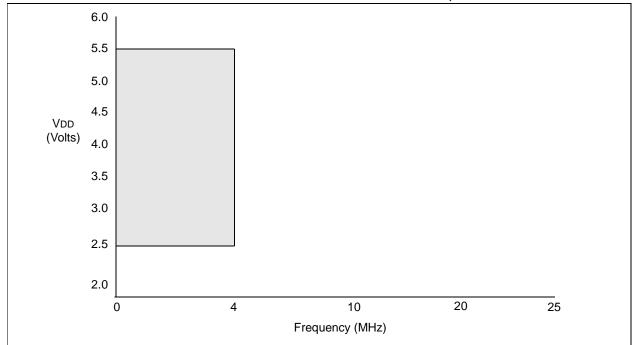


PIC12CE518/CE519 Rev. B Silicon Errata Sheet

The PIC12CE518/CE519 (Rev. B) parts you have received conform functionally to the Device Data Sheet (**DS40172** and **DS40139E**), except for the anomalies described below.

1. Valid regions of operation:

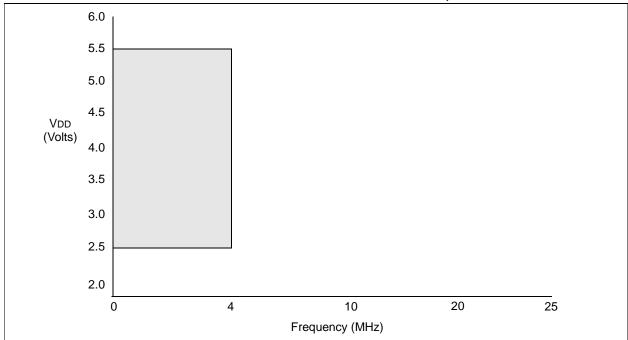
FIGURE 1: PIC12LCE518/LCE519 VOLTAGE-FREQUENCY GRAPH, -40°C ≤ TA ≤ 0°C



Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

Note: As with any windowed EPROM device, please cover the window at all times, except when erasing.


FIGURE 2: PIC12LCE518/LCE519 VOLTAGE-FREQUENCY GRAPH, 0°C ≤ TA ≤ +70°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

FIGURE 3: PIC12LCE518/LCE519 VOLTAGE-FREQUENCY GRAPH, +70°C ≤ TA ≤ +125°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.


2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (**DS40139E**), the following clarifications and corrections should be noted.

1. Valid regions of operation:

FIGURE 4: PIC12CE518/CE519 VOLTAGE-FREQUENCY GRAPH, -40°C ≤ TA ≤ +125°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

- 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
- In Section 13: Corrections for the DC Characteristics, Sections 13.1, 13.2, 13.3, and 13.4 are shown. Corrections for the GPIO pull-up resistor ranges are shown in Table 13-1. For the section titled "Reset", additional information is provided on OSC1/CLKIN and OSC2/CLKOUT pin states during a MCLR.

13.1 DC CHARACTERISTICS:

PIC12C508A/509A (Commercial, Industrial, Extended) PIC12CE518/519 (Commercial, Industrial, Extended) PIC12CR509A (Commercial, Industrial, Extended)

	DC Characteristics Power Supply Pins							
Parm No.	Characteristic	Sym	Min Typ ⁽¹⁾ Max Units Conditions					
D001	Supply Voltage	Vdd	3.0		5.5	V	See Figures 1-4.	
D010 D010C D010A	Supply Current ⁽³⁾	IDD	_	0.8 0.8 19	1.4 1.4 27	mA mA μA	XT and EXTRC options (Note 4) FOSC = 4 MHz, VDD = 5.5V INTRC Option FOSC = 4 MHz, VDD = 5.5V Commercial Temperature, LP Option	
			_ _	19	35 55	μΑ	FOSC = 32 kHz, VDD = 3.0V, WDT disabled Industrial Temperature, LP Option FOSC = 32 kHz, VDD = 3.0V, WDT disabled Extended Temperature, LP Option FOSC = 32 kHz, VDD = 3.0V, WDT disabled	
1A	LP Oscillator Operating Frequency XT Oscillator Operating Frequency		0 0	_	200 4	kHz MHz	All temperatures All temperatures	

^{*} These parameters are characterized but not tested.

- Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
 - 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss,
 - TOCKI = VDD, $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
 - 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
 - 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.

13.2 DC CHARACTERISTICS:

PIC12LC508A/509A (Commercial, Industrial) PIC12LCE518/519 (Commercial, Industrial) PIC12LCR509A (Commercial, Industrial)

DC Characteristics Power Supply Pins				lard Ope	_	g Conditions (unless otherwise specified) ure $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)			
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions		
D001	Supply Voltage	Vdd	2.5		5.5	V	See Figures 1-4.		
1A	LP Oscillator Operating Frequency XT Oscillator Operating Frequency	Fosc	0 0	_ _	200 4	kHz MHz	All temperatures All temperatures		
		Δlwdt	-	2.0 2.0	4 5	μA μA	VDD = 2.5V, Commercial VDD = 2.5V, Industrial		

^{*} These parameters are characterized but not tested.

- Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
 - 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss,
 - TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
 - 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
 - 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

13.3 DC CHARACTERISTICS:

DC CHARACTERISTICS

PIC12C508A/509A (Commercial, Industrial, Extended) PIC12CE518/519 (Commercial, Industrial, Extended) PIC12CR509A (Commercial, Industrial, Extended)

Standard Operating Conditions (unless otherwise specified)

Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)

-40°C \leq TA \leq +85°C (industrial)

-40°C \leq TA \leq +125°C (extended)

Operating voltage VDD range as described in DC spec Section 13.1 and

Section 13.2.

Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
No.							
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0V	-	VDD	V	4.5V ≤ VDD ≤ 5.5V
D040A			0.25VDD+	-	VDD	V	otherwise
			0.8V				
D070	GPIO weak pull-up current (Note 4)	IPUR	30	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
		lı∟					
D061	GP3/MCLR (Note 5)		8	130	250	μΑ	Vss ≤ Vpin ≤ Vdd
D061A	GP3/MCLR (Note 6)		-	-	<u>+</u> 5	μΑ	Vss ≤ Vpin ≤ Vdd

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.
 - 4: Does not include GP3. For GP3 see parameters D0061 and D0061A.
 - 5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.
 - **6:** This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

13.4 DC CHARACTERISTICS: PIC12LC508A/509A (Commercial, Industrial)

PIC12LCE518/519 (Commercial, Industrial) PIC12LCR509A (Commercial, Industrial)

Standard Operating Conditions (unless otherwise specified)

Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)

-40°C \leq TA \leq +85°C (industrial)

Operating voltage $\ensuremath{\mathsf{VDD}}$ range as described in DC spec Section 13.1 and

Section 13.2.

0001011 10121										
Param	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
No.										
	Input High Voltage									
	I/O ports	VIH		-						
D040	with TTL buffer		2.0V	-	VDD	V	$4.5V \le VDD \le 5.5V$			
D040A			0.25VDD+	-	VDD	V	otherwise			
			V8.0							
D070	GPIO weak pull-up current (Note 4)	IPUR	30	250	400	μΑ	VDD = 5V, VPIN = VSS			
	Input Leakage Current (Notes 2, 3)									
D061	GP3/MCLR (Note 5)		8	130	250	μΑ	Vss ≤ VPIN ≤ VDD			
D061A	GP3/MCLR (Note 6)	lı∟	-	-	<u>+</u> 5	μΑ	Vss ≤ Vpin ≤ Vdd			

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

DC CHARACTERISTICS

- 4: Does not include GP3. For GP3 see parameters D0061 and D0061A.
- 5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.
- 6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

TABLE 13-1: PULL-UP RESISTOR RANGES* - PIC12C508A, PIC12C509A, PIC12CR509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units						
	GP0/GP1										
2.5	-40	38K	42K	63K	Ω						
	25	42K	48K	63K	Ω						
	85	42K	49K	63K	Ω						
	125	50K	55K	63K	Ω						
5.5	-40	15K	17K	20K	Ω						
	25	18K	20K	23K	Ω						
	85	19K	22K	25K	Ω						
	125	22K	24K	28K	Ω						
		GF	o ₃ (1)								
2.5	-40	65K	80K	850K	Ω						
	25	80K	100K	1150K	Ω						
	85	85K	110K	1300K	Ω						
	125	100K	120K	1500K	Ω						
5.5	-40	50K	60K	600K	Ω						
	25	60K	65K	750K	Ω						
	85	65K	80K	900K	Ω						
	125	75K	90K	990K	Ω						

^{*} These parameters are characterized but not tested.

Note 1: The weak pull-up resistor and associated current for the GP3/MCLR pin is non-linear when the respective pin voltage is less than VDD - 1.0V. See parameter D061 for GP3/MCLR pin current specifications.

Reset

When MCLR is asserted, the state of the OSC1/CLKIN and CLKOUT/OSC2 pins are as follows:

CLKIN/CLKOUT PIN STATES WHEN MCLR ASSERTED

Oscillator Mode	OSC1/CLKIN Pin	OSC2/CLKOUT Pin
EXTRC, CLKOUT on OSC2	OSC1 pin is tristated and driven by external circuit	OSC2 pin is driven low
EXTRC, OSC2 is I/O	OSC1 pin is tristated and driven by external circuit	OSC2 pin is tristate input
INTRC, CLKOUT on OSC2	OSC1 pin is tristate input	OSC2 pin is driven low
INTRC, OSC2 is I/O	OSC1 pin is tristate input	OSC2 pin is tristate input

P	IC 1	120	CF	51	ጸ/	CE	51	Q
				JI	UI '	$oldsymbol{\circ}$	JI	-

NOTES:

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 2 LAN Drive, Suite 120 Westford, MA 01886 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

China - Beijing

Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing, 100027, P.R.C. Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai

Microchip Technology Unit B701, Far East International Plaza, No. 317, Xianxia Road Shanghai, 200051, P.R.C.

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431

India

Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore, 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea

Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

Microchip received QS-9000 quality system certification for its worldwide headquarters design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 6/00 🙀 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.