only WSA_E_NO_MORE will remain. Name Space Providers should switch to using the WSA_E_NO_MORE error code as soon as possible to maintain compatibility with the widest possible range of applications.

WSA_E_CANCELLED	A call to NSPLookupServiceEnd() was made while this call was still processing. The call has been canceled. The data in the lpqsResults buffer is undefined.

	In WinSock 2, conflicting error codes are defined for WSAECANCELLED (10103) and WSA_E_CANCELLED (10111). The error code WSAECANCELLED will be removed in a future version and only WSA_E_CANCELLED will remain. Name Space Providers should switch to using the WSA_E_CANCELLED error code as soon as possible to maintain compatibility with the widest possible range of applications.

WSAEFAULT	The lpqsResults buffer was too small to contain a WSAQUERYSET set.

WSAEINVAL	One or more parameters were invalid for this provider or missing.

WSA_INVALID_HANDLE	The specified Lookup handle is invalid.

WSANO_DATA	The name was found in the database but no data matching the given restrictions was located..

WSASERVICE_NOT_FOUND	No such service is known. The service cannot be found in the specified name space.

WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

�� AUTONUMLGL � NSPRemoveServiceClass()

Description	NSPRemoveServiceClass() is used to permanently remove a specified service class from the name space.

	INT WSPAPI

	NSPRemoveServiceClass(

		IN	LPGUID	lpProviderId,

		IN 	LPGUID	lpServiceClassId

);

lpProviderId	Pointer to the GUID of the specific name space provider that this service class schema is to be removed from.

lpServiceClassId	Pointer to the GUID for the service class that you wish to remove.

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSATYPE_NOT_FOUND	The specified class was not found in any of the name spaces.

WSAEACCES	The calling routine does not have sufficient privileges to remove the Service.

WSA_INVALID_PARAMETER	The specified provider Id GUID was not valid.

WSAEINVAL	The specified service class Id GUID was not valid.

WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

�� AUTONUMLGL � NSPSetService()

Description	NSPSetService() is used to register or deregister a service instance within a name space.

INT WSPAPI

NSPSetService(

	IN	LPGUID		lpProviderId,

	IN	LPWSASERVICECLASSINFOW		lpServiceClassInfo,

	IN	LPWSAQUERYSETW		lpqsRegInfo,

	IN 	WSAESETSERVICEOP		essOperation,

	IN	DWORD		dwControlFlags

);

lpProviderId	Pointer to the GUID of the specific name space provider that this service is being registered in.

lpServiceClasslnfo	contains service class schema information.

lpqsRegInfo	specifies property information to be updated upon registration.

essOperation	an enumeration whose values include:

RNRSERVICE_REGISTER	register the service. For SAP, this means sending out a periodic broadcast. This is a NOP for the DNS name space. For persistent data stores this means updating the address information.

RNRSERVICE_DEREGISTER	deregister the service. For SAP, this means stop sending out the periodic broadcast. This is a NOP for the DNS name space. For persistent data stores this means deleting address information.

RNRSERVICE_DELETE		delete the service from dynamic name and persistent spaces. For services represented by multiple CSADDR_INFO structures (using the SERVICE_MULTIPLE flag), only the supplied address will be deleted, and this much match exactly the corresponding CSADD_INFO structure that was supplied when the service was registered.

dwControlFlags	A set of flags whose values include:

SERVICE_MULTIPLE		Controls scope of operation. When clear, service addresses are managed as a group. A register or deregister invalidates all existing addresses before adding the given address set. When set, the action is only performed on the given address set. A register does not invalidate existing addresses and a deregister only invalidates the given set of addresses.

	The available values for essOperation and dwControlFlags combine to give meanings as shown in the following table:

Operation�Flags�Service already exists�Service does not exist��RNRSERVICE_REGISTER�none�Overwrite the object. Use only addresses specified. Object is REGISTERED.�Create a new object. Use only addresses specified. Object is REGISTERED.��RNRSERVICE_REGISTER�SERVICE_MULTIPLE�Update object. Add new addresses to existing set. Object is REGISTERED.�Create a new object. Use all addresses specified. Object is REGISTERED.��RNRSERVICE_DEREGISTER�none�Remove all addresses, but do not remove object from name space. Object is DEREGISTERED.�WSASERVICE_NOT_FOUND��RNRSERVICE_DEREGISTER�SERVICE_MULTIPLE�Update object. Remove only addresses that are specified. Only mark object as DEREGISTERED if no addresses present. Do not remove from the name space.�WSASERVICE_NOT_FOUND��RNRSERVICE_DELETE�none�Remove object from the name space.�WSASERVICE_NOT_FOUND��RNRSERVICE_DELETE�SERVICE_MULTIPLE�Remove only addresses that are specified. Only remove object from the name space if no addresses remain.�WSASERVICE_NOT_FOUND��

Remarks	SERVICE_MULTIPLE lets an application manage its addresses independently. This is useful when the application wants to manage its protocols individually or when the service resides on more than one machine. For instance, when a service uses more than one protocol, it may find that one listening socket aborts but the others remain operational. In this case, the service could deregister the aborted address without affecting the other addresses.

When using SERVICE_MULTIPLE, an application must not let stale addresses remain in the object. This can happen if the application aborts without issuing a DEREGISTER request. When a service registers, it should store its addresses. On its next invocation, the service should explicitly deregister these old stale addresses before registering new addresses.

Service Properties	

The following table describes how service property data is represented in a WSAQUERYSET structure. Fields labeled as (Optional) may be supplied with a NULL pointer.

WSAQUERYSET �Field Name�Service Property Description��dwSize�Must be set to sizeof(WSAQUERYSET). This is a versioning mechanism.��DwOuputFlags�Not applicable and ignored.��LpszServiceInstanceName�Referenced string contains the service instance name.��LpServiceClassId�The GUID corresponding to this service class.��LpVersion�(Optional) Supplies service instance version number.��LpszComment�(Optional) An optional comment string.��DwNameSpace�Ignored for this operation.��LpNSProviderId�Ignored for this operation, provider ID is contained in the lpProviderId parameter.��LpszContext�(Optional) Specifies the starting point of the query in a hierarchical name space.��DwNumberOfProtocols�Ignored.��LpafpProtocols�Ignored.��LpszQueryString�Ignored.��DwNumberOfCsAddrs�The number of elements in the array of CSADDRO_INFO structs referenced by lpcsaBuffer.��LpcsaBuffer�A pointer to an array of CSADDRO_INFO structs which contain the address[es] that the service is listening on.��LpBlob�(Optional) This is a pointer to a provider-specific entity.��

Note:	It is legal for the iProtocol field of the CSADDR_INFO structure to contain the manifest constant IPROTOCOL_ANY, signifying a wildcard value. The name space provider should substitute a value that is reasonable for the given the address family and socket type.

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSAEACCES	The calling routine does not have sufficient privileges to install the Service.

WSAEINVAL	One or more parameters were invalid for this provider or missing.

WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

WSASERVICE_NOT_FOUND	No such service is known. The service cannot be found in the specified name space.

�� AUTONUMLGL � NSPStartup()

Description	NSPStartup() is used to retrieve the dynamic information about a provider, such as the list of the DLL entry points. This function is called by the client upon initialization. NSPStartup and NSPCleanup must be called as pairs. All of the NSP functions must be called from within a NSPStartup/NSPCleanup pair. WSC functions do not need to be called from within a NSPStartup/NSPCleanup pair either.

	INT WSPAPI

	NSPStartup (

		IN	LPGUID		lpProviderId,

		OUT	LPNSP_ROUTINE	lpnspRoutines

);

lpProviderId	Indicates the desired provider for which to return the entry points.

lpnspRoutines	Pointer to all of the Provider entry points.

Data Types	The following data types are needed for this call.

NSP_ROUTINE

The NSP_ROUTINE structure contains information regarding all of the functions implemented by a given provider.

typedef struct _NSP_ROUTINE {

	DWORD 			cbSize;

	DWORD 			dwMajorVersion;

	DWORD 			dwMinorVersion;

	INT (WSPAPI *NSPCleanup) ();

	INT (WSPAPI *NSPLookupServiceBegin) ();

	INT (WSPAPI *NSPLookupServiceNext) ();

	INT (WSPAPI *NSPLookupServiceEnd) ();

	INT (WSPAPI *NSPSetService) ();

	INT (WSPAPI *NSPInstallServiceClass) ();

	INT (WSPAPI *NSPRemoveServiceClass) ();

	INT (WSPAPI *NSPGetServiceClassInfo) ();

} NSP_ROUTINE, *PNSP_ROUTINE, *LPNSP_ROUTINE;

cbSize	Size of this structure.

dwMajorVersion	The major version of the service provider specification supported by this provider.

dwMinorVersion	The minor version of the service provider specification supported by this provider.

NSP.*	Pointers to the various NSP functions. Every entry must point to a valid function. If the provider does not implement this API, it should simply return WSAENOTIMPLEMENTED. NOTE: In the header file this structure contains complete prototypes for all of the NSP pointers.

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors 	WSA_NOT_ENOUGH_MEMORY	�There was insufficient memory to perform the operation.

WSAEINVAL	One or more parameters were invalid for this provider or missing.

�

� AUTONUMLGL � Installation and Configuration Functions

The following functions are implemented in the WinSock 2 DLL, and are intended to be used by applications that install WinSock transport and name space service providers on a machine. Note that these functions do not affect, and the changes made by these functions are not visible to currently running applications.

For all providers, a provider ID is a GUID which is generated by the developer of the provider (using the UUIDGEN.EXE utility) and supplied to the WinSock 2 DLL.

� AUTONUMLGL � Transport Provider Configuration Functions

� AUTONUMLGL � WSCDeinstallProvider()

Description	Removes the specified transport provider from the system configuration database.

 	#include <ws2spi.h>

	int WSPAPI �WSCDeinstallProvider(�	IN	LPGUID 		lpProviderId, �	OUT	LPINT 			lpErrno�);

lpProviderId	The globally unique identifier of the provider to deinstall. This value is stored within each WSAPROTOCOL_INFOW struct.

lpErrno	A pointer to the error code.

Remarks	This routine removes the common WinSock 2 configuration information for the specified provider. After this routine completes successfully, the configuration information stored in the registry will be changed. However, any WinSock 2 DLL instances which are currently in memory won’t be able to see this change.

Any additional file removal or service provider-specific configuration information removal needed to completely de-install the service provider must be performed by the caller.

Return Value	If no error occurs, WSCDeinstallProvider() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAEINVAL	lpProviderId does not specify a valid provider.

	WSAEFAULT	lpErrno is not in a valid part of the user address space.

See Also	WSCInstallProvider(), WSCEnumProtocols().

�� AUTONUMLGL � WSCEnumProtocols()

Description	Retrieve information about available transport protocols.

 	#include <ws2spi.h>

 	int WSPAPI �WSCEnumProtocols (�	IN		LPINT 				lpiProtocols, �	OUT		LPWSAPROTOCOL_INFOW 	lpProtocolBuffer,�	IN OUT		LPDWORD 			lpdwBufferLength,�	OUT		LPINT 				lpErrno�);

lpiProtocols	A NULL-terminated array of iProtocol values. This parameter is optional; if lpiProtocols is NULL, information on all available protocols is returned, otherwise information is retrieved only for those protocols listed in the array.

lpProtocolBuffer	A buffer which is filled with WSAPROTOCOL_INFOW structures. See below for a detailed description of the contents of the WSAPROTOCOL_INFOW structure.

lpdwBufferLength	On input, the count of bytes in the lpProtocolBuffer buffer passed to WSCEnumProtocols(). On output, the minimum buffer size that can be passed to WSCEnumProtocols() to retrieve all the requested information. This routine has no ability to enumerate over multiple calls; the passed-in buffer must be large enough to hold all entries in order for the routine to succeed. This reduces the complexity of the function and should not pose a problem because the number of protocols loaded on a machine is typically small.

lpErrno	A pointer to the error code.

Remarks	This function is used to discover information about the collection of transport protocols installed on the local machine. This function differs from its API counterpart (WSAEnumProtocols) in that WSAPROTOCOL_INFOW structs for all installed protocols, including layered protocols, can be obtained. (WSAEnumProtocols() only returns information on base protocols and protocol chains.) The lpiProtocols parameter can be used as a filter to constrain the amount of information provided. Normally it will be supplied as a NULL pointer which will cause the routine to return information on all available transport protocols.

A WSAPROTOCOL_INFOW struct is provided in the buffer pointed to by lpProtocolBuffer for each requested protocol. If the supplied buffer is not large enough (as indicated by the input value of lpdwBufferLength), the value pointed to by lpdwBufferLength will be updated to indicate the required buffer size. The WinSock SPI client should then obtain a large enough buffer and call this function again.

The order in which the WSAPROTOCOL_INFOW structs appear in the buffer coincides with the order in which the protocol entries were registered by the service provider with the WinSock DLL, or with any subsequent re-ordering that may have occurred via the WinSock applet supplied for establishing default TCP/IP providers.

Definitions	WSAPROTOCOL_INFOW Structure:

DWORD dwServiceFlags1 - a bitmask describing the services provided by the protocol. The following values are possible:

XP1_CONNECTIONLESS -the protocol provides connectionless (datagram) service. If not set, the protocol supports connection-oriented data transfer.

XP1_GUARANTEED_DELIVERY - the protocol guarantees that all data sent will reach the intended destination.

XP1_GUARANTEED_ORDER - the protocol guarantees that data will only arrive in the order in which it was sent and that it will not be duplicated. This characteristic does not necessarily mean that the data will always be delivered, but that any data that is delivered is delivered in the order in which it was sent.

XP1_MESSAGE_ORIENTED - the protocol honors message boundaries, as opposed to a stream-oriented protocol where there is no concept of message boundaries.

XP1_PSEUDO_STREAM - this is a message oriented protocol, but message boundaries will be ignored for all receives. This is convenient when an application does not desire message framing to be done by the protocol.

XP1_GRACEFUL_CLOSE - the protocol supports two-phase (graceful) close. If not set, only abortive closes are performed.

XP1_EXPEDITED_DATA - the protocol supports expedited (urgent) data.

XP1_CONNECT_DATA - the protocol supports connect data.

XP1_DISCONNECT_DATA - the protocol supports disconnect data.

XP1_SUPPORT_BROADCAST - the protocol supports a broadcast mechanism.

XP1_SUPPORT_MULTIPOINT - the protocol supports a multipoint or multicast mechanism. Control and data plane attributes are indicated below. Refer to 3.14. Protocol-Independent Multicast and Multipoint for additional information.

XP1_MULTIPOINT_CONTROL_PLANE - indicates whether the control plane is rooted (value = 1) or non-rooted (value = 0).

XP1_MULTIPOINT_DATA_PLANE - indicates whether the data plane is rooted (value = 1) or non-rooted (value = 0).

XP1_QOS_SUPPORTED - the protocol supports quality of service requests.

XP1_RESERVED This bit is reserved.

XP1_UNI_SEND - the protocol is unidirectional in the send direction.

XP1_UNI_RECV - the protocol is unidirectional in the recv direction.

XP1_IFS_HANDLES - the socket descriptors returned by the provider are operating system Installable File System (IFS) handles.

XP1_PARTIAL_MESSAGE - the MSG_PARTIAL flag is supported in WSPSend() and WSPSendTo().

Note that only one of XP1_UNI_SEND or XP1_UNI_RECV may be set. If a protocol can be unidirectional in either direction, two WSAPROTOCOL_INFOW structs should be used. When neither bit is set, the protocol is considered to be bi-directional.

DWORD dwServiceFlags2 - reserved for additional protocol attribute definitions.

DWORD dwServiceFlags3- reserved for additional protocol attribute definitions.

DWORD dwServiceFlags4 - reserved for additional protocol attribute definitions.

DWORD dwProviderFlags - provide information about how this protocol is represented in the protocol catalog. The following flag values are possible:

PFL_MULTIPLE_PROTOCOL_ENTRIES - indicates that this is one of two or more entries for a single protocol (from a given provider) which is capable of implementing multiple behaviors. An example of this is SPX which, on the receiving side, can behave either as a message oriented or a stream oriented protocol.

PFL_RECOMMENDED_PROTO_ENTRY - indicates that this is the recommended or most frequently used entry for a protocol which is capable of implementing multiple behaviors.

PFL_HIDDEN - set by a provider to indicate to the WinSock 2 DLL that this protocol should not be returned in the result buffer generated by WSAEnumProtocols(). Obviously, a WinSock 2 application should never see an entry with this bit set.

PFL_MATCHES_PROTOCOL_ZERO - indicates that a value of zero in the protocol parameter of WSPSocket() matches this protocol entry.

GUID ProviderId- A unique identifier assigned to the provider by the service provider vendor . This value is useful for instances where more than one service provider is able to implement a particular protocol. An application may use the ProviderId value to distinguish between providers that might otherwise be indistinguishable.

DWORD dwCatalogEntryId - A unique identifier assigned by the WinSock 2 DLL for each WSAPROTOCOL_INFOW structure.

WSAPROTOCOLCHAIN ProtocolChain - A structure containing a counted list of Catalog Entry IDs which comprise a protocol chain. This structure is defined as follows:�typedef struct {� int ChainLen;� DWORD ChainEntries[MAX_PROTOCOL_CHAIN];�} WSAPROTOCOLCHAIN

		If the length of the chain is 0, this WSAPROTOCOL_INFOW entry represents a layered protocol which has WinSock 2 SPI as both its top and bottom edges. If the length of the chain equals 1, this entry represents a base protocol whose Catalog Entry ID is in the dwCatalogEntryId field above. If the length of the chain is larger than 1, this entry represents a protocol chain which consists of one or more layered protocols on top of a base protocol. The corresponding Catalog Entry IDs are in the ChainEntries array starting with the layered protocol at the top and ending with the base protocol.

int iVersion - Protocol version identifier.

int iAddressFamily - the value to pass as the address family parameter to the WSPSocket() function in order to open a socket for this protocol. This value also uniquely defines the structure of protocol addresses (SOCKADDRs) used by the protocol.

int iMaxSockAddr - The maximum address length.

int iMinSockAddr - The minimum address length.

int iSocketType - The value to pass as the socket type parameter to the socket() function in order to open a socket for this protocol.

int iProtocol - The value to pass as the protocol parameter to the socket() function in order to open a socket for this protocol.

int iProtocolMaxOffset - The maximum value that may be added to iProtocol when supplying a value for the protocol parameter to WSPSocket(). Not all protocols allow a range of values. When this is the case iProtocolMaxOffset will be zero.

int iNetworkByteOrder - Currently these values are manifest constants (BIGENDIAN and LITTLEENDIAN) that indicate either “big-endian” or “little-endian” with the values 0 and 1 respectively.

int iSecurityScheme - Indicates the type of security scheme employed (if any). A value of SECURITY_PROTOCOL_NONE is used for protocols that do not incorporate security provisions.

DWORD dwMessageSize - The maximum message size supported by the protocol. This is the maximum size that can be sent from any of the host’s local interfaces. For protocols which do not support message framing, the actual maximum that can be sent to a given address may be less. There is no standard provision to determine the maximum inbound message size. The following special values are defined:

0 - the protocol is stream-oriented and hence the concept of message size is not relevant.

0x1 - the maximum outbound (send) message size is dependent on the underlying network MTU (maximum sized transmission unit) and hence cannot be known until after a socket is bound. Applications should use getsockopt() to retrieve the value of SO_MAX_MSG_SIZE after the socket has been bound to a local address.

0xFFFFFFFF - the protocol is message-oriented, but there is no maximum limit to the size of messages that may be transmitted.

DWORD dwProviderReserved - reserved for use by service providers.

WCHAR szProtocol - an array of characters that contains a human-readable name identifying the protocol, for example "SPX2". The maximum number of characters allowed is WSAPROTOCOL_LEN, which is defined to be 256.

Return Value	If no error occurs, WSCEnumProtocols() returns the number of protocols to be reported on. Otherwise a value of SOCKET_ERROR is returned and a specific error code is available in lpErrno.

Error Codes	WSAEFAULT	One of more of the arguments is not in a valid part of the user address space.

WSAEINVAL	Indicates that one of the specified parameters was invalid.

WSAENOBUFS	The buffer length was too small to receive all the relevant WSAPROTOCOL_INFOW structures and associated information. Pass in a buffer at least as large as the value returned in lpdwBufferLength.

�� AUTONUMLGL � WSCGetProviderPath()

Description	Retrieve the DLL path for the specified provider.

 	#include <ws2spi.h>

	int WSPAPI �WSCGetProviderPath(�	IN		LPGUID 		lpProviderId, �	OUT		LPWSTR		lpszProviderDllPath,�	IN OUT		LPINT 			lpProviderDllPathLen,

OUT		LPINT 			lpErrno

);

lpProviderId	The locally unique identifier of the provider. This must be a value obtained by using WSCEnumProtocols().

lpszProviderDllPath	A Pointer to a buffer into which the provider DLL’s path string is returned. This path is a null-terminated string, and any embedded environment strings (such as %SystemRoot%) have not been expanded.

lpProviderDllPathLen	The size of the buffer pointed to by lpszProviderDllPath.

lpErrno	A pointer to the error code.

Remarks	This routine retrieves the DLL path for the specified provider. The DLL path may contain embedded environment strings (such as %SystemRoot%), and thus should be expanded prior to being used with LoadLibrary().

Return Value	If no error occurs, WSCGetProviderPath() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAEINVAL	lpProviderId does not specify a valid provider.

	WSAEFAULT	lpszProviderDllPath or lpErrno is not in a valid part of the user address space, or lpProviderDllPathLen is too small.

See Also	WSCInstallProvider(), WSCEnumProtocols().

�� AUTONUMLGL � WSCInstallProvider()

Description	Installs the specified transport provider into the system configuration database.

 	#include <ws2spi.h>

	int WSPAPI �WSCInstallProvider(�	IN	const LPGUID				lpProviderId,�	IN	const LPWSTR 				lpszProviderDllPath, �	IN	const LPWSAPROTOCOL_INFOW 	lpProtocolInfoList, �	IN	DWORD 				dwNumberOfEntries, �	OUT	LPINT 					lpErrno�);

lpProviderId	Points to a provider-selected globally unique identifier (GUID)

lpszProviderDllPath	Points to a string containing the load path to the provider’s DLL. This path string should follow the usual rules for path resolution, and may contain embedded environment strings (such as %SystemRoot%). Such environment strings are expanded whenever the WinSock 2 DLL needs to subsequently load the provider DLL on behalf of an application attempting to use a socket. After any embedded environment strings are expanded, the WinSock 2 DLL passes the resulting string into the LoadLibrary() function to load the provider into memory.

lpProtocolInfoList	Points to an array of WSAPROTOCOL_INFOW structures. Each structure defines a protocol/address_family/socket_type supported by the provider.

dwNumberOfEntries	Contains the number of entries in the lpProtocolInfoList array.

lpErrno	A pointer to the error code.

Remarks	This routine creates the necessary common WinSock 2 configuration information for the specified provider. It is applicable to base protocols, layered protocols and protocol chains. After this routine completes successfully, the protocol information provided in lpProtocolInfoList will be returned by the WSAEnumProtocols(). Note that in Win32 environments, only instances of the WinSock 2 DLL created after a successful completion of this function will include the new entries in WSAEnumProtocols().

Any file installation or service provider specific configuration must be performed by the caller.

Return Value	If no error occurs, WSCInstallProvider() returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes	WSAEFAULT	One of more of the arguments is not in a valid part of the user address space.

See Also	WSCDeinstallProvider(), WSCEnumProtocols()PSCancelBlockingCall().

�� AUTONUMLGL � Name Space Provider Configuration Functions

The following functions are intended to be used by applications that install and configure WinSock name space service providers on a machine.

� AUTONUMLGL � WSCEnableNSProvider()

Description	WSCEnableNSProvider() is used to change the state of a given name space provider. This function is intended to be used by the control panel applet to change the state of the providers. An ISV should not just blindly de-activate another ISV’s provider in order to activate their own. This choice should be left up to the user.

	INT WSPAPI

	WSCEnableNSProvider (

		IN	LPGUID	lpProviderId,

		IN	BOOL		fEnable

);

lpProviderId	The unique identifier for this provider.

fEnable	If TRUE, the provider is set to the active state. If FALSE, the provider is disabled and will not be available for query operations or service registration.

Remarks	The name space configuration functions do not impact currently running applications. Newly installed name space providers will not be visible, nor will the changes in a provider’s activation state. Applications launched subsequent to a name space configuration function will see the impacts.

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSAEINVAL	the specified name space provider ID is invalid.

�� AUTONUMLGL � WSCInstallNameSpace()

Description	WSCInstallNameSpace() is used to install a name space provider. For providers that are able to support multiple names spaces, this function must be called once for every name space supported, and a unique provider ID must be supplied each time.

	INT WSPAPI

	WSCInstallNameSpace (

		IN	LPWSTR		lpszIdentifier,

		IN	LPWSTR		lpszPathName,

		IN	DWORD		dwNameSpace,

		IN	DWORD		dwVersion,

		IN	LPGUID		lpProviderId

);

lpszIdentifier	Display string for the provider.

lpszPathName	Points to a path to the provider’s DLL image which follows the usual rules for path resolution. This path may contain embedded environment strings (such as %SystemRoot%). Such environment strings are expanded whenever the WinSock 2 DLL needs to subsequently load the provider DLL on behalf of an application. After any embedded environment strings are expanded, the WinSock 2 DLL passes the resulting string into the LoadLibrary() function to load the provider into memory.

.

dwNameSpace	Specifies the name space supported by this provider.

dwVersion	Specifies the version number of the provider.

lpProviderId	A unique identifier for this provider. This GUID should be generated by UUIDGEN.EXE.

Remarks	The name space configuration functions do not impact currently running applications. Newly installed name space providers will not be visible, nor will the changes in a provider’s activation state. Applications launched subsequent to a name space configuration function will see the impacts.

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Errors	WSAEACCES	The calling routine does not have sufficient privileges to install a name space.

�� AUTONUMLGL � WSCUnInstallNameSpace()

Description	WSCUnInstallNameSpace() is used to uninstall the indicated name space provider.

	INT WSPAPI

	WSCUnInstallNameSpace (

		IN	LPGUID	lpProviderId

);

lpProviderId	The unique identifier for this provider.

Return Value	The function should return NO_ERROR (0) if the routine succeeds. It should return SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code using SetLastError().

Remarks	The name space configuration functions do not impact currently running applications. Newly installed name space providers will not be visible, nor will the changes in a provider’s activation state. Applications launched subsequent to a name space configuration function will see the impacts.

Errors	WSAEINVAL	the specified name space provider ID is invalid.

�Appendix A. Error Codes and Header Files

A.1 Error Codes

The following is a list of possible error codes available in the lpErrno parameter of each function, along with their explanations. The error numbers are consistently set across all WinSock-compliant implementations.

WinSock code�Berkeley equivalent�Error�Interpretation��WSAEINTR�EINTR�10004�As in standard C��WSAEBADF�EBADF�10009�As in standard C��WSAEACCES�EACCES�10013�As in standard C��WSAEFAULT�EFAULT�10014�As in standard C��WSAEINVAL�EINVAL�10022�As in standard C��WSAEMFILE�EMFILE�10024�As in standard C��WSAEWOULDBLOCK�EWOULDBLOCK�10035�As in BSD��WSAEINPROGRESS�EINPROGRESS�10036�This error is returned if any�WinSock function is �called while a blocking function is�in progress.��WSAEALREADY�EALREADY�10037�As in BSD��WSAENOTSOCK�ENOTSOCK�10038�As in BSD��WSAEDESTADDRREQ�EDESTADDRREQ�10039�As in BSD��WSAEMSGSIZE�EMSGSIZE�10040�As in BSD��WSAEPROTOTYPE�EPROTOTYPE�10041�As in BSD��WSAENOPROTOOPT�ENOPROTOOPT�10042�As in BSD��WSAEPROTONOSUPPORT�EPROTONOSUPPORT�10043�As in BSD��WSAESOCKTNOSUPPORT�ESOCKTNOSUPPORT�10044�As in BSD��WSAEOPNOTSUPP�EOPNOTSUPP�10045�As in BSD��WSAEPFNOSUPPORT�EPFNOSUPPORT�10046�As in BSD��WSAEAFNOSUPPORT�EAFNOSUPPORT�10047�As in BSD��WSAEADDRINUSE�EADDRINUSE�10048�As in BSD��WSAEADDRNOTAVAIL�EADDRNOTAVAIL�10049�As in BSD��WSAENETDOWN�ENETDOWN�10050�As in BSD. This error may be reported at any time if the WinSock service provider detects an underlying failure.��WSAENETUNREACH�ENETUNREACH�10051�As in BSD��WSAENETRESET�ENETRESET�10052�As in BSD��WSAECONNABORTED�ECONNABORTED�10053�As in BSD��WSAECONNRESET�ECONNRESET�10054�As in BSD��WSAENOBUFS�ENOBUFS�10055�As in BSD��WSAEISCONN�EISCONN�10056�As in BSD��WSAENOTCONN�ENOTCONN�10057�As in BSD��WSAESHUTDOWN�ESHUTDOWN�10058�As in BSD��WSAETOOMANYREFS�ETOOMANYREFS�10059�As in BSD��WSAETIMEDOUT�ETIMEDOUT�10060�As in BSD��WSAECONNREFUSED�ECONNREFUSED�10061�As in BSD��WSAELOOP�ELOOP�10062�As in BSD��WSAENAMETOOLONG�ENAMETOOLONG�10063�As in BSD��WSAEHOSTDOWN�EHOSTDOWN�10064�As in BSD��WSAEHOSTUNREACH�EHOSTUNREACH�10065�As in BSD��WSASYSNOTREADY��10091�Returned by WSPStartup() �indicating that the network subsystem is unusable.��WSAVERNOTSUPPORTED��10092�Returned by WSPStartup() �indicating that the WinSock�service provider cannot support the WinSock SPI client.��WSANOTINITIALISED��10093�Returned by any function except WSPStartup() indicating that a successful WSPStartup() has not yet been performed.��WSAHOST_NOT_FOUND�HOST_NOT_FOUND�11001�As in BSD.��WSATRY_AGAIN�TRY_AGAIN�11002�As in BSD��WSANO_RECOVERY�NO_RECOVERY�11003�As in BSD��WSANO_DATA�NO_DATA�11004�As in BSD��

The first set of definitions is present to resolve contentions between standard C error codes which may be defined inconsistently between various C compilers.

The second set of definitions provides WinSock versions of regular Berkeley Sockets error codes.

The third set of definitions consists of extended WinSock-specific error codes.

�

A.2 WinSock SPI Header File - WS2SPI.H

The WS2SPI.H header file includes a number of types and definitions from the standard Windows header file WINDOWS.H. The WINDOWS.H in the Windows 3.0 SDK (Software Developer's Kit) lacks a #include guard, so if you need to include WINDOWS.H as well as WS2SPI.H, you should define the symbol _INC_WINDOWS before #including WS2SPI.H, as follows:

#include <windows.h>

#define _INC_WINDOWS

#include <ws2spi.h>

Users of the SDK for Windows 3.1 and later need not do this.

A WinSock service provider vendor MUST NOT make any modifications to this header file which could impact binary compatibility of WinSock SPI clients. The constant values, function parameters and return codes, and the like must remain consistent across all WinSock service provider vendors.

New versions of WS2SPI.H will appear periodically as new identifiers are allocated by the WinSock Identifier Clearinghouse. The clearinghouse can be reached via the world wide web at

	http://www.stardust.com/wsresource/winsock2/ws2ident.html

Developers are urged to stay current with successive revisions of WS2SPI.H as they are made available by the clearinghouse.

Because it has grown rather large and is subject to frequent updates, WS2SPI.H is no longer being copied verbatim into this specification document.

�Appendix B. Service Provider Ordering

The order in which transport service providers are initially installed governs the order in which they are enumerated through WSCEnumProtocols() at the service provider interface, or through WSAEnumProtocols() at the application interface. More importantly, this order also governs the order in which protocols and service providers are considered when a client requests creation of a socket based on its address family, type, and protocol identifier. WinSock 2 includes an applet called SPORDER.EXE that allows the catalog of installed protocols to be re-ordered interactively after protocols have already been installed. WinSock 2 also includes an auxiliary DLL, SPORDER.DLL, that exports a procedural interface for re-ordering protocols. This procedural interface consists of a single procedure called WSCWriteProviderOrder().

The interface definition may be imported into a C or C++ program by means of the include file SPORDER.H. The entry point may be linked by means of the lib file SPORDER.LIB. The actual procedure specification is given in the following section.

�B.1 WSCWriteProviderOrder()

Description	Reorder existing WinSock2 transport protocols. The order of the protocols determines their priority in being enumerated or selected for use.

	#include <sporder.h>

	int�WSPAPI�WSCWriteProviderOrder(�	IN	LPDWORD	lpdwCatalogEntryId,�	IN	DWORD	dwNumberOfEntries�);

lpdwCatalogEntryId	An array of CatalogEntryId elements as found in the WSAPROTOCOL_INFOW structure. The order of the CatalogEntryId elements is the new priority ordering for the protocols.

dwNumberOfEntries	The number of elements in the lpdwCatalogEntryId array.

Return Value	The function should return ERROR_SUCCESS (0) if the routine succeeds. Otherwise it returns a specific error code as defined below.

Remarks	The order in which transport service providers are initially installed governs the order in which they are enumerated through WSCEnumProtocols() at the service provider interface, or through WSAEnumProtocols() at the application interface. More importantly, this order also governs the order in which protocols and service providers are considered when a client requests creation of a socket based on its address family, type, and protocol identifier. WinSock 2 includes an applet called SPORDER.EXE that allows the catalog of installed protocols to be re-ordered interactively after protocols have already been installed. WinSock 2 also includes an auxiliary DLL, SPORDER.DLL, that exports This procedural interface for re-ordering protocols. This interface may be imported by linking with SPORDER.LIB.

Here are scenarios in which the WSCWriteProviderOrder() function may fail:

The dwNumberOfEntries is not equal to the number of registered service providers.

The lpwdCatalogEntryId contains an invalid catalog ID.

The lpwdCatalogEntryId does not contain all valid catalog IDs exactly one time.

The routine is not able to access the registry for some reason (e.g. inadequate user permissions)

Another process (or thread) is currently calling the routine.

Error Codes	WSAEINVAL	Input parameters were bad, no action was taken.

ERROR_BUSY	The routine is being called by another thread or process.

(other)	The routine may return any registry error code.

� Readers familiar with IP multicast’s use of the connectionless UDP protocol may be concerned by the connection-oriented semantics presented here. In particular the notion of using WSPJoinLeaf() on a UDP socket and waiting for an FD_CONNECT indication may be troubling. There is, however, ample precedent for applying connection-oriented semantics to connectionless protocols. It is allowed and sometime useful, for example, to invoke the WSPConnect() function on a UDP socket. The general result of applying connection-oriented semantics to connectionless sockets is a restriction in how such sockets may be used, and such is the case here as well. A UDP socket used in WSPJoinLeaf() will have certain restrictions, and waiting for an FD_CONNECT indication (which in this case simply indicates that the corresponding IGMP message has been sent) is one such limitation.

� PAGE �viii�

�PAGE �vii�

� PAGE �2�	Introduction	

	Introduction	� PAGE �1�

� PAGE �4�		Introduction

� PAGE �14�	Architecture Overview

	Architecture Overview	� PAGE �13�

� PAGE �48�	Transport Provider Requirements

	Transport Provider Requirements	� PAGE �49�

�PAGE�54�	WSPAccept

	WSPAccept	� PAGE �53�

�PAGE�56� 	WSPAddressToString

	WSPAddressToString	� PAGE �55�

�PAGE�62� 	WSPAsyncSelect

	WSPAsyncSelect	� PAGE �61�

�PAGE�64�	WSPBind

	WSPBind	� PAGE �63�

� PAGE �66�	WSPCancelBlockingCall

	WSPCancelBlockingCall 	�page �65�

�PAGE�68�	WSPCleanup

	WSPCleanup	� PAGE �67�

�PAGE�70�	WSPClosesocket

	WSPCloseSocket	� PAGE �69�

�PAGE�74� 	WSPConnect

	WSPConnect	� PAGE �73�

� PAGE �76�	WSPDuplicateSocket

	WSPDuplicateSocket 	�page �77�

�PAGE�78� 	WSPEnumNetworkEvents

	WSPEnumNetworkEvents	� PAGE �79�

�PAGE�82� 	WSPEventSelect

	WSPEventSelect	� PAGE �83�

� PAGE �84�	WSPGetOverlappedResult

	WSPGetOverlappedResult 	�page �85�

�PAGE�86�	WSPGetPeerName

	WSPGetPeerName	� PAGE �90�

� PAGE �91�	WSPGetQOSByName

	WSPGetQOSByName 	�page �87�

�PAGE�88� 	WSPGetSockName

	WSPGetSockName	� PAGE �89�

�PAGE�94� 	WSPGetSockOpt

	WSPGetSockOpt	� PAGE �93�

�PAGE�102�	WSPIoctl

	WSPIoctl	� PAGE �101�

� PAGE �106�	WSPJoinLeaf

	WSPJoinLeaf 	�page �107�

�PAGE�108�	WSPListen

	WSPListen	� PAGE �109�

� PAGE �114�	WSPRecv

	WSPRecv	� PAGE �115�

�PAGE�116�	WSPRecvDisconnect

	WSPRecvDisconnect 	�PAGE�117�

�PAGE�122�	WSPRecvFrom

	WSPRecvFrom	� PAGE �123�

�PAGE�126�	WSPSelect

	WSPSelect	� PAGE �125�

�PAGE�130�	WSPSend

	WSPSend	� PAGE �131�

� PAGE �132�	WSPSendDisconnect

	WSPSendDisconnect 	�PAGE�133�

� PAGE �138�	WSPSendTo

	WSPSendTo	� PAGE �139�

�PAGE�142�	WSPSetSockOpt

	WSPSetSockOpt	� PAGE �143�

�PAGE�144�	WSPShutdown

	WSPShutdown	� PAGE �145�

� PAGE �148�	WSPSocket

	WSPSocket	� PAGE �149�

�PAGE�154�	WSPStartup

	WSPStartup	� PAGE �153�

�PAGE�156�	WSPStringToAddress

	WSPStringToAddress	� PAGE �155�

� PAGE �158�	WPUCloseEvent

	Upcalls	� PAGE �157�

� PAGE �163�	WPUCloseEvent

	WPUCloseSocketHandle	� PAGE �159�

�PAGE�160�	WPUCloseThread

	WPUCloseSocketHandle	� PAGE �164�

�PAGE�162�	WPUCompleteOverlappedRequest

	WPUCompleteOverlappedRequest	� PAGE �163�

� PAGE �164�	WPUCreateEvent

	WPUCreateEvent	� PAGE �168�

�PAGE�166� 	WPUCreateSocketHandle

	WPUCreateSocketHandle	� PAGE �165�

�PAGE�168� 	WPUGetProviderPath

	WPUFDIsSet	� PAGE �167�

�PAGE�170� 	WPUModifyIFSHandle

	WPUModifyIFSHandle	� PAGE �169�

�PAGE�175� 	WPUModifyIFSHandle

	WPUOpenCurrentThread	� PAGE �171�

�PAGE�172� 	WPUPostMessage

	WPUPostMessage	� PAGE �176�

�PAGE�174� 	WPUQueryBlockingCallback

	WPUQueryBlockingCallback	� PAGE �173�

�PAGE�179�	WPUQuerySocketHandleContext

	WPUQuerySocketHandleContext	� PAGE �175�

�PAGE�176�	WPUQueueApc

	WPUQueueApc	� PAGE �177�

� PAGE �178�	WPUResetEvent

	WPUResetEvent	� PAGE �182�

�PAGE�183� 	WSCInstallProvider

	WPUSetEvent	� PAGE �179�

� PAGE �186�	Name Resolution Service Provider Requirements

	Name Resolution Service Provider Requirements	� PAGE �185�

	NSPCleanup	� PAGE �187�

NSPGetAddressByName		page � PAGE �191� of � NUMPAGES * MERGEFORMAT �229�

� DATE \l �5/2/97�	Revision 1.0

� PAGE �188�	NSPGetServiceClassInfo

NSPSetService		page � PAGE �192� of � NUMPAGES * MERGEFORMAT �229�

	NSPInstallServiceClass	� PAGE �189�

NSPGetNameByType		page � PAGE �193� of � NUMPAGES * MERGEFORMAT �229�

� PAGE �192�	NSPLookupServiceBegin

	NSPLookupServiceBegin	� PAGE �191�

NSPGetAddressByName		page � PAGE �196� of � NUMPAGES * MERGEFORMAT �229�

� DATE \l �5/2/97�	Revision 1.0

� PAGE �197�	NSPLookupServiceBegin

	NSPLookupServiceEnd	� PAGE �193�

� PAGE �196�	NSPLookupServiceNext

	NSPLookupServiceNext	� PAGE �195�

NSPGetAddressByName		page � PAGE �200� of � NUMPAGES * MERGEFORMAT �229�

� DATE \l �5/2/97�	Revision 1.0

� PAGE �201�	NSPRemoveServiceClass

	NSPRemoveServiceClass	� PAGE �197�

WSAGetAddressByName		page � PAGE �201� of � NUMPAGES * MERGEFORMAT �229�

� DATE \l �5/2/97�	Revision 1.0

� PAGE �200�	NSPSetService

	NSPSetService	� PAGE �199�

NSPGetNameByType		page � PAGE �204� of � NUMPAGES * MERGEFORMAT �229�

� PAGE �202�	NSPStartup

	NSPStartup	� PAGE �201�

	WSCDeinstallProvider	� PAGE �203�

� PAGE �208�	WSCEnumProtocols

	WSCEnumProtocols	� PAGE �207�

� PAGE �213�	WSCGetProviderPath

	WSCGetProviderPath	� PAGE �209�

� PAGE �210�	WSCInstallProvider

	WSCInstallProvider	� PAGE �214�

� PAGE �215�	WSCEnableNSProvider

	WSCEnableNSProvider	� PAGE �211�

� PAGE �212�	WSCInstallNameSpace

	WSCEnableNSProvider	� PAGE �216�

NSPGetNameByType		page � PAGE �216� of � NUMPAGES * MERGEFORMAT �229�

	WSCUnInstallNameSpace	� PAGE �213�

� PAGE �214�	Appendix A. Error Codes and Header Files

	Appendix A. Error Codes and Header Files	� PAGE �215�

� PAGE �216�	Appendix A. Error Codes and Header Files

	Appendix A. Error Codes	� PAGE �220�

� PAGE �221�	WSCInstallNameSpace

	Appendix B. Service Provider Ordering	� PAGE �217�

NSPGetNameByType		page � PAGE �221� of � NUMPAGES * MERGEFORMAT �229�

� PAGE �218�	WSCWriteProviderOrder

	WSCWriteProviderOrder	� PAGE �219�

