

PIC16CR63

PIC16CR63 Rev. A Silicon Errata Sheet

The PIC16CR63 parts you have received conform functionally to the Device Data Sheet (**DS30234D**), except for the anomalies described below.

All the problems listed here will be addressed in future revisions of the PIC16CR63 silicon.

1. Module: CCP (Compare Mode)

The Compare mode may not operate as expected when configuring the compare match to drive the I/O pin low (CCPxM<3:0> = 1001).

When the CCP module is changed to compare output low (CCPxM<3:0> = 1001) from any other non-compare CCP mode, the I/O pin will immediately be driven low regardless of the state of the I/O data latch. The pin will remain low when the compare match occurs (see Table 1).

However, when the CCP module is changed to compare output high (CCPxM<3:0> = 1000) from any other CCP mode, the I/O pin will immediately be driven low regardless of the state of the I/O data latch. The pin will be driven high when the compare match occurs.

TABLE 1: COMPARE OUTPUT LOW SWITCHING

CCP Mode CCPxM<3:0> =	I/O pin State	Change CCP to CCPxM<3:0> =				
CCFXIVI<3.0> =	State	1001	1000			
0xxx	Н	L	L			
	L	L	L			
1000	Н	Н	_			
	L	L	_			
1001	Н	_	L			
	L	_	L			
101x	Н	L	L			
	L	L	L			
11xx	Н	L	L			
	L	L	L			

Work Around

To have the I/O pin high until the compare match low occurs, force a compare match high to get the I/O pin into the high state, then reconfigure the compare match to force the I/O low, when the compare condition occurs.

2. Module: SSP Module (I²C[™] mode)

If the bus is active when the I²C mode is enabled, and the next 8-bits of data on the bus match the address of the device, then the SSP module will generate an acknowledge pulse.

Work Around

Before enabling the I²C mode, ensure that the bus is not active.

3. Module: Timer0

The TMR0 register may increment when the WDT postscaler is switched to the Timer0 prescaler. If TMR0 = FFh, this will cause TMR0 to overflow (setting T0IF).

Work Around

Follow the following sequence:

- a) Read the 8-bit TMR0 register into the W register
- b) Clear the TMR0 register
- c) Assign WDT postscaler to Timer0
- d) Write W register to TMR0

Note: As with any windowed EPROM device, please cover the window at all times, except when erasing.

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (**DS30234D**), the following clarifications and corrections should be noted.

1. Module: I/O Ports

The specification for the High Voltage Open Drain I/O (The RA4 pin on most devices) cannot be met without possible long term reliability issues on that I/O pin. If a high voltage drive is required, use an external transistor that can support the required voltage.

TABLE 2: DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Sym Characteristic		New S	ation	Data Sheet Specification			Units	
NO.			Min	Тур	Max	Min	Тур	Max	
D150	Vod	Open-drain High Voltage	_	_	10	_	_	14	V

2. Module: SSP (SPI Mode Timing Specifications)

a) The SPI interface timings have been modified to the values shown in Table 3.

TABLE 3: DC SPECIFICATION CHANGES FROM DATA SHEET

Parm No.	Sym Characteristic		New Specification			Data Sheet Specification			Units	
NO.				Min	Тур	Max	Min	Тур	Max	
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30 ns	_	_	Tcy + 20 ns	_	_	ns
71A		(slave mode)	Single Byte (1)	40	_	_		N.A.		ns
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30 ns	_		Tcy + 20 ns		_	ns
72A	(slave mode)		Single Byte (1)	40	_	_	N.A.			ns
73A	Тв2в	Last clock edge of clock edge of the E	1.5 Tcy + 40 ns	_	_		N.A.		ns	

^{*} This parameter is characterized but not tested

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

3. Module: Timer1

 The operation of Timer1 needs some clarification when the timer registers are written when the TMR1ON bit is set.

The internal clock signal that is the input to the TMR1 prescaler affects the incrementing of Timer1 (TMR1H:TMR1L registers and the Timer1 prescaler). When the Timer1 registers are NOT written, the Timer1 will increment on the rising edge of the TMR1 increment clock.


When the TMR1H and/or TMR1L registers are written while this clock is high, TMR1 will increment on the next rising edge of this clock.

When the TMR1H and/or TMR1L registers are written while this clock is low, TMR1 will not increment on the next rising edge of this clock, but must first have a falling clock and the the rising clock for TMR1 to increment.

Figure 1 shows the two cases of writes to the TMR1H and/or TMR1L registers. Due to the VIH and VIL thresholds on the oscillator/clock pins, external Timer1 oscillator components, and external clock frequency, the Timer1 increment clock may not be of a 50% duty cycle.

The TMR1 increment clock is out of phase of the T1OSO/T1CKI pin by a small propagation delay.

FIGURE 1: WRITES TO TIMER1 (EXTERNAL CLOCK / OSCILLATOR MODE)

 The Brown-out Reset Voltage specification is different than that specified in the Data Sheet.

22.1 DC Characteristics: PIC16CR63-04 (Commercial, Industrial)

PIC16CR63-10 (Commercial, Industrial)

PIC16CR63-20 (Commercial, Industrial)

DC CH	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D005	Brown-out Reset Voltage	Bvdd	3.65	4.0	4.35	V	BODEN configuration bit is enabled

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

REVISION HISTORY

Rev A Document

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 2 LAN Drive, Suite 120 Westford, MA 01886 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

China - Beijing

Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing, 100027, P.R.C.

Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai

Microchip Technology Unit B701, Far East International Plaza, No. 317, Xianxia Road Shanghai, 200051, P.R.C.

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers I Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 027, India Tel: 91-80-207-2165 Fax: 91-80-207-2171

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku

Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

Microchip received QS-9000 quality system certification for its worldwide headquarters design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 9/00 🙀 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.