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Abstract

Dolby* Digital is a high-quality audio compression
format widely used in feature films and, more recently,
on DVD1. PCs now offer DVD drives, and providing a
Dolby Digital decoder in software allows decoding of
Dolby Digital to become a baseline capability on the
PC. Intel’s MMX™ technology provides instructions
that can significantly speed up the execution of the
Dolby Digital decoder, freeing up the processor to
perform other tasks such as video decoding and/or
audio enhancement.

A simple port of Dolby Digital to MMX technology using
only a 16-bit data type introduces quantization noise
that makes the decoder unsatisfactory for high-quality
audio. However, MMX technology provides additional
flexibility through 32-bit operations which, combined
with other software techniques, allows the implementer
to increase the audio quality of the decoder while still
providing a significant speedup over implementations
that do not use MMX technology. Intel has worked
closely with Dolby Laboratories to define an
implementation of Dolby Digital based on MMX
technology that has achieved Dolby’s certification of
quality. This paper describes the research performed
and the resultant techniques Intel used in creating its
Dolby Digital decoder.

Introduction
Dolby* Digital is a transform-based audio coding
algorithm designed to provide data-rate reduction for
wide-band signals while maintaining the high quality of
the original content [1]. MMX™ technology can be used
to provide a processor-efficient implementation of

                                                          
1 DVD is often referred to as Digital Versatile Disk or
Digital Video Disk.

Dolby Digital for a PC based on a Pentium® processor
with MMX technology. It is important to maintain high
audio quality, and Dolby Laboratories has developed a
stringent test suite to ensure that a certified decoder
indeed provides high quality. In addition, trained
listeners evaluate prospective decoders using both test
and program material. Only after a decoder has passed
both the analytical and subjective tests is the decoder
certified.

Intel’s MMX instructions operate on 8, 16, and 32 bits.
The human ear has an overall dynamic range of 120 dB
and an instantaneous dynamic range of 85 dB [2]. The
dynamic range of a binary value is 6.0206 dB per bit.
Eight bits (48 dB of dynamic range, about that of AM
radio) is obviously insuff icient for high-quality audio.
Sixteen bits (96 dB of dynamic range, as is used on
Compact Disks) is usually considered high-quality
audio, and we will  accept this notion for this paper.
However, due to rounding errors during the intermediate
calculations, the accuracy at the output of a Dolby
Digital decoder is significantly less than the accuracy of
the intermediate values (assuming a uniform accuracy
throughout the algorithm). This is typical in signal
processing algorithms. Using 16 bits of accuracy
uniformly through a Dolby Digital decoder is
insufficient to pass the test suite. The challenge was to
obtain both good execution speed and good audio
quality. 32-bit floating-point numbers could be used
throughout the data path and only use MMX technology
for bit manipulation, but this would not be the most
processor-efficient method. MMX technology provides
integer operations that are more processor-effi cient than
existing floating-point operations; we strove to use the
MMX instructions as much as possible.

The goal of this investigation was to find a minimal
CPU implementation at an acceptable audio quality
level. If the CPU requirements could be made small
enough, Dolby Digital decoding entirely in software
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would be feasible, even in combination with other
operations (such as video playback). In order to do this,
we had to determine the accuracy required in the various
stages of the Dolby Digital decoder while maintaining
effective use of MMX technology. We found that by
using the flexibility of the 16-bit and 32-bit data types in
the MMX instruction set, we were able to increase the
accuracy of the Dolby Digital decoder significantly
beyond that of a simple 16-bit approach with only a
small impact on CPU performance. We also found that
MMX technology can be used to speed up the bit
manipulation, dithering, and downmix sections of the
decoder.

An additional benefit of performing the audio decode in
software is the resultant flexibility possible in the audio
subsystem. If the Dolby Digital decoder is in software, it
is easier to route the decoded audio to other audio
subsystems. For example, simultaneous mixing of the
PC’s system sounds (i.e., via the Microsoft Windows
Wave Device API) with the decoded audio is possible.

Dolby Digital Decoder
A block diagram of the Dolby Digital decoder is shown

in Figure 1 [3].

Figure 1. The Dolby Digital Decoder

The Dolby Digital bit stream contains Synchronization
Information (SI), Bit Stream Information (BSI), Audio
Block information (AB),  Auxiliary (AUX) information,
and Cyclic Redundancy Check (CRC).  See Figure 2 for
the Dolby Digital bit stream.

During our investigation, each block was inspected to
determine if it could benefit from MMX technology.
The following operations benefit significantly from
MMX technology:

• Bit Stream Parsing

• Scaling

• TDAC Transform (DCT twiddles, FFT, Windowed-
Overlapped-Add)

• Dithering

• Downmixing

We will now describe the five major operations from the
input to the output (Bit Stream Parsing, Coefficient
Extraction, TDAC Transform, Dithering, and
Downmixing). We will also describe how MMX
technology was used to provide a speedup.  General
precision and performance enhancements will also be
discussed.
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Figure 2. Dolby Digital Frame and Audio Block

Bit Stream Parsing
Each audio block (AB 0 through AB 5 in Figure 2)
contains various pieces of information that tell the
decoder how to decode the audio. These are bit fields
that are extracted M bits at a time, where M is 0 to 16.
MMX technology can be used to perform bit extraction
[4], so we can efficiently parse the bit stream. From this
information, we obtain the transform coefficients for the
synthesis filter bank (TDAC transform).

Transform Coefficients Extraction
The audio block contains the information required to
obtain the transform coefficients that will be sent to the
synthesis filter bank. In Dolby Digital, the bit allocation,
i.e., the number of bits used to represent a particular
mantissa, is derived from the exponents (the spectral
envelope). The mantissas are de-quantized and
combined with the exponents in the denormalization
process to create the transform coefficient values.
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TDAC Transform
The Time Domain Aliasing Cancellation (TDAC)
transform [5] converts the spectral information back to
time domain, pulse-code modulated (PCM) samples.
The TDAC provides perfect reconstruction (in the
absence of quantization or other noise) and is critically
sampled.

The TDAC transform is implemented as two DCT
twiddle stages with an inverse Fast Fourier Transform
(iFFT) in the middle [6]. A block diagram of this
implementation of the TDAC transform is shown in
Figure 3.

Figure 3. TDAC Transform Implementation

In our implementation, we created coefficient values
with 24-bits of accuracy that are stored in 32-bit values.
24 bits of accuracy was chosen to prevent overflow
during the intermediate denormalization and scaling
processes. This 32-bit number was used in the first three
stages of the TDAC transform. After the first two stages
of the iFFT, the value was rounded to 16 bits of
accuracy. The remainder of the operations were
performed using pass-to-pass representations of 16 bits.
MMX technology provides multiply accumulations to
32 bits, therefore many intermediate values were 32 bits.

The sine, cosine, and windowing values required in the
TDAC transform were implemented via 16-bit lookup
tables. Since these values are full-scale, 16 bits was
sufficient for our needs. Errors introduced by imprecise
coefficients are negligible compared to roundoff errors
[7,8]. The technique of 32-bit data and 16-bit lookup
tables has been shown to provide high-quality audio
decoding [9].

Quantization errors introduced early in the transform
process manifest themselves as tones in the output.
Tonal noise is highly objectionable [10]. Output noise, if
it must be present, should be broad-band or “white”
noise. Therefore, the goal was to significantly reduce the
peak spectral error. In a mixed-precision
implementation, the question is how far into the TDAC
transform do we need to carry 32 bits? In other words,
where can we switch to 16 bits? Under subjective

listening tests, we decided that performing the first three
stages in 32 bits and the remainder in 16 bits reduced the
tonal noise to a level of acceptability (see Figure 3). This
also resulted in the decoder passing the measurement
tests.

Multiplication in the MMX instruction set is 16 bits by
16 bits, yielding a 32-bit result. A 16-bit by 31-bit
multiply is also possible in software, at a cost of at least
five instructions and a pipelined output of two clocks per
result [11]. Minimizing the number of 16-by-31 bit
multiplies was important. It was discovered that the first
two stages of the Decimation in Time (DIT) FFT contain
only trivial coefficients, i.e., -1 and +1. This allowed
these stages to be performed using only add and subtract
instructions (no table lookup operations). These 32-bit
operations are available in the MMX instruction set.
This optimization allowed us to only use the more
computationally intensive 16/31 bit operations only on
the first DCT twiddle stage. The first two stages of the
iFFT were performed with 32-bit adds and subtracts,
which are efficient in the MMX instruction set.

The Windowed-Overlapped-Add (WOLA) block also
fits well into the MMX instruction set.  To perform the
WOLA, the current and previous output arrays from the
last DCT twiddle stage are windowed and then added
together [5]. The windowing and addition operations
were implemented as two 16-bit by 16-bit multiplies
(the windowing) and then added as 32-bit quantities.
This is provided by the PMADDWD instruction. The
32-bit results were then rounded to 16 bits for the
output.

Mantissa Dithering
Dithering is required in a Dolby Digital decoder.  How
dithering is used by a decoder is determined by the
Dolby Digital encoder used to create the frame.
Dithering is used when the encoder determines that a
transform mantissa doesn’t get any bits (only an
exponent) and that it is best to dither the mantissa (as
opposed to having a mantissa of zero).  This is
implemented as a pseudo-random number generator that
is random to 14 bits (the Dolby Digital specification
states that the random number generator must be random
to 8 bits or greater [3], so we exceed that specification).
The calculation is given in Listing 1.

Listing 1. Dither Generation

C code:

x(t) = (x(t-1) * 47989) & 0xffff;

MMX Technology Assembly Code:

// dither multiplier value is linear
// congruential multiplier ^ 4,
// i.e. 0x4f31, packed 4 times

Quadword DithMultVal = 0x4f314f314f314f31;

DCT
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// [63:48] = linear congruential multiplier ^ 4
// [47:32] = linear congruential multiplier ^ 3
// [31:16] = linear congruential multiplier ^ 2
// [15:0]  = linear congruential multiplier ^ 1
Quadword DithregInit = 0x4f31994d2379bb75;

Initialization:
;4 16-bit packed values
MOVQ MM0, DithregInit

Generation Loop:
; dither register * dither multiplier
; to get next set of values in dither
; register
PMULLW MM0, DithMultVal
;result is 4 16-bit values
MOVQ [result64], MM0

PMULLW has a latency of 3 but a throughput of
1.  This program can be pipelined to achieve
one result per clock written out to memory (for
example, on a Pentium processor PMULLW in the V
Pipe, MOVQ in the U Pipe).

Calculating four dither values with a single PMULLW
instruction provides a high throughput for this part of the
decoder. This instruction multiplies two 16-bit values
and provides the lower 16 bits of the result (four of these
are performed per instruction).

Downmixing
Dolby Digital can contain up to six audio channels: five
full-bandwidth channels and a low-frequency effect
(LFE) channel. This mode is often referred to as 5.1
channels, where 5 is the number of full-bandwidth
channels and .1 is the LFE. The vast majority of PCs
have only two audio output channels, so downmixing is
often used. Also, for our two-channel downmix, the LFE
is discarded.  Downmixing is generally an additive
process.   Scaling (which is discussed below,  see “Early
Scaling”)  is also part of downmixing in Dolby Digital.
It is used to set relative levels between downmixed
channels. Since we perform it up front as part of the
denormalization process, downmixing becomes additive.
MMX technology provides SIMD addition, which
speeds up downmixing.

Precision Enhancements
To increase the audio quality, some precision
enhancements were made.  Even though these
techniques increased the processing requirement
slightly, they added a significant quality improvement
and were judged to be worth the additional overhead.

Rounding
Rounding is important to perform every time a higher-
precision number is being converted to a lower-precision
number (e.g., 32 to 16 bits). This is encountered often in
multiplications in the  MMX instruction set.  For
example, the PMADDWD instruction (packed multiply-
accumulate) multiplies 16-bit numbers, yielding a 32-bit
result.  If this 32-bit result is to be converted to a 16-bit

value, rounding should be used. Rounding can provide a
significantly reduced error compared to truncation [7].
While the MMX instruction set does not provide a
rounding mode, it is easy to accomplish in software.
Listing 2 provides an example.

Listing 2. Rounding Using MMX Technology

// Round 2.30 number
// RoundVal is ½ LSB of 16-bit result

RoundVal = 0x0000400000004000;
pmaddwd mm6,mm5 ;2.30 number
paddd mm6,RoundVal ;round
psrad mm6,15 ;2.30 to 1.15

Since the values are represented in two’s complement,
this technique works with both positive and negative
numbers. In our Dolby Digital decoder, rounding was
used extensively.

Gain Ranging
Dolby Digital provides Gain Ranging [3], which allows
block scaling for low-level signals. This enhances the
dynamic range of the decoder and was used in our
implementation. Gain Ranging can contribute to noise
modulation as the gain ranging levels are crossed. For
our decoder, we decided the benefit of the additional
dynamic range outweighed the potential of
discontinuous noise modulation.

Additional performance enhancements were made that
are general to the implementation of a Dolby Digital
decoder on a PC. These are included here, even though
they are not unique to optimizations that utilize MMX
technology.

Additional Performance Enhancements

Frequency Domain Downmixing
Since the TDAC transform is a linear process,
downmixing can be accomplished in the frequency
domain. This reduces the number of transforms from the
number of input channels from the Dolby Digital stream
(2 to 5) to the number of output channels (2). However,
the transform block sizes in Dolby Digital can change
from 512 to 256 in the presence of transients [3]. It is
not possible to downmix in the frequency domain for
differing block sizes, so in this case an additional
downmix stage is required after the TDAC transform to
perform the remainder of the downmix in the time
domain. The transform coefficients are contained in 32-
bits. Using the 32-bit adds in the MMX instruction set
provides an efficient downmix.

Early Scaling
There are several factors in the scale factor of a
particular channel: Dynamic Range Control, Gain
Ranging, and Downmix Scaling. We found it
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computationally beneficial to perform this operation
during denormalization, essentially combining scaling
and denormalization into one operation. This is
performed by adjusting all of the exponents and
mantissas by a particular amount. We stored the
exponents as 8-bit quantities (the range is only 5 bits in
Dolby Digital) and used MMX technology 8-bit add
instructions (PADDB) to scale 8 exponents at a time.
The unpack instruction (PUNPCKLBW) was used to
efficiently replicate the 8-bit scale value eight times
across the 64-bit register.

When the values are scaled up front, then downmixing
becomes a simple addition as opposed to a
multiplication by a constant. Since the transform
coefficients are represented in 32 bits, downmixing in
the frequency domain is performed by 32-bit adds using
the packed add (PADDD)  instruction. This avoids 32-
bit multiplies.

Exponent and Bit Allocation Reuse
A Dolby Digital stream only has exponents in an audio
block when the encoder determines that they have
changed enough to be resent. This is called exponent
reuse. Therefore, if exponent reuse is in effect, it is more
processor-efficient to save the exponents in an array and
use the values from the array (as opposed to re-
extracting the bits from the bit stream).

The bit allocation information is derived from the
exponents. Therefore if exponent reuse is in effect, bit
allocation may be also (depending on new bit allocation
information, SNR offset information, delta bit allocation
information and coupling information - see [3] for
details). Since recalculating the bit allocation
information is computationally expensive, the bit
allocation information should be saved in an array and
reused if possible. This does not benefit from MMX
technology per se, but shows the advantages of decoding
on a system that has a relatively large amount of cache
memory as opposed to a DSP that may have to
recalculate these values since it does not have sufficient
memory for all of these arrays.

Results
Compared to an optimized version that does not use
MMX technology, the processor speedup is about 1.5X
for a two-channel, surround-compatible (also known as
LtRt) downmix from 5.1 channel source material. For
5.1 channels of output, the speedup increases to about
1.8X. Typically, two TDAC transforms are performed
for a two-channel downmix, and six are required for a
full 5.1 channels of output. The greater speedup is due to
the fact that the TDAC transform benefits greatly from
MMX technology and the increased number of TDAC
transforms performed for 5.1 channels (versus a two-

channel downmix).  One caveat is that six channels of
audio output is not common on today’s mainstream PC.
However, sound cards with four channels of discrete
audio output are on the market today, so six channels
may become available in the future via analog outputs or
the 1394 high-speed serial bus.

Intel’s Dolby Digital decoder provides significantly
better audio quality than a 16-bit only approach, while
offering an efficient implementation. The included audio
clips contrast the 16-bit only approach with the
enhanced approach. Note that these are very low-level
signals (you may have to increase the volume to hear
them).

noisfl16.wav

noisfl_m.wav

Intel’s Dolby Digital decoder compares favorably with
floating-point based implementations. Typically Intel’s
decoder has about 5 to 10 dB of additional noise as
compared to a floating-point implementation. The
improvement over a simple 16-bit truncation model is
approximately 5 to 15 dB, depending on the program
material. The most striking improvement is the
reduction in peak spectral error, or the “tonality.”

Figures 4 through 10 show how Intel’s decoder
compares to the 16-bit truncation model and floating-
point reference.

Figures 4 through 7 show a spectral plot of a 200 Hz
sine wave at -60 dB. Figure 4 is a composite of Figures
5 through 7. These are separated out since, in the
composite, it is difficult to distinguish between the three
plots. This illustrates the peak spectral error (graphical
peaks) in the 300 to 20 kHz region. These peaks show
the presence of tonal noise. The 16-bit truncation
decoder has by far the worst peaks, as high as -105 dB.
The MMX technology decoder reduces these peaks by
13 dB to -118 dB.

Figure 8 shows the Total Harmonic Distortion (THD)
vs. Frequency. The THD vs. Frequency is improved by
about 10 dB over the 16-bit truncation decoder.

Figure 9 is the noise modulation plot. This is a plot of
the output noise in a third octave band at 4 kHz as a
function of the input level of a 41 Hz sinusoid
decremented from 0 dBFS to -120 dBFS. The improved
(lowered) noise level is between 15 dB for high-level
signals and 5 dB for low-level signals.

Low-level noise decoded by a simple
16-bit implementation.  Notice the
tonal artifacts. (Sound file is only
availiable in online HTML version.)

Low-level noise decoded by Intel’s
mixed 16/32-bit implementation.  The
noise is lower and broad-band (white).
(Sound file is only available in online
HTML version.)
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Figure 10 is a noise plot of a 4 kHz sine wave reduced in
level 1 dB per second from 0 dBFS to -120 dBFS, with
the sine wave removed via a notch filter. This shows that
the noise for a full-level signal is still small (-78 dB),

going to -88 dB for a medium- to low-level signal. This
is approximately a 12 dB improvement for high-level
signals and approximately a 6 dB improvement for low-
level signals.

Figure 4. 200 Hz at -60 dB. a) 16-Bit Truncation, b) MMX Technology, c) Dolby Reference Decoder
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Figure 5. 200 Hz at -60 dB. 16-Bit Truncation Decoder

Figure 6. 200 Hz at -60 dB. MMX Technology Decoder

Figure 7. 200 Hz at -60 dB. Dolby Reference Decoder
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Figure 8. THD vs. Frequency

Figure 9. Noise Modulation at 4 kHz, 41 Hz Input



Intel Technology Journal Q3 ’97

9

Figure 10. THD vs. Level, 4 kHz Input

Decoding a Dolby Digital stream consumes less than 8%
of a Pentium® II processor running at 233 MHz. Figure
11 shows the processor requirements for several DVD
audio tracks (5.1 channels, 384K bits/second, 48K
samples/second, downmixed to LtRt, except for
TWISTER which is two channels, 192K bits/second).
Clearly, this is small enough to make software Dolby
decoding quite feasible in real-world applications. The
remaining 92% of the processor can be used for other
things, such as a software MPEG 2 video decoder for a
software DVD player.

Dolby* Digital Decoder
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Figure 11. Processor Requirements. Note - DATA384 and
DNMIX20 are test materials. BATTLE10 and CHASE10 are

from the movie Outbreak. TWISTER is from the movie
Twister.
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Discussion
Making intelligent use of MMX technology requires a
good understanding of the algorithm being coded. By
understanding the strengths and flexibility of MMX
technology, many clever techniques can be devised.
While high-quality audio is a subjective term, we believe
this decoder lives up to the name.

Table 1 shows the CPU breakdown for each part of the
Dolby Digital decoder. After the data path has been sped
up by MMX technology, the Bit Unpacking section
becomes the next major consumer of the CPU. This is
mainly due to the sequential nature of extracting variable-
length bit fields from the bit stream.

Table 1. CPU Breakdown

Processing Block % of Full Decoder

Bit Unpacking 28.3

TDAC/WOLA/Downmix 27.7

Scaling/Denormalization 27.2

Bit Allocation 10.2

Miscellaneous 6.6

Based on measurements (see Figure 10), the Intel decoder
has a Signal-to-Noise Ratio (SNR) for a full-scale signal
of about 78 dB. This compares reasonably well to the
instantaneous sensitivity of the ear of about 85 dB [2].
The Dynamic Range (maximum output level vs. noise
floor for a low-level signal) is about 88 dB. This
compares reasonably well to a consumer CD player,
which is typically at about 95 dB.

Conclusion
Intel’s Dolby Digital decoder provides a processor-
efficient implementation that meets a high-quality
standard. By offering this decoder as a baseline capability
on PCs with MMX technology, decoding and playback of
compressed audio is possible with no additional hardware
cost. The low processor usage allows additional features
such as software video decoding and audio enhancement
to occur concurrently.
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