

PIC18CXX2

PIC18CXX2 Rev. B Silicon Errata Sheet

The PIC18CXX2 (Rev. B) parts you have received conform functionally to the Device Data Sheet (DS39026**B**), except for the anomalies described below.

All the problems listed here will be addressed in future revisions of the PIC18CXX2 silicon.

1. Module: CPU

Using the ${\tt LFSR}$ instruction to load a value into the specified FSR register, may also corrupt a RAM location.

Work around

Do not use the LFSR instruction. The use of MOVLW and MOVWF instructions can be implemented to load the FSR registers. The WREG register may need to be saved before these operations and restored afterwards.

EXAMPLE 1: DEFINED OPERATION

LFSR FSR1, Pointer

EXAMPLE 2: WORK AROUND

```
;
; Optionally save the WREG register
;

MOVLW HIGH (Pointer)
MOVWF FSR1H
MOVLW LOW (Pointer)
MOVWF FSR1L
;
; Optionally restore the WREG register
;
```

2. Module: CCP

When the CCP module is configured to Compare mode toggle output pin (CCPxCON = b'00xx0010'), unexpected pin operation may be observed.

When the timer used for the CCP module timebase is configured to have a prescale ratio greater than 1:1, the output on the CCP pin will toggle the prescaled number of times for each compare match. That is, for a n:1 timer prescale ratio, the CCP output pin will toggle n times at each compare match. The toggle occurs each instruction cycle (Tcy).

Work around

The prescale ratio for the timer used as the CCP module time-base must be 1:1. If a longer compare time is needed, the timer must be running in Timer mode or Synchronized Counter mode (external clock source).

Date Codes that pertain to this issue:

ALL

Note: When the manufacture date of a newer version of silicon is in production, the last date where this issue may occur, will be specified.

3. Module: Oscillator

In-Circuit Serial Programming TM (ICSP) may become unpredictable, when a free-running clock source is present on OSC1.

When entering ICSP mode, the PIC18C452 switches from OSC1 to RB6 for its external clock source. (Refer to the PIC18CXX2 Programming Specification (DS39028D) for additional information.) If OSC1 is high at the time, a high-to-low transition occurs upon the transition to RB6. The ICSP logic interprets this as a clock, and advances the internal clock logic to Q2. This causes an unrecoverable mismatch between ICSP logic and the clock.

Work around

Before entering ICSP mode, OSC1 must be driven to and held in a low state. This must occur before changing states on MCLR/VPP, RB6 and RB7.

Note: As with any windowed EPROM device, please cover the window at all times, except when erasing.

4. Module: CCP (Compare Mode)

The Compare mode may not operate as expected when configuring the compare match to drive the I/O pin low (CCPxM<3:0> = 1001).

When the CCP module is changed to compare output low (CCPxM<3:0> = 1001) from any other non-compare CCP mode, the I/O pin will immediately be driven low, regardless of the state of the I/O data latch. The pin will remain low when the compare match occurs (see Table 1).

However, when the CCP module is changed to compare output high (CCPxM<3:0> = 1000) from any other CCP mode, the I/O pin will immediately be driven low, regardless of the state of the I/O data latch. The pin will be driven high when the compare match occurs.

TABLE 1: COMPARE OUTPUT LOW SWITCHING

CCP Mode CCPxM<3:0> =	I/O Pin State	Change CCP to CCPxM<3:0> =			
CCPXIVI<3.0> =	State	1001	1000		
0	Н	L	L		
0xxx	L	L	L		
1000	Н	Н	_		
1000	L	L	_		
1001	Н	_	L		
1001	L	_	L		
101	Н	L	L		
101x	L	L	L		
11xx	Н	L	L		
IIXX	L	L	L		

Work around

To have the I/O pin high until the compare match low occurs, force a compare match high to get the I/O pin into the high state, then reconfigure the compare match to force the I/O low when the compare condition occurs.

5. Module: Timer1 and Timer3

When the prescaler select bits (bits 5:4 of the T1CON or T3CON registers) are modified, the timer may inadvertently increment. This can occur even if the timer is in the OFF state. Changing the prescaler may cause clock glitches, which may cause the counter to increment improperly.

Work around

Always re-initialize the timer registers (either TMR1H and TMR1L, or TMR3H and TMR3L) after changing the prescaler bits of registers T1CON or T3CON.

As an alternative, store the timer value before changing the prescaler bits of the timer control registers, and restore the timer value after changing the bits.

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS39026**B**), the following clarifications and corrections should be noted.

1. Module: Brown-out Reset (BOR)

The voltage selection ranges for the BOR module (parameter D005) have changed. The new values are shown in Table 1.

TABLE 1: MINIMUM AND MAXIMUM BROWN-OUT RESET VOLTAGE SPECIFICATIONS

Param No	Symbol	Characteristic		New Specification			Data Sheet Specification			Units
NO				Min	Тур	Max	Min	Тур	Max	
D005	VBOR	Brown-out Reset	BORV<1:0>=11	2.35	_	2.80	2.50	_	2.66	V
	Voltage	BORV<1:0>=10	2.55	_	3.02	2.70	_	2.86	V	
	BORV<1:0>=01	3.95		4.71	4.20	1	4.46	V		
			BORV<1:0>=00	4.23	_	5.05	4.50		4.78	V

2. Module: Low Voltage Detect (LVD)

The voltage selection ranges for the LVD module (parameter D420) have changed. The new values are shown in Table 2.

TABLE 2: MINIMUM AND MAXIMUM LOW VOLTAGE DETECT SPECIFICATIONS

Param No	Symbol	Characteristic		New Specification			Data Sheet Specification			Units
NO				Min	Тур	Max	Min	Тур	Max	
D420 VLVD	VLVD	Low Voltage Detect	LVV<3:0>=0100	2.35	_	2.80	2.5	_	2.66	V
			LVV<3:0>=0101	2.55	_	3.02	2.7	_	2.86	V
			LVV<3:0>=0110	2.64	_	3.14	2.8	_	2.98	V
		LVV<3:0>=0111	2.83	_	3.37	3.0	_	3.20	V	
		LVV<3:0>=1000	3.11	_	3.71	3.3	_	3.52	V	
		LVV<3:0>=1001	3.29	_	3.93	3.5	_	3.72	V	
		LVV<3:0>=1010	3.39	_	4.04	3.6	_	3.84	V	
			LVV<3:0>=1011	3.58	_	4.26	3.8	_	4.04	V
			LVV<3:0>=1100	3.77	_	4.49	4.0	_	4.26	V
			LVV<3:0>=1101	3.95	-	4.71	4.2	_	4.46	V
			LVV<3:0>=1110	4.23	_	5.05	4.5	_	4.78	V

PIC18CXX2

REVISION HISTORY

Rev D Document Added Corrections to BOR and LVD modules (page 3, items 1 and 2).

Rev C Document

Added ICSP issue (page 1, issue 3).

Added CCP (Compare mode) issue

(page 2, issue 4).

Added Timer issue (page 2, issue 5).

Rev B Document

Added CCP silicon issue (page 1, issue 2).

Rev A Document

1st revision of this document.

"All rights reserved. Copyright © 2001, Microchip Technology Incorporated, USA. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights."

Trademarks

The Microchip name, logo, PIC, PICmicro, PICMASTER, PIC-START, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, Filter-Lab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM, MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, SelectMode and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELO® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin

Analog Product Sales 8303 MoPac Expressway North Suite A-201 Austin, TX 78759 Tel: 512-345-2030 Fax: 512-345-6085

Boston

2 Lan Drive, Suite 120 Westford, MA 01886

Tel: 978-692-3848 Fax: 978-692-3821

Boston

Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742

Tel: 978-371-6400 Fax: 978-371-0050

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001

Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Mountain View

Analog Product Sales 1300 Terra Bella Avenue Mountain View, CA 94043-1836 Tel: 650-968-9241 Fax: 650-967-1590

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Beijing Office New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai

Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Microchip Technology Intl. Inc.

Japan

Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

ASIA/PACIFIC (continued)

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Germany

Analog Product Sales Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/30/01

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 2/01 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.