
iRMX™ 86 CRA!;H ANAL YZER
REFERENCIE MANUAL

I I

CONTENTS

CHAPTER 1
INTRODUCTION
Or ganiza tion 0 f the Manual •••••••••••• o ••••••••••••••••••••••••••••

Reasons for Using the Crash Analyzer ••• , ••••••••••••••••••••••••••••
Parts 0 f the Cr ash Analyzer ••••••••••••.••••••••••••••••••••••••••••

Requirements of the Crash Analyzer ••• , ••••••••••••••••••••••••••••
How the Crash Analyzer is Supplied • • 1 •••••••••••••••••••••••••••••

CHAPTER 2
CONFIGURING, INITIALIZING, AND LOADING THE DUMPER
Using the Interactive Configurator to Configure the Dumper •••••••••
Initializing and Loading the Dumper ••• o ••••••••••••••••••••••••••••

Re-initializing and Re-Ioading the Dumper ••••••••••••••••••••••••••

CHAPTER 3
INVOKING THE CRASH ANALYZER
Scenario of How to Use the Analyzer • . . ,

The Equipment and the Problem
Us ing the Cr ash Analyzer •••••••••••• I •••••••••••••••••••••••••••••

Pictorial Representation iQf Syntax •••• o ••••••••••••••••••••••••••••

In voking the Dumper ••••••••••••••••••• I •••••••••••••••••••••••••••••

Invoking the Analyzer .. .
Error Messages •••••••••••••••••••••• , .••••••••••••••••••••••••••••

CHAPTER 4
THE LISTING FORMAT
Sections of the Listing ••
Analysis Header ••••••••••••••••••••••• I •••••••••••••••••••••••••••••

Current Processor State ••
Jo b Tree •••••••••••••••••••••••••••••• I •••••••••••••••••••••••••••••

List of Ready Tasks ••
List of Sleeping Tasks •••
List of Extensions in System •••••••••••••••••••••••••••••••••••••••
List of Interrupt Tasks ••••••••••••••• I •••••••••••••••••••••••••••••

Job Report Organization ••
Job Report Header and Job Information •.•••••••••••••••••••••••••••••
Object Directory and Tasks Waiting for Object Lookup •••••••••••••••
Objects Contained by Job ••••••••••••••.•••••••••••••••••••••••••••••
Pool Report ••
Segments in Job ••
Task Report ••
Mailbox Report •••
Semaphore Report •••

Crash Analyzer iii

PAGE

1-1
1-1
1-2
1-2
1-2

2-1
2-1
2-2

3-1
3-1
3-2
3-3
3-4
3-5
3-7

4-1
4-2
4-3
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-14
4-16
4-17
4-19
4-21
4-26
4-30

CONTENTS
(continued)

CHAPTER 4 (continued)
Region Report .. .
Extension Objects in Jo b ••••••••••••••• , ••••••••••••••••••••••••••••
Composite List Report ••••••••••••••••• u ••••••••••••••••••••••••••••

Composite List Report Header and Extemsion Sub-Header ••••••••••••
General Composite Object Report ••••• u ••••••••••••••••••••••••••••

Physical File Driver Connection Report •••••••••••••••••••••••••••
Stream File Dr iver Connection Report., ••••••••••••••••••••••••••••
Named File Driver Connection Report •• , ••••••••••••••••••••••••••••
Dynamic Device Information Report ••• u ••••••••••••••••••••••••••••

Logical Device Object Report ••••••••• , ••••••••••••••••••••••••••••
I/O Job Object Report ••••••••••••••• " ••••••••••••••••••••••••••••

Summary of Errors •••••••••••••••••••••• ' ••••••••••••••••••••••••••••
Error Messages ••••••••••••••••••••••••• , ••••••••••••••••••••••••••••

Link Error •••

3-1.
4-1"
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22.
4-23.
4-24.
4-25.
4-26.
4-27.
4-28.
4-29.
3-30.
3-31.

FIGURES

Example System •••
An.alysis He ader •••••••••••••••• ' ••••••••••••••••••••••••••••
Current Processor State ••••••••••••••••••••••••••••••••••••
Job Tree •••
List of Ready Tasks ••
List of Sleeping Tasks •••••••••••••••••••••••••••••••••••••
List of Extensions in System •••••••••••••••••••••••••••••••
List of Interrupt Tasks ••••••••••••••••••••••••••••••••••••
Job Report Header and Job Information ••••••••••••••••••••••
Object Directory and Tasks Waiting for Object Lookup •••••••
Objects Contained by Job •••••••••••••••••••••••••••••••••••
Pool Re port •••••••••••••• ~ •••••••••••• ~ ••••••••••••••••••••••
Segmen t s in Jo b ••
Non-Interrupt Task Report ••••••••••••••••••••••••••••••••••
Interrupt Task Report ••••••••••••••••••••••••••••••••••••••
Mailbox Report (Mailbox with No Queue) •••••••••••••••••••••
Mailbox Report (Mailbox with Object Queue) •••••••••••••••••
Mailbox Report (Mailbox with Task Queue) •••••••••••••••••••
Semaphore Report (Semaphore with No Queue) •••••••••••••••••
Semaphore Report (Semaphore with Task Queue) •••••••••••••••
Region Report (Region with No Queue) •••••••••••••••••••••••
Region Report (Region with Task Queue) •••••••••••••••••••••
Extension List •••
Composite Li st Report Header and Extension Sub-Header ••••••
General Composite Object Report ••••••••••••••••••••••••••••
Physical File Driver Connection Report •••••••••••••••••••••
Stream File Driver Connection Report •••••••••••••••••••••••
Named File Driver Connection Report ••••••••••••••••••••••••
Dynamic Device Information Report ••••••••••••••••••••••••••
Lo gical De vice Object Report •••••••••••••••••••••••••••••••
I/O Job Object Report ••••••••••••••••••••••••••••••••••••••
Summary of Errors ••

Crash Analyzer i v

4-33
4-35
4-37
4-38
4-39
4-41
4-44
4-45
4-47
4-48
4-49
4-50
4-51
4-53

3-2
4-2
4-3
4-5
4-6
4-7
4-8
4-9
4-11
4-14
4-16
4-17
4-19
4-21
4-22
4-26
4-27
4-27
4-30
4-31
4-33
4-33
4-35
4-38
4-39
4-41
4-44
4-45
4-47
4-48
4-49
4-50

CHAPTER 1
INTRODUCTION

ORGANIZATION OF THE MANUAL

This manual is divided into four chapters. Some of the chapters contain
introductory or overview material whieh you might not need to read if you
are already familiar with the Crash Analyzer. Other chapters contain
invocation information and reference material to which you ·can refer as
you analyze the problems in your software following the failure of a
system or an application program •. You can use this section to determine
which of the 0 ther chapters you should read.

The organization of the manual is as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

This chapter describes the organization of the
manual and introduces the Crash Analyzer. It
describes the features and the environment of the
Crash Analyzer. You should read this chapter if
you are going through the manual for the first
time.

This chapter E~xplains how to configure,
initialize, and load the Dumper portion of the
Crash Analyzer. You should read this chapter if
you are going through the manual for the first
time or if you need to re-load the Dumper.

This chapter describes how to invoke the Crash
Analyzer. You should read this chapter to learn
how to invoke the Dumper and the Analyzer. You
may also want to use this chapter as a reference
to the options available when you invoke the
Dumpe r 0 r Ana lyze r.

This chapter describes the formats and explains
the fields in the print out that the Crash
Analyzer generates. The individual formats are
arranged in the order they appear in the prin t
out. You should refer to this chapter during
system analysJls for specific information about
the displays.

REASONS FOR USING THE CRASH ANALYZER

The Crash Analyzer aids you in debuggJlng iRMX 86 applications. It
provides you with an analysis of soft-.;yare problems following the failure
either of your system or an application program in an iRMX 86
environment. The Crash Analyzer helps you to determine the reasons for
system failure by:

Crash Analyzer 1-1

I

INTRODUCTION

• Producing a dump file containing a memory image of the crash
situation.

• Analyzing the dump file and producing a detailed, formatted
report of the crash situation.

• Listing system objects in detail and checking for inconsistencies
where possible.

The following section further describes the parts of the Crash Analyzer
and the environments in which they run.

PARTS OF THE CRASH ANALYZER

The Crash Analyzer is a single product eonsisting of two parts:

• The Dumper which produces a disk copy of a memory image. This
copy is called the dump file. The Dumper runs in the iRMX 86
application system that you are debugging.

• The Analyzer which reads the dump file and creates a formatted
printout file. This printout fJLle contains clearly labeled,
formatted information about system data structures. The Analyzer
runs on a Series III Microcomputer Development System. It
requires a secondary storage device to contain the dump file and
the formatted report.

REQUIREMENTS OF THE CRASH ANALYZER

In order to use the Crash Analyzer, the iSDM 86 Monitor must be part of
your system.

HOW THE CRASH ANALYZER IS SUPPLIED

The Crash Analyzer is available on Release Diskettes in ISIS-II format or
iRMX 86 format. You must perform the loading and configuration of the
Dumper on a Series III Microcomputer Development System. Therefore, if
you use the iRMX 86 format, you may havE~ to copy some file s to an lSI S-I I
format.

Crash Analyzer 1-2

CHAPTER 2
CONFIGURING, INITIALIZING., ;4ND

LOADING THE DUMPER

In order to use the Crash Analyzer, you must configure, initialize, and
load the Dumper. This chapter describes the options available when you
use the iRMX 86 Interactive Configurator (ICU) to configure the Dumper
into your system. It then describes how to initialize and load the
Dumper module from a microcomputer developmen t system, using the iSDM 86
Monitor. The remainder of the chapter describes what to do if you must
re-Ioad the Dumper.

USING THE INTERACTIVE CONFIGURATOR TO CONFIGURE THE DUMPER

The iRMX 86 CONFIGURATION GUIDE explains how to use the ICU to include
the Dumper in your system. One of the options you have when configuring
you system is whether to locate the Dumper in RAM or ROM. After you
configure the Dumper, be sure to look up the address for
RQ$DUMP$BOOT$INIT in the Dumper locate map SDUMPR.MP2. You will need
this address to re-initialize the dumper if you have to reset the system
or if you accidentally destroy data structures necessary to the Dumper
and the iSDM 86 Monitor.

INITIALIZING AND LOADING THE DUMPER

When you configure and bootstrap load the system, it automatically
initializes and loads the Dumper. You are now prepared to run the Crash
Analyzer if it is necessary. If a system program or an application
should fail, all you have to do is activate the iSDM 86 Monitor on your
screen and invoke the Dumper. A common way to bring up the iSDM 86
Monitor is to press the non-maskable interrupt. This procedure causes
the iSDM 86 to display a prompt (.). When you invoke the Dumper, the
system automatically initializes and loads the Dumper. See Chapter 3 to
learn how to invoke the Dumper.

NOTE

Avoid using the reset switch. If you
do use the reset switch, you will have
to re-initialize and possibly reload
the Dumper.

Crash Analyzer 2-1

CONFIGURING, INITIALIZING, l~D LOADING THE DUMPER

RE-INITIALIZING AND RE-LOADING THE DUMPER

If you have to reset the system, or if you accidentally destroyed some
data structures necessary to the Dumper and the iSDM 86 Monitor, you can
still use the Dumper to create a valid dump file. To do this, you must
re-initialize and possibly reload the Dumper. Rather than re-loading
your system, you can initialize the Dumper by using the iSDM 86 Monitor
go command (G) and the address for RQ$DUMP$BOOT$INIT (as listed in the
Dumper locate map SDUMPR.MP2) •

• G <bbbb>:<oooo>

The system responds with the Dumper si~l-on message, a breakpoint, and a
prompt as follows:

iRMX 86 Dumper initialized

BREAK at <bbbb>:<oooo>

where <bbbb> and <0000> are base and offset addresses for internal iSDM
86 Monitor structures.

If the sign-on message does not appear, the system responds with the
following error message:

Bad Command

If the system returns a "Bad Command" error message, you must re-Ioad the
Dumper into memory by entering the iSDM 86 Monitor load (L) command at
your microcomputer development system a8 follows:

• L : f x: filename

where ":fx:" is the disk identifier that: corresponds to the disk on which
the ICU placed the Dumper and "filename" is the name of the file that
contains the Dumper on the diskette.

After you have re-Ioaded the Dumper, you can enter the go command (as
shown previously in this section) to re-'initialize the Dumper.

Crash AnalyzE!r 2-2

CHAPTER 3
INVOKING THE CRASH ANALYZER

After you configure, initialize, and load the Dumper, you can invoke both
the Dumper and the Analyzer portions of the Crash Analyzer any time you
need them. (Refer to Chapter 2 for more information on configuring,
initializing and loading.) This chapter presents a situation in which
you would want to use the Dumper and the Analyzer. This situation is a
general scenario of the steps you might take when an application fails.
Following the scenario are detailed descriptions of how to invoke the
Dumper and the Analyzer.

SCENARIO OF HOW TO USE THE CRASH ANALYZER

This section presents a general scenario of how, and in what kind of a
situation, to use the Crash Analyzer. Your iRMX 86 System may differ
slightly from the example used in Figure 3-1 but the procedure for using
the Crash Analyzer is the same.

THE EQUIPMENT AND THE PROBLEM

Figure 3-1 shows a system consisting of the following equipment:

• A target system with an iAPX 86, 88-based processor board,
memory, any necessary controllers, and a compatible terminal.

• A Series III Microcomputer Development System and a compatible
printer.

Your system can be any iRMX 86 System but you must connect the Series III
Microcomputer Development System to the target system with the iSDM 86
Monitor.

Suppose you are running an application on an iRMX 86 System and for some
reason your application fails. You can use the Crash Analyzer to help
find out why the application failed.

Crash Analy~~er 3-1

I

INVOKING THE CRJ\SH ANALYZER

SERIES III MICROCOMPUTER

~~~~~~~~~ DEVELOPMENT 
v SYSTEM 

iFIMX'M 86 SYSTEM 
TIERMINAL 

iRMX'M 86 SYSTEM ___________ I 

APPLICATIONI 

SERIES III MICROCOMPUTER 
DEVELOPMENT SYSTEM 

PRINTER 

Figure 3-1. Example System 

USING THE CRASH ANALYZER 

This section describes the general steps you should take when you want to 
use the Crash Analyzer. The steps refE~r you to detailed explanations of 
the specific invocations. 

1. Activate the iSDM 86 Monitor and invoke the Dumper. A common way 
to bring up the iSDM 86 Monitor is to press the non-maskable 
interrupt on your target system. 

2. Invoke the Dumper on the target System. See "Invoking the 
Dumper" in this chapter. The Dumper uses the iSDM 86 link to 
create a disk file on the SeriE~s III Microcomputer Development 
System. This disk file (called the dump file) contains a copy of 
the system's memory. 

3. Invoke the Analyzer on the Series III Microcomputer Development 
System. See "Invoking the Analyzer" in this chapter. The 
Analyzer reads the dump file and produces a formatted print file 
which it sends to the printer or a disk file. This print file 
contains clearly labeled information about the system data 
structures. 

4. Use listings in Chapter 4 to h.~lp you understand the information 
in the print file. 

Crash Analyzer 3-2 



INVOKING THE CRASH ANALYZER 

PICTORIAL REPRESENTATION OF SYNTAX 

This manual uses a schematic device to illustrate the syntax of 
commands. The schematic consists of what looks like an aerial view of a 
model railroad setup, with syntactic entities scattered along the track. 
Imagine that a train enters the system at the left, drives around as much 
as it can or wants to (sharp turns and backing up are not allowed), and 
finally departs at the right. The command it generates in so doing 
consists, in order, of thE~ syntactic entities that it encounters on its 
journey. The following pictorial syntax shows two ways (A or B) of 
reaching "C.": 

x-116 

The schematics do get more complicated, but just remember that you can 
begin at any point on the left side of the track and take any route to 
get to the end as long as you do not back up. Some of the possible 
combinations of syntactic elements are: ACDF, BCEF, BF, AF, and F. 

x-117 

Crash AnalY:2:er 3-3 



I 
INVOKING THE CRASH ANALYZER 

INVOKING THE DUHPER 

You can invoke the dumper by interruptfng into the iSDM 86 Monitor (on an 
iRMX 86 application system) and using the VM command. 

PARAMETERS 

filename 

DATE 

(date) 

TIME 

(time) 

The name of the ISIS.-II file to which you want to dump 
the disk copy of the system memory. The beginning 
portion of this name can consist of a logical name 
enclosed in colons (such as :Fl:). This indicates the 
drive on which to place the file. If you omit the 
logical name, the Dumper places the file resides in 
the default drive (:FO:). 

If you want the analysis header (explained in Chapter 
4) to include a date, you must enter the word "DATE" 
immediately preceding the actual date. 

The date that you invoke the Dumper. This parameter 
can be up to 20 characters in length and in any form 
you wish. The characters you enter for the date must 
be enclosed by parentheses. The date you enter is 
placed in the dumpfi.le and printed during analysis. 

The date is an optional parameter; if you do not 
specify a date, the Crash Analyzer omits the it in the 
analysis header. See Chapter 4 for more information 
about the analysis header. 

If you want the Analysis Header (explained in Chapter 
4) to include a time, you nrust enter the word "TIME" 
immediately preceding the actual time. 

The time that you in.voke the Dumper. This parameter 
can be up to 10 characters in length and in any form 
you wish. The characters you enter for the time must 
be enclosed by parentheses. The time that you enter 
is placed in the dump file and printed during analysis. 

The time is an optional parameter; if you do not 
specify a time, the Crash Analyzer omits the time in 
the analysis header. See Chapter 4 for more 
information about the analysis header. 

Crash Analy~~er 3-4 

X-086 



INVOKING THE CRASH ANALYZER 

The dumper displays the following message immediately after you invoke it: 

Start iRMX 86 system dump V<x.x> 

When the Dumper finishes ereating the dump file, it displays the 
following message: 

Dump complete to file <filename> 

where <filename> is the file name you specified in the VM command. The 
iSDM 86 Monitor then issues a new prompt (.). 

INVOKING THE ANALYZER 

You can invoke the Analyzer on the Seri.es III Microcomputer Development 
System by using the following command. 

PARAMETERS 

RUN The Series III RUN command. 

SCRS86 The name of the Analyzer. 

X-OB7 

dump-filename The name of the file that is the source of the 
system memory image to be analyzed. This is the 
same file you specified when you invoked the Dumper. 

TO 

print-filename 

If you want to include a print file name, you tmlst 
enter the word "TO" preceding the print file name 
you select. 

The name under which the Analyzer places the 
analyzed output. If you do not specify a 
"print-filename", the Analyzer uses the "dump 
filename" with "PRT" as the extension. Do not use 
the name of a device alone, unless the name 
specifies a device printer such as :LP:. 

Crash Analyzer 3-5 



BYTE 

WORD 

INVOKING THE CRASH ANALYZER 

An optional form8~t in which the Analyzer may print 
the contents of the iRMX 86 segments. If you 
specify the BYTE option, the Analyzer prints the 
contents of the fRMX 86 segments in BYTE format. 
An example of the BYTE format is as follows: 

contents: BBBB:OOOO xx xx xx ••• *aaaaaaaaaaaaa* 

where: 

BBBB:OOOO 

xx 

*a ••• a* 

The base and offset address of the 
iRMX 86 segments. 

A pair of hexadecimal digits 
representing a byte. 

The ASCII representation of the 
corresponding byte (if 
printable). If the byte value 
cannot be printed, the Analyzer 
places a period (.) in its place. 

An optional forma t in which the Analyzer may prin t 
the contents of the iRMX 86 segments. If you 
specify the WORD option, the Analyzer prints the 
contents the iRMX 86 segments in hexadecimal WORD 
format. An example of the WORD format is as 
follows: 

contents: BBBB:OOOO xxxx xxxx xxxx xxxx ••• 

where: 

BBBB:OOOO 

xxxx 

The base and offset address of the 
iRMX 86 segments. 

Four hexadecimal digits 
representing a word. 

If you specify both BYTE and WORD, the iRMX 86 
segments are displayed in both formats. If you do 
not specify either BYTE or WORD, the contents of 
the iRMX 86 segments do not appear in the print 
fi.le. 

Crash AnalY2:er 3-6 



INVOKING THE CRASH ANALYZER 

ERROR MESSAGES 

The following error messages appear on the your screen when you make an 
error in invoking the Analyzer or during a file operation. These errors 
cause the Analyzer to terminate all operations and display the error 
message. 

Message 

Argument size exceeds 
80 characters 

<filename>, error during 
<operation type> 
<filename>, EXCEPTION <nnnn>H 
<message> 

<filename>, illegal 
file name 

<filename>, is not an 
iRMX 86 dump file 

<filename>, no such file 

(keyword>, invalid keyword 

Non-blank delimiter in 
input string 

Description 

When you invoked the fulalyzer, one of 
the arguments exceeded 80 characters 
in length. 

Th(~ Analyzer encountered an 
exeeptional condition when it tried 
to perform an operation on the file 
name. The <operation type> is one of 
thE~ following: 

open 
create 
close 
detach 
read 
write 
seek 

The Analyzer also displays the 
exeeption code <nnnn>H and the 
mnemonic for the exception in 
<message>. Refer to the iRMX 86 
Operator's Manual to find ou t wha t 
the exception code s mean. 

The file name you specified when you 
invoked the Analyzer is not a valid 
ISIS II file name. 

ThE~ file name you specified when you 
invoked the Analyzer refers to a file 
that was not originally created by 
thE~ Dumpe r. 

ThE~ Analyzer canno t find the file you 
spE~cified. 

You specified a format option other 
than WORD or BYTE when you invoked 
the Analyzer. 

When you invoked the Analyzer, you 
used a delimiter other than a blank. 
ThE~ only delimiter the Analyzer 
aceepts is a blank. 

Crash Analy:zer 3-7 



INVOKING THE CRASH ANALYZER 

Null dump file name 

Null output file name 

You did not specify a name for the 
dump file when you invoked the 
Anallyzer. 

When you invoked the Analyzer, you 
ineluded "TO" but you did not specify 
a print file name. 

*** 
Crash Analy:~er 3-8 



CHAPTER 4 
LISTING FORMAT 

This chapter describes the format and explains the fields in the listing 
that the Analyzer outputs. These individual sections of the listing are 
arranged in the order they appear in the printout. For quick reference, 
this chapter includes a Table of Contents that lists the pages on which 
the different sections of the listing appear. 

Note: this manual will not explain some of the outputs on the display 
field since those output s are mean t for Inte I in-house use only. 

LISTINGS 

SECTION 

Analysis Header • . . . . . . . . . . . . . . . . . . . . . . , ............................ . 
Current Processor State ••••••••••••••• o •••••••••••••••••••••••••••• 

86 Job Tree ••••••••••••••••••••••••••• ~ •••••••••••••••••••••• •••••• 
List of Ready Tasks ••••••••••••••••••• o •••••••••••••••••••••••••••• 

List of Sleeping Tasks •••••••••••••••• , .•••••••••••••••••••••••••••• 
List of Extensions in System •••••••••• o •••••••••••••••••••••••••••• 

List of Interrupt Tasks ••••••••••••••• ~ •••••••••••••••••••••••••••• 
Job Report Organization ••••••••••••••• o •••••••••••••••••••••••••••• 

Job Report Header and Job Information. ' ••••••••••••••••••••••••••••• 
Object Directory and Tasks Waiting For Object Lookup ••••••••••••••• 
Objects Contained by Job ••••••••••••••••••••••••••••••••••••••••••• 
Poo I Repor t ••••••••••••••••••••••••••• , ••••••••••••••••••••••••••••• 
Segments in Job • •••••••••••••••••••••• ' ••••••••••••••••••••••••••••• 
Task Report ••••••••••••••••••••••••••• , ••••••••••••••••••••••••••••• 
Ma i I bo x Re po r t. • • • • • • • • • • • • • • • • • • • • • • • '. • • • • • • • • • • • • • • • • • • • • • • ~ • • • • • 
Semaphore Report •••••••••••••••••••••• ' ••••••••••••••••••••••••••••• 
Region Report ••••••••••••••••••••••••• ' ••••••••••••••••••••••••••••• 
Extension Objects in Jo b •••••••••••••• I ••••••••••••••••••••••••••••• 

Composite List Report •••••••••••••••••••••••••••••••••••••••••••••• 
Composite Lis t Repor t Header and Extension Sub-Heade r •••••••••••• 
General Composite Objec:t Report •••••••••••••••••••••••••••••••••• 
Physical File Driver Connection Report ••••••••••••••••••••••••••• 
St ream Fi Ie Dr i ver Connec:tion Re port, ••••••••••••••••••••••••••••• 
Named File Driver Connection Report., ••••••••••••••••••••••••••••• 
Dynamic Device Information Report •••••••••••••••••••••••••••••••• 
Logical Device Object Report •••••••• ' ••••••••••••••••••••••••••••• 
I/O Job Object Report •••••••••••••••••••••••••••••••••••••••••••• 

Summary of Errors ••••••••••••••••••••• ' ••••••••••••••••••••••••••••• 
Error Messages ••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Crash Analyzer 4-1 

PAGE 

4-2 
4-3 
4-5 
4-6 
4-7 
4-8 
4-9 
4-10 
4-11 
4-14 
4-16 
4-17 
4-19 
4-21 
4-26 
4-30 
4-33 
4-35 
4-37 
4-38 
4-39 
4-41 
4-44 
4-45 
4-47 
4-48 
4-49 
4-50 
4-51 



LISTING FORMAT 

ANALYSIS HEADER 

The section of the listing shown in Fi!~re 4-1 identifies the file being 
dumped along with the time and date of the dump. 

*************************************~:*********************************** 
* 
* iRMX 86 Crash Analyzer V<x.x> 
* 
* Date: <date of dump> 
* 
* Time: <time of dump> 
* 
* Dumpfile: <dump file name> 
* 
*************************************~:*********************************** 

Figure 4-1. Analysis Header 

The fields in Figure 4-1 are as follows: 

<date of dump> 

<time of dump> 

<dumpfile name> 

The date of the dump. You specified the data 
this field when you invoked the Dumper. 

The time of the. dump. You specified the data 
this field when you invoked the Dumper. 

The name of the dump file. You specified this 
field when you invoked the Dumper. 

See Chapter 3 for more information on the previous fields. 

Crash AnalY2:er 4-2 

in 

in 



LISTING FORMAT 

CURRENT PROCESSOR STATE 

The section of the listing in Figure 4-2 displays the state of both the 
CPU running the system and the Numeric Processor Extension a t the time 
you invoked the Dumper. If the regist1ers of the processor are not 
available to the analyzer t it prints the message t "Registers not 
available" in place of the processor state. 

% 
%-----------------------------------------------------------------------
% 
% Current processor state 
% 
%----------------------_._-----------------------------------------------
% 

* 
* 
* 

CPU state 

<xxxX> SP <xxxX> CS <xxxx> IP AX 
BX 
CX 
DX 

<xxxx> BP <xxxx> DS <xxxx> FL 
<x xxX> SI <xxxX> SS <xxxX> 
<xxx x> DI <xxx x> ES <xxx x> 

* * NPX state 

* 
CW = <xxxX> SW = <xxxX> 
IP = <xxxxx> OC = <xxx> 
ST(O) <xxxxxxxxxxxxxxxxxxxxX> 
ST(l) = <xxxxxxxxxxxxxxxxxxxxx> 
ST(2) <xxxxxxxxxxxxxxxxxxxxX> 
ST(3) <xxxxxxxxxxxxxxxxxxxxx> 
ST(4) = <xxxxxxxxxxxxxxxxxxxxX> 
ST(5) <xxxxxxxxxxxxxxxxxxxxx> 
ST(6) <xxxxxxxxxxxxxxxxxxxxX> 
ST(7) <xxxxxxxxxxxxxxxxxxxxx> 

TW 
lOP 

= <xxxX> 
<Ox Dx 

<xxxx> 
<xxxxx> 

Ix Tx Sx Zx Ax Px Cx> 

Figure 4-2. Current: Processor State 

The fields pertaining to the CPU in Figure 4-2 are as follows: 

AXt SP t CSt 
IP t BX, BP, 
DS, FL, CX, 
SI, SS, DX, 
DI, ES 

The hexadecimal values in the CPU's registers. 
The names of the processor's registers are as 
follows: 

Crash Analyzer 4-3 



LISTING FORMAT 

Name 

AX 
SP 
CS 
IP 
BX 
BP 
DS 
FL 
CX 
SI 
SS 
DX 
DI 
ES 

Description 

"A" Register 
Stack Pointer 
Code Segmen t 
Instruction Pointer 
"B" Register 
Base Pointer 
Data Segmen t 
Flags 
"C" Register 
Source In de x 
Stack Segmen t 
"D" Register 
Destination Index 
Extra Segment 

The fields pertaining to the Numeric Processor Extension (NPX) in Figure 
4-2 appear only if your system includes one. 

CW, SW, TW, 
IP, OC, OP, 

ST(O) through ST(7) 

The hexadecimal value in the NPX's register. The 
names of the Numeric Processor Extension 
registers are as follows: 

Name 

CW 
SW 
TW 
IP 
OC 
OP 

Description 

Contro 1 Wor d 
Status Word 
Tag Word 
Instruction Pointer 
Operation Code 
Operand Pointer 

The hexadecimal value of the NPX stack 
registers. The Analyzer displays these 80-bit 
registers in temporary real format. 

Crash AnalY2;er 4-4 



LISTING FORMAT 

JOB TREE 

The section of the listing in Figure 4,-3 displays the tokens of all the 
jobs in your system. The: offspring jobs are indented to show their 
position in the hierarchy. 

% 
%----------------------_._----------------------------------------
% 
% iRMX 86 job tree 
% 
%----------------------_._----------------------------------------
% 

<XXXXl> 
<xxxx2> 

<xxxx3> 
<xxxx4> 

<xxxxS> 
<xxxx6> 

Figure 4-3. Jo b Tree 

The fields in Figure 4-3 are as follows: 

<XXXXl> 

<xxxx2> through 
<xxx~> 

The token for the root job. 

The tokens for the offspring jobs of the root 
job. The offspring jobs are indented three 
spaces to show' their position in the hierarchy. 

Crash Analyzer 4- S 



LISTING FORMAT 

LIST OF READY TASKS 

The section of the listing in Figure 4-4 displays the token for the task 
that is running followed by the the tokens for the ready tasks. 

% 

%----------------------------------------------------------------
% 
% List of ready tasks 
% 

%----------------------------------------------------------------
% 

Task Priority 

Running task <xxxx>J/ <yyyy>T <a a> 

Ready tasks <xxxX>J / <yyyy>T <aa> 

<xxxx>J/ <yyyy>T <aa> 

Figure 4-4. List Of Ready Tasks 

The fields in Figure 4-4 are as follows: 

<xxxx>J 

<yyyy>T 

<aa> 

The token representing the job which contains the 
task. 

The token representing either the running task or 
a ready task. 

The priority of the task. 

Depending on what the processor was doi:Gg at the time of the dump, 
ROOTJ/IDLET can appear in either the running task or the ready task 
list. ROOTJ/IDLET represents the operating system's idle task; the idle 
task is a low-priority task that runs when no other tasks are running. 
If ROOTJ/DELET appears in the ready task list, a task requested deletion 
of itself or its job. See the iRMX 86 NUCLEUS REFERENCE MANUAL for more 
information about deleting a task or job. 

Crash Analyzer 4-6 



LISTING FORMAT 

LIST OF SLEEPING TASKS 

The section of the listing in Figure 4--5 displays the token for the tasks 
that are sleeping. The sleeping tasks are shown in increasing order of 
their remaining sleep-time. 

% 
%-----------------------------------_._---------------------------
% 
% List of sleeping tasks 
% 

%-----------------------------------_._---------------------------
% 

Task 

<xxxx>J/<yyyy>T 

<xxxX>J/ <yyyy>T 

Priority 

<aa> 

<a a> 

Delay 
remaining 

<bbbb> 

<bbbb> 

Figure 4- 5. Lis t Of Sleeping Tasks 

Delay 
requested 

<cccc> 

<cccc> 

The fields in Figure 4-5 are as follows: 

<xxxx>J 

<yyyy>T 

<aa> 

<bbbb> 

<ccce> 

The token representing the job which contains the 
task. 

The token representing the sleeping task. 

The priority of the task. 

The remaining time the task is required to sleep. 
This sleep-tim.~ is expressed in intervals of the 
system clock, :so you must know the value of the clock 
interval in your system. 

The sleep-time the task requested. This sleep-time 
is expressed in intervals of the system clock, so you 
must know the value of the clock interval in your 
system. 

If ROOTJ/DELET appears in. the list of :sleeping tasks, your system was not 
deleting a task or a jo bat the time of the dump. See the iRMX 86 NUCLEUS 
REFERENCE MANUAL for more~ information about deleting a task or job. 

If there are no tasks sleeping at the time of the dump, the Analyzer prints 
the sleeping task header and the message, "No tasks are sleeping." 

Crash Analyzer 4-7 



LISTING FORMAT 

LIST OF EXTENSIONS IN SYSTEM 

The section of the listing in Figure 4-6 displays information about each 
extension in your system. It also shows the deletion mailbox for each 
extension along with its containing job. 

% 

%----------------------------------------------------------------
% 
% List of extensions 
% 

%----------------------------------------------------------------
% 

Extension 
token 

<uuuU> 
• 

<uuuU> 

Extension 
type 

<vvvv> 

<vvvv> 

Containing 
job 

<wwww>J 

<wwww>J 

Deletion 
mailbox 

<xxxx>J / <yyyy>M 

<xxxX>J / <yyyy>M 

Figure 4·-6. List Of Extensions In System 

The fields in Figure 4-7 are as follows: 

<uuuu> 

<vvvv> 

<wwww>J 

<xxxx>J 

<yyyy>M 

The token for the extension. 

The WORD containing the type code for the new 
type. This type code was specified when the 
extension object was set up with system call 
CREATE$EXTENSION. 

The token for the job that contains the extension. 

The token for the job that contains the deletion 
mailbox. 

The token for the deletion mailbox set up with 
CREATE$EXTENSIO:~ • 

Crash Analyzer 4-8 



LISTING FORMAT 

LIST OF INTERRUPT TASKS 

The section of the listing in Figure 4--7 displays information about your 
system's interrupt tasks in increasing order of interrupt level. 

% 
%-----------------------------------------------------------------
% 
% List of interrupt tasks 
% 

%-----------------------------------------------------------------
% 

Level 

<dd) 

<dd> 

Task 

<xxxx)J/ <yyyy)T 

<xxxv.] / <yyyy)T 

Data segment 
base 

<zzzz) 

<zzzz) 

Figure 4-7. List Of Interrupt Tasks 

The fields in Figure 4-7 are as follows: 

<dd) 

<xxxvJ 

<yyyy)T 

<zzzz) 

A byte containing the interrupt level that the task 
services. The level is encoded as follows: 

Bits Value 

7 0 

6-4 First digit of the interrupt level (0-7). 

3 If one, the level is a master level and 
bits 6-4 specify the entire level number. 

If zero, the level is a slave level and 
bits 2-0 specify the second digit. 

2-0 Second digit of the interrupt level 
(0-7), if bit 3 is zero. 

The token for the job that contains the interrupt 
task. 

The token for the interrupt task. 

The token for the interrupt handler's data segment. 

Crash Analyzer 4-9 



LISTING FORMAT 

JOB REPORT ORGANIZATION 

The Analyzer prints an entire job report for each job in your system. 
Because each job report consists of a number of detailed displays, this 
report is divided into sections as follows: 

• Job Report Header 
Information about the Job 
Jo b Descriptor 

• Object Directory 
Tasks Waiting for Object Lookup 

• Objects Contained by Job 

• Pool Report for Job 

• Segments in Job 

• Task Report 
Non-Interrupt Tasks 
Interrupt Tasks 

• Mailbox Report 

• Semaphore Report 

• Region Report 

• Extension Objects in Job 

• Composites in Job 
Extension Sub-Header 
Composite Object Report 
Special Composite Objects 

Physical File Driver Connection Repor t 
Stream File Driver Connection Report 
Named File Driver Connection Report 
Dynamic Device Information Report 
Logical Device Object Report 
I/O Job Object Report 

Crash Analyzer 4-10 



LISTING FORMAT 

JOB REPORT HEADER AND JOB INFORMATION 

The section of the listing in Figure 4--8 contains the Job Report Header 
and the token of the job being printed~ This header is followed by a 
"deletion pending message" and by information about the attributes of the 
job. Next is internal information about the job descriptor. 

* 
*************************************:k*************************** 
*************************************:k*************************** 
* * Job report, token = <xxxX> 
* 
*************************************:k*************************** 
*************************************:k*************************** 
* 

<deletion pending message> 

Current tasks <xxxX> Max tasks 
Current objs <xxx x> Max objects 
Except handler <xxxx: xxxX> Except mode 
Job flags <xxx x> 

* 

<x xxX> 
<xxx x> 
<xX> 

Max priority <xX> 
Parameter obj <xxxx> 
Parent job <xxxx> 

* Job descriptor 

* 
BBBB:OOOO <x xxX> <xxxX> <xxxx> <xxxX> <xxxX> <xxxx> <xxxx> <xxxx> 
BBBB:OOOO <xxx x> <xxx x> <xxx x> <xxx x> <xxx x> <xxx x> <xxx x> <xxx x> 
BBBB:OOOO <xxxX> <xxxX> <xxxX> <xxxX> <xxxx> <x xxX> <xxxx> <xxxx> 
BBBB:OOOO <xxx x> <xxx x> <xxx x> <xxx x> <xxx x> <xxxx> <xxxx> <xxx x> 

Figure 4-8. Jo b Report Header And Jo b Information 

The fields in Fi~re 4-8 are as follows: 

<deletion pending 
message> 

Current tasks 

Max tasks 

This message is present only if there is some type 
of deletion pending against the job. The 
messages are either, "DELETION PENDING" or 
"FORCED DELETION PENDING." 

The number of tasks currently existing in the job. 

The maximum nrnnber of tasks that can exist in the 
job at the same time. This value was set when 
the job was created with the system call 
RQ$CREAT E$JOB • 

Crash Analyzer 4-11 



Max priority 

Current 0 bjs 

Max objects 

Parameter 0 bj 

Except handler 

Except mode 

Parent job 

Job flags 

LISTING FORMAT 

The maximum (lowest numerically) priority allowed 
for any task in the job. This value was set when 
the job was created with the system call 
RQ$CREATE$JOB. 

The number of objects currently existing in the 
job. 

The maximum number of objects that can exist in 
the job at the same time. This value was set 
when the job was created with the system call 
RQ$CREATE$JOB. 

The token for the object the parent job passed to 
this job. This value was set when the job was 
created with thE! system call RQ$CREATE$JOB. 

The start address of the job's exception 
handler. This .3.ddress was set when the job was 
created with the system call RQ$CREATE$JOB. 

The value that :indicates when control is to be 
passed to the new job's exception handler. It is 
encoded as follows: 

Value 

o 
1 
2 
3 

When Control Passes 
To Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditions 

This value was set when the job was created with 
the system call RQ$CREATE$JOB. 

The token for the paren t jo b 0 f thi s jo b. 

The job flags parameter that was specified when 
the job was created. The bits (where bit 15 is 
the high-order bit) have the following meanings: 

Bit 

15-2 

1 

Meaning 

Reserved. 

If 0, then whenever a task in 
the new job or any of its 
descendent jobs makes a Nucleus 
system call, the Nucleus checks 
the parameters for validity_ 

Crash Analyz1er 4-12 



LISTING FORMAT 

o 

If 1, the Nucleus does not check 
the parameters of Nucleus system 
calls made by tasks in the new 
job. Howeve r, if any 0 f f s pr in g 0 f 
the new job has been created with 
this bit set to 0, there will be 
parameter checking for the new job. 

Reserved. 

The job descriptor has information whieh is not useful to application and 
system programmers. You should ignore this information. 

Crash Analyzer 4-13 

I 



LISTING FORMAT 

OBJECT DIRECTORY AND TASKS WAITING FOR OBJECT LOOKUP 

The section of the listing in Figure 4-9 displays the names and tokens 
for the objects cataloged in the job's object directory. This 
information is followed the uncataloged names of the objects for which a 
task is waiting. For each such object, the Analyzer displays the 
requested name, the token for the task, and the token for the containing 
job of the first task waiting for object lookup. 

* 
* 
* 

* 
* 
* 

Object directory 

Maximum entries: <aaaa> Entries used: <bbbb> 

Name 

<name1> 

Length 
in hex 

<z> 

<z> 

Hex representation 

<xx xx xx xx ••• > 

<xx xx xx xx ••• > 

Tasks waiting for object lookup 

Name 
requested 

Length 
in hex 

<z> 

<z> 

Hex representation 

<xx xx xx xx ••• > 

<xx xx xx xx ••• > 

Object 

<xxxx>J / <yyyy>t 

<xxxX>J/ <yyyy>t 

Task 

<xxxx>J / <yyyy>T 

<xxxX>J / <yyyy>T 

Figure 4-9. Object Directory And Tasks Waiting For Object Lookup 

The fields in Figure 4-9 are as follows: 

Maximum entries 

En tries used 

<name1> through 
<nam~> 

<z> 

The maximum allowable number of entries this job 
can have in its object directory. 

The number of entries used within the directory. 

The names under which the objects are cataloged. 
The printable characters are shown for each name 
in the list. Characters which cannot be printed 
are replaced with a period (.) in this listing. 

The length of the name in bytes. 

Crash Analyzer 4-14 



<xx xx xx xx ••• > 

<xxxX>J 

<yyyy>t 

LISTING FORMAT 

The hexadecimal representation of each letter in 
the name. 

The token for the job that contains the object. 

The token for the object where "t" is one of the 
following characters that identify iRMX 86 object 
types: 

Character Object Type 

C composite 
G segmen t 
J job 
M mailbox 
R region 
S semaphore 
T task 
X extension 

The fields pertaining to the tasks waiting for object lookup in Figure 
4-9 are as follows: 

<namea > through 
<namez> 

<z> 

<xx xx xx xx ••• > 

<xxxX>J 

<yyyy>T 

The name of the object the task has requested. 

The length of the name in bytes. 

The hexadecimal representation of each letter in 
the name. 

The token for the job that contains the task. 

The token for the task. 

Crash Analyzer 4-15 



LISTING FORMAT 

OBJECTS CONTAINED BY JOB 

The section of the listing in Figure 4-,10 lists the tokens for a job's 
child jobs, task, mailboxes, semaphores" regions, segments, extensions, 
and composites. 

* 
* 
* 

Objects contained by job <xxxX> 

Child jobs: <xxxX> <xxxx> <xxxx> ••• <xxxx> 
Tasks: <xxx x> <xxx x> <xxxx> ••• <xxx x> 
Mailboxes: <xxxX> <xxxX> <xxxX> ••• <xxxX> 
Semaphores: <xxx x> <xxx x> <xxxx> ••• <xxx x> 
Regions: <xxxX> <xxxX> <xxxX> ••• <x xxX> 
Segments: <xxx x> <xxx x> <xxxx> ••• <xxx x> 
Extensions: <x xxX> <xxxx> <xxxX> ••• <xxxX> 
Composite s: <xxx x> <xxx x> <xxxx> ••• <xxx x> 

Figure 4-10. Objects Contained By Job 

The fields in Figure 4-10 are as follow's: 

Child jobs 

Tasks 

Mailboxes 

Semaphores 

Regions 

Segments 

Extensions 

Composites 

The tokens for the child jobs within the job. 

The tokens for the tasks within the jo b. 

The tokens for the mailboxes within the job. A 
lower-case 0 immediately following a token for 
a mailbox means that one or more objects are 
queued at the mailbox. A lower-case "t" 
immediately following a token for a mailbox means 
that one or more tasks are queued at the mailbox. 

The tokens for all the semaphores within the 
job. A lower-case "t" immediately following a 
token for a serr~phore means that one or more 
tasks are queued at the semaphore. 

The tokens for all the regions within the job. A 
lower-case "b" (busy) immediately following a 
token for a region means that a task is accessing 
informatio'n guarded by the region. 

The tokens for all the segments within the job. 

The tokens for all the extensions within the job. 

The tokens for all the composites within the job. 

Crash Analyzer 4-16 



LISTING FORMAT 

POOL REPORT 

The section of the listing in Figure 4-11 displays information about the 
jo b' s memory poo 1. It also shows the base address and size of any 
unallocated memory areas .• 

% 

%-----------------------------------------------------------------------
% 
% Pool report for job xxxx 
% 

%-----------------------------------------------------------------------
% 

* 
* 
* 

Pool min 
Pool size 

<xxxX> 
<xxx x> 

Pool Max <xxxx> 
Largest seg <xxxx> 

Available pool memory areas 

Base 

<BBBB> 

<BBBB> 

Total available 
Total allocated 

Size 

<ssss> 

<ssss> 

<xxx x> 
<xxxX> 

Figure 4-11. Pool Report 

Initial size <xxxx> 

The fields in Figure 4-11 are as follows: 

Pool min 

Pool max 

Initial size 

Pool size 

Largest seg 

The minimum size (in 16-byte paragraphs) of the 
Job's memory pool. This value was set when the 
job was created. 

The maximum size (in 16-byte paragraphs) of the 
job's memory pool. This value was set when the 
job was created. 

The initial size (in 16-byte paragraphs) of the 
jo b' s memory poo 1. 

The current size (in 16-byte paragraphs) of the 
jo b' s memory poo 1. 

The number of 16-byte paragraphs in the largest 
segmen t in the jo b' s memory poo 1. 

Crash Analyzer 4-17 



LISTING FORMAT 

The fields pertaining to the available pool memory areas in Figure 4-11 
are as follows: 

<BBBB> 

<ssss> 

Total available 

Total allocated 

The base address of the unallocated memory area. 
Each memory area is located at an offset of a 
from the given base. 

The size of the unallocated memory area in 
16-byte paragraphs. 

The total amount of unallocated memory in 16-byte 
paragraphs. 

The total amount of allocated memory in 16-byte 
paragraphs. 

Crash AnalyzHr 4-18 



LISTING FORMAT 

SEGMENTS IN JOB 

The section of the listing in Figure 4-·12 displays information about the 
segments in the pool of the job. It di.splays the token and the size of 
the segment along with the contents of the segment. 

% 

%--------------------~--------------------------------------------------
% 
% Segments in job <xxxX> 
% 
%------------------------------------_._--------------------------------_. 
% 

Segment Size 
token 

<x xxX> <yyyy> descriptor: BBBB: 0000 <xxxx> <xxxX> ••• 
<deletion pending message> 

• 

<x xxX> <yyyy> 

contents: BBBB:OOOO <xX> <xX> ••• *a ••• a* 

descriptor: BBBB:OOOO <xxxx> <xxxX> ••• 
contents: BBBB:OOOO <xx> <xx> ••• *a ••• a* 

Figure 4-12. Segments In Jo b 

The fields in Figure 4-12 are as follows: 

<deletion pending 
message> 

<xxx x> 

<yyyy> 

descriptor 

contents 

This message is present only if there is some type 
of deletion pending against the object. The 
messages are eJlther, "DELETION PENDING" or 
"FORCED DELETION PENDING." 

The token for the segment. 

The size of th(~ segment in 16-byte paragraphs. 

The segment descriptor contains information which 
is not useful to application and system 
programmers. You should ignore this information. 

If you specifi.~d the BYTE option when you invoked 
the Analyzer, the contents of the segment will be 
displayed in byte format as shown in Figure 4-13. 

Crash Analyzer 4-19 



LISTING FORMAT 

BBBB:OOOO 

<xx> 

a 

The base and offset address 
of the segmen t. 

A pair of hexadecimal digits 
representing a byte. 

The ASCII representation of 
the corresponding byte (if 
printable). If the byte 
cannot be printed, the 
Analyzer places a period (.) 
in its place. 

If you specifiE~d the WORD option, the contents of 
the segment is displayed in WORD format with 8 
words to a lin(~. The ASCII representation 
<*a ••• a*> is not displayed in the WORD format. 

If you did not specify the BYTE or the WORD 
option when you invoked the Analyzer, the 
contents display does not appear. 

If you specifiE~d both the BYTE and WORD option 
when you invoked the Analyzer, the contents field 
appears in both formats. 

Crash Analyz.er 4-20 



LISTING FORMAT 

TASK REPORT 

The Analyzer lists information about tasks in two different ways. Figure 
4-13 shows the format for a non-interrupt task and Figure 4-14 shows the 
format for an interrupt task. 

% 
%-----------------------------------------------------------------------
% 
% Task report, token = <xxxX> 
% 

%-----------------------------------------------------------------------
% 

* 

<deletion pending message> 

Static pri 
Suspend depth 
Except handler 
Containing job 

<xX> 
<xx> 
<xxxx:xxxX> 
<xxx x> 

Dynamic pri 
Delay rE~q 
Except mode 
Interrupt task 

<xx> 
<xxx x> 
<xX> 
no 

Task state 
Last exchange 
Task flags 

<xxxx> 
<xxx x> 
<xx> 

* Task descriptor 

* 

* 
* 
* 

BBBB: 0000 <xxxX> <xxxX> <xxxX> <xxxX> <xxxx> <xxxx> <xxxx> <xxxX> 
• 

BBBB: 0000 <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxx> <xxxx> <xxxX> 

Task stack segment 

BBBB : 0000 <xxxx> <xxxx> <xxxx> <xxxX> <xxxx> <xxxx> <xxxX> <xxxx> ••• 

Figure 4-13. Non-Interrupt Task Report 

Crash Analy:~er 4-21 



LISTING FORMAT 

% 

%-----------------------------------------------------------------------
% 
% Task report, token = <xxxX> 
% 

%------------------------------------_._---------------------------------

* 

<deletion pending message> 

Static pri 
Suspend depth 
Except handler 
Containing job 
Pending int 
Slave mask 

<xX> 
<xx> 
<xxxx:xxxX> 
<xxx x> 
<xX> 
<xx> 

Dynamic pri 
Delay re:q 
Except mode 
Interrupt task 
Hax interrupts 
Slave number 

<xX> 
<xxx x> 
<xX> 
yes 

<xX> 
<Xx> 

Task state <xxxx> 
Last exchange <xxx x> 
Task flags <xx> 
Int level <xx> 
Master mask <xx> 

* Task descriptor 
* 

BBBB: 0000 <xxxX> <xxxX> <xxxX> <xxxx> <xxxx> <xxxx> <xxxX> <xxxX> 

BBBB: 0000 <xxxX> <xxxX> <xxxX> <xxxX> <xxxv <xxxx> <xxxv <xxxv 

* * Task stack segment 

* 
Tasks SS:SP xxxx:xxxx 

BBBB: 0000 <xxxv <xxxX> <xxxv <xxxv <xxxv <xxxx> <xxxX> <xxxv ••• 

Figure 4-14. Int·errupt Task Report 

The fields in Figure 4-13 and 4-14 are as follows: 

<deletion pending 
message> 

Static pri 

This message is present only if there is some type 
of deletion pending against the object. The 
messages are ei.ther, "DELETION PENDING" or 
"FORCED DELETION PENDING." 

The current prtority of the task. This value was 
set when the job was created with the system call 
RQ$CREATE$TASK. 

Crash AnalY2:er 4-22 



Dynamic pri 

Task state 

Suspend depth 

Delay req 

Last exchange 

Except handler 

Except mode 

LISTING FORMAT 

A temporary pri.ority that the Nucleus sometimes 
assigns to the task (temporarily) in order to 
improve system performance. 

The state of the task. There are five possible 
states: 

State 
ready 
asleep 
suspended 
asleep/susp 
deleted 

Description 
ready for execution 
task is asleep 
task is suspended 
task is both asleep and suspended 
task is being deleted 

If this field ean't be interpreted, the Analyzer 
displays the ac.tual hexadecimal value followed by 
a space and two question marks. 

The current number of outstanding RQ$SUSPEND$TASK 
system calls applied to this task without 
corresponding RQ$RESUME$TASK system calls. 

The number of Bleep units the task requested. 
See the iRMX 86 NUCLEUS REFERENCE MANUAL for more 
information on sleep units. 

The token for the mailbox, region, or semaphore 
at which the task is currently waiting. 

The s tart address of the task's exception 
handler. This value was set when the task was 
created with RQ$CREATE$TASK, RQ$CREATE$JOB, or 
RQ$CREATE$IO$JOB, or when 
RQ$SET$EXCEPTION$HANDLER was used. 

The value used to indicate when control is to be 
passed to the task's exception handler. It is 
encoded as follows: 

Value 

o 
1 
2 
3 

When Control Passes 
To Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditions 

This value was set when the task was created with 
RQ$CREATE$TASK!I RQ$CREATE$JOB, or 
RQ$CREATE$I O$JOB, or when 
RQ$SET$EXCEPTION$HANDLER was used. 

Crash AnalY:2:er 4-23 



Task flags 

Con taining job 

Interrupt task 

In t level 

Pending int 

Max interrupts 

Master mask 

LISTING FORMAT 

The task flags parameter used when the task was 
created with the system call RQ$CREATE$TASK. The 
bits (where 15 is the high-order bit) have the 
following meanings: 

Bit Meaning 

15-1 Reserved bits which should be set 
to zero. 

o If one, the task contains 
floating-point instructions. 
These instructions require the 
8087 component for execution. 

If zero, the task does not contain 
floating-point instructions. 

The token for the job which contains this task. 

"No" signifies that the task is not an interrupt 
task. In this case, there are no more fields in 
the display (see Figure 4-14). 

"Yes" signifies that the task is an interrupt 
task. In this case, there are six more fields in 
the display (see Figure 4-15). 

The interrupt level that the interrupt task 
services. This level was set when the system 
call RQ$SET$INTERRUPT was used. 

The number of RQ$SIGNAL$INTERRUPT calls that are 
pending. 

The maximum number of RQ$SIGNAL$INTERRUPT calls 
that can be pending. 

The hexadecimal value associated with the 
interrupt mask for the master interrupt 
controller. This value comes from the bits that 
correspond to the different master interrupt 
levels. Remember that bit numbers corresponds to 
interrupt level numbers. For example, bit 0 
corresponds to interrupt level 0 and bit 7 
corresponds to interrupt level 7. If the bit is 
set, the corresponding interrupt is disabled. 
For more information see the iRMX 86 NUCLEUS 
REFERENCE MANUAL. 

Crash Analyz,er 4-24 



Slave mask 

Slave number 

LISTING FORMAT 

The hexadecimal value associated with the 
interrupt mask for a slave interrupt controller. 
This value comes from the bits that correspond to 
the different slave interrupt levels. Remember 
that bit numbers correspond to interrupt level 
numbers. For example, bit 0 corresponds to 
interrupt level 0 and bit 7 corresponds to 
interrupt level 7. If the bit it') set, the 
corresponding interrupt is disabled. For more 
information see the iRMX 86 NUCLEUS REFERENCE 
MANUAL. 

The programmable interrupt controller number of 
the slave that is referred to by the slave mask. 
For more information see the iRMX 86 NUCLEUS 
REFERENCE MANUAL. 

The task descriptor has information which is not useful to application 
and system programmers. You should ignore this information. 

The task stack segment displays the address of the stack segment:stack 
pointer (SS:SP) along with a hexadecimal display of the contents of the 
task's stack segment beginning at SS:SP. The task's stack segment 
contains part of the data in your task beginning at SS:SP. 

Crash Analyzer 4-25 

I 



LISTING FORMAT 

MAILBOX REPORT 

The Analyzer lists information about mailboxes in three different ways. 
The first listing (Figure 4-15) appears when nothing is queued at the 
mailbox, the second listing (Figure 4-16) appears when objects are queued 
at the mailbox, and the third listing (Figure 4-17) appears when tasks 
are queued at the mailbox. 

% 

%-----------------------------------_._----------------------------------
% 
% Mailbox report, token = <xxxX> 
% 

%------------------------------------------------------------------------
% 

* 
* 
* 

<deletion pending message> 

Containing job 
Task queue head 
Object cache depth 

Mailbox descriptor 

<xxxX> 
<xxx x> 
<xX> 

Queue discipline 
Object queue head 

<xxxx> 
<xxx x> 

BBBB: 0000 <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> 
BBBB: 0000 <xxxX> <xxxX> <xxxx> <xxxX> <xxxX> <xxxx> <xxxx> <xxxx> 
BBBB: 0000 <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxx> 

Figure 4-15. Mailbox Report (Mailbox With No Queue) 

Crash Analy:~er 4-26 



LISTING FORMAT 

% 

%-----------------------------------------------------------------------
% 
% Mailbox report, token = <xxxX> 
% 

%------------------------------------------------------------------------
% 

* 
* 
* 

% 

<deletion pending message> 

Containing job 
Task queue head 
Object cache depth 

<xxxi> 
<xxx x> 
<x xxX> 

Object queue <xxxX>J/ <yyyy>t 

Mailbox descriptor 

Queue discipline 
Object queue head 

<xxxx> 
<xxx x> 

<xxxX>J / <yyyy>t <xxxx>J / <yyyy>t ••• 

BBBB: 0000 <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxx> <xxxX> 
BBBB:OOOO <xxxx> <xxxx> <xxx x> <xxxx> <xxxx> <xxxx> <xxxx> <xxxx> 
BBBB: 0000 <xxxX> <xxx:X> <xxxX> <xxxx> <xxxX> <xxxX> <xxxX> <xxxX> 

Figure 4-16. Mailbox Report (Hailbox With Object Queue) 

%------------------------------------------------------------------------
% 
% Mailbox report, token = <xxxX> 
% 
%-----------------------------------------------------------------------
% 

* 
* 
* 

<deletion pending message> 

Containing job 
Task queue head 
Object cache depth 

<x xxX> 
<xxx x> 
<x xxX> 

Queue discipline 
Object queue head 

<xxxx> 
<xxx x> 

Task queue <xxxX>J / <yyyy>T <xxxX>J / <yyyy>T <xxxX>J/<yyyy>T ••• 

Mailbox descriptor 

BBBB:OOOO <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> 
BBBB:OOOO <xxxX> <xxxx> <xxxX> <xxxx> <xxxx> <xxxx> <xxxx> <xxxx> 
BBBB:OOOO <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> 

Figure 4-17. Mailbox Report (Mailbox With Task Queue) 

Cr ash AnalY2:er 4-27 



LISTING FORMAT 

The fields in Figures 4-15, 4-16, and 4-17 are as follows: 

<deletion pending This message is present only if there is some type 
message) of deletion pending against the object. The 

messages are either, "DELETION PENDING" or 
"FORCED DELETION PENDING." 

Containing job The token for the job that contains this mailbox. 

Queue discipline The order in which you specified the tasks 
(making requests from the mailbox) be queued. 
This order is set up with RQ$CREATE$MAILBOX. The 
tasks can be order in a "first-in/first-out" 
(FIFO) method or in a priority-based method (PRI). 

Task queue head The token for the task at the head of the queue. 

Object queue head The token for the object at the head of the queue. 

Object cache depth The maximum number of entries allowed in the 
high-performance queue associated with the 
mailbox. The size of this cache was set up when 
the mailbox was created with RQ$CREATE$MAILBOX. 

Object queue 

When the list of tokens in the object queue is 
greater than the object cache depth, you have 
temporarily overflowed your high-performance 
queue. Succeeding objects are stored in a 
low-performance queue associated with the mailbox. 

A list of tokens for the objects queued at the 
mailbox and the:ir containing jobs where: 

<xxxx)J 

<yyyy)t 

The token for the job that contains the 
object. 

The token for the object where "t" is 
one of the following characters that 
identify iRMX 86 object types: 

Chara.cter Object Type ------
C composite 
G segmen t 
J job 
M mailbox 
R region 
S semaphore 
T task 
X extension 

This list appears in the display only if there 
are objects qUE~ued at the mailbox. 

Crash AnalY2:er 4-28 



Task queue 

LISTING FORMAT 

A list of tokens for the tasks queued at the 
mailbox and thedr containing jobs where: 

<xxxX>J 

<yyyy)T 

The token for the job that contains the 
task .. 

The token for the task. 

This list appears in the display only if there 
are tasks queued at the mailbox. 

The mailbox descriptor contains information which is not useful to system I 
and application engineers. You should ignore this information. 

Crash Analyzer 4-29 



LISTING FORMAT 

SEMAPHORE REPORT 

The Analyzer lists information about semaphores in two ways. The first 
listing (Figure 4-18) appears when no tasks are queued at the semaphore, 
and the second listing (Fi~lre 4-19) appears when tasks are queued at the 
semaphore. 

% 

%-----------------------------------------------------------------------
% 
% Semaphore report, token = <xxxx> 
% 

%-----------------------------------------------------------------------
% 

* 

<deletion pending message> 

Con taining job 
Task queue head 
Current value 

<xxxx> 
<xxx x> 
<xxxx> 

Queue discipline 
Maximum value 

<xxxx> 
<xxx x> 

* Semaphore descriptor 
* 

BBBB:OOOO <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxX> <xxxx> <xxxx> 
BBBB:OOOO <xxx x> <xxxx> <xxxx> <xxxX> <xxx x> <xxxX> <xxxx> 

Figure 4-18. Semaphore Report (Semaphore With No Queue) 

Crash Analyzer 4-30 



LISTING FORMAT 

% 
%----------------------_._-----------------------------------------------
% 
% Semaphore report, token = <xxxv 
% 

%-----------------------------------------------------------------------
% 

* 

<deletion pending message> 

Containing job 
Task queue head 
Current value 

<xxxv 
<xxx x> 
<xxxv 

Queue discipline 
Maximum value 

<xxxx> 
<xxxx> 

Task queue <xxxx>J / <yyyy>T <xxxvJ / <yyyy>T <xxxx>J/<yyyy>T ••• 

* Semaphore descriptor 

* 
BBBB:OOOO <xxxv <xxxv <xxxv <xxxv <xxxv <xxxx> <xxxv <xxxx> 
BBBB:OOOO <xxx x> <xxxv <xxxx> <xxxx> <xxxX> <xxxx> <xxx x> <xxxx> 

Figure 4-19. Semaphore Report (Semaphore With Task Queue) 

The fields in Figures 4-18 and 4-19 are as follows: 

<deletion pending 
message> 

Con taining job 

Queue discipline 

Task queue head 

Maximum value 

Current value 

This message is present only if there is some type 
of deletion pending against the object. The 
messages are either, "DELETION PENDING" or 
"FORCED DELETION PENDING." 

The token for the job which contains the 
semaphore. 

The way the tasks are ordered in the queue. The 
tasks can be ordered in a "first-in/first-out" 
(FIFO) method or a priority based method (PRI) 
when the semaphore is created with 
RQ$CREATE$SEMAPHORE. 

The token for the task at the head of the queue. 

The maximum number of units the semaphore can 
have. This nu.mber was set when the semaphore was 
ereated with RQ$CREATE$SEMAPHORE. 

The number of units currently contained in the 
semaphore. 

Crash Analyzer 4-31 



I 

Task queue 

LISTING FORMAT 

A list of tokens for the tasks queued at the 
semaphore and their containing jobs where: 

<xxxx)J The token for the job that contains 
task. 

<yyyy)T The token for the task. 

This list appears in the display only if there 
are tasks queued at the semaphore. 

the 

The semaphore descriptor has information which is not useful to 
application and system programmers. You should ignore this information. 

Crash AnalyzE!r 4-32 



LISTING FORMAT 

REGION REPORT 

The Analyzer lists information about regions in two ways. The first list­
ing (Figure 4-20) appears when no tasks are queued at the region, and the 
second listing (Figure 4--21) appears when tasks are queued at the region. 

% 

%------------------------------------------------------------------------
% 
% Region report, token = <xxxi> 
% 

%------------------------------------------------------------------------
% 

* 

<deletion pending message> 

Con taining Jo b 
Entered task 

<xxxi> 
<xxx x> 

Queue discipline <xxxi> 

* Region descriptor 

* 

% 

BBBB:OOOO <xxxi> <xxxi> <xxxX> <xxxi> <xxxX> <xxxX> <xxxi> <xxxi> 
BBBB:OOOO <xxxx> <xxx x> <xxx x> <xxxx> <xxxx> <xxxx> <xxx x> <xxxx> 

Figure 4-20. Region Report (Region With No Queue) 

%-----------------------------------------------------------------------
% 
% Region report, token = <xxxi> 
% 

%-----------------------------------------------------------------------
% 

* 

<deletion pending message> 

Con taining Jo b 
Entered task 

Task queue 

<xxxi> 
<xxxx> 

Queue discipline 

<xxxi>J/<yyyy>T <xxxX>J/<yyyy>T 

<x xxX> 

<xxxx>J / <yyyy>T ••• 

* Region descriptor 

* 
BBBB: 0000 <xxxi> <xxxX> <xxxX> <xxxi> <xxxX> <xxxX> <xxxi> <xxxi> 
BBBB:OOOO <xxxx> <xxxx> <xxxx> <Xx.xx> <xxx x> <xxxx> <xxxx> <xxxx> 

Figure 4-21. Region Report (Region With Task Queue) 

Crash Analyzer 4-33 



I 

LISTING FORMAT 

The fields in Figures 4--20 and 4-21 are as follows: 

<deletion pending This message is present only if there is some type 
message) of deletion pending against the object. The 

messages are either, "DELETION PENDING" or 
"FORCED DELETION PENDING." 

Containing job The token for the job that contains the region. 

Queue discipline The way you ordered the tasks in the queue. The 
tasks can be ordered in a "first-in/first-out" 
(FIFO) method or in a priority-based method (PRI) 
when the region is created with RQ$CREATE$REGION. 

Entered task The token for the task that is currently 
accessing information guarded by the region. 

Task queue A list of tokens for the tasks queued at the 
region and their containing jobs where: 

<xxxx)J 

(yyyy)T 

The token for the job that contains the 
task. 

The token for the task. 

This list appears in the display only if there 
are tasks queued at the region. 

The region descriptor contains information which is not useful to 
application and system Engineers. You should ignore this information. 

Crash AnalyzE~r 4-34 



LISTING FORMAT 

EXTENSION OBJECTS IN JOB 

This section of the listing displays the tokens for all of the extension 
objects contained by the job as shown 1.n Figure 4-22. It then displays 
information about each extension along with its descriptor. 

% 
%----------------------------------------------------------------------
% 
% Extension objects in job <xxxX> 
% 

%----------------------------------------------------------------------
Token Extension 

type 

<aaaa> <bbbb> 

Deletion 
mailbox 

<cccc> descriptor: 
<deletion pending message> 

BBBB:OOOO <xxxx> <xxxx> ••• 
BBBB:OOOO<xxxx>xxxx ••• 
<xxxx>J/ <yyyy>X 

• 
• 

<aaaa> <bbbb> 

composite list: 

<cccc> descriptor: 

composite lis t: 

<xxxx>J/ <yyyy>X ••• 

BBBB:OOOO<xxxx>xxxx ••• 
BBBB:OOOO<xxxx>xxxx ••• 
<xxxx>J/ <yyyy>X 
< x xxX> J / <yyyy>X ••• 

Figure 4-22. Extension List 

The fields in Figure 4-22 are as follows: 

<aaaa> The token for the extension object. 

<bbbb> The extension type code for the extension. This 
code was specified when the extension was created 
with RQ$CREATE$EXTENSION. This extension object 
represents the license to create composite 
objects of this type./ 

<cccc> The token for the mailbox to which this extension 
goes when it is to be deleted. This mailbox was 
specified when the extension was created with 
RQ$CREATE$EXTENSION. 

<deletion pending This message is present only if there is some type 
message> of deletion pending against the object. The 

messages are e:ither, "DELETION PENDING" or 
"FORCED DELETION PENDING." 

Crash Analyzer 4-35 



LISTING FORMAT 

The extension descriptor contains information which is not useful to 
application and system Engineers. You should ignore this information. 

The composite list consists of a list of composite tokens and the jobs 
that contain the tokens for the objects of this extension type, where: 

<xxxX>J 

<yyyy)X 

The token for the job that contains the object. 

The token for the object where "X" identifies the 
token as an extension. 

Crash Analyzer 4-36 



LISTING FORMAT 

COMPOSITE LIST REPORT 

If the job contains any composite objec.ts, the Analyzer displays a 
Composite List Report. The Composite List Report consists of the 
following sections: 

• Composite List Report Header 

• Extension Sub-Header 

• Composite Object Report 

The Composite List Report contains a composite list report header 
followed by one extension sub-header (Figure 4-23) for each extension 
type with composite objects in the job. Each extension sub-header 
consists of information about the exten.sion type, the extension object, 
the extension's containing job, and the deletion mailbox for the 
extension object. 

Each extension sub-header is followed by a list of Composite Object 
Reports. The Analyzer displays either a general composite object report 
or one of six special reports for Basie I/O System (BIOS) composites. 
The types of reports for BIOS composites are as follows: 

• Physical File Driver Connection. Report 

• Steam File Driver Connection Report 

• Named File Driver Connection Report 

• Dynamic Device Information Report 

• Logical Device Object Report 

• I/O Job Object Report 

Each of the special reports contain information from the general 
composite object report along with information special to the specific 
composite. Because some fields shown 1.n the figures in this section are 
repeated, this manual avoids unnecessary repetition by explaining only 
those fields introduced in the figure. 

Crash AnalY2:er 4-37 



LISTING FORMAT 

COMPOSITE LIST REPORT HEADER AND EXTENSION SUB-HEADER 

Figure 4-23 shows the composite list rt~port header followed by an 
extension sub-header. Each sub-header contains general information 
concerning the extension object. 

% 

NOTE 

Remember that the extension object can 
be contained in a different job than 
the one that contains the composite 
object. You should refer to the 
Extension Report in the extension's 
containing job for more detailed 
information on the E~xtension 0 bjec t. 

%-----------------------------------_._----------------------------------
% 
% Composites in job <xxxv 
% 

%-----------------------------------_._----------------------------------
% 

* 
* 
* 
* 
* 
* 

Extension type 
Extension object 
Extensions containing job 
Deletion mailbox 

<xxxx> 
<xxx x> 
<xxxx> 
<xxx x> 

Figure 4-23. Composite List Report Header And Extension Sub-Header 

The fields in the extension's subheader (Figure 4-23) are as follows: 

Extension type The extension type code for the composite. 
This code was specified when the composite was 
created with RQ$CREATE$COMPOSITE. 

Extension object The token for the extension object that 
represents the license to create this type of 
composite. 

Extensions containing The token for the job that contains the 
job composite. 

Deletion mailbox The token for the mailbox to which this 
composite goes when it is to be deleted. This 
mailbox was specified when the extension was 
created with RQ$CREATE$EXTENSION. 

Crash Analy~~er 4-38 



LISTING FORMAT 

GENERAL COMPOSITE OBJECT REPORT 

Figure 4-24 shows the composite object report for all composites except 
special composites. Special composites include Physical File Driver 
Connection reports, Stream File Driver Connection reports, Named File 
Driver Connection reports, Dynamic Device Information, Logical Device 
Information, and I/O Job Object reports. These special composites 
displays appear in place of the general composite object report. 

* * Composite object, tokl~n = <xxxX> 

* 
<deletion pending message> 
Extension type <xxxX> 

<xxx x> 
<xxxX> 

descriptor: BBBB:OOOO <xxxx> <xxxx> ••• 
BBBB:OOOO <xxx x> <xxxx> ••• 
BBBB:OOOO <xxxX> <xxxx> ••• 

Number of slots 
Object size 
Component Li st <xxxX>J / <yyyy>t <xxxx>J / <yyyy>t <xxxx>J/<yyyy>t ••• 

Figure 4-24. General Composite Object Report 

The fields in Figure 4-24 are as follol\rs: 

<deletion pending 
message> 

Extension type 

Number of slots 

Object size 

This message is present only if there is some type 
of deletion pending against the object. The 
ml~ssage s are ei. ther, "DELETION PENDING" or 
"FORCED DELETION PENDING." 

The extension type code for the composite. This 
code was specified when the composite was created 
wi t h RQ$CREATE~;COMPOS ITE • 

The number of positions available in the 
composite for tokens of component objects. This 
value was set 'tIThen the composite was created with 
RQ$CREATE$COMPOSITE. 

The size of the object in paragraphs. 

The descriptor contains information which is not useful to application 
and system Engineers. You should ignorE~ this information. 

The component list consists of a list of tokens and their containing jobs 
for the objects that curr,ently make up the composite, where: 

Crash Analyzer 4-39 

I 



<xxxX>J 

<yyyy)t 

LISTING FORMAT 

The token for the job that contains the object. 

The token for the object where "t" is one of the 
following characters that identify iRMX 86 object 
types: 

Character Object Type 

C composite 
G segment 
J job 
M mailbox 
R region 
S semaphore 
T task 
X extension 

Crash Analyzer 4-40 



LISTING FORMAT 

PHYSICAL FILE DRIVER CONM~CTION REPORT 

Figure 4-25 shows the listing for a connection to a physical file. 

* 
* 
* 

Physical file driver connection, token <xxxv 

<deletion pending message> 
Extension type <xxxv descriptor: BBBB:OOOO <xxxv <xxxv <xxxx> ••• 

BBBB:OOOO <xxxx> <xxxx> <xxxx> ••• 

Con taining job 
Open mode 
File node 
Num of conn 
File type 

<xxxv 
<xxxv 
<xxxv 
<xxxv 
<xxxv 

BBBB:OOOO <xxx x> <xxxx> <xxxx> ••• 
Conn flags <xx> Access <xxx x> 
Open share <xxxv File pointer <xxxx:xxxx> 
Device desc <xxxv DUIB pointer <xxxx:xxxx> 
Num of readers <xxxv Num of writers <xxxx> 
File share <xxxv Device conn <xxx x> 

Figure 4-25. Physical File Dr iver Connection Report 

The fields introduced in Figure 4-25 are as follows: 

Conn flags 

Access 

The flags for the connection. The connection is 
active if bit 1. is set to one; the connection is 
a device connection if bit 2 is set to one. 

The access rights for this connection. The 
access rights are displayed in the same format as 
the display access rights for the DIR command in 
the Human Interface. This display uses a single 
character to represent a particular access 
right. If the file has the access right, the 
character appears. However, if the file does not 
have the access right, a dash (-) appears in the 
character position. The access rights along with 
the characters that represent them are as follows: 

------- Delete 

rr==== 
List 

Directory file s: Add 
r---- Change 

DLAC 

DRAU 

ll'---- Update 
Data Files: 

-~~=== 
Append 
Read 

------- Delete 

Crash AnalY2:er 4-41 



Open mode 

Open share 

File pointer 

File node 

Device desc 

DUIB pointer 

LISTING FORMAT 

The mode established when this connection was 
opened. The possible values are: 

Open ModE:' Description 
Closed Connection is closed 
Read Connection is open for reading 
Write Connection is open for writing 
R/W Connection is open for reading 

and writing 

If this field ean't be interpreted, the Analyzer 
displays the aetual hexadecimal value followed by 
a space and two question marks. This value is 
set during a RQ$S$OPEN or RQ$A$OPEN system call. 
See the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL 
or the iRMX 86 EXTENDED I/O SYSTEM REFERENCE 
MANUAL for more information. 

The sharing stc:Ltus established when this 
connection was opened. The possible values are: 

Share Mode 
Private 
Readers 
Writers 
ALL 

Description 
Private use only 
File can be shared with readers 
File can be shared with writers 
File can be shared with all 
users 

If this field ean' t be interpreted, the Analyzer 
displays the aetual hexadecimal value followed by 
a space and two question marks. This value is 
set during an RQ$S$OPEN or an RQ$A$OPEN system 
call. See the iRMX 86 BASIC I/O SYSTEM REFERENCE 
MANUAL or the lRMX 86 EXTENDED I/O SYSTEM 
REFERENCE MANUAL for more information. 

The current contents of the file pointer for this 
connection. 

A token for a segment that the Operating System 
uses to maintaln information about the 
connection. The information in this segment 
appears in the next two fields. 

A token for the segment that contains the device 
descriptor. The device descriptor is used by the 
Operating SystE!m to maintain information about 
the connections to the device. 

The address of the Device Unit Information Block 
(DUIB). See the GUIDE TO WRITING DEVICE DRIVERS 
FOR THE iRMX 86 AND iRMX 88 I/O OPERATING SYSTEMS 
for more infornmtion on the DUIB. 

Crash AnalY2:er 4-42 



Num of conn 

Num of readers 

Num of writers 

File type 

File share 

Device conn 

LISTING FORMAT 

The number of eonnections to the file. 

The number of eonnections currently open for 
reading. 

The number of eonnections currently open for 
writing. 

The type of file. This field is for Named files 
only so it does not apply (N/A) to this display. 

The share mode of the file. This parameter 
define s how thE~ file can be opene d. The possible 
values are: 

Share Mode Description 
Private Private use only 
Readers File can be shared with readers 
Writers File can be shared with writers 
ALL File can be shared with all users 

If this field ean't be interpreted, the Analyzer 
displays the ac.tual hexadecimal value followed by 
a space and two question marks. This value is 
set during RQ$S$OPEN or RQ$A$OPEN system calls. 
See the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL 
or the iRMX 86 EXTENDED I/O SYSTEM REFERENCE 
MANUAL for more information. 

The number of c.onnections to the device. 

Crash Analyzer 4-43 



LISTING FORMAT 

STREAM FILE DRIVER CONNECTION REPORT 

Figure 4-26 shows the listing for a stream connection. 

* * Stream file driver eonnection, token <xxxx> 
* 

<deletion pending message> 
Extension type <xxxX> descriptor: 

Containing job <xxx x> Conn flags 
Open mode <x xxX> Open share 
File node <xxx x> Device desc 

BBBB:OOOO <xxxX> <xxxX> <xxxX> ••• 
BBBB:OOOO <xxxx> <xxx x> <xxxx> ••• 

<xx> Access <xxx x> 
<x xxX> 
<xxx x> 

Num of conn <x xxX> Num of readers <x xxX> 

File pointer <xxxxxxxx> 
DUIB pointer <xxx x: xxx x> 
Num of writers <xxxx> 
Device conn <xxx x> File type <xxx x> File share <xxx x> 

Req queued <x xxX> Queued conn <x xxX> Open conn <xxxx> 

Figure 4-26. Stream File Driver Connection Report 

The fields introduced in Figure 4-26 are as follows: 

Req queued The number of requests that are currently queued 
at the stream file. 

Queued conn The number of connection s that are currently 
queued at the stream file. 

Open conn The number of connections that are currently open 
on the stream file. 

See the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for more information 
about the previous fields. 

Crash Analyz(~r 4-44 



LISTING FORMAT 

NAMED FILE DRIVER CONNECTION REPORT 

Figure 4-27 shows the listing for a named file connection. 

* * Named file driver connection, token <x xxX> 
* 
<deletion pending message> 
Extension type <xxxx> descriptor:: 

Containing job <xxx x> Conn flags 
Open mode <x xxX> Open share 
File node <xxx x> Device dese 

BBBB:OOOO <xxxx> <xxxx> <xxxx> ••• 
BBBB:OOOO <xxxx> <xxxx> <xxxx> ••• 

<Xx> Access <xxx x> 
<x xxX> 
<xxx x> 

Num of conn <x xxX> Num of readers <x xxX> 

File pointer xxxxxxxx 
DUIB pointer <xxxx:xxxx> 
Num of writers <xxxx> 

File type <xxx x> File share <xxx x> Device conn <xxxx> 
Fnode flags <x xxX> Owner <x xxX> File ID <x xxX> 
File gran <xxx x> Fnode ptr(s) <xxx x : xxxx> Total blocks <xxxxxxxx> 
Alloc size <xxxxxxxX> File size <xxxxxxxX> Volume name <xxxxxx> 
Volume gran <xxx x> Volume sizE~ <xxxxxxxx> 

Figure 4-27. Named File Driver Connection Report 

The fields introduced in Figure 4-27 are as follows: 

File type 

Fnode flags 

The type of file. The possible values are: 

File Type 
DIR 
DATA 

Description 
Directory file 
Data file 

A word contain:lng flag bits. Each bit has a 
corresponding description. If tha t bi t is one, 
then the corresponding description is true; if 
the bit is zero, then the corresponding 
description is false. 

Bit 
o 
1 
2 
3-4 
5 
6 

7-15 

Description 
This fnode is allocated 
The file is a long file 
Pr imary fno de 
Reserved 
This file has been modified 
This file is marked for 
deletion 
Reserved 

Crash Analy:~er 4-45 



Owner 

File ID 

File gran 

Fnode ptr(s) 

Total blocks 

Alloc size 

File size 

Volume name 

Volume gran 

Volume size 

LISTING FORMAT 

The ID of the owner of the file. If this field 
has a value of FFFF, then the field is 
interpreted as "WORLD." See the iRMX 86 DISK 
VERIFICATION UTILITY REFERENCE MANUAL for more 
information. 

The number of the file's fnode. The fnode is a 
Basic I/O System data structure containing file 
attribute and status data. 

The granularity of the file (in volume 
granularity units). 

The values of the fnode pointers. See the iRMX 
86 DISK VERIFICATION UTILITY REFERENCE MANUAL for 
more information. 

The total number of volume blocks currently used 
for the file; this includes indirect blocks. See 
the iRMX 86 DISK VERIFICATION UTILITY REFERENCE 
MANUAL for more information. 

The total size (in bytes) allocated to the file. 
See the iRMX 86 DISK VERIFICATION UTILITY 
REFERENCE MANUAL for more information. 

The size (in bytes) of the file. See the iRMX 86 
DISK VERIFICATION UTILITY REFERENCE MANUAL for 
more information. 

The name of the volume. 

The granularity (in bytes) of the volume. 

The size (in bytes) of the volume. 

Crash Analyzer 4-46 



LISTING FORMAT 

DYNAMIC DEVICE INFORMATION REPORT 

Figure 4-28 shows the information the Analyzer displays when a file has a 
dynamically created Device Uni t Information Block (DUIB). 

* * Dynamic device information for connection <x xxx> 

* 
File drivers 
Device functs 

<x xxX> 
<xxxX> 

Device gran 
Device name 

<x xxX> 
<xxxx> 

Device size 

Figure 4-28. Dynamic Device Information Report 

<xxxx> 

The fields introduced in Figure 4-28 are as follows: 

File drivers 

Device gran 

Device size 

Device functs 

Device name 

The validity of the file driver. The bits are 
associated with the file drivers as follows: 

Bit File Driver 

o physical 

1 stream 

3 named 

The value of the the volume granularity specified 
when the volume was formatted. 

The number of bytes of information that the 
device-unit can store. 

The I/O function validity for this device-unit. 
The bits associated with the functions as follows: 

Bit Function 

0 READ 
1 WRITE 
2 SEEK 
3 SPECIAL 
4 ATTACH DEVICE 
5 DETACH DEVICE 
6 OPEN 
7 CLOSE 

The name of the DUIB. 

See the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEM for 
more information concerning the previous fields. 

Cr ash Analyzer 4-47 



LISTING FORMAT 

LOGICAL DEVICE OBJECT REPORT 

The listing in Figure 4--29 shows the device names and system logical 
names of the logical device composite object. 

* * Logical device object, token <xxxX> 

* 
<deletion pending message> 

Extension type <xxxX> descriptor BBBB:OOOO xxxx xxxx xxxx ••• 

Containing job 
Owner ID 

Device name 

<xxxX> 
<xxxX> 

BBBB:OOOO 
Physical conn <xxxX> 

xxxx xxxx xxxx ••• 
File driver xx 

Hex representation 

Sys logical name(s) 

Name 
<aaaaaaa> 
<aaaaaaa> 

Length 
<bb> 
<bb> 

<xx xx xx xx xx xx ••• > 
<xx xx xx xx xx xx ••• > 

Figure 4-29. Logical Device Object Report 

The fields introduced in Figure 4-29 are as follows: 

Physical conn 

Device Name 

The token for the physical connection. 

The I-to I4-character name under which the 
logical device object is cataloged. This name 
was specified when RQ$LOGICAL$ATTACH$DEVICE was 
called. 

Sys logical name(s) The I-to I4-character name under which the the 
system logical name is cataloged. This name was 
specified when RQ$LOGICAL$ATTACH$DEVICE was 
called. 

<bb> 

<xx> 

The length of the device name or the system 
logical name. This name was specified in the 
DUIB during Basic I/O System configuration. 

The hexadecimal representation of each letter in 
the device name or the system logical name. 

Crash Analyz'~r 4-48 



LISTING FORMAT 

I/O JOB OBJECT REPORT 

The section of the listing in Figure 4-30 displays information about exit 
messages in I/O job objeets. 

* * I/O job object, token <xxxX> 

* 
Extension type 

Exit message token 
Exit message mbx 

<x xxX> 

<xxx x> 
<x xxX> 

descriptor: BBBB:OOOO <xxxX> <xxxx> ••• 
BBBB:OOOO <xxxX> <xxxx> ••• 

Figure 4-30. I/O Job Object Report 

The fields introduced in Figure 4-30 are as follows: 

Exit message token The token for the segment containing the exit 
message. 

Exit message mbx The mailbox that contains the exit message 
segmen t. 

See the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL for more information 
about the previous fields. 

Crash Analyzer 4-49 



LISTING FORMAT 

SUMMARY OF ERRORS 

Figure 4-31 shows the header for the summary of errors. This summary 
lists all error messages that the Analyzer encountered during the 
analysis. The summary also includes the page number of the listing on 
which the error occurred. For more information on error messages and 
their meanings, see the section in this chapter entitled, "Error 
Messages." 

% 

%-----------------------------------------------------------------------
% 
% Summary of errors detected by analysis 
% 

%-----------------------------------------------------------------------
% 

error message Page xx 

• 
error message Page xx 

Figure 4-31. Summary Of Errors 

The fields in Figure 4-31 are as follows: 

error message 

page 

The error message(s) that the Analyzer detected 
during analysis. 

The page number of the listing on which the error 
message is printed. 

Crash Analyz'~r 4-50 



LISTING FORMAT 

ERROR MESSAGES 

The Analyzer can detect two kinds of errors: 

• Operational Errors 

Errors that occur when you invoke the Analyzer or errors that 
occur during file operations. These errors are described in 
Chapter 3. 

• Dump File Errors 

Errors within the dump file. 

This section lists the Dump File Errors error messages and their 
descriptions. Dump file errors are errors that the Analyzer detects 
within the dump file. The Analyzer pri.nts these errors in the section of 
the listing in which they occur. It also prints the error messages along 
with the page numbers on which they occur in the section of the listing 
entitled "Summary of Errors Detected by Analysis." 

Message 

Nucleus entry or data 
segment corrupted, analysis 
terminated 

Internal iRMX 86 <type) 
field corrupted at 
(BBBB): <0000) 

Internal iRMX 86 <typ,e) 
field corrupted at 
(BBBB):<OOOO) Object 
token: <cccc) 

Stack overflow 

Registers not available 

Description 

The Analyzer uses the Nucleus 
interrupt vector to locate the Nucleus 
code segment. It then uses the code 
segment to find the data segment. 
ThE~ Analyzer uses the data segmen t as 
the basis for analysis. If any item 
in this chain is damaged, the 
Analyzer cannot function correctly. 

The Analyzer discovered an error 
in an internal operating system 
structure of <type) BYTE, WORD, or 
POINTER. The problem is located at 
base (BBBB) and offset <0000). 

The Analyzer discovered an error 
in an internal operating system 
structure of <type) BYTE, WORD, or 
POINTER. The problem is located at 
base (BBBB) and offset <0000). The 
error is in the object whose token is 
<cecc). 

This message appears when a task 
ov(~rflows its stack segment. 

The processor's registers were not 
available to the Dumper. This 
message appears only under the 
"Curren t Processor State" portion 0 f 
the listin g. 

Crash Analy~~er 4-51 



LISTING FORMAT 

Task stack segment not 
distinct: above display 
may contain other data in 
addition to stack 

Task SS:SP not known: 
stack segment not displayed 

Unable to locate complete 
<block name>. Missing area 
is <address> for <size> bytes 

Unable to located job pool 
information 

Unable to locate list of 
<object type> in job <job 
token> 

The task's stack is in a segment that was 
not allocated when the task was created. 
This message appears following the task 
segmen t listing because the Anaiyzer 
cannot distinguish stack data from other 
data in the segment. Therefore, this 
particular message indicates a lack of 
information necessary to the Crash 
Analyzer rather than a problem. 

The Analyzer could not find a valid 
stack segment:stack pointer (SS:SP). 
ThiB message appears following a task 
segment display. This particular 
message indicates a lack of information 
necE~ssary to the Crash Analyzer rather 
than a problem. 

The Analyzer could not find the entire 
<block name>. The block name is one of 
the following: 

connection object 
jo b directory 
task stack 
NPX save area 
composite lis t 
mail bo x cache 
logical device object 
segmen t content s 

The <address> is the base and offset 
address of the missing information. The 
<size> is the size of the missing 
information in hexadecima 1. 

ThiB message appears in the pool report 
for a job when the Analyzer cannot find 
the information describing a job's pool. 

The Analyzer cannot find the list of a 
particular object type for a job. This 
mesBage appears in place of the list of 
an object type in the section entitled, 
"Objects Contained by Job" The <object 
tYPE!> is one of the following: 

child jobs 
tasks 
mailboxes 
semaphores 
regions 
segments 
extensions 
composites 

Crash AnalY2:er 4-52 



LISTING FORMAT 

Unable to locate file node 
for <connection token> 

Unable to locate device 
descriptor for connection 
<connection token> 

Unable to locate object 
queued on mailbox <token>. 
Token of missing object is 
<0 bj ect token> 

End of stack segment not 
known; stack segment not 
displayed 

LINK ERROR 

The <job token> is the token for the 
jo lb in which the Analyzer canno t find 
th,~ object type. 

Th:is message appears when the Analyzer 
is unable to read the contents of the 
fnode because the pointer to the 
fnode has been destroye d. 

Th:is message appears when the Analyzer 
cannot find the device descriptor for 
a connection. This may happen 
because one of your tasks wrote over 
and internal data structure. 

This message appears in the "Mailbox 
Report" when the Analyzer cannot find 
an object queued at the mailbox. 

This message appears in the "Task 
Report" when the Analyzer canno t find 
thE~ end of the stack segment. 

The iRMX 86 Operating System maintains tokens in doubly-linked lists. 
So, whenever a listing contains a token, the Analyzer automatically 
checks the validity of that token by looking at the token's forward links. 

A forward link error means that the iRMX 86 data structures have been 
damaged or destroyed. The most common reason for this problem is 
overwriting. You or one of your tasks may have accidentally written over 
part of the Operating System's data structures and/or code. Another 
possible reason for the problem (if you are using a non-maskable 
interrupt) could be that you interrupted the Nucleus while it was setting 
up the links. 

If a token's forward link is bad, the Analyzer generates a forward link 
error message along with the information that the particular listing 
usually displays. The forward link error message is as follows: 

Forward link ERROR: <aaaa> --> <bbbb> ?<cccc> <-- <bbbb> 

The arrows represent links. A right pointing arrow represents a forward 
link. The object with the token <aaaa> is linked forward to the object 
with token <bbbb>. The olbject with the. token <bbbb> should be linked 
back to the object with the token <aaaa> rather than <cccc>. Therefore, 
the Crash Analyzer assumes the link from <aaaa> to <bbbb> is incorrect 
and terminates the analysis of the objects in the portion of the listing 
in which the error appears. 

*** 
Crash Analyzer 4-53 





Primary references are underscored. 

analysis header 4-2 
Analyzer 1-2 

invoking of 3-5 
available pool memory areas 4-17 

bit numbers 
BYTE format 

iii 
3-6, 4-20 

composite list 4-35 
composite list report 
composite list report 
configuring the Dumper 

lCU 2-1 

4-37 
header 4-38 

2-1 

interactive configurator 2-1 
connection reports 

physical file 4-41 
stream file driver 4-44 
named file driver 4-45 

CPU state 4-3 
current processor state 4-3 

device unit information block (DUlB) p0inter 4-42 
DUMP$BOOT$INlT system call 2-2 
dump-filename 3-5 
Dumper 1-2 

invoking of 3-4 
dynamic device information report 4-47 

error messages 3-7, 4-50, 4-51 
errors in invoking 3-7 
errors occuring within the dump filE~ 4-51 
operational 3-7, 3-52 
dump file errors 3-52 

error summary 4-50 
extension descriptor 4-35 
extension list 4-35 
extension objects in job 4-35 
extension sub-header 4-37, 4-38 
extensions in system 4-8 

general composite object report 4-39 

how to use the Crash Analyzer 3-1 

Crash Analyzer Index-1 

INDEX 



I/O job object report 4-49 
initializing the Dumper 2-1 
interrupt task 4-22 
interrupt tasks 4-9 

INDEX (continued) 

invoking the Analyzer 3-5 
invoking the Crash Analyzer 3-1 
invoking the Dumper 3-4 
iSDM 86 Monitor 2-1 

job descriptor 4-11 
job information 4-11 
job report header 4-11 
job report organization 4-10 
job tree 4-5 

list of extensions in system 4-8 
list of interrupt tasks 4-9 
list of ready tasks 4-6 
list of sleeping tasks 4-7 
listings 4-1 
loading the Dumper 2-1 
logical device object report 4-48 

mailbox descriptor 4-26, 4-27 
mailbox report 4-26 
mailbox with no queue 4-26 
mailbox with object queue 4-27 
mailbox with task queue 4-27 

named file driver connection report 4-45 
non-interrupt task 4-21 
non-maskable interrupt 2-1 
Numeric Processor Extension (NPX) state 4-3 

object directory 4-14 
objects contained by job 4-16 
organization of manual 1-1 

parts of the Crash Analyzer 1-2 
physical file driver connection report 4-41 
pictorial representation of syntax 3-3 
pool report 4-17 
print-filename 3-5 

re-initializing the Dumper 2-2 
re-Ioading the Dumper 2-2 
ready tasks 4-6 
region descriptor 4-33 
region report 4-33 
region with no queue 4-33 
region with task queue 4-33 
release diskettes 1-2 
root job 4-5 
ROOTJ/DELET 4-6, 4-7 

Crash Analyzer Index-2 



INDEX (continued) 

ROOTJ/IDLET 
RUN command 
running tasks 

4-6 
3-5 

4-6 

SCRS86 command 3-5 
SDUMPR.MP2 map file 2-1 
segments in job 4-19 
semaphore descriptor 4-30, 4-31 
semaphore report 4-30 
semaphore with no queue 4-30 
semaphore with task queue 4-31 
Series III Microcomputer Development System 1-2 
sleeping tasks 4-7 
stream file driver connection report 4-44 
summary of errors 4-50 
syntax 3-3 

task descriptor 4-21, 4-22 
task report 4-21 
task stack segment 4-21, 4-22 
tasks waiting for object lookup 4-14 

using the Crash Analyzer 1-1, 3-2 

VM command 3-4 

WORD format 3-6, 4-20 

*** 
Crash Analyzer Index-3 




	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	idx01
	idx02
	idx03
	idx04

