

MACHINING OF TITANIUM

PART NUMBER NONE

BOEING PROPRIETARY, CONFIDENTIAL, AND/OR TRADE SECRET

Copyright © 1995 The Boeing Company Unpublished Work - All Rights Reserved

Boeing claims copyright in each page of this document only to the extent that the page contains copyrightable subject matter. Boeing also claims copyright in this document as a compilation and/or collective work.

This document includes proprietary information owned by The Boeing Company and/or one or more third parties. Treatment of the document and the information it contains is governed by contract with Boeing. For more information, contact The Boeing Company, P.O. Box 3707, Seattle, Washington 98124.

Boeing, the Boeing signature, the Boeing symbol, 707, 717, 727, 737, 747, 757, 767, 777, 787, Dreamliner, BBJ, DC-8, DC-9, DC-10, KC-10, KDC-10, MD-10, MD-11, MD-80, MD-88, MD-90, P-8A, Poseidon and the Boeing livery are all trademarks owned by The Boeing Company; and no trademark license is granted in connection with this document unless provided in writing by Boeing.

PUBLISHED BY BOEING COMMERCIAL AIRPLANES GROUP, SEATTLE, WASHINGTON, USA A DIVISION OF THE BOEING COMPANY PAGE DATE: Jul 01/2009

Page 1 Jul 01/2009

BOEING®

Revision No. 13 Jul 01/2009

To: All holders of MACHINING OF TITANIUM 20-10-07.

Attached is the current revision to this STANDARD OVERHAUL PRACTICES MANUAL

The STANDARD OVERHAUL PRACTICES MANUAL is furnished either as a printed manual, on microfilm, or digital products, or any combination of the three. This revision replaces all previous microfilm cartridges or digital products. All microfilm and digital products are reissued with all obsolete data deleted and all updated pages added.

For printed manuals, changes are indicated on the List of Effective Pages (LEP). The pages which are revised will be identified on the LEP by an R (Revised), A (Added), O (Overflow, i.e. changes to the document structure and/or page layout), or D (Deleted). Each page in the LEP is identified by Chapter-Section-Subject number, page number and page date.

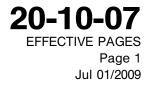
Pages replaced or made obsolete by this revision should be removed and destroyed.

ATTENTION

IF YOU RECEIVE PRINTED REVISIONS, PLEASE VERIFY THAT YOU HAVE RECEIVED AND FILED THE PREVIOUS REVISION. BOEING MUST BE NOTIFIED WITHIN 30 DAYS IF YOU HAVE NOT RECEIVED THE PREVIOUS REVISION. REQUESTS FOR REVISIONS OTHER THAN THE PREVIOUS REVISION WILL REQUIRE A COMPLETE MANUAL REPRINT SUBJECT TO REPRINT CHARGES SHOWN IN THE DATA AND SERVICES CATALOG.

Location of Change

Description of Change


PART NUMBER NONE

DEING®

STANDARD OVERHAUL PRACTICES MANUAL

Subject/Page	Date	Subject/Page	Date	Subject/Page	Date
TITLE PAGE					
0 1	Jul 01/2009				
2	BLANK				
20-10-07 TRAN	SMITTAL LETTER				
01	Jul 01/2009				
2	BLANK				
20-10-07 HIGHL	IGHTS				
01	Jul 01/2009				
2	BLANK				
20-10-07 EFFEC	TIVE PAGES				
1	Jul 01/2009				
2	BLANK				
20-10-07 CONT	ENTS				
1	Nov 01/2006				
2	BLANK				
20-10-07 REVIS	ION RECORD				
1	Jul 01/2005				
2	Jul 01/2005				
20-10-07 RECO REVISIONS	RD OF TEMPORARY				
1	Jul 01/2005				
2	Jul 01/2005				
20-10-07 INTRC	DUCTION				
1	Jul 01/2005				
2	BLANK				
20-10-07 SUBJE	ECT				
1	Mar 01/2007				
2	Mar 01/2007				
3	Mar 01/2007				
4	Jul 01/2005				
5	Mar 01/2007				
6	Mar 01/2007				
7	Mar 01/2007				
8	Jul 01/2005				
9	Jul 01/2005				
10	Jul 01/2005				
11	Jul 01/2005				
12	Jul 01/2005				
13	Jul 01/2005				
14	Jul 01/2005				

A = Added, R = Revised, D = Deleted, O = Overflow

BOEING®

TABLE OF CONTENTS

Paragraph Title	Page
MACHINING OF TITANIUM	1
INTRODUCTION	1
MATERIALS	1
GENERAL	1
TURNING AND BORING	3
GRINDING	5
MILLING	5
DRILLING	10
REAMING	12
SANDING	14
OTHER FINISHING OPERATIONS	14
STRESS RELIEF AFTER MACHINING	14

BOEING®

All revisions to this manual will be accompanied by transmittal sheet bearing the revision number. Enter the revision number in numerical order, together with the revision date, the date filed and the initials of the person filing.

Rev	Revision		led	Rev	vision	Filed		
Number	Date	Date	Initials	Number	Date	Date	Initials	

20-10-07 REVISION RECORD Page 1 Jul 01/2005

BOEING®

Revision		Fi	led	Revi	ision	Filed		
Number	Date	Date	Initials	Number	Date	Date	Initials	

20-10-07 REVISION RECORD Page 2 Jul 01/2005

DEING®

All temporary revisions to this manual will be accompanied by a cover sheet bearing the temporary revision number. Enter the temporary revision number in numerical order, together with the temporary revision date, the date the temporary revision is inserted and the initials of the person filing.

When the temporary revision is incorporated or cancelled, and the pages are removed, enter the date the pages are removed and the initials of the person who removed the temporary revision.

Temporary	Revision	Ins	erted	Rer	moved	Tempora	ary Revision	Inser	ted	Rer	noved
Number	Date	Date	Initials	Date	Initials	Date	Initials	Number	Date	Date	Initials
						<u> </u>					

20–10–07 RECORD OF TEMPORARY REVISION Page 1 Jul 01/2005

BOEING®

Temporary	Revision	Ins	serted	Rei	moved	Tempo	ora	orary Revision	orary Revision Inser	orary Revision Inserted	orary Revision Inserted Rer
Number	Date	Date	Initials	Date	Initials	Date		Initials			
								_			
								-			

20–10–07 RECORD OF TEMPORARY REVISION Page 2 Jul 01/2005

DEING®

INTRODUCTION

1. General

- A. The instructions in this manual tell how to do standard shop procedures during maintenance functions from simple checks and replacement to complete shop-type repair.
- B. This manual is divided into separate sections:
 - (1) Title Page
 - (2) Transmittal Letter
 - (3) Highlights
 - (4) Effective Pages
 - (5) Contents
 - (6) Revision Record
 - (7) Record of Temporary Revisions
 - (8) Introduction
 - (9) Procedures
- C. Refer to SOPM 20-00-00 for a definition of standard industry practices, vendor names and addresses, and an explanation of the True Position Dimensioning symbols used.
- D. The data is general. It is not about all situations or specific installations. Use it as a guide to help you write minimum standards.
- E. If the component overhaul instructions are different from the data in this subject, use the component overhaul instructions.

BOEING®

MACHINING OF TITANIUM

1. INTRODUCTION

- A. The data in this subject comes from Boeing Process Specification BAC5492, and Boeing Operators Handbook 6M59-553, "Machining Titanium".
- B. The data is general. It is not about all situations or specifications. Use this data as a guide to help you write minimum standards.
- C. Refer to SOPM 20-00-00 for a list of all the vendor names and addresses.

2. MATERIALS

- A. Cutting Fluids
 - (1) Water soluble Refer to BAC5008
 - (2) DuPont TB-1, V18873
 - (3) Freon Cetyl Alcohol
 - (4) Boelube 100A or 100F, V18554
 - (5) Microcut 26, V0FCP2

3. GENERAL

A. Some titanium alloys are easier to machine than others. Also, the recommended cutting speeds are different with each alloy and heat-treat condition. Table 1 gives relative index numbers for typical alloys and conditions. Annealed alloy 6AI-4V, a frequently-used titanium alloy, has an index of 100 to let you use this as a reference standard. If you know good cutting speeds for annealed alloy 6AI-4V, you can compare others. For example, an index of 90 for annealed alloy 6AI-6V-2Sn tells you to decrease the speed on this alloy to 90% of the value you use on annealed alloy 6AI-4V for the same type of cut.

	Titanium Alloy							
Heat-Treat Condition	6AI-4V	Commercially Pure	10V-2Fe-3AI	6AI-6V-2Sn				
l (Annealed)	100	300	90	90				
III (Aged)	70	_	60	60				
IV (Overaged)	80	—						
V (Duplex annealed)	100	_	_	_				

Table 1: Relative Index Numbers for Machining Titanium Alloys

B. The data in this subject is for base material that has no surface contamination. But titanium alloy can have "alpha case," an embrittled surface layer that is usually thin, but can be as hard as Rockwell C 55. Tool failure can occur quickly on such a surface. Alpha case is frequently found on the surface of rolled plate, forging, extrusions, and thermally cut edges. It can also be caused by heat treatment and stress relief operations. The alpha case layer is usually removed as the part is made, but it could occur on parts in for overhaul. Then slower-than usual tool speeds must be used, and tool life will be shorter.

Page 1 Mar 01/2007

DEING®

- C. Lead, tin, cadmium and zinc must not touch the surface of titanium. These metals cause contamination and are not easy to remove. The contamination can cause the titanium part to crack on the airplane or during repair. Thus, do not use tools, permanent or temporary fasteners, or bushings of, or plated by, these metals on titanium parts.
- D. Titanium can be made brittle by methyl alcohol, anhydrous ethyl alcohol, and BMS 3-11 hydraulic fluid (above 270°F).
- E. Keep liquid oxygen away from titanium. Liquid oxygen on a bare titanium surface can start a violent reaction.
- F. Water-based cutting fluids can be used on titanium if the parts are wiped or blown dry after the operation. Do not use Freon-based fluids if the part will be in temperatures above 600°F during repair or on the airplane. Cutting fluids are optional with hand-held drill motors. See Table 2 for recommended cutting fluids.

PROCEDURE	CUTTING FLUIDS	HOW TO APPLY
ABRASIVE SAWING	WATER-BASE COOLANT	FLOOD
GRINDING	WATER-BASE COOLANT	FLOOD
BANDSAWING	WATER-BASE COOLANT	SPRAY
PLANING	WATER-BASE COOLANT	SPRAY
MILLING WITH HSS	WATER-BASE COOLANT	FLOOD
FACE MILLING, CARBIDE	WATER-BASE COOLANT	FLOOD
END MILLING, CARBIDE	WATER-BASE COOLANT	FLOOD
PERIPHERAL MILLING, CARBIDE	WATER-BASE COOLANT	FLOOD
HAND FINISHING	WATER	FLOOD
DRILLING AND REAMING	BOELUBE 100A OR 100F OR MICROCUT 26 OR FREON TB-1 ^{*[1]}	SPRAY
TAPPING	PURE MINERAL OIL	FLOOD

Table 2:

*[1] DO NOT USE FREON TB-1 ON PARTS WHICH WILL BE IN 600°F OR HIGHER DURING OVERHAUL OR ON THE AIRPLANE

- G. Fire Safety
 - (1) In most forms, titanium is not flammable. But very finely divided titanium, such as very thin machining chips or dust from grinders, can be ignited and will burn.
 - (2) Titanium chips do not ignite as easily or burn as violently as magnesium. But in some conditions they will ignite and burn, and quickly become a hot, glowing mass.
 - (3) Emergency Procedure for Titanium Fires
 - (a) Tell the fire unit.
 - (b) Extinguish fires of titanium chips with fully dry talc, calcium carbonate, sand, graphite, or water. Do not use carbon dioxide, carbon tetrachloride or the usual dry chemical fire extinguishers.

Page 2 Mar 01/2007

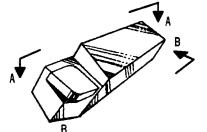
BOEING®

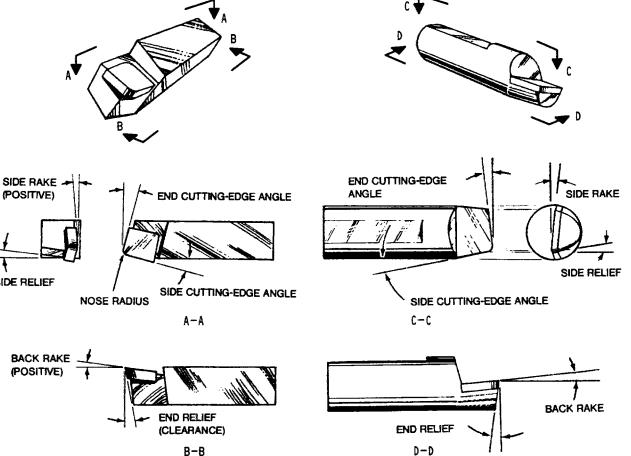
- (c) If talc or equivalent powered agent is used, apply the powder in a continuous layer 1/2 inch deep or more, but do not scatter the burning metal. If the burning metal is on a surface that could burn, apply a 2-inch layer of powder on this surface and shovel the burning metal onto the powder. Carefully apply more powder if smoke continues in some areas.
- (d) Water pump type fire extinguishers are recommended on fires in small piles of titanium chips. Apply the water at the base of the fire.
- (e) If possible without risk of injury, confine the fire and scrape off the titanium metal that is not on fire.
- (f) Do not let the burning metal get on concrete floors.
- (g) For fires in large piles of titanium chips, give protection to surfaces and items that can burn.
- (h) Wear safety approved dark goggles or other eye protection when you fight titanium fires.
- (4) Fire prevention
 - (a) Keep a good flow of a water-base coolant on the part and the chips. Water-base coolants extinguish titanium fires, and wet chips do not ignite as easily.
 - (b) Replace the cutters at the first sign they are dull. A dull cutter makes hot chips that could ignite.
 - (c) Cut at a decreased speed if the surface of titanium has contamination. Contamination can cause a spark that can start a fire.
 - (d) Keep the feed rate high. Thick chips do not ignite as easily as thin chips.
 - (e) Do not let a large number of chips collect. The fewer the chips, the smaller the fire that could occur. Remove the chips from the machine frequently, and store them in approved and correctly identified containers.

4. TURNING AND BORING

- A. Use carbide tools if possible. Indexable disposable insert types are recommended.
 - (1) Use sub-micro-grain carbide inserts when possible, as an alternative to the older grades C-1, C-2, and C-3.
 - (2) If sub-micro-grain carbide is not available, use carbide grade C-1 or C-2 for heavy roughing cuts and when impact loading is moderately high.
 - (3) If sub-micro-grain carbide is not available, use carbide grade C-3 for light, continuous cuts because it has a better abrasion resistance.
 - (4) If disposable insert tools are used, a positive rake angle is recommended unless impact loads are very high.
- B. If carbide is not used, use high speed steel to make grooves, to cut pieces off, to make interrupted cuts, and for operations with form tools. Use PM high speed steels when possible.
- C. If possible, use a cutting tool with side-cutting edge angle (lead angle) of 15 degrees or more. To avoid smearing on the flank of the tool, use a relief angle of 10 degrees for facing and a minimum of 5 degrees for all other operations.
- D. When you bore, decrease the cutting loads if the boring bar is not rigid.
- E. See Figure 1 for recommended data.

Page 3 Mar 01/2007


(POSITIVE)


SIDE RELIEF

		GEOMETRY							
CUTTER	BACK RACK	SIDE RAKE	END RELIEF	SIDE RELIEF	END CUTTING- EDGE ANGLE				
CARBIDE BRAZED TOOL, GRADE C-2	0°	6°	5°	5°	5°				
CARBIDE INDEXABLE INSERT, GRADE C-2	0°	6°	5°	5°	5°				
HIGH SPEED STEEL	0°	5°	5°	5°	15°				

TITANIUM	DEPTH OF CUT	CUTTING (SF	FEED (IN. PER	
ALLOY	(INCHES)	CARBIDE	HSS	REV.)
8AL-1MO-1V	0.150	130	50	0.015
	0.025	155	60	0.007
6AL-4V, CONDITIONS	0.150	130	50	0.015
I AND V	0.025	155	60	0.007
6AL-4V, CONDITIONS	0.150	100	40	0.010
III AND IV	0.025	120	50	0.005

TURNING CUTTER

Turning and Boring Data Figure 1

20-10-07

BORING CUTTER

Page 4 Jul 01/2005

BOEING®

5. GRINDING

- A. Rough grinding (by hand or machine) can be used for all surfaces, but then a minimum of 0.020 inch of metal must be removed by a finishing operation. Finish grinding is not permitted on important surfaces, such as those identified by BAC5492 class 1 or 2.
- B. Use a good flow of cutting fluid per BAC5008 during the grind.
- C. See Table 3 for recommended values.

Table 3	3:	Surface	Grinding	Controls
		oundoc	armanig	001111010

	Roughing	Finishing
Grinding Wheel		
Aluminum oxide		
Grit size	46	60-80
Hardness	J	L-M
Bond	Vitrified	Vitrified
Structure	5-8	5-8
Speed (surface feet per minute)	1500-2500	1500-2500
Silcon Carbide		
Grit size	46	Norton C60
Hardness	J	Н
Bond	Vitrified	Vitrified
Structure	7-8	8
Speed (surface feet per minute)	5000-6000	5000-6000
Work speed (surface feet per minute)	30-40	30-40
Crossfeed, inch per pass	0.060	0.050
Downfeed, inch per pass	0.0010 max	0.0005 max

6. MILLING

- A. General
 - Carbide cutters are recommended unless easily-broken cutters (such as small endmills or slitting saws) must be used. Sub-micro-grain carbide is recommended first, then carbide grade C-2, and then grade C-3. Inserts can be brazed, clamped mechanically, or held in place with a screw.
 - (2) If high speed steel cutters must be used, a PM type is better than standard grades. PM lets you use a higher cutting speed or has a longer tool life.
 - (3) In some operations, a titanium aluminum nitride coating on the cutter can help.
 - (4) Use a mill cutter with as many teeth as possible, but which has necessary strength and chip clearance. The greater the number of teeth, the higher the feed rate you can use.
 - (5) If possible, for longer tool life, mill with the edge of the cutter (end mill or slab mill) and not the end of cutter (face mill or end of an end mill).
- B. Conventional and climb milling
 - (1) In conventional milling, the cutter turns in a direction opposite to the feed as seen at the point of contact. The thinnest part of the wedge-shaped chip is made first. Conventional milling is best used only to remove when alpha case or scale from the surface of a part with a high-speed steel cutter. In all other situations, climb milling is recommended.

Page 5 Mar 01/2007

DEING®

- (2) In climb milling, the cutter turns in the same direction as the feed as seen at the point of contact. The thickest part of the wedge-shaped chip is made first. Much less chip welding occurs and a better surface finish is made. But climb milling machines must have antibacklash devices.
- C. Face Milling (Figure 2, Figure 3, Table 4, Table 5)
 - (1) Carbide face mills can be used. Cutters with indexable inserts or ground-in-place inserts are recommended. Some indexable insert face mills have special finishing (wiper) teeth that can make a finish of 32 microinches or smoother and thus can be used for finishing cuts.
 - (2) As the titanium chips are cut from the work material, they can weld to the face of cutter teeth. The risk of this is greater as the chip thickness increases at the exit point. Chip welding is a special problem during face milling. It decreases tool life and could cause sudden tool failure. When you face mill titanium, to decrease chip welding and increase tool life:
 - (a) Use a cutting fluid.
 - (b) Decrease the feed rate per tooth to 0.002-0.003 inch when you start a cut or machine over holes or irregular surfaces.
 - (c) Climb mill, and always align the exit side of the cutter with the edge of the part or the cut.
 - (3) Use the general cutter (Figure 3) unless you cut an internal corner at a shoulder. Use the other cutter shown in Figure 3, when it is necessary to cut an internal corner radius.

CUTTER	CORNER ANGLE (LEAD ANGLE)	AXIAL RAKE	RADIAL RAKE	RELIEF ANGLE (PRIMARY CLEARANCE)
GROUND-IN-PLACE INSERTED TOOTH, SUB-MICRO-GRAIN AND CARBIDE GRADE C-2	45°	5°	0°	10°
GROUND-IN-PLACE INSERTED TOOTH, HSS PM	45°	10-15°	10-15°	10°

Table 4: Finish Face Mill Cutter Geometry

Table 5: Face Milling Machining Data

			CUTTING SPEED (SFM)		
CUTTER	FEED PER TOOTH, INCH	CUTTING FLUID	8AL-1M0-1V	6AL-4V COND. I & V	6AL-4V COND. III & IV
GROUND-IN- PLACE INSERTED TOOTH, SUB- MICRO-GRAIN AND CARBIDE GRADE C-2	0.010 MAX	WATER-BASE COOLANT, FLOOD OR SPRAY	120	100	90

BOEING®

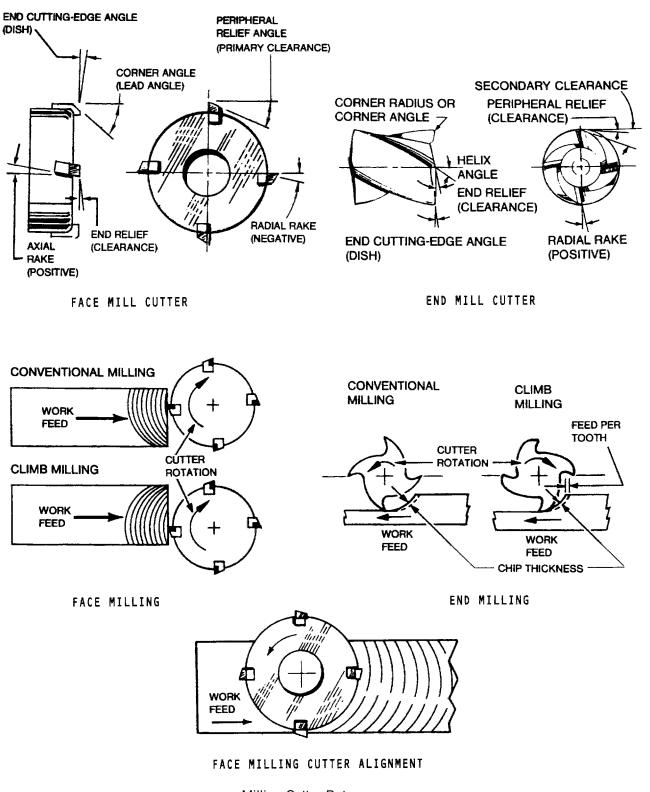
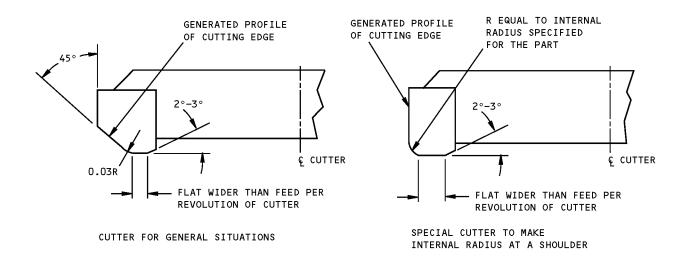

			CUTTING SPEED (SFM)		
CUTTER	FEED PER TOOTH, INCH	CUTTING FLUID	8AL-1M0-1V	6AL-4V COND. I & V	6AL-4V COND. III & IV
COTTEN		COTTINGTED		av	d IV
GROUND-IN-	0.010 MAX	WATER-BASE	50	45	35
PLACE		COOLANT,			
INSERTED		FLOOD OR			
TOOTH, HSS PM		SPRAY			

 Table 5: Face Milling Machining Data (Continued)

Page 7 Mar 01/2007

BOEING®



Milling Cutter Data Figure 2

Page 8 Jul 01/2005

BOEING®

Face Mill Insert Cutters Figure 3

Page 9 Jul 01/2005

DEING®

7. DRILLING

- A. Use a jobber-length drill with a ST10-907A or B point (135-degree split point and reduced rake) on an ST10-907J drill body. If a short-flute drill is not available, or if a longer flute length is necessary, use the ST10-907K drill with the ST10-907B point. For maximum drill life, use as short a drill length as possible. See Figure 4 for recommended speeds and feeds.
- B. If the drill diameter is less than 1 inch, use cobalt high-speed steel. If the drill diameter is more than 1 inch, use standard high-speed steel.
- C. Use a good flow of cutting fluid as specified in Table 2.
- D. Dull drills usually break suddenly. A drill could be dull if one or more of these signs occur. If you are not sure, replace the drill.
 - (1) A change in chip shape or quality, such as smearing, rough edges, different colors, or local hot spots.
 - (2) A change in the sound of the drill, such as squeaks or chatters.
 - (3) A change in hole quality, such as of surface finish or diameter.
 - (4) An increased amount of burrs.
 - (5) A change in power is necessary. (Monitor the load meter if available.)
- E. Always use solid clamping and backup devices to prevent vibration and burrs.

Page 10 Jul 01/2005

TITANIUM ALLOY	6AL-4V		6AL-6V-2SN		A-40 OR A-70				
DRILL TYPE	ST10-907-K OR ST10-0001-D		ST10-907-K OR ST10-0001-D		ST10-907-K				
DRILL POINT	ST10-907-В		ST10-907-A		ST10-907-A				
DRILL SIZE	20 SFM MAX RPM (WET)	30 SFM MAX RPM (WET)	FEED (IPR)	15 SFM MAX RPM (WET)	20 SFM MAX RPM (WET)	FEED (IPR)	30 SFM MAX RPM (WET)	50 SFM MAX RPM (WET)	FEED (IPR)
1/16 - NO. 40	850	1275	0.0015	600	850	0.0015	1275	2100	0.0015
NO. 30 - 5/32	500	750	0.0020	375	500	0.0020	750	1250	0.0020
NO. 10 - 7/32	375	550	0.0020	300	375	0.0020	550	900	0.0030
1/4	300	450	0.0030	225	300	0.0030	450	750	0.0040
3/8	200	300	0.0040	150	200	0.0040	300	500	0.0040
1/2	150	225	0.0040	110	150	0.0040	225	400	0.0060
5/8	125	190	0.0040	90	125	0.0040	190	325	0.0060
3/4	100	150	0.0060	75	100	0.0040	150	250	0.0080
1	75	110	0.0060	50	75	0.0040	110	200	0.0080

HOLE DEPTH (DRILL DIAMETERS)	CUTTING SPEED (SFM) 2 (WITH CUTTING FLUID)
LESS THAN 2D	25-30
2D-4D	15–20
MORE THAN 4D 1	15–20

USE OIL-HOLE DRILLS OR PECK DRILLS ONLY.
DO NOT USE CONVENTIONAL DRILLS

$$PM = \frac{SURFACE FEET PER MINUTE X 12}{DRILL DIAMETER IN INCHES X 3.1416} = \frac{SURFACE FEET PER MINUTE X 4}{DRILL DIAMETER IN INCHES} (APPROXIMATE)$$

$$SFM = \frac{RPM X DRILL DIAMETER IN INCHES X 3.1416}{12} = \frac{RPM X DRILL DIAMETER IN INCHES}{4} (APPROXIMATE)$$

Drilling Data Figure 4

20-10-07

Page 11 Jul 01/2005

DEING®

8. REAMING

- A. Tolerance and tool life are controlled by reamer geometry, cutting speeds and feeds. Cutting fluids must be used.
- B. Standard high speed steel or carbide insert reamers can be used. But standard high speed steel is satisfactory for most applications. Straight-flute chucking reamers with maximum margins (such as 0.010-0.015 inch) are recommended.
- C. See Figure 5 for recommended controls.
- D. Close-toleranced holes are not easy to ream in titanium. Careful control of reamer geometry and shop procedures can give a tolerance of -0.0000/ + 0.0015 inch. When you machine ream, cut a minimum of 1/64 (0.0156) inch on the diameter for holes up to 5/16 (0.3125) inch diameter. For larger holes, a 1/32 (0.0312) inch cut on the diameter could be necessary to remove drill marks.



Page 12 Jul 01/2005

REAMER SIZE (INCHES)	SPEED (RPM)	FEED RATE (INCHES PER TOOTH)
5/32	240-480	0.0006-0.0008
3/16	200–400	0.0006-0.0008
1/4	150-300	0.0008-0.0010
5/16	120-240	0.0008-0.0010
3/8	100-200	0.0008-0.0010
7/16	90-180	0.0008-0.0010
1/2	75-150	0.0008-0.0010
9/16	70-140	0.0010-0.0012
5/8	60-120	0.0010-0.0012
3/4	50-100	0.0010-0.0012
7/8	45-90	0.0010-0.0012
1	40-80	0.0010-0.0012
1-1/8	35-70	0.0010-0.0012
1-1/4	30-60	0.0010-0.0012
1-3/8	27-55	0.0010-0.0012
1-1/2	25-50	0.0010-0.0012

1 INCHES PER REVOLUTION = INCHES PER TOOTH TIMES NUMBER OF TEETH

INSERT TYPE REAMER

Reaming Data Figure 5

Page 13 Jul 01/2005

DEING®

9. SANDING

- A. Titanium can be sanded manually or with power tools. The power tools must not hold the abrasive tightly against the surface. The operation must not make sparks or melted fine particles.
- B. For class 1 and 2 surfaces, the surface speed of the power sanding tool must be a maximum of 2000 surface feet per minute, measured at the abrasive.
- C. Do not stop the sander in one location as you sand. Do not let the surfaces become too hot. If color changes occur that cannot be removed with solvent, the part must be rejected.
- D. Class 1 surfaces which are sanded must be shot peened (SOPM 20-10-03).

10. OTHER FINISHING OPERATIONS

- A. Hone with 120-grit or finer stones at a speed less than 150 surface feet per minute.
- B. Do not use abrasives bonded to a rigid backing (other than the hones) on BAC5492, class 1 or 2 surfaces.
- C. Do not use wire brushes as a finishing operation on BAC5492, class 1 or 2 surfaces unless there will be a subsequent operation to remove the wire brush marks.
- D. Break sharp corners and remove burrs with hand scrapers or files. Rotary files can be used if this does not make the surface too hot and cause color changes.

11. STRESS RELIEF AFTER MACHINING

A. It is not necessary to bake titanium for stress relief after the machining operations.

Page 14 Jul 01/2005