iRMX™ 86 CRASH ANALYZER
REFERENCE MANUAL

CONTENTS

CHAPTER 1

INTRODUCTION

Organization O0f the Manuale eeseevcescccvecccsccosscssccsscsccsssssocscsne

Reasons for Using the Crash AnalyzZeTeecssoeossssssessscscsssssccssss

Parts of the Crash Analyzerooooo.o.oo00o'l.ooooooo-.o..ooo.-oooo.o.
Requirements of the Crash Analyzer..m............................
How the Crash Analyzer is Suppliedeesvscececcscscscscscssssscsccncs

CHAPTER 2

CONFIGURING, INITIALIZING, AND LOADING THE DUMPER

Using the Interactive Configurator to Configure the Dumperecesosecse
Initializing and Loading the DumpeTe senscecsscscsrosssscccssssosscns
Re—-initializing and Re~loading the DumpeTreseeeecesscescsscescesssecse

CHAPTER 3

INVOKING THE CRASH ANALYZER

Scenario of How to Use the Analyzer-.owo0..000oao-oooooooo-ooo-oooo
The Equipmﬁnt and the Problem.oooooonocoonoooooooocooooooooooooo.
Using the Crash AnalyZere ceessceccscnsscscssscsscsssssonsscssccnsss

Pictorial Representation of Syntax....o............................

InVOking the DUmMpPEre seescocssosescscscrsososncosssssscssssnsossnsssse

Invoking the Analyzer....;....-.......o............................

Error Message300.oooocooooooo-oooco.aooo'o.ooooo.oooocooooooo..oo

CHAPTER 4

THE LISTING FORMAT

Sections of the Listinge ceceescssssccssscsccccoscsccssscssscssoscoce
Analysis Headereseoosooooesssssescscssnesscssssssssescssssscscsnsss
Current ProcessSor StatCeecesccccsscecsocssscsoscsossscecsssssscssnsoccsss
Job TreCecececesocssoscscsscscosccsosncssnsensecssssssssssscssssscsssse
List of Ready TaSKSeesessesvresssscsosnnsossrssssrsssossnnssnnscscssne
List of Sleeping TaSKkSessesssssecessersnsssesssssenssssssnssnssssssse
List of Extensions in System..........................-....-.......
List of Interrupt TaskSeeeseesossescosnvscsosnsenssssnsnesesrosscnses
Job Report Organizatioﬂooooo-oo;;o-o-ooo.o.ooo.o-.oa.nooooooooo-ooo
Job Report Header and Job InformationNeecccecscccsrcescscseosnssscenses
Object Directory and Tasks Waiting for Object LooOKUPeessesososescsss
ObjeCtS Contained by JObessessssscscecssssseescvsosscncsccscsccsence
Pool Report..................................-..................-..
Segments In JODececsvsessscsscsecssssessessosscsosssascsscscsscsscsnssse
Task Reportocoo..oooobooooooooooooocooo.oooooooooo-oo-ooooo.oooo-oo
Mailbox Report...........o..............................-.-.-......

Semaphore Reportoo..qooooooo.-ooo.oo-ooooo'oooo.o.oooooo'oo..oooooo

Crash Analyzer iii

PAGE

I
o

#‘#~P~£~D~$~#~D~P~b
=~ WO ONO WU WN

CONTENTS
(continued)

CHAPTER 4 (continued)

Region Report......................-..u-...........................

Extension ObjeCtS in JObeceessescocsosnsssesssscscsssssssscesossnos

Composite List Report........o........o.................-.....-....
Composite List Report Header and Extension Sub-Headersesesscsoses
General Composite Object Reportocoooonoo'oooooooQooooo.ooooo-oooo
Physical File Driver Connection RepOrtessssscccccscsessccsscsccsnase
Stream File Driver Connection Reportiesseesescscsssecscsscccccccsne
Named File Driver Connection RepOrtececsesccscescscscscccscsccssccsoe
Dynamic Device Information RepOrteececssessssscsessscscsscscsccssese
Logical Device Object RepOrtecsssecccicssscsscsscosscssccsccscsscccncee
I/O Job Object Report.0.no.ooooooo-oooo-oooto-oooooooooooooooo-oo

Summary Of ErrOrSecececcrscecossscesccscscssccscssssssssssescssscessnsse

Error Messages..coooo--ooo-o-oooooocooo.o.oooooooou-coooooo.oo.o-oo

Link Error..................'........’.'...............'..........

FIGURES

Example System-.--.-.-.......o.......-.....................
AnalYSiS Headeresosoeseoorecoscsscssscsssscscsscssssscssscsce
Current Processor StatCesecssescsesssncscssssscsscscscscscscsns
JOD TreCececcesssesessssssscesisssssossscssssscscessosscsocss
List of Ready TasSkSeesosesesscascssssssscescssssssescsccsscssos
List of Sleeping TasSKkSeeeesesssecossosssossescecsssssccescsse
List of Extensions in System...........................-...
List of Interrupt TaSKkSesoossstsesescssoesscccoscosssscesscns
Job Report Header and Job InformatiOnNeesscsesccscccscsscese
Object Directory and Tasks Waiting for Object Lookupeesseces
ObjeCtS Contained by JODeeessecsssecccossccssossccscscsccconsnse
Pool Report..........o-.wo..........r......................
Segments in Jobesesssesesssscessecsssscsssessescsscssccocsnse
Non-Interrupt Task RepOrtecsesscosccssessscescsccssssncssccsosns
Interrupt Task RepPOrteevesesessesncsssssssscccsccscnsssossscs
Mailbox Report (Mailbox with No Queue)....-..-..........-..
Mailbox Report (Mailbox with Object Queue)............o....
Mailbox Report (Mailbox with Task QUGUE).oooooooooooc-ooooo
Semaphore Report (Semaphore with No Queue)eseccessccsscsscas
Semaphore Report (Semaphore with Task Queu€)eeececssscsccsse
Region Report (Region with No QUEUE)ecccscoscssossossscssase
Region Report (Region with Task QUEUE)eeecccssscosscsscscns
Extension LiStecesccscssccscssscscsscsscsssosssscsccsccscscsnse
Composite List Report Header and Extension Sub-Headereeseosse
General Composite Object RepOrtesessscccescsesssccscscsccss
Physical File Driver Connection Reportscesssecscscsscccccscs
Stream File Driver Connection Reportesecscecsccescscscssccns
Named File Driver Connection Reportoootnoouooc-ootooooo.o..
Dynamic Device Information RepPOrtececscecccecesecsoscssscscsce
Logical Device Object Reporteeccsesssscccscssscsccsscscccnnsce
I/O Job Object Report.oooooooo.-ooooo-ooooo.o.ooooo.oooooao
Summary Of EYrTOrSecececscessccsccsoscecssscssecssossosscccnss

xkk
Crash Analyzer iv

4-33
4-35
4=37
4-38
4-39
4=b1
b=b4
4=45
4=47
4-48
4—49
4=50
4-51
4=53

S~ D‘b‘ﬁ~b~#~b~h>
LoNOTUhwih N

CHAPTER 1
INTRODUCTION

ORGANIZATION OF THE MANUAL

This manual is divided into four chapters. Some of the chapters contain
introductory or overview material which you might not need to read if you
are already familiar with the Crash Analyzer. Other chapters contain
invocation information and reference material to which you can refer as
you analyze the problems in your software following the failure of a
system or an application program. You can use this section to determine
which of the other chapters you should read.

The organization of the manual is as follows:

Chapter 1 This chapter describes the organization of the
manual and introduces the Crash Analyzer. It
describes the features and the environment of the
Crash Analyzer. You should read this chapter if

you are going through the manual for the first
time.

Chapter 2 This chapter explains how to configure,
initialize, and load the Dumper portion of the
Crash Analyzer. You should read this chapter if
you are going through the manual for the first
time or if you need to re-load the Dumpere.

Chapter 3 This chapter describes how to invoke the Crash
Analyzer. You should read this chapter to learmn
how to invoke the Dumper and the Analyzer. You
may also want to use this chapter as a reference
to the options available when you invoke the
Dumper or Analyzer.

Chapter 4 This chapter describes the formats and explains
the fields in the print out that the Crash
Analyzer generates. The individual formats are
arranged in the order they appear in the print
out. You should refer to this chapter during
system analysis for specific information about
the displays.

REASONS FOR USING THE CRASH ANALYZER

The Crash Analyzer aids you in debugging iRMX 86 applications. It
provides you with an analysis of software problems following the failure
either of your system or an application program in an iRMX 86

environment. The Crash Analyzer helps you to determine the reasons for
system failure by:

Crash Analyzer 1-1

INTRODUCTION
° Producing a dump file containing a memory image of the crash
situation.

° Analyzing the dump file and producing a detailed, formatted
report of the crash situation.,

° Listing system objects in detail and checking for inconsistencies
where possible,

The following section further describes the parts of the Crash Analyzer
and the environments in which they run.

PARTS OF THE CRASH ANALYZER

The Crash Analyzer is a single product consisting of two parts:

° The Dumper which produces a disk copy of a memory image. This

copy is called the dump file., The Dumper runs in the iRMX 86
application system that you are debugging.

[The Analyzer which reads the dump file and creates a formatted
printout file. This printout file contains clearly labeled,
formatted information about system data structures. The Analyzer
runs on a Series III Microcomputer Development Systeme It

requires a secondary storage device to contain the dump file and
the formatted report.

REQUIREMENTS OF THE CRASH ANALYZER

In order to use the Crash Analyzer, the iSDM 86 Monitor must be part of
your system.

HOW THE CRASH ANALYZER IS SUPPLIED

The Crash Analyzer is available on Release Diskettes in ISIS-II format or
iRMX 86 format. You must perform the loading and configuration of the
Dumper on a Series III Microcomputer Development Systems Therefore, if

you use the iRMX 86 format, you may have to copy some files to an ISIS-IT
format.

*k%x

Crash Analyzer 1-2

CHAPTER 2
CONFIGURING, INITIALIZING, AND
LOADING THE DUMPER

In order to use the Crash Analyzer, you must configure, initialize, and
load the Dumper. This chapter describes the options available when you
use the iRMX 86 Interactive Configurator (ICU) to configure the Dumper
into your systeme It then describes how to initialize and load the
Dumper module from a microcomputer development system, using the iSDM 86

Monitor. The remainder of the chapter describes what to do if you must
re—load the Dumper.

USING THE INTERACTIVE CONFIGURATOR TO CONFIGURE THE DUMPER

The iRMX 86 CONFIGURATION GUIDE explains how to use the ICU to include
the Dumper in your systems One of the options you have when configuring
you system is whether to locate the Dumper in RAM or ROM. After you
configure the Dumper, be sure to look up the address for
RQSDUMPS$BOOTSINIT in the Dumper locate map SDUMPR.MP2. You will need
this address to re-initialize the dumper if you have to reset the system

or if you accidentally destroy data structures necessary to the Dumper
and the iSDM 86 Monitor.

INITIALIZING AND LOADING THE DUMPER

When you configure and bootstrap load the system, it automatically
initializes and loads the Dumper. You are now prepared to run the Crash
Analyzer if it is necessary. If a system program or an application
should fail, all you have to do is activate the iSDM 86 Monitor on your
screen and invoke the Dumper. A common way to bring up the iSDM 86
Monitor is to press the non-maskable interrupt. This procedure causes
the iSDM 86 to display a prompt (.). When you invoke the Dumper, the
system automatically initializes and loads the Dumper. See Chapter 3 to
learn how to invoke the Dumper.

NOTE

Avoid using the reset switche If you
do use the reset switch, you will have
to re—-initialize and possibly reload
the Dumper.

Crash Analyzer 2-1

CONFIGURING, INITIALIZING, AND LOADING THE DUMPER

RE-INITIALIZING AND RE-LOADING THE DUMPER

If you have to reset the system, or if you accidentally destroyed some
data structures necessary to the Dumper and the iSDM 86 Monitor, you can
still use the Dumper to create a valid dump file. To do this, you must
re-initialize and possibly reload the Dumper. Rather than re-loading
your system, you can initialize the Dumper by using the iSDM 86 Monitor
go command (G) and the address for RQSDUMPSBOOTSINIT (as listed in the
Dumper locate map SDUMPR.MP2).

+«G <bbbb>:<o000>

The system responds with the Dumper sign—on message, a breakpoint, and a
prompt as follows:

iRMX 86 Dumper initialized

BREAK at <bbbb>:<oooo>

where <bbbb> and <oo000> are base and offset addresses for internal iSDM
86 Monitor structures.

If the sign—-on message does not appear, the system responds with the
following error message:

Bad Command
If the system returns a "Bad Command"” error message, you must re-load the
Dumper into memory by entering the iSDM 86 Monitor load (L) command at

your microcomputer development system as follows:

L :fx:filename

where ":fx:" is the disk identifier that corresponds to the disk on which
the ICU placed the Dumper and "filename" is the name of the file that
contains the Dumper on the diskette.

After you have re-loaded the Dumper, you can enter the go command (as
shown previously in this section) to re-initialize the Dumper.

kk%k

Crash Analyzer 2-2

CHAPTER 3
INVOKING THE CRASH ANALYZER

After you configure, initialize, and load the Dumper, you can invoke both
the Dumper and the Analyzer portions of the Crash Analyzer any time you
need thems (Refer to Chapter 2 for more information on configuring,
initializing and loading.) This chapter presents a situation in which
you would want to use the Dumper and the Analyzer. This situation is a
general scenario of the steps you might take when an application fails.
Following the scenario are detailed descriptions of how to invoke the
Dumper and the Analyzer.

SCENARIO OF HOW TO USE THE CRASH ANALYZER

This section presents a general scenario of how, and in what kind of a
situation, to use the Crash Analyzer. Your iRMX 86 System may differ
slightly from the example used in Figure 3-1 but the procedure for using
the Crash Analyzer is the same.

THE EQUIPMENT AND THE PROBLEM
Figure 3~1 shows a system consisting of the following equipment:

. A target system with an iAPX 86, 88-based processor board,
memory, any necessary controllers, and a compatible terminal.

° A Series III Microcomputer Development System and a compatible
printer.

Your system can be any iRMX 86 System but you must connect the Series III
Microcomputer Development System to the target system with the iSDM 86
Monitor.

Suppose you are running an application on an iRMX 86 System and for some
reason your application fails. You can use the Crash Analyzer to help
find out why the application failed.

Crash Analyzer 3-1

INVOKING THE CRASH ANALYZER

SERIES Ill MICROCOMPUTER
e DEVELOPMENT

R ——————r

i

iFIMX™ 86 SYSTEM
TERMINAL

iRMX™ 86 SYSTEM
APPLICATION
- — /
X-085
s umenocousuren \ o
DEVELOPMENT SYSTEM L7
PRINTER

Figure 3-1. Example System

USING THE CRASH ANALYZER

This section describes the general steps you should take when you want to

use the

Crash Analyzer. The steps refer you to detailed explanations of

the specific invocations.

1.

2.

3.

Activate the iSDM 86 Monitor and invoke the Dumper. A common way
to bring up the iSDM 86 Monitor is to press the non-maskable
interrupt on your target system.

Invoke the Dumper on the target System. See "Invoking the
Dumper"” in this chapter. The Dumper uses the iSDM 86 link to
create a disk file on the Series III Microcomputer Development
Systeme This disk file (called the dump file) contains a copy of
the system's memorye.

Invoke the Analyzer on the Series III Microcomputer Development
Systems See "Invoking the Analyzer™ in this chapter. The
Analyzer reads the dump file and produces a formatted print file
which it sends to the printer or a disk file. This print file
contains clearly labeled information about the system data
structures,

Use listings in Chapter 4 to help you understand the information
in the print file.

Crash Analyzer 3-2

INVOKING THE CRASH ANALYZER

PICTORIAL REPRESENTATION OF SYNTAX

This manual uses a schematic device to illustrate the syntax of

commands. The schematic consists of what looks like an aerial view of a
model railroad setup, with syntactic entities scattered along the track.
Imagine that a train enters the system at the left, drives around as much
as it can or wants to (sharp turns and backing up are not allowed), and
finally departs at the right. The command it generates in so doing
consists, in order, of the syntactic entities that it encounters on its

journey., The following pictorial syntax shows two ways (A or B) of
reaching "C.":

o0

(<)

— e

The schematics do get more complicated, but just remember that you can
begin at any point on the left side of the track and take any route to
get to the end as long as you do not back up. Some of the possible
combinations of syntactic elements are: ACDF, BCEF, BF, AF, and F.

oS!

&/

OO
O

x-117

Crash Analyzer 3-3

INVOKING THE CRASH ANALYZER

INVOKING THE DUMPER

You can invoke the dumper by interrupting into the iSDM 86 Monitor (on an

iRMX 86 application system) and using the VM command.

O S =D S R P T ST

PARAMETERS

filename

DATE

(date)

TIME

(time)

The name of the ISIS-IT file to which you want to dump
the disk copy of the system memory. The beginning
portion of this name can consist of a logical name
enclosed in colons (such as :Fl:). This indicates the
drive on which to place the file., If you omit the
logical name, the Dumper places the file resides in
the default drive (:FO0:).

If you want the analysis header (explained in Chapter
4) to include a date, you must enter the word "DATE"
immediately preceding the actual date.

The date that you invoke the Dumper. This parameter
can be up to 20 characters in length and in any form
you wish, The characters you enter for the date must
be enclosed by parentheses. The date you enter is
placed in the dumpfile and printed during analysis.

The date is an optional parameter; if you do not
specify a date, the Crash Analyzer omits the it in the
analysis header. See Chapter 4 for more information
about the analysis header.

If you want the Analysis Header (explained in Chapter
4) to include a time, you must enter the word "TIME"
immediately preceding the actual time.

The time that you invoke the Dumper. This parameter
can be up to 10 characters in length and in any form
you wish. The characters you enter for the time must
be enclosed by parentheses. The time that you enter
is placed in the dumpfile and printed during analysis.

The time is an optional parameter; if you do not
specify a time, the Crash Analyzer omits the time in
the analysis header. See Chapter 4 for more
information about the analysis header.

Crash Analyzer 3-4

X=-086

INVOKING THE CRASH ANALYZER

The dumper displays the following message immediately after you invoke it:
Start iRMX 86 system dump V<x.x>

When the Dumper finishes creating the dump file, it displays the
following message:

Dump complete to file <filename>

where <filename> is the file name you specified in the VM command. The
iSDM 86 Monitor then issues a new prompt (.).

INVOKING THE ANALYZER

You can invoke the Analyzer on the Series III Microcomputer Development
System by using the following command.

dump
SCRS 86

X-087

PARAMETERS

RUN The Series III RUN command.

SCRS86 The name of the Analyzer.

dump-£filename The name of the file that is the source of the
system memory image to be analyzed. This is the
same file you specified when you invoked the Dumper.

TO If you want to include a print file name, you must
enter the word "TO" preceding the print file name
you select.

print—-filename The name under which the Analyzer places the

analyzed output. If you do not specify a
"print-filename", the Analyzer uses the "dump
filename” with "PRT" as the extension. Do not use
the name of a device alone, unless the name
specifies a device printer such as :LP:.

Crash Analyzer 3-5

BYTE

WORD

INVOKING THE CRASH ANALYZER

An optional format in which the Analyzer may print
the contents of the iRMX 86 segments. If you
specify the BYTE option, the Analyzer prints the
contents of the iRMX 86 segments in BYTE format.
An example of the BYTE format is as follows:

contents: BBBB:0000 XX XX XXe.es*aaaaaaaaaaaaa®

where:

BBBB: 0000 The base and offset address of the
iRMX 86 segments.

XX A pair of hexadecimal digits
representing a byte.

*a.00a% The ASCII representation of the
corresponding byte (if
printable). If the byte value
cannot be printed, the Analyzer
places a period (.) in its place.

An optional format in which the Analyzer may print
the contents of the iRMX 86 segments. If you
specify the WORD option, the Analyzer prints the
contents the iRMX 86 segments in hexadecimal WORD
format. An example of the WORD format is as
follows:

contents: BBBB:0000 xXXX XXXX XXXX XXXXe ee
where:

BBBB: 0000 The base and offset address of the
iRMX 86 segments.

XXXX Four hexadecimal digits
representing a word.

If you specify both BYTE and WORD, the iRMX 86
segments are displayed in both formats. If you do
not specify either BYTE or WORD, the contents of

the iRMX 86 segments do not appear in the print
file.

Crash Analyzer 3-6

INVOKING THE CRASH ANALYZER

ERROR MESSAGES

The following error messages appear on the your screen when you make an
error in invoking the Analyzer or during a file operation. These errors
cause the Analyzer to terminate all operations and display the error

message.

Message

Argument size exceeds
80 characters

<filename>, error during
<operation type>

<filename)>, EXCEPTION <nnnn>H
<message>

<filename>, illegal
file name

<filename>, is not an
iRMX 86 dump file

<filename>, no such file

<keyword>, invalid keyword

Non-blank delimiter in
input string

Description

When you invoked the Analyzer, one of

the arguments exceeded 80 characters
in length.

The Analyzer encountered an
exceptional condition when it tried
to perform an operation on the file

name. The <operation type> is one of
the following:

open
create
close
detach
read
write
seek

The Analyzer also displays the
exception code <nnnn>H and the
mnemonic for the exception in
<{message>. Refer to the iRMX 86
Operator's Manual to find out what
the exception codes mean.

The file name you specified when you

invoked the Analyzer is not a valid
ISIS II file name.

The file name you specified when you
invoked the Analyzer refers to a file
that was not originally created by
the Dumper.

The Analyzer cannot find the file you
specified.

You specified a format option other

than WORD or BYTE when you invoked
the Analyzer.

When you invoked the Analyzer, you
used a delimiter other than a blank.
The only delimiter the Analyzer
accepts is a blank.

Crash Analyzer 3-7

INVOKING THE CRASH ANALYZER

Null dump file name You did not specify a name for the
dump file when you invoked the
Analyzer.

Null output file name When you invoked the Analyzer, you

included "TO" but you did not specify
a print file name.

k%

Crash Analyzer 3-8

CHAPTER 4
LISTING FORMAT

This chapter describes the format and explains the fields in the listing
that the Analyzer outputs. These individual sections of the listing are
arranged in the order they appear in the printout. For quick reference,
this chapter includes a Table of Contents that lists the pages on which
the different sections of the listing appear.

Note: this manual will not explain some of the outputs on the display
field since those outputs are meant for Intel in-house use only.
LISTINGS

SECTION PAGE

Analysis Headeroooooooooonooooo-o-oo-ooooooo-ooooo.ooootooo.ooooooo
Current Processor StateECeeecessscsesscesscocsssscecssscsssssossscscssscscoce

86 Job Tree.l.........................‘..........'.................l

Iist of Ready TaSKkSesseesseeosessesonsnosscssssssssscsssssessesscsscsssse
List of Sleeping TaSKSeoooessessscossssnsosscsessosssscsssscsscsssssssese
List of Extensions in System..........o............o...............
List of Interrupt TaSKSeeeoossescsosesonsessssssssscscsossesssssscssse
Job Report Organization...............o..........................--
Job Report Header and Job Informationesecececssssssscecscoscssnssscse
Object Directory and Tasks Waiting For Object LoOKUPsesssecssssccscs
ObjeCtS Contained by JODe ceececseecooonssosocscossscscsscscscsssscce 4-16

be-b.btb-T PR S
OO NOUL W

|
[
&~

Pool Report...........................«...............-............ 4-17
Segments In JODe ceosssscssososcsscscscsssccssscscscsossvosssssssscssss 4~-19
Task RepOrtesesossecesessssscsocssssssosenasssssscssssssscssscsoscscccnnocs 4-21
Mailbox R6port................................o..............;..... 4-26
Semaphore REepOrtescseccsscecscscsscsoscssscnosnscocosssosssssosssssscscsncsns 4-30
Region Reportooooooooo.oooo..o.ooo.oooocooooooo.voooooooooooo.-.o-c 4_33
Extension ObjeCtS in JObesssesosscseossnssosesesosscsscsosssesccssccsnncns 4-35

Composite List Reportocoooooooooooo.oooooooo-onoooooo-ooooooooooooo 4-37
Composite List Report Header and Extension Sub-Headereesesoeosesses 4-38
General Composite Object RepOrtececeecssesscsccssccsssssscsssssssccs 4-39
Physical File Driver Connection RepOrteesscescsccsscessccscosccns 4-41
Stream File Driver Connection RepOTteecscecccscessocsoscscssssssccce 4-44
Named File Driver Connection RepOrtesccsscocsscscssscsccssssscssse 4=45
Dynamic Device Information RepOrtecescscescscssescsscsssccsssccscsces 4-47
ngical Device Object RepOTtesoeceesoersssessscscsscsccccsccccncsssccee 4-48
I/O Job Object Report.................-..................-.-..... 4-49

Summary Of FrYOYrSeecscsecceccoscescsccsonscscsccssscssssoscscssscssssscssscse 4_50

Error MESsagEScoooo-o..oo.oooo...ooooo..ooooooooooooooo.o.o.o-oo.oc 4_51

Crash Analyzer 4-1

LISTING FORMAT

ANALYSIS HEADER

The section of the listing shown in Figure 4-1 identifies the file being
dumped along with the time and date of the dump.

K s dededke e de e e ko ok ok ok ok sk ek kR ek A Rk Rk kR Rk Rk kb R kb ok kb
iRMX 86 Crash Analyzer - V<{x.X>

Date: <date of dump>

Time: <time of dump>

Dumpfile: <dumpfile name>

¥ ¥ % ¥ ¥ X ¥ ¥ ¥

B R T 2 T S R T R T T R T L T

Figure 4-1. Analysis Header

The fields in Figure 4-1 are as follows:

<date of dump> The date of the dump. You specified the data in
this field when you invoked the Dumper.

<time of dump> The time of the dump. You specified the data in
this field when you invoked the Dumper.

{dumpfile name> The name of the dump file. You specified this
field when you invoked the Dumper.

See Chapter 3 for more information on the previous fields.

Crash Analyzer 4-2

LISTING FORMAT

CURRENT PROCESSOR STATE

The section of the listing in Figure 4-2 displays the state of both the
CPU running the system and the Numeric Processor Extension at the time
you invoked the Dumper. If the registers of the processor are not
available to the analyzer, it prints the message, "Registers not
available” in place of the processor state.

Current processor state

N8 3¢ 38 3¢ 39 a8 o

%*

* CPU state

*

AX = <xxxx> SP = <xxxx> CS = <xxxx> IP = <{XXXx%>
BX = <xxxx> BP = <xxxx> DS = <xxxx> FL = <0x Dx Ix Tx Sx Zx Ax Px Cx>
CX = <xxxx> SI = <xxxx> S8 = <XXXX>

DX = <xxxx> DI = <xxxx> ES§ = <XxXX>

%

* NPX state

%

CW = <{xxx%> SW = <{xxxx> W = <xxxx>
IP = <XXXXX> 0C = <xxx> OP = <XxXXXX>
ST(0) = <XXXKXXXXXXXKXXXXXXXKXXXXD

ST(1l) = <XXXXXXXXXXXXKXXXXXXXXXD

ST(2) = <XXXXXXXXXXXXXXXXKXXXKXX

ST(3) = <{XAXXXXXXXXXXXXXXXXKXXXD

ST(4)

]

CHXXXXXXXX XX XXX XXX KKXKKD

ST(5) = <{XXXXXXXXXXXXXXXXXXKXXKXD

ST(6)

<X XXXXXXXXXXXXXXXXXXKXKD

ST(7) = <{XXXAXXXXXXXXXXXXXXXXXD

Figure 4-2, Current Processor State

The

fields pertaining to the CPU in Figure 4-2 are as follows:

AX,
IP,
DS,
SI,
DI,

Sp, CS, The hexadecimal values in the CPU's registers.
BX, BP, The names of the processor's registers are as
FL, CX, follows:

SS, DX,

ES

Crash Analyzer 4-3

LISTING FORMAT

Name

AX
SP
CS
IP
BX
BP
DS
FL
cX
SI
SS
DX
DI
ES

"A" Register
Stack Pointer
Code Segment
Instruction Pointer
"B" Register

Base Pointer

Data Segment
Flags

"C" Register
Source Index
Stack Segment

"D" Register
Destination Index
Extra Segment

The fields pertaining to the Numeric Processor Extension (NPX) in Figure

4~2 appear only if your system includes one.

CW, SW, TW,
1P, 0OC, OP,

ST(0) through ST(7)

The hexadecimal value in the NPX's register.
names of the Numeric Processor Extension

registers are as follows:

Name

CW
SW
W
IP
0C
OP

Description

Control Word

Status Word

Tag Word
Instruction Pointer
Operation Code
Operand Pointer

The hexadecimal value of the NPX stack

registers.

The Analyzer displays these 80-bit

registers in temporary real format.

Crash Analyzer 4-4

The

LISTING FORMAT

JOB TREE

The section of the listing in Figure 4-3 displays the tokens of all the

jobs in your system. The offspring jobs are indented to show their
position in the hierarchy.

iRMX 86 job tree

3L 38 39 N8 9 3¢ e

<XXXX] >
<XXXX9>
<XXXX3>
<XXXX[>
<XXXX 5>
<xxxx6>

Figure 4~3. Job Tree

The fields in Figure 4-3 are as follows:

<xxxx1> The token for the root job.

<xxxx9> through
<XXXXg > The tokens for the offspring jobs of the root

jobe The offspring jobs are indented three
spaces to show their position in the hierarchy.

Crash Analyzer 4-5

LISTING FORMAT

LIST OF READY TASKS

The section of the listing in Figure 4-4 displays the token for the task
that is running followed by the the tokens for the ready tasks.

List of ready tasks

N8 N 8 9 0 3w e

Task Priority
Running task <xxxx>J/ <yyyy>T <aa>
Ready tasks <xxxxo>J/<yyyy>T <aad

<xxxx>J/ yyyy>T <aa>

Figure 4-4, List Of Ready Tasks

The fields in Figure 4-4 are as follows:

<xxxx>J The token representing the job which contains the
task.
<yyyy>T The token representing either the running task or

a ready task.
<aa> The priority of the taske.

Depending on what the processor was doing at the time of the dump,
ROOTJ/IDLET can appear in either the running task or the ready task
list. ROOTJ/IDLET represents the operating system's idle task; the idle
task is a low-priority task that runs when no other tasks are running.
If ROOTJ/DELET appears in the ready task list, a task requested deletion
of itself or its job. See the iRMX 86 NUCLEUS REFERENCE MANUAL for more
information about deleting a task or job.

Crash Analyzer 4-6

LIST OF SLEEPING TASKS

LISTING FORMAT

The section of the listing in Figure 4-5 displays the token for the tasks

that are sleeping.

The sleeping tasks are shown in increasing order of

their remaining sleep—time.

List of sleeping tasks

N 39 3¢ 38 N8 9o

Task

<xxxx>J/ <yyyy>T

<xxxxJ/<yyyy>T

Priority Delay Delay
remaining requested

<aa> <bbbb> {ccce

<aa> <bbbb> {ccece>

Figure 4-5. List Of Sleeping Tasks

The

fields in Figure 4-5 are as follows:

<xxxx>J

<yyyy>T
<aa>

<bbbb>

{ccce>

The token representing the job which contains the
task.

The token representing the sleeping task.
The priority of the task,.

The remaining time the task is required to sleep.
This sleep—time is expressed in intervals of the
system clock, so you must know the value of the clock
interval in your system.

The sleep—-time the task requested. This sleep-time
is expressed in intervals of the system clock, so you

must know the value of the clock interval in your
system.

If ROOTJ/DELET appears in the list of sleeping tasks, your system was not
deleting a task or a job at the time of the dump. See the iRMX 86 NUCLEUS
REFERENCE MANUAL for more information about deleting a task or job.

If there are no tasks sleeping at the time of the dump, the Analyzer prints
the sleeping task header and the message, "No tasks are sleeping."”

Crash Analyzer 4-7

LISTING FORMAT

LIST OF EXTENSIONS IN SYSTEM

The section of the listing in Figure 4-6 displays information about each
extension in your system. It also shows the deletion mailbox for each
extension along with its containing job.

List of extensions

39 38 38 3¢ 38 ¢ e

Extension Extension Containing Deletion
token type job mailbox
<uuuw> <vvvw> <wwww>J <xxxx>J/ <yyyy>M
<uuuwy <vvvvd <wwww>J <xxxd>J/ <yyyy>M

Figure 4-6., List Of Extensions In System

The fields in Figure 4-7 are as follows:
<uuuu> The token for the extension.
<vvvw The WORD containing the type code for the new

type. This type code was specified when the
extension object was set up with system call

CREATESEXTENSION.

<wwww>J The token for the job that contains the extension.

<xxxx>J The token for the job that contains the deletion
mailboxe.

<yyyy>M The token for the deletion mailbox set up with
CREATESEXTENSION.

Crash Analyzer 4-8

LISTING FORMAT

LIST OF INTERRUPT TASKS

The section of the listing in Figure 4-7 displays information about your
system's interrupt tasks in increasing order of interrupt level.

List of interrupt tasks

3N 3N 39 3¢ € 39 e

Level Task Data segment
base

Kdd> <xxxx>J/ <yyyy>T {zzzz>

<dd> <xxxx>J/<yyyy>T {zzzz>

Figure 4-7. List Of Interrupt Tasks

The fields in Figure 4-7 are as follows:

<dd> A byte containing the interrupt level that the task
servicess The level is encoded as follows:

Bits Value
7 0
64 First digit of the interrupt level (0-7).
3 If one, the level is a master level and

bits 6-4 specify the entire level number,

If zero, the level is a slave level and
bits 2~0 specify the second digit.

2-0 Second digit of the interrupt level
(0-7), if bit 3 is zero.

<xxxxoJ The token for the job that contains the interrupt
task.

<yyyy>T The token for the interrupt task.

{zzzz> The token for the interrupt handler's data segment.

Crash Analyzer 4-9

LISTING FORMAT

JOB REPORT ORGANIZATION

The Analyzer prints an entire job report for each job in your system.
Because each job report consists of a number of detailed displays, this
report is divided into sections as follows:

. Job Report Header

Information about the Job
Job Descriptor

' Object Directory
Tasks Waiting for Object Lookup

. Objects Contained by Job
° Pool Report for Job
. Segments in Job

] Task Report
Non-Interrupt Tasks
Interrupt Tasks

° Mailbox Report

° Semaphore Report

o Region Report

° Extension Objects in Job

° Composites in Job

Extension Sub-Header

Composite Object Report

Special Composite Objects
Physical File Driver Connection Report
Stream File Driver Connection Report
Named File Driver Connection Report
Dynamic Device Information Report
Logical Device Object Report
I/0 Job Object Report

Crash Analyzer 4-10

LISTING FORMAT

JOB REPORT HEADER AND JOB INFORMATION

The section of the listing in Figure 4~8 contains the Job Report Header
and the token of the job being printed., This header is followed by a
"deletion pending message™ and by information about the attributes of the
jobe Next is internal information about the job descriptor.

*

K RERKARRKAARKATARARKAAARARRARAAARRAXL AR AARA AR AR AAAAARRRAA AKX AR
L LR L T L T L L L L L L L L L L L L L L
%

* Job report, token = <xxxx>

*

ook ko ok ok ek Rk A ok R kR Ak A A AR A AR AR RARAARARRR IR XA KA KA KRR R AR R hh K
KEKKKKRKRRRRRKIKRRRAARARARIA KA AT AAA AR KA RARATARARR AR AR AR R A A hhhds
*

{deletion pending message>

Current tasks <xxxxX> Max tasks <XXXKD Max priority <xx>
Current objs XXX XD Max objects <xxxx> Parameter obj <zxxxx>
Except handler <xxxx:xxxx> Except mode <xx> Parent job <XXXX>
Job flags <XXX XD

*

* Job descriptor

BBBB: 0000 <xxxx> <Xxxx> <XXXX> <xXxxx> <xxxx> <xxxx)> <xxxx)> {xxxxd
BBBB:0000 <xxxx> <XXXxX> <XKXXXX> <XXXX> <&Xxxx> <xxxx> <XXXX> <KXXXXD
BBBB: 0000 <xxxx> <Xxxx> <Xxxx> <&xxxx> <xxxxd> <xxxx> <KD <XXXX>
BBBB:0000 <xxxx> <XxXXX> <XXXX> <Xxxx> <XxXx> xxxx> <KXXX> <KXXXXD

Figure 4-8. Job Report Header And Job Information

The fields in Figure 4~8 are as follows:

{deletion pending This message is present only if there is some type
message> of deletion pending against the jobe The

messages are either, "DELETION PENDING" or
"FORCED DELETION PENDING."

Current tasks The number of tasks currently existing in the job.

Max tasks The maximum number of tasks that can exist in the
job at the same time. This value was set when
the job was created with the system call
RQSCREATESJOB.

Crash Analyzer 4-11

Max priority

Current objs

Max objects

Parameter obj

Except handler

Except mode

Parent job

Job flags

LISTING FORMAT

The maximum (lowest numerically) priority allowed
for any task in the jobs This value was set when
the job was created with the system call
RQSCREATESJOB.

The number of objects currently existing in the
jO be

The maximum number of objects that can exist in
the job at the same time. This value was set
when the job was created with the system call
RQSCREATESJOB.,

The token for the object the parent job passed to
this jobs This value was set when the job was
created with the system call RQSCREATESJOB.

The start address of the job's exception

handler. This address was set when the job was
created with the system call RQSCREATESJOB.

The value that indicates when control is to be
passed to the new job's exception handler. It is

encoded as follows:

When Control Passes

Value To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

This value was set when the job was created with
the system call RQSCREATES$JOB.

The token for the parent job of this job.

The job flags parameter that was specified when
the job was createds The bits (where bit 15 is
the high-order bit) have the following meanings:

Bit Meaning
15-2 Reserved.
1 If 0, then whenever a task in

the new job or any of its
descendent jobs makes a Nucleus
system call, the Nucleus checks
the parameters for validity.

Crash Analyzer 4-12

LISTING FORMAT

If 1, the Nucleus does not check
the parameters of Nucleus system
calls made by tasks in the new

job. However, if any offspring of
the new job has been created with
this bit set to 0, there will be
parameter checking for the new job.

0 Reserved.

The job descriptor has information which is not useful to application and
system programmers. You should ignore this information.

Crash Analyzer 4-13

LISTING FORMAT

OBJECT DIRECTORY AND TASKS WAITING FOR OBJECT LOOKUP

The section of the listing in Figure 4-9 displays the names and tokens
for the objects cataloged in the job's object directory. This
information is followed the uncataloged names of the objects for which a
task is waiting. For each such object, the Analyzer displays the
requested name, the token for the task, and the token for the containing
job of the first task waiting for object lookupe.

%
* Object directory
%
Maximum entries: <aaaa> Entries used: <bbbb>
Name Length Hex representation Object
in hex
<namej> <z> (XX XX XX XXe oo, <xxxx>J/ <yyyy>t
<name,> <z> <XX XX XX XXo oo <xxxx>J/ <y yyy>t
*
* Tasks waiting for object lookup
*
Name Length Hex representation Task
requested in hex
<name,> <z> <XX XX XX XXooo) <xxxx>J/ <yyyy>T
<name,> <z> {XX XX XX XXo oo <xxxx>J/<yyyy>T

Figure 4-9. Object Directory And Tasks Waiting For Object Lookup

The fields in Figure 4-9 are as follows:

Maximum entries The maximum allowable number of entries this job
can have in its object directory.

Entries used The number of entries used within the directory.
<name}> through The names under which the objects are cataloged.
<name,> The printable characters are shown for each name

in the list. Characters which cannot be printed
are replaced with a period (.) in this listing.

<z> ' The length of the name in bytes.

Crash Analyzer 4-14

LISTING FORMAT

<XX XX XX XXo o0 The hexadecimal representation of each letter in
the name.

<xxxx>J The token for the job that contains the object,

<yyyy>t The token for the object where "t" is one of the

following characters that identify iRMX 86 object
types:

Character Object Type

composite
segment
job
mailbox
region
semaphore
task
extension

HHEHnIR WO O

The fields pertaining to the tasks waiting for object lookup in Figure
4-9 are as follows:

<name,> through

<name,> The name of the object the task has requested.

<z> The length of the name in bytes.

<{XX XX XX XXeoo o) The hexadecimal representation of each letter in
the name.

<xxxxoJ The token for the job that contains the task.

<yyyy>T The token for the task.

Crash Analyzer 4-15

LISTING FORMAT

OBJECTS CONTAINED BY JOB

The section of the listing in Figure 4-10 lists the tokens for a job's
child jobs, task, mailboxes, semaphores, regions, segments, extensions,
and composites.

* Objects contained by job <zxxxx>

Child jobs: XXXK> <KXXXKD KEXXXDo oo SXXXXD

Tasks: KXXK> KXXXD $HXXXDeos SKXXXD
Mailboxes: <xXXKD LXXXXD $EXXXDo 00 <XXXXO
Semaphores: <xxxx> KXXXY <KXXXDeoeo SKXXXD
Regions: x> <XXXX> HXXXDo o0 SKXXXD
Segments: <XKxXX> XXXX> EXXXDeoo <KXXXD
Extensions: <xxXX> <XXXXD {BXXXDese SXXXXO

Composites: <XXXX> <XXXK> <KXXXDees SXXXXD

Figure 4-10. Objects Contained By Job

The fields in Figure 4-10 are as follows:

Child jobs The tokens for the child jobs within the job.
Tasks The tokens for the tasks within the jobe.
Mailboxes The tokens for the mailboxes within the job. A

lower-case "o" immediately following a token for
a mailbox means that one or more objects are
queued at the mailboxe A lower-case "t"
immediately following a token for a mailbox means
that one or more tasks are queued at the mailbox.

Semaphores The tokens for all the semaphores within the
jobe A lower-case "t" immediately following a
token for a semaphore means that one or more
tasks are queued at the semaphore.

Regions The tokens for all the regions within the job. A
lower-case "b" (busy) immediately following a
token for a region means that a task is accessing
information guarded by the region.

Segments The tokens for all the segments within the job.
Extensions The tokens for all the extensions within the job.
Composites The tokens for all the composites within the job.

Crash Analyzer 4-16

POOL REPORT

LISTING FORMAT

The section of the listing in Figure 4-11 displays information about the
job's memory pool. It also shows the base address and size of any
unallocated memory areas,

%
/- - — S
% Pool report for job xxxx
%
- e e o e o e o e e e e e e e e e e e e e e
Pool min <XXXX> Pool Max <XXXXD Initial size <xxxx>
Pool size <XXXX> Largest seg <xxxx>
*
* Available pool memory areas
*
Base Size
<BBBB> <ssss>
<BBBB> <ssss>
Total available XXX XD
Total allocated <xxXXX>
Figure 4-11. Pool Report
The fields in Figure 4~11 are as follows:

Pool min The minimum size (in 16-byte paragraphs) of the
job's memory pool. This value was set when the
job was created.

Pool max The maximum size (in l6-byte paragraphs) of the
job's memory pool. This value was set when the
job was created.

Initial size The initial size (in l6-byte paragraphs) of the
job's memory pool.

Pool size The current size (in 16-byte paragraphs) of the

Largest seg

job's memory pool.

The number of 16~byte paragraphs in the largest

segment in the job's memory pool.

Crash Analyzer 4-17

LISTING FORMAT

The fields pertaining to the available pool memory areas in Figure 4-11

are as follows:

<BBBB>

<{ssss>

Total available

Total allocated

The base address of the unallocated memory area.
Each memory area is located at an offset of O
from the given base.

The size of the unallocated memory area in
16-byte paragraphs.

The total amount of unallocated memory in 16-byte
paragraphs.

The total amount of allocated memory in 16-byte
paragraphs.

Crash Analyzer 4-18

LISTING FORMAT

SEGMENTS IN JOB

The section of the listing in Figure 4-12 displays information about the
segments in the pool of the job. It displays the token and the size of
the segment along with the contents of the segment.

Segments in job <xxxx>

8 3¢ 3¢ 8 8 N8 e

Segment Size
token
<X XXX <yyyy> descriptor: BBBB:0000 <xXXxXX) <XXXXDeoee

{deletion pending message>
contents: BBBB:0000 <xX> <XXDe¢ose*a2eeea*

<XXXXD <yyyy> descriptor: BBBB:0000 <xxXX> <XXXXDese
contents: BBBB:0000 <xXxX> <XXDes o*a0eesa*

Figure 4-12., Segments In Job

The fields in Figure 4-12 are as follows:

<{deletion pending This message is present only if there is some type
message> of deletion pending against the object. The
messages are either, "DELETION PENDING" or
"FORCED DELETION PENDING."

<KXXXXD The token for the segment.
<yyyy> The size of the segment in 16-byte paragraphs.
descriptor The segment descriptor contains information which

is not useful to application and system
programmers. You should ignore this information.

contents If you specified the BYTE option when you invoked

the Analyzer, the contents of the segment will be
displayed in byte format as shown in Figure 4-13.

Crash Analyzer 4-19

LISTING FORMAT

BBBB: 0000 The base and offset address
of the segment,

<xx> A pair of hexadecimal digits
representing a byte.

a The ASCII representation of
the corresponding byte (if
printable). If the byte
cannot be printed, the
Analyzer places a period (.)
in its place.

If you specified the WORD option, the contents of
the segment is displayed in WORD format with 8
words to a line. The ASCII representation
<*a,.ea*> is not displayed in the WORD format.

If you did not specify the BYTE or the WORD
option when you invoked the Analyzer, the
contents display does not appear.

If you specified both the BYTE and WORD option
when you invoked the Analyzer, the contents field
appears in both formats.

Crash Analyzer 4-20

LISTING FORMAT

TASK REPORT

The Analyzer lists information about tasks in two different ways. Figure
4-13 shows the format for a non—interrupt task and Figure 4-14 shows the
format for an interrupt task.

Task report, token = <{xxxx>

38 38 3¢ 39 39 e e

{deletion pending message>

Static pri <xx> Dynamic pri <xx> Task state <XXXXD
Suspend depth <xx> Delay req <xxxx> Last exchange <xxxx>
Except handler <xxxx:xxxx> Except mode <xx> Task flags <xx>
Containing job <xxxx> Interrupt task no
%
* Task descriptor
*
BBBB: 0000 <xxxx> <xxxX> <XXXX> <{XXXX> <xxx%x> <{xxxXx> <XXxX0 <{XXXXD
BBBB:0000 <xxx> <xXXXX> <XXXX> <XXXX> <XxxXx0 <{XxXxx> <{xxxX> <XXXX>
%
* Task stack segment
%

BBBB:0000 <xxxx> <xxxx> <xxx%> <XXXX> <{XxxXXD XXX <XXXXD <XXXXDeoe

Figure 4-13. Non-Interrupt Task Report

Crash Analyzer 4-21

LISTING FORMAT

Task report, token = <xxxX>

N8 3¢ 38 ¢ 38 e

<deletion pending message>

<{deletion pending

message>

Static pri

Static pri Dynamic pri <xx> Task state <XXXXD
Suspend depth Delay req <xxxx> Last exchange <xxxx>
Except handler <xxxx:xxxx> Except mode <xx> Task flags <xx>
Containing job <xxxx> Interrupt task yes Int level <>
Pending int Max interrupts <xx> Master mask <xx>
Slave mask Slave number <xx>
*
* Task descriptor
*
BBBB: 0000 <xxxx> <XXX®> <XXXX> <XXxxXD> <{xxxx> <XXxX> <Xxx%> <XXXX>
BBBB:0000 <xxxx> <XXXX> <XXXXD <XXxX> <{xxx%> <{xxx%> <{Xxxx%> <{XXXX>
*
* Task stack segment
*
Tasks SS:SP XXXX! XXXX
BBBB:0000 <xxxx> <XXXX> <XXXX <Xx3X> <XXXXD> {XXXXD <XXXXD <XXXXeee
Figure 4-14. Interrupt Task Report
The fields in Figure 4-13 and 4-14 are as follows:

This message 1s present only if there is some type
of deletion pending against the object. The
messages are either, "DELETION PENDING" or

"FORCED DELETION PENDING."

The current priority of the task. This value was

set when the job was created with the system call
RQSCREATES$TASK.

Crash Analyzer 4-22

Dynamic pri

Task state

Suspend depth

Delay req

Last exchange

Except handler

Except mode

LISTING FORMAT

A temporary priority that the Nucleus sometimes
assigns to the task (temporarily) in order to
improve system performance.

The state of the task. There are five possible
states:

State Description

ready ready for execution

asleep task is asleep

suspended task is suspended

asleep/susp task is both asleep and suspended
deleted task is being deleted

If this field can't be interpreted, the Analyzer
displays the actual hexadecimal value followed by
a space and two question marks.

The current number of outstanding RQ$SUSPENDSTASK
system calls applied to this task without
corresponding RQSRESUMESTASK system calls.

The number of sleep units the task requested.

See the iRMX 86 NUCLEUS REFERENCE MANUAL for more
information on sleep units.

The token for the mailbox, region, or semaphore
at which the task is currently waiting.

The start address of the task's exception
handler. This value was set when the task was
created with RQSCREATESTASK, RQSCREATES$SJOB, or
RQSCREATESIOSJOB, or when
RQ$SETSEXCEPTIONSHANDLER was used.

The value used to indicate when control is to be
passed to the task's exception handler. It is
encoded as follows:

When Control Passes

Value To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

This value was set when the task was created with
RQSCREATES$TASK, RQSCREATESJOB, or
RQSCREATESIO0SJOB, or when
RQSSETSEXCEPTIONSHANDLER was used.

Crash Analyzer 4-23

Task flags

Containing job

Interrupt task

Int level

Pending int

Max interrupts

Master mask

LISTING FORMAT

The task flags parameter used when the task was
created with the system call RQSCREATESTASK. The
bits (where 15 is the high-order bit) have the
following meanings:

Bit Meaning
15-1 Reserved bits which should be set
to zero.
0 If one, the task contains

floating-point instructions.
These instructions require the
8087 component for execution.

If zero, the task does not contain
floating-point instructions.

The token for the job which contains this task.

"No" signifies that the task is not an interrupt
task. In this case, there are no more fields in
the display (see Figure 4-14),

"Yes" signifies that the task is an interrupt

task. In this case, there are six more fields in
the display (see Figure 4-15).

The interrupt level that the interrupt task
services. This level was set when the system
call RQSSETSINTERRUPT was used.

The number of RQS$SIGNALSINTERRUPT calls that are
pending.

The maximum number of RQ$SSIGNALSINTERRUPT calls
that can be pending.

The hexadecimal value associated with the
interrupt mask for the master interrupt
controller. This value comes from the bits that
correspond to the different master interrupt
levels. Remember that bit numbers corresponds to
interrupt level numbers. For example, bit O
corresponds to interrupt level 0 and bit 7
corresponds to interrupt level 7, If the bit is
set, the corresponding interrupt is disabled.
For more information see the iRMX 86 NUCLEUS
REFERENCE MANUAL.

Crash Analyzer 4-24

LISTING FORMAT

Slave mask The hexadecimal value associated with the
interrupt mask for a slave interrupt controller.
This value comes from the bits that correspond to
the different slave interrupt levels. Remember
that bit numbers correspond to interrupt level
numbers. For example, bit 0 corresponds to
interrupt level O and bit 7 corresponds to
interrupt level 7., If the bit is set, the
corresponding interrupt is disabled. For more
information see the iRMX 86 NUCLEUS REFERENCE
MANUAL,

Slave number The programmable interrupt controller number of
the slave that is referred to by the slave mask.
For more information see the iRMX 86 NUCLEUS
REFERENCE MANUAL.,

The task descriptor has information which is not useful to application
and system programmers. You should ignore this information.

The task stack segment displays the address of the stack segment:stack
pointer (SS:SP) along with a hexadecimal display of the contents of the
task's stack segment beginning at SS:SP. The task's stack segmeunt
contains part of the data in your task beginning at SS:SP.

Crash Analyzer 4-25

LISTING FORMAT

MAILBOX REPORT

The Analyzer lists information about mailboxes in three different ways.
The first listing (Figure 4-15) appears when nothing is queued at the
mailbox, the second listing (Figure 4-16) appears when objects are queued
at the mailbox, and the third listing (Figure 4-17) appears when tasks
are queued at the mailbox.

Mailbox report, token = <xxxx>

N 39 38 39 8 39 e

<deletion pending message>

Containing job XXX Queue discipline <XXXR>
Task queue head <XXXXD Object queue head <XXXXD
Object cache depth <xx>

*

Mailbox descriptor

BBBB:0000 <xxxx> <XXX®X> <XxxXx> <xxxX> XXX <xxxx> {xxxx> <{XXXX>
BBBB:0000 <xxxx> <XXXX> <XXXXD <XXXX> <XXXX0 <XXXXP <XxXX> <XXXX)
BBBB:0000 <xxxx> <XXX%X> <XXXXO <XXXX> <XXXXD> <xXXXX> <XXxX> <XXXXD

Figure 4-15., Mailbox Report (Mailbox With No Queue)

Crash Analyzer 4-26

LISTING FORMAT

N 3¢ 38 39 3¢ e e

Mailbox report, token = <{xxxxX>

{deletion pending message>
Containing job <XXXXD Queue discipline <KXXXXD
Task queue head <XKX XD Object queue head <XXX XD
Object cache depth <xxxx>

Object queue <xxxx>J/<yyyy>t <xxxx>J/ <yyyy>t <XXXXOT/ <Y YYYDteee

*
* Mailbox descriptor
*
BBBB:0000 <xxxx> <XXXX> <XXXX0 <Xxxx> <xxxx> <Xxxx> <Xxxx> <XXXXO
BBBB:0000 <xxxx> <xXXxX> <XXXXP> <XXXXD> <XXXX> <XXXX> <XXXXD> <XXXXD
BBBB:0000 <xxxx> <Xxxx> <XXXX> <XXAXD XXX <KXXXX> <xxxx> <xXxx>
Figure 4-16. Mailbox Report (Mailbox With Object Queue)
%
%
%
% Mailbox report, token = <xxxx>
%
%
%
{deletion pending message>
Containing job <XXXX> Queue discipline <XXXXD
Task queue head <XKX XD Object queue head XXX XD

*
*
*

Object cache depth <xxxx>

Task queue <xxxxOJ/<yyyydT <xxxx>J/ <yyyy>T <xxxxOJ/ <FyyyOTeee

Mailbox descriptor

BBBB:0000 <xxxx> <XxXX> <XXXX> <XXXXD XXX XXX <xxxx> <XXXXD
BBBB:0000 <xxxx> <XXXKD <XXXX> <XXXXD <XXXXD <XxXX> <XXxXD <KXXXXD
BBBB:0000 <xxxx> <XXX®X> <XXXX> <XXXXD <XXXX> <XXXX> <XXXX> <XXXXD

Figure 4-17. Mailbox Report (Mailbox With Task Queue)

Crash Analyzer 4-27

LISTING FORMAT

The fields in Figures 4-15, 4-16, and 4-17 are as follows:

<deletion pending
message>

Containing job

Queue discipline

Task queue head
Object queue head

Object cache depth

Object queue

This message is present only if there is some type
of deletion pending against the object. The

messages are either, "DELETION PENDING" or
"FORCED DELETION PENDING."

The token for the job that contains this mailbox.

The order in which you specified the tasks
(making requests from the mailbox) be queued.

This order is set up with RQSCREATESMAILBOX. The
tasks can be order in a "first—-in/first-out”
(FIFO) method or in a priority-based method (PRI).

The token for the task at the head of the queue.
The token for the object at the head of the queue.

The maximum number of entries allowed in the
high-performance queue associated with the
mailboxe The size of this cache was set up when
the mailbox was created with RQSCREATESMAILBOX.

When the list of tokens in the object queue is
greater than the object cache depth, you have
temporarily overflowed your high-performance
queue. Succeeding objects are stored in a
low—performance queue associated with the mailbox.

A list of tokens for the objects queued at the
mailbox and their containing jobs where:

<xxxx>J The token for the job that contains the
object,

<yyyy>t The token for the object where "t" is
one of the following characters that
identify iRMX 86 object types:

Character Object Type

composite
segment
job
mailbox
region
semaphore
task
extension

HKAEANMEIRGOO

This list appears in the display only if there
are objects queued at the mailbox.

Crash Analyzer 4-28

LISTING FORMAT
Task queue A list of tokens for the tasks queued at the
mailbox and their containing jobs where:

<xxxx>J The token for the job that contains the
task.

<yyyy>T The token for the task.

This list appears in the display only if there
are tasks queued at the mailbox.

The mailbox descriptor contains information which is not useful to system
and application engineers. You should ignore this information.

Crash Analyzer 4-29

LISTING FORMAT

SEMAPHORE REPORT

The Analyzer lists information about semaphores in two ways. The first
listing (Figure 4-18) appears when no tasks are queued at the semaphore,
and the second listing (Figure 4-19) appears when tasks are queued at the
semaphore.

Semaphore report, token = <xxxx>

N8 8 8 8 8 e e

{deletion pending message>

Containing job <XXXXD Queue discipline <XXXXD
Task queue head <XXX XD Maximum value XXX XD
Current value <X XXXD

*

* Semaphore descriptor

*

BBBB: 0000 <xxxx> <XXXX> XXX <xxxX> <KXXXD> <xxxx> <XxXx%> <XXXXD
BBBB:0000 <xxxx> <XXXX> <XXXXD <XXXX> <XXXXD <XXXX0 <XXXXD

Figure 4-18. Semaphore Report (Semaphore With No Queue)

Crash Analyzer 4-30

LISTING FORMAT

Semaphore report, token = <xxxx>

NG N8 3¢ 38 N8 e e

{deletion pending message>

Containing job <XXXXD Queue discipline <{XXXXD
Task queue head <XXX XD Maximum value <XXX XD
Current value <KXXXXD
Task queue xxxOJ/<yyyyOT <xxxxOJ/<yyyydT <xxxxOJ/<yyyyOTeee
*
* Semaphore descriptor
BBBB:0000 <xxxx> <xxxx> <xxxXx> <XxXxx> <xxXx%X> <XXxX> <XXXX> <XXXXD
BBBB: 0000 <xxxx> <XXXx> <XXXX> <XXXX> <XXXX> <XXXX> <XXXX> <XXXX>
Figure 4~19. Semaphore Report (Semaphore With Task Queue)
The fields in Figures 4—18 and 4-19 are as follows:

{deletion pending
message>

Containing job

Queue discipline

Task queue head

Maximum value

Current value

This message is present only if there is some type
of deletion pending against the object. The
messages are either, "DELETION PENDING" or

"FORCED DELETION PENDING."

The token for the job which contains the
semaphore,

The way the tasks are ordered in the queue. The
tasks can be ordered in a "first-in/first-out"”
(FIFO) method or a priority based method (PRI)
when the semaphore 1is created with
RQSCREATESSEMAPHORE .

The token for the task at the head of the queue.
The maximum number of units the semaphore can
have. This number was set when the semaphore was

created with RQSCREATESSEMAPHORE.

The number of units currently contained in the
semaphore.

Crash Analyzer 4-31

LISTING FORMAT

Task queue A list of tokens for the tasks queued at the
semaphore and their containing jobs where:

<xxxx>J The token for the job that contains the
task.

<yyyy>T The token for the task.

This list appears in the display only if there
are tasks queued at the semaphore,

The semaphore descriptor has information which is not useful to
application and system programmers. You should ignore this information.

Crash Analyzer 4-32

LISTING FORMAT

REGION REPORT

The Analyzer lists information about regions in two ways. The first list-
ing (Figure 4-20) appears when no tasks are queued at the region, and the
second listing (Figure 4-21) appears when tasks are queued at the region.

Region report, token = <xxxx>

NNNNNNN'

{deletion pending message>

Containing Job <KXXXXD Queue discipline <XXXXD
Entered task <KXXX XD
*
* Region descriptor
*
BBBB:0000 <xxxx> <XXXX> <XXXX> <XXXX> <XXXX> <Xxx%X> <{XXXXD <XXXX>
BBBB:0000 <xxxx> <XXXX> <XXXX> <XXXX> <XXXX> <{XXXX> <XXXX> <XXXXD
Figure 4-20. Region Report (Region With No Queue)
%
%
%
%Z Region report, token = <xxxx>
%
3
{deletion pending message>
Containing Job <XXXXO Queue discipline <XXXXD
Entered task <XXXXD
Task queue <xxxOJ/yyyydT <xxxxOJ/<yyyy>T <xxxxO>J/<yyyy>Tees
*

* Region descriptor

BBBB:0000 <xxxx> <XXXX> <XXXX <XXXX> <KXXXX <XXXX> <XXXXD <{XXXXD
BBBB:0000 <xxxx> <xXXX> <XxXX) <XXXX> <XXXX> <XXXX> <XXXX> <XXXXD

Figure 4-21. Region Report (Region With Task Queue)

Crash Analyzer 4-33

LISTING FORMAT

The fields in Figures 4-20 and 4-21 are as follows:

{deletion pending
message>

Containing job

Queue discipline

Entered task

Task queue

This message is present only if there is some type
of deletion pending against the object. The

messages are either, "DELETION PENDING" or
“"FORCED DELETION PENDING."

The token for the job that contains the region.

The way you ordered the tasks in the queue. The
tasks can be ordered in a "first-in/first-out"”

(FIFO) method or in a priority-based method (PRI)
when the region is created with RQSCREATESREGION.

The token for the task that is currently
accessing information guarded by the region.

A list of tokens for the tasks queued at the
region and their containing jobs where:

<xxxx>J The token for the job that contains the
task.

<yyyy>T The token for the task.

This list appears in the display only if there
are tasks queued at the region.

The region descriptor contains information which is not useful to
application and system Engineers. You should ignore this information.

Crash Analyzer 4-34

LISTING FORMAT

EXTENSION OBJECTS IN JOB

This section of the listing displays the tokens for all of the extension
objects contained by the job as shown in Figure 4-22. It then displays
information about each extension along with its descriptor.

9

Extension objects in job <xxxx>

N 3¢ ¢ 3¢ 38

Token Extension Deletion

type mailbox
<aaaa> <bbbb> {ccee> descriptor: BBBB: 0000 <xXXXD> <XXXXDese
{deletion pending message> BBBB: 000 O<XXXXDXXX Ko » o
composite list: <xxxx>J/ <yyyy>X
<xxXXDI/ YYyyOXeo o
<aaaa> <bbbb> {ccee> descriptor: BBBB: 0000<XXXXD>XXXXe o s

BBBB: 000 0<XXXXDXXXXe s o
composite list: <xxxxD>J/ <yyyy>X
LxXXXOT/ I YYYOKe ns

Figure 4-22., Extension List

The fields in Figure 4-22 are as follows:
<aaaa> The token for the extension object.

<bbbb> The extension ftype code for the extension. This
code was specified when the extension was created
with RQSCREATESEXTENSION. This extension object
represents the license to create composite
objects of this type./

<cceed The token for the mailbox to which this extension
goes when it is to be deleted. This mailbox was

specified when the extension was created with
RQSCREATESEXTENSION,

<deletion pending This message is present only if there is some type
message> of deletion pending against the object. The
messages are either, "DELETION PENDING" or
"FORCED DELETION PENDING."

Crash Analyzer 4-35

LISTING FORMAT

The extension descriptor contains information which is not useful to
application and system Engineers. You should ignore this information.

The composite list consists of a list of composite tokens and the jobs
that contain the tokens for the objects of this extension type, where:

<xxxxoJ The token for the job that contains the object.

<yyyy>X The token for the object where "X" identifies the
token as an ext:ension.

Crash Analyzer 4-36

LISTING FORMAT

COMPOSITE LIST REPORT

If the job contains any composite objects, the Analyzer displays a
Composite List Report. The Composite List Report consists of the
following sections:

° Composite List Report Header
. Extension Sub-Header
) Composite Object Report

The Composite List Report contains a composite list report header
followed by one extension sub-header (Figure 4-23) for each extension
type with composite objects in the job. Each extension sub-header
consists of information about the extension type, the extension object,
the extension's containing job, and the deletion mailbox for the
extension object.

Each extension sub-header is followed by a list of Composite Object
Reports. The Analyzer displays either a general composite object report
or one of six special reports for Basic I/0 System (BIOS) composites.
The types of reports for BIOS composites are as follows:

° Physical File Driver Connection Report

® Steam File Driver Connection Report

° Named File Driver Connection Report

. Dynamic Device Information Report

° Logical Device Object Report

e I/0 Job Object Report

Each of the special reports contain information from the general
composite object report along with information special to the specific
composite. Because some fields shown in the figures in this section are
repeated, this manual avoids unnecessary repetition by explaining only
those fields introduced in the figure.

Crash Analyzer 4-37

LISTING FORMAT

COMPOSITE LIST REPORT HEADER AND EXTENSION SUB-HEADER

Figure 4-23 shows the composite list report header followed by an
extension sub-header. Each sub-header contains general information
concerning the extension object.

NOTE

Remember that the extension object can
be contained in a different job than
the one that contains the composite
object. You should refer to the
Extension Report in the extension's
containing job for more detailed
information on the extension object.

Composites in job <xxxx>

N9 3¢ N8 e N8

N8 e

*
* Extension type <XXXKO
* Extension object <XXXKD
* Extensions containing job <XXXK>
* Deletion mailbox <XXXKD
*

Figure 4-23. Composite List Report Header And Extension Sub-Header

The fields in the extension's subheader (Figure 4-23) are as follows:

Extension type The extension type code for the composite.
This code was specified when the composite was
created with RQSCREATESCOMPOSITE.

Extension object The token for the extension object that
represents the license to create this type of
composite.

Extensions containing The token for the job that contains the
job composite,

Deletion mailbox The token for the mailbox to which this
composite goes when it is to be deleted. This
mailbox was specified when the extension was
created with RQSCREATESEXTENSION,

Crash Analyzer 4-38

LISTING FORMAT

GENERAL COMPOSITE OBJECT REPORT

Figure 4-24 shows the composite object report for all composites except
special composites. Special composites include Physical File Driver
Connection reports, Stream File Driver Connection reports, Named File
Driver Connection reports, Dynamic Device Information, Logical Device
Information, and I/0 Job Object reports. These special composites
displays appear in place of the general composite object report.

*
* Composite object, token = <xxxx>
*
{deletion pending message>
Extension type <XXXXO descriptor: BBBB:0000 <xxxx> <XXXX s ss
BBBB: 0000 <xxXX> <XXXXDess
BBBB:0000 <XXXX> <XXXXDeses

Number of slots <XXXXD

Object size <XXRXO

Component List <xxxOJ/ <yyyydt <xxxx>J/ <yyyy>t xXXOT/FYYYOte s

Figure 4-24, General Composite Object Report
The fields in Figure 4-24 are as follows:
<deletion pending This message is present only if there is some type
message> of deletion pending against the object. The
messages are either, "DELETION PENDING" or
"FORCED DELETION PENDING."

Extension type The extension type code for the composite. This
code was specified when the composite was created
with RQSCREATES$SCOMPOSITE.,

Number of slots The number of positions available in the
composite for tokens of component objects., This
value was set when the composite was created with
RQSCREATESCOMPOSITE.,

Object size The size of the object in paragraphse.

The descriptor contains information which is not useful to application
and system Engineers. You should ignore this informatione.

The component list consists of a list of tokens and their containing jobs
for

the objects that currently make up the composite, where:

Crash Analyzer 4-39

LISTING FORMAT

<xxxxoJ The token for the job that contains the object.
<yyyy>t The token for the object where "t" is one of the
following characters that identify iRMX 86 object
types:
Character Object Type
C composite
G segment
J job
M mailbox
R region
S semaphore
T task
X extension

Crash Analyzer 4-40

LISTING FORMAT

PHYSICAL FILE DRIVER CONNECTION REPORT

Figure 4-25 shows the listing for a connection to a physical file.

*

* Physical file driver connection, token = <xxxx>
*

<deletion pending message>

Extension type <xxxx> descriptor: BBBB:0000 <xxxx> <XXXXD <XXXXDese
BBBB:0000 <xxxXx> <XXXX> <XXXXDeoeo
BBBB: 0000 <xxxxD> <XXXXD> <XXXXDsoe

Containing job <xxxx> Conn flags <xx> Access <XXXXD
Open mode <X XXX> Open share <XXXX> File pointer {XXXX: XXXX)
File node XXX Device desc XXX DUIB pointer XXX XXXXXD
Num of conn <XXXXD Num of readers <xxxx> Num of writers <xxxx>
File type XXX XD File share XXX XD Device conn <XXXXD

Figure 4-25. Physical File Driver Connection Report

The fields introduced in Figure 4-25 are as follows:

Conn flags The flags for the connection. The connection is
active if bit 1 is set to one; the connection is
a device connection if bit 2 is set to one.

Access The access rights for this connection. The
access rights are displayed in the same format as
the display access rights for the DIR command in
the Human Interface. This display uses a single
character to represent a particular access
righte If the file has the access right, the
character appears. However, if the file does not
have the access right, a dash (-) appears in the
character position. The access rights along with
the characters that represent them are as follows:

——==——— Delete
----- List
Directory files: [-————— Add
r——=—— Change
DLAC
DRAU
S Update
Data Files: l————- Append
—————— Read
------- Delete

Crash Analyzer 4-41

Open mode

Open share

File pointer

File node

Device desc

DUIB pointer

LISTING FORMAT

The mode established when this connection was
opened. The possible values are:

Open Mode Description

Closed Connection is closed

Read Connection is open for reading
Write Connection is open for writing
R/W Connection is open for reading

and writing

If this field can't be interpreted, the Analyzer
displays the actual hexadecimal value followed by
a space and two question marks. This value is
set during a RO$SSOPEN or RQSASOPEN system call.
See the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL
or the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL for more information.

The sharing status established when this
connection was opened. The possible values are:

Share Mode Description
Private Private use only
Readers File can be shared with readers
Writers File can be shared with writers
ALL File can be shared with all
users

If this field can't be interpreted, the Analyzer
displays the actual hexadecimal value followed by
a space and two question marks. This value is
set during an EQS$SSOPEN or an RQSASOPEN system
call. See the iRMX 86 BASIC I1/0 SYSTEM REFERENCE
MANUAL or the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for more information.

The current contents of the file pointer for this
connection.

A token for a segment that the Operating System
uses to maintain information about the
connection, The information in this segment
appears in the next two fields.

A token for the segment that contains the device
descriptor. The device descriptor is used by the
Operating System to maintain information about
the connections to the device.

The address of the Device Unit Information Block

(DUIB). See the GUIDE TO WRITING DEVICE DRIVERS

FOR THE iRMX 86 AND iRMX 88 I/0 OPERATING SYSTEMS
for more information on the DUIB.

Crash Analyzer 4-42

Num of conn

Num of readers
Num of writers
File type

File share

Device conn

LISTING FORMAT

The number of connections to the file.

The number of connections currently open for
reading.

The number of connections currently open for
writing.

The type of file. This field is for Named files
only so it does not apply (N/A) to this display.

The share mode of the file. This parameter
defines how the file can be openeds. The possible
values are:

Share Mode Description

Private Private use only

Readers File can be shared with readers
Writers File can be shared with writers
ALL File can be shared with all users

If this field can't be interpreted, the Analyzer
displays the actual hexadecimal value followed by
a space and two question marks. This value is
set during RQSSSOPEN or RQSASOPEN system calls.
See the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL
or the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL for more information.

The number of connections to the device.

Crash Analyzer 4-43

LISTING FORMAT

STREAM FILE DRIVER CONNECTION REPORT

Figure 4-26 shows the listing for a stream connection.

*

* Stream file driver connection, token = <{xxxx>

*

<deletion pending message>

Extension type <xxx»>

Containing job <xxxx>

Open mode <X XXX
File node XXX XD
Num of conn <XXXXD
File type <KXXX XD
Req queued <X XXX

Figure 4_2 60

BBBB:0000 <xxxx> <XXXX> <{XXXXDese

BBBB:0000 <xxxx> <XXXX> <XXXX oo

descriptor:

Conn flags <xx>
Open share <XXXXD
Device desc <XXXXD

Num of readers <xxxx>
File share <XXXXD
Queued conn <XXXXD

Access <XXX XD
File pointer {XXXXXKXXXD
DUIB pointer XXX X XXX XD

Num of writers <xxxx>
Device conn <XXX XD
Open conn <XXXXD

Stream File Driver Connection Report

The fields introduced in Figure 4-26 are as follows:

Req queued

at the stream file.

Queued conn

Open conn

on the stream file.

The number of requests that are currently queued

The number of connections that are currently
queued at the stream file.

The number of connections that are currently open

See the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL for more information

about the previous fields.

Crash Analyzer 4-44

LISTING FORMAT

NAMED FILE DRIVER CONNECTION REPORT

Figure 4-27 shows the listing for a named file connection.

*

* Named file driver connection, token = <xxxx>
%

<deletion pending message>

Extension type <xxxx> descriptor: BBBB:0000 <xxxx> <XXXXD <XXXXDeee

BBBB:0000 <xxxX> <XXXX> <XXXXDess
Containing job <xxxx> Conn flags <xx> Access <XXX XD
Open mode <X XXX Open share <XXXXD File pointer XXXXXXXX
File node XXX X Device desc XXX XD DUIB pointer {XXX X XXX XD
Num of conn <XXXXD Num of readers <zxxx> Num of writers <xxxx>
File type XXX File share <XXXXD Device conn <XXXXD
Fnode flags <RXXXO Owner <X XXX> File ID <XXXXD
File gran XXX XD Fnode ptr(s) <xxxxixxxx> Total blocks XXXKXXKK XD
Alloc size <xxxxxxxx> File size <xxxxxxxx> Volume name {XXXXXXD
Volume gran <XXXXO Volume size XXXXXKX XD

Figure 4-27., Named File Driver Connection Report

The fields introduced in Figure 4-27 are as follows:

File type The type of file. The possible values are:
File Type Description
DIR Directory file
DATA Data file

Fnode flags A word containing flag bits. Each bit has a

corresponding description. If that bit is one,
then the corresponding description is true; if
the bit is zero, then the corresponding
description is false.

o]

it Description

This fnode is allocated
The file is a long file
Primary fnode

Reserved

This file has been modified
This file is marked for
deletion

7-15 Reserved

O\U'I(.iJNi—'O
o~

Crash Analyzer 4-45

Owner

File ID

File gran

Fnode ptr(s)

Total blocks

Alloc size

File size

Volume name
Volume gran

Volume size

LISTING FCRMAT

The ID of the owner of the file. If this field
has a value of FFFF, then the field is
interpreted as "WORLD." See the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

The number of the file's fnode. The fnode is a
Basic I/0 System data structure containing file
attribute and status data.

The granularity of the file (in volume
granularity units).

The values of the fnode pointers. See the iRMX
86 DISK VERIFICATION UTILITY REFERENCE MANUAL for
more information.

The total number of volume blocks currently used
for the file; this includes indirect blockse. See
the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for more information.

The total size (in bytes) allocated to the file.
See the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL for more information.

The size (in bytes) of the file. See the iRMX 86
DISK VERIFICATION UTILITY REFERENCE MANUAL for
more information.

The name of the volume.

The granularity (in bytes) of the volume.

The size (in bytes) of the volume.

Crash Analyzer 4-46

LISTING FORMAT

DYNAMIC DEVICE INFORMATION REPORT

Figure 4-28 shows the information the Analyzer displays when a file has a
dynamically created Device Unit Information Block (DUIB).

*

* Dynamic device information for connection <xxxx>

*

File drivers
Device functs

<X XX

<XXX XD Device name XXX XD

Device gran <XXXXO Device size <XXXXD

Figure 4-28. Dynamic Device Information Report

The fields introduced in Figure 4-28 are as follows:

File drivers

Device gran

Device size

Device functs

Device name

The validity of the file driver. The bits are
associated with the file drivers as follows:

Bit File Driver
0 physical
1 stream
3 named

The value of the the volume granularity specified
when the volume was formatted.

The number of bytes of information that the
device-unit can store.

The I/0 function validity for this device-unit.
The bits associated with the functions as follows:

&=
e
ct

Function

READ

WRITE

SEEK

SPECTAL
ATTACH DEVICE
DETACH DEVICE
OPEN

CLOSE

~NoupwNh = O I

The name of the DUIB.

See the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 I/0 SYSTEM for
more information concerning the previous fields.

Crash Analyzer 4-47

LISTING FORMAT

LOGICAL DEVICE OBJECT REPORT

The listing in Figure 4-29 shows the device names and system logical
names of the logical device composite object.

*
*
*

Logical device object, token = <xxxx>

<deletion pending message>
Extension type <xxxx»> descriptor BBBB:0000 XXXX XXXX XXXXeoeoe
BBBB:0000 XXXX XXXX XXXXees
Containing job <xxxx> Physical conn <xxxx> File driver XX
Owner ID <X XX

Name Length Hex representation
Device name {aaaaaaa> <bb> <XX XX XX XX XX XXeeoso)
Sys logical name(s) <aaaaaaa> <bb> {XX XX XX XX XX XXeoo)

Figure 4-29. Logical Device Object Report

The fields introduced in Figure 4-29 are as follows:

Physical conn The token for the physical connection.

Device Name The 1-to l4-character name under which the
logical device object is catalogeds This name

was specified when RQSLOGICALSATTACHSDEVICE was
called.

Sys logical name(s) The l-to l4-character name under which the the
system logical name is cataloged. This name was
specified when RQSLOGICALSATTACHSDEVICE was
called.

<bb> The length of the device name or the system
logical name. This name was specified in the

DUIB during Basic I/0 System configuration.

<xx> The hexadecimal representation of each letter in
the device name or the system logical name.

Crash Analyzer 4-48

LISTING FORMAT

I/0 JOB OBJECT REPORT

The section of the listing in Figure 4-30 displays information about exit

messages in I/0 job objects.

*
* TI/0 job object, token = <xxxx>
*
Extension type XXXX> descriptor: BBBB:0000

BBBB:0000
Exit message token <xxxx>

Exit message mbx <XXXKD

Figure 4-30. 1I/0 Job Object Report

<XXXXD CXXXXDe oo
<XXXKD CKXXXXDooo

The fields introduced in Figure 4—-30 are as follows:

Exit message token The token for the segment containing the exit

message.

Exit message mbx The mailbox that contains the exit message

segment.

See the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL for more information

about the previous fields.

Crash Analyzer 4-49

LISTING FORMAT

SUMMARY OF ERRORS

Figure 4-31 shows the header for the summary of errors. This summary
lists all error messages that the Analyzer encountered during the
analysis. The summary also includes the page number of the listing on
which the error occurred. For more information on error messages and
their meanings, see the section in this chapter entitled, "Error
Messages."

Summary of errors detected by analysis

8 3¢ ¢ ¢ 8 e e

error message Page xx
. L
L .
L] .
error message Page xx

Figure 4-31. Summary Of Errors

The fields in Figure 4-31 are as follows:

error message The error message(s) that the Analyzer detected
during analysis.,

page The page number of the listing on which the error
message is printed.

Crash Analyzer 4-50

LISTING FORMAT

ERROR MESSAGES

The Analyzer can detect two kinds of errors:

o Operational Errors

Errors that occur when you invoke the Analyzer or errors that
occur during file operations. These errors are described in

Chapter 3.

° Dump File Errors

Errors within the dump file.

This section lists the Dump File Errors error messages and their
descriptions. Dump file errors are errors that the Analyzer detects
within the dump file. The Analyzer prints these errors in the section of

the listing in which they occur.

It also prints the error messages along

with the page numbers on which they occur in the section of the listing
entitled "Summary of Errors Detected by Analysis."”

Message

Nucleus entry or data

segment corrupted, analysis
terminated

Internal iRMX 86 <type>
field corrupted at
<BBBB>:<0000>

Internal iRMX 86 <type>
field corrupted at
<BBBB>:<0000> Object
token:<ccce>

Stack overflow

Registers not available

Description

The Analyzer uses the Nucleus
interrupt vector to locate the Nucleus
code segment. It then uses the code
segment to find the data segment.

The Analyzer uses the data segment as
the basis for analysis. If any item
in this chain is damaged, the

Analyzer cannot function correctly.

The Analyzer discovered an error

in an internal operating system
structure of <type> BYTE, WORD, or
POINTER. The problem is located at
base <BBBB> and offset <0000>.

The Analyzer discovered an error

in an internal operating system
structure of <type> BYTE, WORD, or
POINTER. The problem is located at
base <BBBB> and offset <0000>. The
error is in the object whose token is
{ceceed.

This message appears when a task
overflows its stack segment.

The processor's registers were not
available to the Dumper. This
message appears only under the
"Current Processor State" portion of
the listinge.

Crash Analyzer 4-51

LISTING FORMAT

Task stack segment not
distinct: above display
may contain other data in
addition to stack

Task SS:SP not known:
stack segment not displayed

Unable to locate complete
<block name>., Missing area
is <address> for <size> bytes

Unable to located job pool
information

Unable to locate list of
<object type> 1n job <job
token>

The task's stack is in a segment that was
not allocated when the task was created,
This message appears following the task
segment listing because the Analyzer
cannot distinguish stack data from other
data in the segment. Therefore, this
particular message indicates a lack of
information necessary to the Crash
Analyzer rather than a problem,

The Analyzer could not find a valid
stack segment:stack pointer (8S:SP).
This message appears following a task
segment display. This particular
message indicates a lack of information
necessary to the Crash Analyzer rather
than a problem.

The Analyzer could not find the entire
<block name>. The block name is one of
the following:

connection object
job directory

task stack

NPX save area
composite list
mailbox cache

logical device object
segment contents

The <address> is the base and offset
address of the missing information.
<size> is the size of the missing
information in hexadecimal.

The

This message appears in the pool report
for a job when the Analyzer cannot find
the information describing a job's pool.

The Analyzer cannot find the list of a
particular object type for a jobe This
message appears in place of the list of
an object type in the section entitled,
"Objects Contained by Job” The <object
type> is one of the following:

child jobs
tasks
mailboxes
semaphores
regions
segments
extensions
composites

Crash Analyzer 4-52

LISTING FORMAT

Unable to locate file node
for <connection token>

Unable to locate device
descriptor for connection
<connection token>

Unable to locate object
queued on mailbox <token>.
Token of missing object is
<object token>

End of stack segment not
known; stack segment not
displayed

The <job token> is the token for the
job in which the Analyzer cannot find
the object type.

This message appears when the Analyzer
is unable to read the contents of the
fnode because the pointer to the

fnode has been destroyed.

This message appears when the Analyzer
cannot find the device descriptor for
a connection. This may happen

because one of your tasks wrote over
and internal data structure.

This message appears in the "Mailbox
Report™ when the Analyzer cannot find
an object queued at the mailbox.

This message appears in the "Task
Report"” when the Analyzer cannot find
the end of the stack segment.

LINK ERROR

The iRMX 86 Operating System maintains tokens in doubly—-linked lists.
So, whenever a listing contains a token, the Analyzer automatically
checks the validity of that token by looking at the token's forward links.

A forward link error means that the iRMX 86 data structures have been
damaged or destroyed. The most common reason for this problem is
overwriting. You or one of your tasks may have accidentally written over
part of the Operating System's data structures and/or code. Another
possible reason for the problem (if you are using a non-maskable

interrupt) could be that you interrupted the Nucleus while it was setting
up the links.

If a token's forward link is bad, the Analyzer generates a forward link
error message along with the information that the particular listing
usually displays. The forward link error message is as follows:

Forward link ERROR: <aaaa> —-> <bbbb> ?<cccc> <-- <bbbb>

The arrows represent linkse. A right pointing arrow represents a forward
link., The object with the token <aaaa> is linked forward to the object
with token <bbbb>. The object with the token <bbbb> should be linked
back to the object with the token <aaaa> rather than <cccc>. Therefore,
the Crash Analyzer assumes the link from <aaaa> to <bbbb> is incorrect
and terminates the analysis of the objects in the portion of the listing
in which the error appears.

*khk

Crash Analyzer 4-53

INDEX

Primary references are underscored.

analysis header 4-2
Analyzer 1-2
invoking of 3-5
available pool memory areas 4-17

bit numbers iii
BYTE format 3-6, 4-20

composite list 4-35
composite list report 4-37
composite list report header 4-38
configuring the Dumper 2-1
ICU 2-1
interactive configurator 2-1
connection reports
physical file 4-41
stream file driver 4-44
named file driver 4-45
CPU state 4-3
current processor state 4-3

device unit information block (DUIB) pointer

DUMPSBOOTSINIT system call 2-2
dump—filename 3-5
Dumper 1-2
invoking of 3-4
dynamic device information report 4-47

error messages 3-7, 4-50, 4-51
errors in invoking 3-7
errors occuring within the dump file
operational 3-7, 3-52
dump file errors 3-52

error summary 4-50

extension descriptor 4-35

extension list 4-35

extension objects in job 4-35

extension sub—header 4-37, 4-38

extensions in system 4-8

general composite object report 4-39

how to use the Crash Analyzer 3-1

4-51

4=42

Crash Analyzer Index-1

INDEX (continued)

I/0 job object report 4-49
initializing the Dumper 2-1
interrupt task 4-22

interrupt tasks 4-9

invoking the Analyzer 3-5
invoking the Crash Analyzer 3-1
invoking the Dumper 3-4

iSDM 86 Monitor 2-1

job descriptor 4-11

job information 4-11

job report header 4-11

job report organization 4-10
job tree 4-5

list of extensions in system 4-8
list of interrupt tasks 4-9

list of ready tasks 4-6

list of sleeping tasks 4-7
listings 4-1

loading the Dumper 2-1

logical device object report 4-48

mailbox descriptor 4-26, 4-27
mailbox report 4-26

mailbox with no queue 4-26
mailbox with object queue 4-27
mailbox with task queue 4-27

named file driver connection report 4-45
non-interrupt task 4-21

non-maskable interrupt 2-1

Numeric Processor Extension (NPX) state 4-3

object directory 4-14
objects contained by job 4-16
organization of manual 1-1

parts of the Crash Analyzer 1-2

physical file driver connection report 4-41
pictorial representation of syntax 3-3

pool report 4-17

print—-filename 3-5

re-initializing the Dumper 2-2
re—~loading the Dumper 2-2
ready tasks 4-6

region descriptor 4-33

region report 4-33

region with no queue 4-33
region with task queue 4-33
release diskettes 1-2

root job 4-5

ROOTJ/DELET 4-6, 4-7

Crash Analyzer Index—2

INDEX (continued)

ROOTJ/IDLET 4-6

RUN command 3-5
running tasks 4-6

SCRS86 command 3-5

SDUMPR.MP2 map file 2-1

segments in job 4-19

semaphore descriptor 4-30, 4-31

semaphore report 4-30

semaphore with no queue 4-30

semaphore with task queue 4-31

Series III Microcomputer Development System 1-2
sleeping tasks 4-~7

stream file driver connection report 4-44
summary of errors 4-50

syntax 3-3

task descriptor 4-21, 4-22

task report 4-21

task stack segment 4-21, 4-22

tasks waiting for object lookup 4-14
using the Crash Analyzer 1-1, 3-2
VM command 3-4

WORD format 3-6, 4-20

%kk
Crash Analyzer Index-3

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	idx01
	idx02
	idx03
	idx04

