iRMX™ 86 DEBUGGER
REFERENCE MANUAL

CONTENTS

PAGE

CHAPTER 1

INTRODUCTION

Overview of 1IRMX™ 86 Operating System Debugging TOOlSeeeesecssccccscs
IRMX 86 Debuggereeccsceessescosssesesosscsssessocsscssossansssnna
System Debug MONItOTSeesseseccrescssctssssscsssessssssssasssnessses
In~Circuit EmulatoOrSeceesrecsesccccsessossscscosscossscscossosscsssscss
Crash AnalyzZereacececesessececsessocstcscsssscssscssossoscssssscsnse

iRMX™ 86 Debugger Implementation on IAPY 186/286 CPUSececcsscssccss

Overview of the Capabilities of the iRMX" 86 Debugger.eecececessscs

Invoking the Debuggereecessecesessccsccsoscesosssscssocsssssscsscss

Pt et e ek e et fed
I
WWNNN =

CHAPTER 2
SPECIAL CHARACTERS
End-of—Line Characters'.....D......O....‘.'.'....'...........I......

Control-SOoocoot.n!oOI.O..oo.lo...oDo.loool..ooa'..'..ooo.o'..n'.'.

Control—Q"C....'O....'........'.......Q.l........'...Q'...'.......

CONLTO0l—Deceososscsocscosccsenscsssosoossssssssssssssosscsssesssscscssssoce

l\)l\DtTJNN
N = i bt

Control-Dooo...c.eoo..oc..-oooo-olo.o'ono.'olo..'...."..........oo

CHAPTER 3

COMMAND SYNTAX
ConventionSeseecsosessessesessescsosscssossecsscressossssssesvcsscssons 3-1
Pictorial Representation O0f SyntaXessesesecscossosscccscccccssnsocne 3-1
Special Symbols for the Debuggereiesceccccescssssssssccssassvsessccsncs 3-2

CHAPTER 4

DEBUGGER COMMANDS

Command Dictionary......................’..........................

Symbolic Name CommandSeecscsccssecsscesccssoscssossscscssocscoscsonsscss
Changing Numeric VariableS.eececcessoesoccssesccosncssansssrvssscnsse
Defining Numeric Variables——Deccecosccscsscsoscscssoscssccocosnsssnse
Listing Numeric and Breakpoint Variables——L.seccescscesvscccceccoss
Deleting Numeric Variables——Z.seececcovesscsccesoscsccrcsnssscsse

Breakpoint COmMMANdSecesesssoccessscosescssscsscsosrsssscscscsnsscscsose
Execution Breakpoint DiSplayeeseccccoscescesosscccscsosccccsscocese 4-11
Exchange Breakpoint Displayeecescccccecccsscscsccccstscaccssncscoss 4-12
Exception Breakpoint DiSplaVeeececcesccecsscsossesossesscssccscsssoes 4-13
Exception Breakpoint DifferenceSecececccceeccsssssccosssssssscccce 4=14
Viewing Breakpoint Parameters——Beeessceescesococecscsvccssssonsssse 4-15
Viewing the a Breakpoint List—=BLesescecossccscescosesccssasccscns 4~18
Establishing the Breakpoint Task——BTeesecsssescesscscscccccsscosse 4-19
Listing the Breakpoint Task—=-—BTececcevecscccsesvsccssccscscssoscnes 4-20

I
OB

9~P~#~$-D-D~D

I
—
(@)

Debugger iii

CONTENTS
(continued)

CHAPTER 4 (continued)
Changing a Breakpointesesesesssossceesnocsscssscscsscssssssssccssncs 4-21
Defining a Breakpoint—=-DBesecescscsecssnccosssessconsssosesscscsasss 4-23
Examining a Breakpointeeeecesceososcenscoscrssscsssscsscssossssnssssane 4-25
Exchange Breakpoint OUtPUteececescscscnesssscsescsscssscsccsssssonsns 4-26
Resuming Task ExXecUtion——Geescocescsssscsscecsscsscsscsscccasssecs 4-27
Altering the Breakpoint Task's NPX Registers——Neescoesocoossccenne 4-28
Viewing the Breakpoint Task's NPX Registers——N.escessscossossscsece 4-30
Altering the Breakpoint Task's Registers——Reesesocescccssccssscss 4-32
Viewing the Breakpoint Task's Registers——Reecesesscccccsssssccccs 4-34
Deleting a Breakpoint——Z.ceeeeesesscencosssccscsssscsscssssssssscs 4-36

PAGE

Memory COmmAandSeeseescescecssssccscscsscencsssssscsesscsassscccssnssasas 4-37
Changing MemOTy=—Meceeccesssseessssssnssssssssssrssssssssssssssnse 4~40
Examining Memory=-—Meceeseesssescsccsosossscsccssscsssssossconsecsss 4-48
Setting the Current Display Mode——M.coesecesscscccsssncssscssscss 4-52

Commands to Inspect System ObjeCtSeecessocssscessscsscessssoscsscss 4-53
Inspecting a CompoSite-—ICeeeccscecesnsssvscssssscscssssssscsncnss 4-54
Inspecting an Exchange——IE..ccesccecersccosscsssssscsossscssacosss 4-56
Inspecting a Segment——IGesseoessssocsnesssccsssssssssssscscasosce 4-61
Inspecting @ JOD=—IJecceeeeessccevscssnrsvsscscscncssscssnsosesescsss 4-63
Inspecting a TasSk——ITeesoseocsssoscssonesssccssscsosscsessscscscssscnss 4-67
Inspecting an EXtensSion——IXeeeeooeecesscscscccscscccscccsccscsnnanse 4-70

Commands to View Object LiStSececescescsnesssccscscssssscsscssssanse 4-72
Viewing Asleep TasksS—VAeeeessosscscecrscsoscssssccscsccsssssssssnce 4-73
Viewing CompoSites——VCeeeseceesessscsencessscssscssossccscocsssces 4-74
Viewing EXchanges——VE.eeceeseoassscocsoscnssccscssscssscsscsssssscsnse 4-75
Viewing Segments——VGeoeesocsssossesasrsssossssessscscosssesoscscsones 4-76
Viewing JObsS——VJe ceeeeeccescosessesssosssessscasssscscssssnssacscsns 4-77

VieWing Mailbox Object Queues—-VMoocowot.oovoo-c.toooo¢otoo-oo-uo 4—78
VieWing Ready TaSks——VR..............-.-.--..-.-................. 4_79

Viewing Suspended Tasks=—VS.ecesesosscncscscsscscsssssssscocssscsssce 4-80
Viewing Tasks——VTeeeeseesescsocssncsosscsssssosssscsossosacsosnscssase 4-81
Viewing Waiting Task Queues—=VWeececesooeoscesscsssssesscssccsssss 4-82
Viewing EXtensions——VXe seeeeseesscscsnscsccccccsssssssssecscsnscss 4-83

Commands to Exit the Debugger..........u................-.......... 4—85
EXiting the Debugger__Qcoo-..oo.ooooomooo-oouo---cooooonooooootuo 4‘86

CHAPTER 5
CONFIGURATION

Baud RAt@eeecessccossssosnscossasssosnnscssonscsssscsnsccsssssscosssossssons 5-1
Baud COUNtecessscosccsossacsssosocsosrsesosnsnscsssscaosssossssssconsscsscs 5-2
Rubout Mode and Blanking Character.essssesscscscncsccsssscscscsssscss 5-2
USAYleoosvevnsooscsnsossossosessasssossossrsosenscssnsosonsscsssssssosssnstsss 5-2
PITcesccessnoessesssossoncscosssocsstsasionsonssosscsscsessscsssnossses 5-3

5-3

5-3

MailbOX Names..ou-'--oooolo.oo.t.o.oo-oooooo'.ccoooooo.olo..o’l.-00

Interrupt LevelSoo..o..aouo.o.oo..-ouo.»oo-o-oooooooolooo.c.nc..ooo

Debugger iv

CONTENTS
(continued)

PAGE

APPENDIX A
ERROR MESSAGES.'.Q.".0...0.0'....0.‘."'00..'...D0.00.0...'O.C.OQ'. A.]_

FIGURES

3-1. Syntax Diagram for ItemMe ecesecescessscsosscsscssocsscnsssccse 3-3

3-2. Syntax Diagram for Term and EXpresSiONescecccccscsccccsccns 3-4

4=-1. Syntax Diagram for Memory CommandSeeesescceossssscssssescons 4-37
4-2. Syntax Diagram for Inspecting System ObjectSeceseececsacccss 4-53
4-3, An iRMX™ 86 COmMPOSite REPOTLeesceseocossssacsassosssscncssss 4-54
4—4, An iRMX™ 86 MailboxX RepPOTt.eeccecscoccsesssssssssscscnssssons 4-56
4-5, An IRMX™ 86 Semaphore RepPOTteeecsscssssccescessscosasanssses 458
4-6. An iRMX™ 86 Region RepPOTCeeeesscsescsescsssssescscoscassenss 4-59
4-7. An iRMX™ 86 Segment RepPOTteeecscecsssccsssccossscosssccsssces 4=61
4~8. An iRMX"™ 86 JOb REPOTLecssscssacosssssossssssssssscssncnnss 4=64
4-9. An iRMX™ 86 Task RepPOTLessssecescscssssasssssssscssnsssscces 4=67
4-10. An iRMX™ 86 EXtension RepPOrteeececssccssssscssesscsscssesss 4=70
4-11. Syntax Diagram for Viewing iRMX™ 86 Object LiStSesescessess 4=72

fokk
Debugger v

CHAPTER 1
INTRODUCTION

The development of almost every software application requires debugging.
To aid in the development of iRMX 86 based systems, Intel provides
various debugging tools.,

OVERVIEW OF iRMX" 86 OPERATING SYSTEM DEBUGGING TOOLS

This section will give an overview of some of the debugging tools
available from Intel for iRMX 86 based systems

iRMX™ 86 DEBUGGER

The first tool available for system debugging is the iRMX 86 Debugger.
The Debugger's essential power is in its ability to allow a software
engineer to dynamically examine the data structures handled by the

iRMX 86 operating system. For example, the Debugger can show which tasks
are waiting at a particular mailbox while the application program is
running. This capability permits you to easily debug a multitasking
operation.

The Debugger supplies its own Terminal Handler, which includes all of the
capabilities described in the iRMX 86 TERMINAL HANDLER REFERENCE MANUAL.
Your application software can make use of the Debugger's Terminal
Handler, or you can include a separate version (or versions) of the
Terminal Handler in your system configuration for application use. Refer
to the iRMX 86 CONFIGURATION GUIDE for further configuration information.

SYSTEM DEBUG MONITORS

The second tool available to the programmer is the Intel series of
monitors. 1In this group are the iIRMX 86 System Debug Monitor (SDB), the
iSDM 86 monitor, and the i5BC 286 monitor. All of these system debug
monitors can, among many other functions, single step instruction code,
set execution and memory breakpoints, display memory in various formats
(such as ASCII), perform I/0 read and write operations, and move, search,
and compare blocks of memory. The iRMX System Debugger Monitor (SDB)
extends the use of the monitors so that you can directly examine
Operating System data structures. For more information on the monitors,
consult the following manuals: iSDM 86 SYSTEM DEBUG MONITOR REFERENCE
MANUAL; the iSDM 286 SYSTEM DEBUG MONITOR REFERENCE MANUAL; or the iRMX
86 RELEASE 6 SYSTEM DEBUG REFERENCE MANUAL.

Debugger 1-1

INTRODUCTION

IN-CIRCUIT EMULATORS

The third debugging tool provided by Intel is the In-Circuit Emulator
(ICE). The ICE lets you get closer to the system hardware by permitting
you to examine the state of input pins and output ports, to set
breakpoints, to look at the most recent 80 to 150 assembly language
instructions, and to use the memory of your Intel Microprocessor
Development System as if that memory were on your prototype board. For
more information on the capabilities of the ICE, consult the
ICE-86/ICE~88 MICROSYSTEMS IN-CIRCUIT EMULATOR OPERATION INSTRUCTIONS FOR
ISIS-IT USERS MANUAL.

CRASH ANALYZER

The fourth tool available for debugging iRMX 86 based systems is the
Crash Analyzer. The Crash Analyzer is an utility used to dump the
contents of memory into a file while formatting that information for
display or printing. The file produced from the memory dump will allow
you to see the state of every object at the time of the dump. For
example, the programmer can see the size of memory segments when the dump
occurred. For more information on the Crash Analyzer see the iRMX 86
CRASH ANALYZER REFERENCE MANUAL.

iRMX™ 86 DEBUGGER IMPLEMENTATION ON iAPX 186/286 CPUs

One of the advantages of the iRMX 86 Operating System is that it can be
implemented using one of several Intel microprocessors. As a result, the
use of the iRMX 86 Debugger does not change even though the
microprocessor running the operating system maybe the 1APX 86, iAPX 186,
iAPX 88, iAPX 188, or the iAPX 286 CPUs. This occurs because the
Debugger acts on those features, such as registers, which the iAPX 86 and
iAPX 186/286/88/188 microprocessors have in common. Thus, the iRMX 86
Debugger will appear to see an iAPX 86 CPU although another
microprocessor may be physically running the system. (In the iAPX 286
microprocessor this is achieved by using the Real Address Mode.)

The same principle of compatability mentioned previously applies for the
Numeric Processor Extension (NPX) used by the particular
microprocessors. The iRMX 86 Debugger will see only those registers
which the 8087 NPX has in common with the other Numeric Processor
Extensions (e.g. the iAPX 286/20 processor).

Debugger 1-2

INTRODUCTION

OVERVIEW OF THE CAPABILITIES OF THE iRMX" 86 DEBUGGER

The iRMX 86 Debugger enables you to do the following:
) Use the Debugger as a task, job, or system exception handler.
e View iRMX 86 object lists, including the lists of jobs, tasks,
ready tasks, suspended tasks, asleep tasks, task queues at
exchanges, object queues at mailboxes, exchanges, and iRMX 86

segmentse.

. Inspect jobs, tasks, exchanges, segments composites, and
extensions,

) Examine and/or alter the contents of absolute memory locations.
. Set, change, view, and delete breakpoints.

° View the list of tasks that have incurred breakpoints and remove
tasks from it.

° Declare a task to be the breakpoint task.
] Examine and/or alter the breakpoint task's register values.
. Set, change, view, and delete special variables for debugginge.

° Deactivate the Debugger.

INVOKING THE DEBUGGER

You can invoke the Debugger from your iRMX 86 terminal by entering:
control-D
The Debugger responds with its sign—on message:

iRMX 86 DEBUGGER <version no.>
Copyright <year> Intel Corporation
*

The asterisk is the prompt character for the Debugger. It indicates that
the Debugger is ready to accept additional input from the terminal.

In addition to the functions the Debugger can perform when it has been
invoked, there are two services it can perform at any time, even when not
invoked. First, if a task encounters a breakpoint, the Debugger responds
as described in Chapter 4,

Second, if a task has the Debugger as its exception handler and the task
causes an exceptional condition, then the Debugger displays a message to
that effect at the terminals A task can get the Debugger as its
exception handler in one of the following ways:

Debugger 1-3

INTRODUCTION

By using the SETSEXCEPTIONSHANDLER system call.

By acquiring the Debugger as the default exception handler. This
is done at configuration time. Refer to the iRMX 86 CONFIGURATION
GUIDE for a description of the this process.

By having the Debugger declared as the exception handler when the
task is created with CREATESJOB or CREATESTASK. An example of
code setting up one of these calls is the following:

RQ$DEBUGGERSEX: PROCEDURE (EXSCODE, PARAMSNO, RESERVED, :
NDPSSTATUS, DUMMYSIFSCOMPACT) EXTERNAL;

DECLARE
EX$CODE WORD,
PARAMSNO BYTE,
RESERVED WORD,
NDPSSTATUS WORD,

DUMMYS$IFSCOMPACT WORD;
END RQSDEBUGGERSEX;

DECLARE EXCEPT$BLOCK STRUCTURE (
EXCEPTSPROC POINTER,
EXCEPTSMODE BYTE) ;

EXCEPTS$BLOCK. EXCEPTSPROC = @RQ$DEBUGGERSEX;
EXCEPTSBLOCK. EXCEPTSMODE = ZEROSONESTWOSORSTHREE;

RQ$CREATE$JOB(« « « ,@EXCEPTSBLOCK, ««.);
or

RQSCREATESTASK(« « o , @EXCEPTSBLOCK, o0 o)

For this code to work, the task code must be linked to the
CROOT.LIB library that is supplied with the Nucleus. The
DUMMYS$SIFSCOMPACT parameter in the RQSDEBUGGERSEX declaration is a

dummy parameter that you must include if your task is compiled
using the PL/M-86 COMPACT.

*k%

Debugger 1-4

CHAPTER 2
SPECIAL CHARACTERS

In addition to the Debugger commands listed in Chapter 4, the Debugger
recognizes several special characters. This chapter lists these
characters and describes their functionse.

END-OF-LINE CHARACTERS

The Debugger obtains input one line at a time from its Terminal Handler.
The end-of-line characters separate individual input lines. The Debugger
recognizes three end-of-line characters. They are:

Carriage Return
Line Feed
ESCape

Both Carriage Return and Line Feed send the current input line to the
Debugger for processing. ESCape causes the Debugger to discard the
current input line and display a prompt.

CONTROL-S

The Debugger generates display at the iRMX 86 terminal by sending output
messages to its Terminal Handler. Application tasks can also send
messages to the same terminal. To suppress output from application tasks
during a debugging session, type control-S. The Debugger then stores the
output from application tasks until you type control-Q. If you do not
enter control-S, any output from tasks is interspersed with output from
the Debugger. Control-S has no effect on output from the Debugger.

CONTROL~Q

Control-Q negates the effect of a previously entered control-S
character. To resume the output from tasks, type control-Q. Control—-Q
also causes the Debugger to display all output that was suppressed by
control-S. Control-Q has no effect on output from the Debugger.

CONTROL-0

Certain Debugger command responses are lengthy and can roll off the
screen. To freeze the top part of such a display before it disappears,
enter control-0. This discards all output including Debugger prompts
until you enter another control-O. The discarded output cannot be
retrieved.

Debugger 2-1

SPECIAL CHARACTERS

CONTROL-D

Occasionally you will want to terminate a Debugger memory command
function response before it is finished. For example, if you asked for a
display of memory locations 0000H to OFFFFH, it would be natural to

change your mind. To abort the display and regain the Debugger prompt,
enter control-D.

Note that control-0 affects the display only, whereas control-D stops the
function entirely.

*k%

Debugger 2-2

CHAPTER 3
COMMAND SYNTAX

When using the iRMX 86 Debugger, you sit at a terminal and type
commands. This chapter describes the syntactical standards for commands

to the Debugger, and it introduces notational conventions that are used
throughout this manual.

CONVENTIONS

The first one or two characters of a command constitute a key sequence
for the command:

® Most Debugger commands are specified by one or two letters. The

key letters or pairs of letters are BL, BT, D, DB, G, I, L, M, N,
Q, R, V, and Z.

. In a few cases, a command is specified by beginning the command
with a name. A name, for the Debugger, must consist of a period
followed by a variable name.

After the key initial sequence, a command may be followed by one or more
parameters or additional specifiers, Blanks are used as delimiters
between elements of a command; they are mandatory except as follows:

° Immediately after a command key that is not a name.

° Between a letter or digit and a non-letter, non-digit. The legal
characters of the latter type are the following: ; @ = /
: «C) * + -)

PICTORIAL REPRESENTATION OF SYNTAX

In this manual, a schematic device 1llustrates the syntax of commands.
The schematic consists of what looks like an aerial view of a model
railroad setup, with syntactic entities scattered along the track.
Imagine that a train enters the system at the upper left, drives around
as much as it can or wants to (sharp turns and backing up are not
allowed), and finally departs at the lower right. The command it
generates in so doing consists, in order, of the syntactic entities that
it encounters on its journey. For example, a string of A's and B's, in
any order, would be depicted as:

Debugger 3-1

COMMAND SYNTAX

A

-

1497

If such a string has to begin with an A, the schematic could be drawn as:

o~ (.
Y4)
L;®‘
—_—

1540

In the second drawing, it is necessary to represent the letter A twice
because A is playing two roles. It is the first symbol (necessarily) and
it is a symbol that may (optionally) be used after the first symbol.

Note that a train could avoid the second A but cannot avoid the first A.
The arrows are not necessary and henceforth are omitted.

SPECIAL SYMBOLS FOR THE DEBUGGER

The entities that will be used in the remainder of this manual, as A and
B were used in the previous paragraph, are the following:

CONSTANT. Constants are always hexadecimal. Unlike such
constants in PL/M-86, they do not require an H as the last
character. H's may be used if desired. Leading zeroes are not
necessary unless they help to distinguish between constants and

other things. For example, AH 1s a register in the iAPX 86, but
OAH is a constant.

NAME. A name is a period follcwed by up to 11 characters, the
first of which must be alphabetic. The other characters can be
alphabetic, numeric, question marks (?), or dollar signs ($).

Examples:
.task

.mailbox$7

Debugger 3-2

COMMAND SYNTAX

ITEM. An item is either an expression or one of the segment
registers of the given CPU. The values of items are used
variously as tokens and as offsets in Debugger commands.
Graphically, an item is defined in Figure 3-2.

EXPRESSION. As in algebra, an expression is either a term or is
the result of adding and subtracting terms. Also as in algebra,
a term is a product; each factor in the product is either a
constant, a name, a parenthetical expression, or one of the
registers AX, BX, CX, DX, DS, ES, S§Ss, Cs, Ip, FL, SI, DI, BP,
and SP. Graphically, term and expression are shown in Figure
3-1:

NOTE

If the computed value of an expression
is too large to fit into four
hexadecimal digits, then only the low
order four digits are used.

ITEM:

-— EXPRESSIO)—ﬁ

N

®A

)G

=]
»

)

@

1642

Figure 3-1. Syntax Diagram For Item

Debugger 3-3

COMMAND SYNTAX

®

TERM: (CONSTAND——_ﬂ

NAME
7

Expngssu@—@_\

K

I

)G

@
>

¢l
>

)G

@

(DG

o
w

)

2

(9]
w

)

D)

OOOC

EXPRESSION:

_C“'i“i/(1

@ 1541

Figure 3-2. Syntax Diagrams For Term And Expression

*hk

Debugger I-4

CHAPTER 4
DEBUGGER COMMANDS

This chapter presents the details of the Debugger commands. It is

divided into several sections, each of which describes a related group of
commands. The command groupings are as follows:

Symbolic Name Commands

Breakpoint Commands

Memory Commands

Commands to Inspect iRMX 86 Objects
Commands to View Object Lists
Commands to Exit the Debugger

Each section contains a general information portion followed by detailed
command descriptions.

Between this introduction and the discussions of the individual commands
is a command dictionary. This dictionary, which lists the commands in
alphabetical order, includes short descriptions and page numbers of the
complete descriptions in this chapter. Those commands which are not
associated with specific command letters are listed at the end of the
dictionary.

Because the iRMX 86 operating system can run under several

microprocessors, the generic term "CPU" will be used in place of the
names iAPX 86, iAPX 186, 1APX 88, iAPX 188, and iAPX 286.

Debugger 4-1

DEBUGGER COMMANDS

COMMAND DICTIONARY

Command

B —— Viewing breakpoint parameterS.ecsscscescssscscsssscsssssscsssscssss

BL - Viewing the breakpoint listi.Q'OIO'..‘O.I0.0!Olli.!..‘l'....'

BT —-= EStabliShing the breakpoint tASKeeossesoveosscsnssessoscssas

BT - Listing the breakpoint tasko-lontoo.oooo"toono'.ooi-ooooooo.

D - Defining numEric VariableS............-......................-

DB - Defining a breakpointo...ooo..ooocoooooooo.tocot..coloool..oo

G - ReSuming taSk executiono.o.Ottc0'00..0‘00.00..00....00'0000Qoo

IC

IE

IG —--

1J

Inspecting a Compositeo0..o.oo'o.ooooo.'tou'l.o'ooo'nooloolt.
Inspecting an EXchange..t.ooou.oo-oc..n-oc.o..to'..o.t.l.'ol.
InSpeCting a Segmento'ooo.o.oo'ool'.coooo.!.o.too..o.o.o'ooo'

Inspecting a job.ooooo'oocooooooooc.o'ocoo.l.oc.ooolovcoooloo

IT - Inspecting a tasko"o.oloo"ooo'l.ooo0.00000....00'0000000"0

IX -

R

R

Inspecting an extensSiONesecsccecsscsssocsssonsesssscessscsssssscss
Listing numeric and breakpoint variableS.eccsecccccsccscsssscecs
Changing MemOTYeeesoeccosssoscsctscoscssosssssscscossssssssonsoe
Examining memoOTyeeesecososesscscsscesssccscsccssscsscscsasscsns
Setting the current display modeE€ssesessscescssssscssscssssscsse
Altering the breakpoint task's NPX registerSeecesssscssccsscas
Viewing the breakpoint task's NPX registerSceccesccscescescces
Exiting the Debuggere cececescecssscescsssosscscsssssssssssscsce
Altering the breakpoint task's registerSeesccesscescsscscsscee

Viewing the breakpoint task's regiSterSeessceccscscsscsccnssssce

VA - ViEWing aSlEEP tasks.‘.......0......0.....0.0..'0.'0.'."0..0

VC — VieWing composites.ooooooa.'oocqo.0000000..0..0.000-0000000-0

VE - Viewing exchanges-oootowoo.oot'ooo0..tt.o..ootooo..o..lCOOCOO

Debugger 4-2

4-23
4-27
454
4~56
4-61
4-63
4~67
4-70
4-7

4=40
448
4-52
4-28
4-30
4-86
4-32
4-34
4-73
4=74

4-75

VG

vJ

W™

VR

VS

VT

W

VX

Viewing
Viewing
Viewing
Viewing
Viewing
Viewing
Viewing

Viewing

Z —- Deleting

Z —-- Deleting

DEBUGGER COMMANDS

Command

SegMENtSsesossssoscsssrsescnosssosrnsccssssscscsccsssssssss
jODSeeessoscesosecssessssnssssscsssesssssscssesssensvos
mailbox object qUEeUESceeencessssccssssssossssssssscsne
ready taskSeseseessesscecssssssscsssscossscosssscsssscse
suspended taskSeeesesssscncsscesssssssessoscsccscsncsnes
LasKkSeesessesrssscesescscsscssaccscscsscscssosscssncsosacs
waiting task qUEUESseessennsscsssssscscsscscsscassnen
eXtensSioNSeeecssecesoecssencsssscesscsesssscscsssscssns
a breakpointeeecsecscsoccsesocsesesosscsossssscsssscsscs

numeric Variables........‘............................

Changing a breakpointoo.'0.0.ooo0‘.00000.I.OO.o.oo't....oooo.ooo.oc

Changing numeric Variables..o-ooo.ooooco'.ooo...o..o.ooooooooooc.oo

EXamining a breakpoint....nooo...ooo...o...o..oovoo.oo.t'o'ol...'l.

Debugger 4-3

Page

4-76
4-77
4-78
4-79
4-80
4-81
4-82
4-83

4-36

4-21
4-5

4~-25

)
<
=
]
o
c
0
3
>
S
m
0
o
=
=
>
2
0
»

DEBUGGER COMMANDS

SYMBOLIC NAME COMMANDS

For your convenience during debugging, the Debugger supports the use of
alphanumeric variable names that stand for numerical quantities. The

names and their associated values can be accessed by the Debugger from
any of the following sources:

® A Debugger-maintained symbol table. The table contains
name/value pairs that have been cataloged by the Debugger as
numeric variables. This section describes commands for
defining, changing, listing, and deleting numeric variables,

e The object directory of the current job. The current job is
defined to be the job that contains the breakpoint task. (The
command used to establish the breakpoint task is contained in
the "Breakpoint Commands” section of this chapter.) If there is
no breakpoint task, the current job is the root job.

® The object directory of the root job.

When you use a symbolic name that is not the name of a breakpoint
variable, the Debugger searches these sources in the order just listed.

Suppose that you want to refer to a particular task by means of the name
.TASKOOl. If the task is cataloged in the object directory of either the
root job or the current job, then the Debugger will go to the appropriate
directory and fetch a token for the task whenever the name .TASKOO1 is
used in a Debugger command. If the task is not so cataloged, you can use
VJ (view job), IJ (inspect job), VT (view task), and IT (inspect task)
commands to deduce a token for the task. Then you can define .TASKOOl to
be a numeric variable whose value 1s that token.

Debugger 4-4

CHANGING NUMERIC VARIABLES

CHANGING NUMERIC VARIABLES

This command changes the value of an existing numeric variable. The
syntax for this command is as follows:

PARAMETERS
NAME Name of an existing numeric variable.
ITEM An expression or the name of an CPU segment register.
The value of ITEM is associated with the variable name
NAME .
DESCRIPTION

This command removes from the Debugger symbol table the value originally
associated with NAME, and replaces it with the value of ITEM.

EXAMPLES

«TASKA = 2F00
*

This command changes the value of .TASKA to 2F(00h.

«TASKA = ,TASKB
%

This command changes the value of .TASKA to that of .TASKB. 1In a
previous example, .TASKB had a value of 2B8Ch. Therefore, this command
changes the value of .TASKA to 2B8Ch,

Debugger 4-5

DEFINING NUMERIC VARIABLES-D

»
<
=
1]
(o)
e
(2]
=
»
s
m
1]
o
=
=
>
&
O
iy

DEFINING NUMERIC VARIABLES -- D

This command associates a variable name with a numeric value. The syntax
for the D command is as follows:

~(D— e D> D—

1544

PARAMETERS
NAME Name of the variable. This must be a period followed
by up to 11 characters, the first of which must be
alphabetic. The other characters can be alphabetic,
numeric, question marks (?), or dollar signs ($).
ITEM An expression or the name of an CPU segment register.
The value of ITEM is associated with the variable name
NAME .,
DESCRIPTION

This command places NAME and the value of ITEM into the Debugger symbol
table. You can use this command to create symbolic names for tokens,

registers, or any other values. Then, you can use the symbolic names in
other Debugger commands instead of entering the actual hexadecimal values.,

EXAMPLES

D .TASKA = 2DC3
*

This command creates a symbol called .TASKA in the Debugger's local
symbol table and assigns this symbol the hexadecimal value 2DC3.

Debugger 4-6

LISTING NUMERIC AND BREAKPOINT VARIABLES - L

LISTING NUMERIC AND BREAKPOINT VARIABLES -- L

This command lists numeric and breakpoint variable names and their
associated values. The syntax for the 1. command is as follows:

‘IIII:IlI:aIII" 1545

PARAMETER
NAME Name of an existing numeric or breakpoint variable.
If entered, the Debugger lists the name and value of
the indicated name only. g
=
g
=
DESCRIPTION =
O
The L command lists all numeric and breakpoint variable names and their O
associated values. (Breakpoint variables are described in the u
"Breakpoint Commands" section of this chapter.) Specifying NAME instead =
of L causes only one pair to be listed. 1In either case, one pair is ;
listed per line in the format: o
NAME=xxx P~
x o
m
where xxxx is the associated value. =
S
()
EXAMPLES
L
BP=2DC3:00FF
MBOX 2F34
TASKA 2DC3
TASKB 2B8C
TASKC 2D8A
TASKD 2CEF
*

This command lists the names and values of all the numeric and breakpoint
variables in the Debugger's local symbol table. It lists one breakpoint
variable (.BP) and four numeric variables (.TASKA, .TASKB, .TASKC, and
+.TASKD).

Debugger 4-7

LISTING NUMERIC AND BREAKPOINT VARIABLES - L

EXAMPLES (continued)

« TASKA

TASKA=2DC3
*

This command lists the value associated with the variable .TASKA.

")
<
=
o
o
c
0
4
>
=
m
o
°)
=
3
>
=
v
7]

Debugger 4-8

DELETING NUMERIC VARIABLES—-2Z

DELETING NUMERIC VARIABLES -- Z

This command deletes a numeric variable. The syntax for the Z command is

as follows:
Z NAME
NG

1546

*

This command deletes the numeric variable .TASKA.

PARAMETER
NAME Name of an existing numeric variable to be deleted.
1
DESCRIPTION P
=
This command removes the NAME and associated value from the Debugger's g
symbol table. =
o
(3]
w
EXAMPLE =
<
Z JTASKA =
Q
-l
O
1]
=
S
U

Debugger 4-9

DEBUGGER COMMANDS

BREAKPOINT COMMANDS

The Debugger provides you with the ability to set, change, view, or
delete breakpoints. You set a breakpoint by defining an act which a task
can perform. When a task performs the act, it incurs the breakpoint,
causing its execution to cease, The Debugger supports three kinds of

breakpoints:

. Execution breakpoint. A task incurs an execution breakpoint
when it executes an instruction that is at a designated location
in memory.

® Exchange breakpoint. A task incurs an exchange breakpoint when
it performs a designated type of operation (send or receive) at
a designated exchange.

° Exception breakpoint. A task incurs an exception breakpoint if
its exception handler has been declared to be the Debugger and
the task causes an exceptional condition of the type that
invokes its exception handler.

When a task incurs a breakpoint (of any type), three things occur
automatically:

e The task is placed in a pseudostate called "broken". Depending
on the breakpoint options selected, the broken task and the
tasks in the containing job might be suspended.

) If suspended, the broken task (and suspended tasks, if any) is
(are) placed on a Debugger-maintained list called the breakpoint
list. You can resume a task on the breakpoint list or you can
remove it from the list.

° At the terminal, a display informs you that a breakpoint has
been incurred. It also provides information about the event,

)
X
m
>
A
bl
e
=
r
0
o
=
=
>
4
O
7]

Each task on the breakpoint list is assigned a breakpoint state, which
reflects the kind of breakpoint last incurred by the task. The states
are as follows:

X =-—- The task incurred an execution breakpoint.
E —-—- The task incurred an exchange breakpoint.
Z —-— The task incurred an exception breakpoint.
N ——- The task was placed on the breakpoint list when

another task in the same job incurred a breakpoint
which had been set with the DB command (described
later) using the J option.

Debugger 4-10

DEBUGGER COMMANDS

You set an execution or exchange breakpoint with the DB command by
defining a breakpoint variable and assigning it a breakpoint request.
The request specifies to the Debugger the nature of the breakpoint, and
the variable provides you with a convenient means of talking to the

Debugger about the breakpoint. Using the breakpoint variable, you can
cancel the breakpoint or replace it with a new one.

If you want to monitor a particular task that has not necessarily
incurred a breakpoint, you can designate it to be the breakpoint task.
If the task is not on the breakpoint list when you do this, the task is
suspended. However, it is not placed on the breakpoint list. After
designating a breakpoint task, you can examine and alter some of its
registers. You can also ascertain the breakpoint state of the task.
When ready, you can easily resume the task.

The Debugger displays information when a task incurs a breakpoint. The
format of the display depends on the kind of breakpoint incurred.

When the task is accessing a region, the Debugger cannot process

breakpoints normally. When this situation occurs, the Debugger displays
the following message:

TASK IN REGION INCURRED BREAKPOINT: bp-var, TASK=jjjjJ/ttttT
FULL BREAKPOINT INFORMATION NOT AVAILABLE
TASK NOT PLACED ON BREAKPOINT LIST

where:
bp-var The name of the breakpoint variable.
3iij A token for the task's job.
ttet A token for the task.

EXECUTION BREAKPOINT DISPLAY

The Debugger displays the following information when a task incurs an
execution breakpoint.

bp-var: E, TASK=jjjjJ/ttttq, CS=ceccc, IP=iiii

where:

bp-var The name of the breakpoint variable.

jiii A token for the task's job.

Debugger 4-11

DEBUGGER COMMANDS

tttt A token for the task.

q Either T (for task) or * (indicating that the task has
overflowed its stack).

ccee The base of the code segment in which the breakpoint
was set.
iiii The offset of the breakpoint within its code segment.

EXCHANGE BREAKPOINT DISPLAY

The Debugger displays the following information when a task incurs an
exchange breakpoint:

bp-var: a, EXCH=jjjjJ/xxxxe, TASK=jjjjJ/ttttq, ITEM=item

W
)
m
>
A where:
v
S! bp-var The name of the breakpoint variable.
=
= a Indicates which kind of operation (S for send or R for
g; receive) caused the breakpoint to be incurred.
E 3jij A token for the job containing the exchange whose
> token follows.
= |
g XXXX A token for the exchange.
‘ e Indicates the type of the exchange (M for mailbox, S

for semaphore, R for region).
tttt A token for the task.

q Either T (for task) or * (indicating that the task has
overflowed its stack).

item One of the following:

If the exchange is a mailbox, this field lists a pair
of tokens, of the form:

jijjJ/oooot,
where:
jiii A token for the mailbox's containing job.

Debugger 4-12

DEBUGGER COMMANDS

0000 A token for the object being sent or
received.
t The type of the object being sent or

received (J for job, T for task, M for
mailbox, S for semaphore, G for segment,
R for region, X for extension, and C for
composite).

If the kind of operation was receive, but no object
was there to be received, item is 0000.

If the exchange is a semaphore, this field lists the
number of units held by the exchange.

EXCEPTION BREAKPOINT DISPLAY

The Debugger displays the following information when a task incurs an
exception breakpoint:

EXCEPTION: jjjjJ/ttttT, CS=cccc, IP=iiii, TYPE=wwww, PARAM=vvvv

where:

jiij A token for the job which contains the task that
caused the exception condition.

tttt A token for the task that caused the exceptional
condition.,

cece and Respectively, the contents of the iAPX 86 CS

iiii and IP registers when the exceptional condition
occurred.

WWWW The numerical value of the exception code; reflects

the nature of the exceptional condition. Refer to
the iRMX reference manuals for the mnemonic
condition codes and their numerical equivalents.,

vVVV The number (0001 for first, 0002 for second, etc.)
of the parameter that caused the exceptional

condition. If no parameter was at fault, vvvv is
0000.

Debugger 4-13

DEBUGGER COMMANDS

EXCEPTION BREAKPOINT DIFFERENCES

Exception breakpoints differ from execution and exchange breakpoints in
several respects:

. It is not possible to set, change, view, or delete exception
breakpoints by using the commands of the Debugger. Instead, each
task can set an exception breakpoint by declaring the Debugger to
be its exception handler. The task can subsequently delete the
breakpoint by declaring a different exception handler. However,
like the other kinds of breakpoints, once a task incurs an
exception breakpoint and is placed on the breakpoint 1list, you
can cause it to resume execution with the same command (the G

command) that is used to resume other tasks on the breakpoint
list.

® An exception breakpoint is set for a particular task. Execution
and exchange breakpoints are set for no particular task; any task
can incur such a breakpoint.

. An exception breakpoint is not known to the Debugger by a
breakpoint variable name.

The handling of exception breakpoints is significantly different from
that of execution and exchange breakpoints. For example, exception
breakpoints cannot be viewed, but the other breakpoints can be. Wherever
this distinction applies, this chapter points it out.

@
)
m
>
A
0
o
=
r
(2]
(o)
=
=
>
=
U
(7]

Debugger 4-14

VIEWING BREAKPOINT PARAMETERS —E

VIEWING BREAKPOINT PARAMETERS -- B

This command displays the breakpoint parameters. The syntax for the B
command is as follows:

(&)

DESCRIPTION

The B command performs the following three functions:
° Displays the breakpoint list
° Displays the breakpoint task

° Displays the breakpoint variables

Breakpoint List Display

The B command first displays the breakpoint list in the following format:

BL=jjjjJ/etttT(s) jijjJ/ttttT(s) +e. jijjI/ttttT(s)

where:
jiiji A token for the job containing the task whose token
follows.
tttt A token for a task on the breakpoint list.
s The breakpoint state of a task. Possible values are X

(for execution), E (for exchange), Z (for exception),
and N (for null).

Debugger 4-15

VIEWING BREAKPOINT PARAMETERS-B

()
)
m
>
A
v
o
2
-
0
O
=
=
>
=
O
v

Breakpoint Task Display

The second effect of the B command is to display the breakpoint task

originally selected with the BT command. The format of this display is
as follows:

BT=33jjjJ/ttttT(s)
where:
jiij A token for the job containing the breakpoint task.
tttt A token for the breakpoint task.
s The breakpoint state of the breakpoint task. Possible

values are X (for execute), E (for exchange), Z (for
exception), and N (for null).

If there is no breakpoint task, the display is:

BT=0

Breakpoint Variables Display
The third and final effect of the B command is to display the breakpoint
variables. The format of the display depends on whether the variables

are execution or exchange variables.

Execution breakpoints are displayed as:

bp-var = xxxx:yyyy z ops

where:

bp-var The name of the breakpoint variable.

Debugger 4-16

VIEWING BREAKPOINT PARAMETERS—-B

XXXX The base portion of the address at which the
breakpoint is set.

yyyy The offset portion of the address at which the
breakpoint is set.

z Indicates whether a task (T) or all the tasks in a job
(J) are to be suspended and placed on the breakpoint
list when the breakpoint is incurred.

ops Indicates the breakpoint options. If any are present,

they can be a C (for Continue task) and/or D (for
Delete breakpoint).

Exchange breakpoints are displayed as:

bp-var = xxxx a z ops

where:

bp-var The name of the breakpoint variable.

XXXX A token for the exchange at which the breakpoint is
set.

a Indicates the kind of breakpoint activity at the
exchange, either S (for Send), R (for Receive), or SR
(for both).

z Indicates whether a task (T) or all the tasks in a job
(J) are to be suspended and placed on the breakpoint
list when the breakpoint is incurred.

ops Indicates the breakpoint options. If any are present,

they can be C (for Continue task) and/or D (for Delete
breakpoint).

Debugger 4-17

VIEWING THE BREAKPOINT LIST—-BL

VIEWING THE BREAKPOINT LIST -- BL

This command displays the breakpoint list. The syntax for the BL command

is as follows:

1548

DESCRIPTION

The BL command displays the entire breakpoint list at the user terminal,
This list appears as follows:

(for execution), E (for exchange), Z (for exception),
and N (for null).

[+) s e

o BL=jjjjJ/ttttT(s) jjjjI/etttT(s) .. jjjjI/ttttT(s)

m

>

A

]

(=) where:

-

EE jiii A token for the job containing the task whose token
o follows.

Qo

= tttt A token for a task.

=

;E s The breakpoint state of a task. Possible values are X
O

@

Debugger 4-18

ESTABLISHING THE BREAKPOINT TASK—BT

ESTABLISHING THE BREAKPOINT TASK -- BT

This command designates a task to be the breakpoint task. The syntax for
the BT command is as follows:

PARAMETER

ITEM A token for an existing task.

DESCRIPTION

The task designated by ITEM becomes the breakpoint task. The Debugger
suspends the task but does not place it on the breakpoint list.

Debugger 4-19

LISTING THE BREAKPOINT TASK-BT

w
)
m
o
o
0
o
=
|
0
o
=
=
>
=
O
7

LISTING THE BREAKPOINT TASK -- BT

This command lists the job and task tokens associated with the breakpoint
task. The syntax for the BT command is as follows:

®

1550

DESCRIPTION

This command displays the following information about the breakpoint task:

BT=jjjjJ/ttttT(s)

where:
jiiji A token for the job containing the breakpoint task.
tttt A token for the breakpoint task.
s The breakpoint state of the breakpoint task. Possible

values are X (for execute), E (for exchange), Z (for
exception), and N (for null).

If there is no breakpoint task, the Debugger displays the following:

Debugger 4-20

CHANGING A BREAKPOIN

CHANGING A BREAKPOINT

This command changes an existing breakpoint. The syntax for this command
is as follows:

BREAKPOINT VARIABLE

EXPRESSION

1651

PARAMETERS

BREAKPOINT An existing Debugger breakpoint name. If the

VARIABLE Debugger's symbol table does not already contain this
name, an error message will appear on the terminal's
display.

ITEM If you are changing an execution breakpoint, ITEM is

used in combination with EXPRESSION to specify the
address of the breakpoint. TITEM must contain the base
portion of the address. It must be followed by ":"
and an EXPRESSION, which must contain the offset’
portion. If you are changing an exchange breakpoint,
ITEM must contain a token for an exchange.

S and R To be used only when changing an exchange breakpoint,
S means that the exchange breakpoint is for senders
only, while R means that it is for receivers only., If
you want to set an exchange breakpoint for both
senders and receivers, omit both S and R, as well as
both ":" and EXPRESSION.

Debugger 4-21

CHANGING A BREAKPOINT

T and J

DESCRIPTION

EXAMPLE

« BPOINT

BPOINT=2F34 S
*

W
)
m
>
A
0
o
=
r
2]
e)
=
=
>
=
UA.
7]

Ina cate which tasks are to be put on the breakpoint
lis. whea a breakpoint is incurred. T indicates only
the task that incurred the breakpoint, while J
indicates all of the tasks in that task's job. If
neither T nor J is present, T is assumed.

Continue task execution option. This option directs
the Debugger not to "break"” tasks that incur the
breakpoint, and not to put them on the breakpoint
list. When a task incurs such a breakpoint, the
Debugger generates a breakpoint display, but the task
continues to run,

Delete breakpoint option. This option directs the
Debugger to delete the breakpoint after it is first
incurred by a task. The Debugger generates a
breakpoint display and, unless the C option is also
specified, places the task that incurred the
breakpoint on the breakpoint list.

This command deletes the breakpoint that was associated with the
breakpoint variable name and replaces it with a new breakpoint, as

specified in the command. The breakpoint variable name can be used when
deleting or changing the breakpoint.

TC

+BPOINT = 2D2A S C

*
« BPOINT

BPOINT=2D2A S C

*

In this example, the user lists a breakpoint variable, changes it, and

lists it again.

Debugger 4-22

DEFINING A BREAKPOINT-—-DB

DEFINING A BREAKPOINT -- DB

This command defines an execution or exchange breakpoint. The syntax for
the DB command is as follows:

BREAKPOINT VARIABLE

EXPRESSION

voun

1552

PARAMETERS

BREAKPOINT A Debugger name by which to identify the breakpoint.
VARIABLE This name must consist of a period followed by up to
11 characters, the first of which must be alphabetic.
The other characters can be alphabetic, numeric,
question marks (?), or dollar signs ($). If the
Debugger's symbol table already contains this name, an
error message will appear on the terminal's display.

ITEM If you are setting an execution breakpoint, ITEM is
used in combination with EXPRESSION to specify the
address of the breakpoint. ITEM must contain the base
portion of the address. It must be followed by ":"
and an EXPRESSION, which must contain the offset
portion. If you are setting an exchange breakpoint,
ITEM must contain a token for an exchange.

S and R To be used only when setting an exchange breakpoint.
S means that the exchange breakpoint is for senders
only, while R means that it is for receivers only. If
you want to set an exchange breakpoint for both
senders and receivers, omit both S and R, as well as
both ":" and EXPRESSION.

Debugger 4-23

DEFINING A BREAKPOINT-DB

(v
)
m
>
A
v
o
Z
-
0
(=}
=
=
>
=
=
7

EXPRESSION To be used only when setting an execution breakpoint.

EXPRESSION must contain the offset portion of the
address of the execution breakpoint.

T and J Indicate which tasks are to be put on the breakpoint
list when a breakpoint is incurred. T indicates only
the task that incurred the breakpoint, while J
indicates all of the tasks in that task's job. The
default is T.

C Continue task execution option. This option directs
the Debugger not to "break™" tasks that incur the
breakpoint, and not to put them on the breakpoint
list., When a task incurs such a breakpoint, the
Debugger generates a breakpoint display, but the task
continues to run.

D Delete breakpoint option. This option directs the
Debugger to delete the breakpoint after it is first
incurred by a task. The Debugger generates a
breakpoint display and, unless the C option is also
specified, places the task that incurred the
breakpoint on the breakpoint list.

DESCRIPTION
The DB command sets a breakpoint of the type indicated in the remainder

of the command line. The name designated as the breakpoint variable can
be used when altering or deleting the breakpoint.

EXAMPLES

DB .BP = 2DC3:0FF
*

This command defines an execution breakpoint at address 2DC3:0FF and
assigns the name .BP to this breakpoint. When a task incurs this
breakpoint, only the task itself is placed on the breakpoint list.

DB .BPOINT = .MBOX S C
E3

This command defines an exchange breakpoint at the mailbox whose token is
specified by the numeric variable .MBOX. 1In a previous example, .MBOX
had a value of 2F34; therefore the Debugger uses this value for the
token.

Debugger 4-24

EXAMINING A BREAKPOINT

EXAMINING A BREAKPOINT

This command displays information about a particular breakpoint. The
syntax for this command is as follows:

BREAKPOINT
VARIABLE

1563

PARAMETER

BREAKPOINT The name of an existing breakpoint to be examined.
VARIABLE

DESCRIPTION

The Debugger displays two kinds of output, depending on whether the
specified breakpoint variable represents an execution or an exchange
breakpoint. Exception breakpoints cannot be examined.

EXECUTION BREAKPOINT OUTPUT

If the designated breakpoint is an execution breakpoint, the Debugger
sends the following display to the terminal:

bp-var=xxxx:yyyy z ops

where:

bp-var The name of the breakpoint variable.

XXKX Base portion of the breakpoint's address.

yyyy Of fset portion of the breakpoint's address.

z Indicates whether a single task (T) is to be "broken”
and placed on the breakpoint list or all tasks in a
job (J) are to be suspended and placed on the
breakpoint list, when the breakpoint is incurred.

ops Indicates the breakpoint options. If any are present,
they can be C (for Continue task) and/or D (for Delete
breakpoint).

Debugger 4-25

EXCHANGE BREAKPOINT OUTPUT

[+)
)
m
>
A
b
o
4
pur
2]
=)
=
=
>
4
O
7]

EXCHANGE BREAKPOINT OUTPUT

If the designated breakpoint is an exchange breakpoint, the Debugger
sends the following display to the terminal:

bp-var=xxxx a z ops

where:
bp-var The name of the breakpoint variable.
XXX X A token for the exchange at which the breakpoint is
set.
a Indicates the kind of breakpoint activity at the
exchange, either S (for send), R (for receive), or SR
(for both).
z Indicates whether a single task (T) is to be "broken”
and placed on the breakpoint list or all tasks in a
job (J) are to be suspended and placed on the
breakpoint list, when the breakpoint is incurred.
ops Indicates the breakpoint options. If any are present,
they can be C (for continue task) and/or D (for delete
breakpoint).
EXAMPLES
« BP
BP=2DC3:00FF T
*

This command lists the address of the execution breakpoint associated
with variable .BP. It also indicates that only the task is to be
"broken" if a breakpoint is éncountered.

« BPOINT

BPOINT=2F34 S T C
*

This command lists the address of the exchange breakpoint associated with
variable .BPOINT. The S, T, and C indicate that only tasks which send
messages to the exchange will incur the breakpoint, only the task that
incurs the breakpoint will be "broken", and the task will continue
processing after incurring the breakpoint.

Debugger 4-26

RESUMING TASK EXECUTION - G

RESUMING TASK EXECUTION -- G

This command resumes execution of a task on the breakpoint list or the
breakpoint task. The syntax for the G command is as follows:

ITEM
1554
PARAMETER
ITEM A token for a task on the breakpoint list or the

breakpoint task. If the given token is not for a task
on the breakpoint list or the breakpoint task, an
error message will be displayed. If this parameter is
omitted, the breakpoint task is assumed.

DESCRIPTION

The G command applies to the breakpoint task if ITEM is not present,

Otherwise, it applies to the task on the breakpoint list whose token is
represented by ITEM.

The G command resumes execution of the designated task. If the task is

in the broken state, it is made ready. If it is in the suspended state,
its suspension depth is decreased by one.

If the G command is invoked without ITEM when there is no breakpoint
task, an error message is displayed at the terminal.

Debugger 4-27

ALTERING THE BREAKPOINT TASK’S NPX REG|STERS—N

ALTERING THE BREAKPOINT TASK'S NPX REGISTERS -- N

This command modifies the breakpoint task's Numeric Data Processor (NPX)
register values. This command applies only to tasks that were specified
at creation as having the ability to use the NPX. The syntax for this
command is as follows:

OOROROOEEREEROE

(= — CONSTANT
_/

1555

w.
X
m
>
A
v
o
=
-] -
1]
o
=
= \
-
=
o

PARAMETERS

CwW, Sw, TWw, Names of the breakpoint task's NPX
Ip, 0C, OP, registers, as follows:
PO through P7

Name Description

CwW Control Word

SW Status Word

TW Tag Word

IP Instruction Pointer
ocC Operation Code

(0) 24 Operand Pointer
PO-P7 Stack elements

Debugger 4-28

ALTERING THE BREAKPOINT TASK’S NPX REGISTERS —~}

CONSTANT A hexadecimal number which is used for the new
register value. CONSTANT can specify an 80-bit value
for registers PO through P7, a 20-bit value for
registers IP and OP, and a 16-bit value for the
remaining registers. If this value is too large to
fit in the specified register, the Debugger displays a
SYNTAX ERROR message.

DESCRIPTION

This command requests that the breakpoint task's NPX register, as

specified in the command request, be updated with the value of CONSTANT.

This command applies only to tasks which were specified at creation as
using the NPX.

Debugger 4-29

VIEWING THE BREAKPOINT TASK’S NPX REGISTERS—N

VIEWING THE BREAKPOINT TASK'S NPX REGISTERS -- N

This command displays the breakpoint task's Numeric Data Processor (NPX)
register values. This command applies only to tasks that were specified
at creation as having the ability to use the NPX. The syntax for this
command is as follows:

(n)
L)

6000000000000

1556

()
)
m
>
A
D
o
=
-l
0
(2]
=
=
>
<
O
7

PARAMETERS

CW, Sw, Tw, Names of the breakpoint task's NPX registers,
Ip, 0C, OP, as follows:
PO through P7

Name Description

CW Control Word

SW Status Word

TW Tag Word

IPpP Instruction Pointer
(0] ¥ Operation Code

opP Operand Pointer
PO-P7 Stack elements

If no name is specified, the Debugger displays values
for all registers.

Debugger 4-30

VIEWING THE BREAKPOINT TASK’S NPX REGISTERS —N

DESCRIPTION

This command lists NPX register values for the breakpoint task. It
applies only to tasks which were specified at creation as using the NPX.
If the command is simply "N”, then all of the breakpoint task's NPX
registers are displayed, in the following format:

NCW = xxxx NSW = xxxx NTW = xxxxX
NIP = XXXXX NOC = xxx NOP XXXKXX
NPO = XXXXXXXXXXXXXXXXXXXX

NPl = XXXXXXXXXXXXXXXXXXXX

NP2 = XXXXXXXXXXXXXXXXXXXX

NP3 = XXXXXXXXXXXXXXXXXXXX

NP4 = XXXXXXXXXKXXXXXXXXXX

NP5 KXXXXXXXXXXXXXKXXXXKXK

NP6 P9:9:0.0.0.9.0.0.9:0.9.9.0.0.:0.0.0.0.0.

NP7 = XXXXXXXXXXXXXXXXXXXX

NES = xxxx

The size of the field indicates the number of hexadecimal digits that the
Debugger displays.

Registers PO through P7 are 80-bit registers that the Debugger displays
in temporary real format.

The NES field contains the value of the NPX Status Word if an NPX
exception caused the breakpoint task to be broken. The value for this
field, under all other circumstances, is NONE.

If the breakpoint task does not use the NPX, the Debugger returns an
error message in response to this command.

Debugger 4-31

ALTERING THE BREAKPOINT TASK’S REGISTERS—R |

ALTERING THE BREAKPOINT TASK'S REGISTERS -- R

This command alters one of the breakpoint task's CPU register values.
The syntax for this command is as follows:

_®

)0

JOlC

2]
I

) ()

@
h-]

>@%®@@@@@@@@<

-
-

J

)
)
m
>
A
v
o
=
-l
0
=)
=
=
>
=
O
7

@@é@c

1557

PARAMETERS

AH, AL, AX, Names of the breakpoint task's CPU registers.

BH,
BX,
cs,
DI,
DX,
IP,

BL,
CH,
CX,
DL,
ES,

SI,SP, SS

BP,
CcL,
DH,
DS,
FL,

Debugger 4-32

ALTERING THE BREAKPOINT TASK’S REGISTERS—F

EXPRESSION A Debugger expression whose value is used for the new
register value. If this value is too large to fit in
the designated register, the Debugger fills the
register with the low-order bytes of the value.

DESCRIPTION

This command requests that the breakpoint task's register, as specified
in the command request, be updated with the value of the EXPRESSION.
However, if the breakpoint task is in the null breakpoint state, its
register values cannot be altered by the R command.

Debugger 4-33

VIEWING THE BREAKPOINT TASK’S REGISTER m

VIEWING THE BREAKPOINT TASK'S REGISTERS -- R

This command lists one or all of the breakpoint task's CPU registers.
The syntax for the R command is as follows:

—(r) 1

>
>

O

JQIOK

o
°

) OHOOOE

Q
I

)

elololelelelolelele

)
)
m
>
F
v
.
=
-
0
O
=
=
>
=
O
7

1558

PARAMETERS

AH, AL, AX, Names of the breakpoint task's CPU registers.
BH, BL, BP, If no name is specified, the Debugger displays
BX, CH, CL, values for all registers.,

Cs, CX, DH,

DI, DL, DS,

DX, ES, FL,

Ip, SI, SP, SS

Debugger 4-34

DESCRIPTION

This command lists CPU register values for the breakpoint task.

VIEWING THE BREAKPOINT TASK’S REGISTERS —F

If the

command is simply "R", then all of the breakpoint task's registers are

displayed, in the following format:

RAX=xxxXX RST=xxxX RCS=xxXxX RIP=xxXxx
RBX=xXXXX RD I=xxxX RD S=xxxx RFL=xxxXx
RCX=xxxx RBP=xXXXX RSS=xxxx
RDX=xxxx RSP=xXXX RE S=xXxX

If the command has the form Ryy, where yy is the register name, then the
contents of the specified register are displayed, either as:

Ryy=xxxx

or as:

Ryy=xx

depending on whether yy is a byte-size register (like AH) or a word-size
register (like AX).

If the breakpoint task is in the null breakpoint state, only its BP, SP,
Cs, DS, SS, IP, and FL register contents are displayed. The remaining
register displays consist of question marks.

In certain circumstances the breakpoint task, when suspended, is in a
state which prevents the Debugger from obtaining its register contents.
If this 1s the case, the Debugger displays question marks for all
registers.

Debugger 4-35

DELETING A BREAKPOINT-2

1]
)
m
>
A
v
Q
<
-l
0
(=)
=
=
>
=
=4
7

DELETING A BREAKPOINT —-- Z

This command deletes a breakpoint. The syntax for the Z command is as

follows:
_@__@AKPOWT
VARIABLE
1559

PARAMETER

BREAKPOINT Name of an existing Debugger breakpoint to be deleted.

VARIABLE
DESCRIPTION

The Z command deletes the specified breakpoint and removes the breakpoint
variable name from the Debugger's symbol table.

EXAMPLE

Z «BP
*

This command deletes the breakpoint associated with the variable .BP and
removes .BP from the Debugger's symbol table.

Debugger 4--36

DEBUGGER COMMANDS

MEMORY COMMANDS

The commands in this section enable you to inspect or modify the contents
of absolute memory locations. Figure 4~1 illustrates the syntax for all
commands in this section.

EXPRESSION

EXPRESSION

EXPRESSION

1560

Figure 4-1. Syntax Diagram for Memory Commands

As Figure 4-1 illustrates, all memory commands begin with "M". There are
a variety of parameters that can be specified with "™"; these parameters
are grouped into the following basic options:

° Setting current display mode. This option begins with "!",

° Changing memory locations. This option includes the "=".

e Displaying memory locations. This option consists of the
remaining parameters.

Debugger 4-37

=
m
=
O
)
<
0
Q
=
=
>
=
O
»n

DEBUGGER COMMANDS

This section breaks up the description of the "M" command into these
three groups and discusses the groups as separate commands. However, you
can combine any number of "M" command options in a single command, as the
syntax diagram in Figure 4~1 illustrates.

In the descriptions of these commands, frequent mention is made of the
current display mode, the current segment base, the current offset, the

current address, and the display of memory locations. This terminology
is defined as follows:

The current display mode determines the manner in which memory
values are interpreted for display purposes. The possible modes
are designated by the letters B, W, P, and A, and they stand,
respectively, for byte, word, pointer, and ASCII. The effects of
these modes are best explained in the context of an example.
Suppose that memory locations 042B through 042E contain,
respectively, the values 25, F3, 67, and 4C. If you ask for the
display of the memory at location 042B, then the effects, which
depend on the current display mocde, are as follows:

Current Display Mode Display
B 25
W F325
P 4C67:F325
A %

Observe that words and pointers are displayed from high-order
(high address) to low-order (low address).

If a location contains a value which does not represent a
printable ASCII character, and the current display mode is A,

then the Debugger prints a period. The initial current display
mode is B,

The value of the current segment base is always the value of the
most recently used CPU segment base. The initial value of the
current segment base is O.

The current offset is a value the Debugger maintains and uses
when reference is made to a memory location without explicitly
citing an offset value. Except when the current offset has been
modified by certain options of the M command, the current offset
is always the value of the most recently used offset. The
initial value of the current offset is 0.

The current address is the iAPX 86 memory address computed from
the combination of the current segment base and the current
offset,

Debugger 4-38

DEBUGGER COMMANDS
When memory locations are displayed, the format is as follows:

XXX X:yyyy=value

where xxxx and yyyy are the current segment base and current
offset, respectively, and value is a byte, word, pointer, or
ASCII character, depending on the current display mode. TIf
several contiguous memory locations are being requested in a
single request, each line of display is as follows:

xxxx:yyyy=value value value ... value

where xxxX, yyyy, and value are as previously described, and
XXXX:yyyy represent the address of the first value on that line.

The first such line begins with the first address in the request
and continues to the end of that (16-byte) paragraph. If
additional lines are required to satisfy the request, each of
them begins at an offset which is a multiple of 16 (10
hexadecimal).

Debugger 4-39

CHANGING MEMORY-M

CHANGING MEMORY -- M

This command changes the contents of designated RAM locations.

i CAUTION !

Because the Debugger is generally used
during system development, while your

tasks, the Nucleus, the Debugger, and

possibly other iRMX 86 components are

in RAM, you should usie these M command
options with extreme care.

The syntax for this command is as follows:

®

DESTINATION SOURCE —

— —

DESTINATION:
ITEM EXPRESSION

=
m
=
o
)
<
0
o
=
=
>
-
O
7

TO EXPRESSION

SOURCE: —t@ W
M
4 1
L

_< ITEM () EXPRESSION)
L N
@ EXPRESSION e

1561

PARAMETERS
As shown in the syntax diagram, the parameters for this command are

divided into DESTINATION and SOURCE parameters which are separated with
an equal sign.

Debugger 4-~40

CHANGING MEMORY—-N

Destination Parameters

These parameters define the memory location or locations that are going
to be changed. All parameters change the current offset, and some of

them change the current base. The valid parameter combinations are as
follows:

EXPRESSION This form of the DESTINATION option implies that the
address to be changed has the current base as its base
value and the value of EXPRESSION as its offset,

ITEM: EX- This form of the DESTINATION option implies that the
PRESSION address to be changed has the value of ITEM as its
base value and the value of EXPRESSION as its offset.

EXPRESSION TO This form of the DESTINATION option implies that a
EXPRESSION series of consecutive locations will be changed. The
EXPRESSIONs determine the beginning and ending
offsets, respectively., The current base is used as a
base value. After memory has been changed, the
current offset is set to the value of the second
EXPRESSION.

ITEM:EX- This form of the DESTINATION option is the same as the
PRESSION TO previous one, except that ITEM is used as the base
EXPRESSION value of the locations.

If no DESTINATION option is specified, the location specified by the
current segment base and current offset is changed. However, if the
previous command was a "Display Memory"” command of the form:

M EXPRESSION TO EXPRESSION

the entire range of locations specified in that command is changed.

Debugger 4-41

CHANGING MEMORY-M

Source Parameters

These parameters define the information that will be placed into the

DESTINATION memory.

EXPRESSION

=
m
=
]
b ¢
<
0
(o)
=
=
S
=
O
/2]

M EXPRESSION

The valid parameter combinations are as follows:

This form of the SOURCE option can be used only if the
current display mode is byte or word. It implies that
the value represented by EXPRESSION will be copied
into the byte or word at the current address.

However, if the DESTINATION option (supplied or
default) specified a range of locations, this option
instead copies the value of EXPRESSION into each byte
or word in DESTINATION.

Examples:

(1) When the DESTINATION option did not
specify a range of values:

M = 4C

0400:0008 09

0400:0008 4C

*
This example changes the contents of the
current location (0400:0008) from 09 to 4C.
Notice that the Debugger displays both the
old and the new contents of memory.

(2) When the DESTINATION option specified a
range of values:
M1 TO 4

0400:0001 06 07 08 09
*

M= 4C

0400:0001 06 07 08 09
0400:0001 4C 4C 4C 4C
%

In this example, because the previous
command was an examination of a range of
memory, the command to change memory changes
the entire range of memory.

This form of the SOURCE option uses the current
segment base and the offset indicated by the value of
EXPRESSION to compute an address. It copies the value
at that computed address into the location specified
by the current address.

Debugger 4-42

CHANGING MEMORY-M

However, i1f the DESTINATION option (supplied or
default) specified a range of locations, the value at
the computed address is instead copied to each of the
locations in the destination field.

Examples:

(1) When the DESTINATION option did not specify a
range of values:

M9

0400:0009 11

*

M=MG©6

0400:0009 11

0400:0009 4C

*
This example replaces the value in location
4000:0009 (11) with the value in location
4000:0006 (4C).

(2) When the DESTINATION option specified a range
of values:

M 100

0400:0100 FF

*

M 100 TO 103 = M 6

0400:0100 FF A0 16

0400:0100 4C 4C 4C

*

In this example, the command to change memory
included a DESTINATION option that specified a
range of values. Thus the contents of location
0400:0006 (4C) are copied into each of the
DESTINATION locations,

M ITEM:EX- This form of the SOURCE option uses ITEM and

PRESSION EXPRESSION as base and offset, respectively, to
compute an address. It coples the value at that
computed address into the location specified by the
current address. However, if the DESTINATION option
(supplied or default) specified a range of locations,
the value at the computed address is instead copled to
each of the locations in the destination field,

Debugger 4~43

CHANGING MEMORY-M

SANVINRNOD AHOW3N

M EXPRESSION
TO EXPRESSION

Examples:

(1) When the DESTINATION option did not specify a
range of values:
9

0400:0009 4C
%

M =M 300:2643
0400:0009 4C
0400:0009 21

*

This example takes the value in location
0300:2643 (21) and copies it into the current
location (0400:0009).

(2) When the DESTINATION option specified a range
of values:

M 100 TO 103 = M 300:2643

0400:0100 4C 4C 4C 22

0400:0100 21 21 21 21

*

This example copies the contents of location
0300:2643 (21) into each of the locations
specified in the DESTINATION option.

This form of the SOURCE option uses the current
segment base and, in order, the offsets indicated by
the EXPRESSIONs, to compute a beginning address and
an ending address. It copies the sequence of values
bounded by the computed addresses to the sequence of
locations that begin at the current address.

However, if the DESTINATION option (supplied or
default) specified a range of locations, the sequence
of values bounded by the computed addresses is copied
to the destination field, with the source values
being truncated or repeated as required.

Debugger 4-44

CHANGING MEMORY-M

Examples:

(1) When the DESTINATION option did not specify a
range of values:

M 400:104

0400:0104 El

*

M=MATOC

0400:0104 E1 F2 0OA

0400:0104 0B OC 0D

*
In this example, the contents of the range of
locations specified in the SOURCE option
(0400:000A ~ 0400:000C) are copied into the range
of locations that begin with the current address
(0400:0104).

(2) When the destination option specified a range
of values:

M1TO4=MATOC

0400:0001 4C 4C 4C 4C

0400:0001 0B OC OD OB (first value

* repeated)
This example copies the contents of three
locations (0400:000A - 0400:000C) into four
locations (0400:0001 - 0400:0004). Notice that
the values start repeating; 0400:0001 contains
the same value as 0400:0004 (OB).

M ITEM:EX- This form of the SOURCE option uses ITEM as a base and
PRESSION TO the EXPRESSIONs as offsets to compute a beginning and
EXPRESSION an ending address. The sequence of values bounded by

the computed addresses is copied to the sequence of
locations beginning at the current address. However,
if the DESTINATION option (supplied or default)
specified a range of values, the sequence of values
bounded by the computed addresses is copied to the
destination field, with the source values being
truncated or repeated as required.

Examples:

(1) When the DESTINATION option did not specify a
range of values:
D .VALUE = 2643

1

*
M
0400:0001 OB
*

M = M 300: .VALUE TO .VALUE + 4
0400:0001 OB 0C OD OB 4C
0400:0001 21 47 E2 C8 31

%

Debugger 4-45

CHANGING MEMORY-—-M

In this example, the contents of the range of
locations specified in the SOURCE option
(0300:2643 - 0300:2647) are copied into the range
of locations that begin with the current address
(0400:0001).

(2) When the DESTINATION option specified a range
of values:

M 101 TO 104
0400:0101 21 21 21 OB
*

M = M 300:2643 TO 2647

0400:0101 21 21 21 OB

0400:0101 21 47 E2 C8 (last value

* truncated)
This example copies the contents of five
locations (0300:2643 - 0300:2647) into four
locations (0400:0101 - 0400:0104). Notice that
the value of the fifth location (0300:2647) is
not copied.

DESCRIPTION

This command changes the contents of designated RAM locations. The
DESTINATION options affect the current segment base and offset values.
The SOURCE options do not affect these values.

When executing this command, the Debugger displays the contents of the
designated locations, then updates the contents, and finally displays the
new contents. Thus, if you inadvertently destroy some important data,
the information you need to restore it is available.

=
m
=
=)
o
<
0
(*]
=
=
>
-
O
(/]

This command copies data in the byte mode. The current display mode is
not affected by these copying options.

Debugger 4-46

CHANGING MEMORY-M

NOTE

When using the M command, be aware of
the following hazards:

e It is possible for you to modify
memory within iRMX 86 components,
such as the Nucleus and Debugger.
Doing so can jeopardize the
integrity of your application
system, and should therefore be
avoided.

e It is possible to request that
non—-RAM memory locations be
modified. If you attempt to read or
write to a non-RAM location, nothing
happens to memory and the displays
indicate that the specified
locations contain zeros.

e A memory request might cross segment
boundaries. In processing such a
request, the Debugger ignores such
boundaries, so don't assume that a
boundary will terminate a request.

Debugger 4—47

EXAMINING MEMORY—-M

=
m
=
o
X
=<
0
=)
=
=
o
4
O
v

EXAMINING MEMORY -- M

This command displays memory locations without changing their contents.
The syntax for this command is as follows:

()

Lo—emat-

PARAMETERS

To avoild confusion, this section lists examples of complete commands in
explaining the parameters.

M/ This option increments the current offset according to
the current display mode: by one for byte or ASCII, by
two for word, or by four for pointer. Then it
displays the contents of the new current address.

Example: M/

0400:0009 0A
*

This example increments the current offset and
displays the address and contents of the location.

M This option is just like M/, except that the current
offset is decremented.

Example: M

0400:0008 08
x*

This example decrements the current offset and
displays the address and contents of the location.

Debugger 4-48

EXAMINING MEMORY -1

M When used by itself, M is an abbreviated way of
specifying M/ or M , whichever was used most
recently. If neither has been used in the current
Debugging session, M is interpreted as an M/ request.

Example: M

0400:0007 08

%

M

0400:0006 07

*
Since M was used most recently, these
commands decrement the current offset before
displaying the address and contents of
memory.

M@ This option sets the current offset equal to the value
of the word beginning at the current address. Then

the value at the adjusted current address is displayed.

Example: M!B

*

Me

0400:0807 46

*
Even though byte mode was selected, this
example sets the current offset equal to
contents of the word at offset 07. From the

previous example you can see that this word
is indeed 0807.

M EXPRESSION This option sets the current offset equal to the value
of the EXPRESSION and displays the value at the new
current address.,

Example: M 3

0400:0003 04

*
This example sets the current offset to 3
and displays the contents of that location.

M ITEM:EX- This option is just like M EXPRESSION, except that
PRESSION ITEM is used as the base in the address calculation,

and after the operation ITEM is the new current
segment. base.,

Example: M 300:2644

0300:2644 47

*
This example sets the current base to 300
and the current offset to 2644, It also
displays the contents of that location.

Debugger 4-49

EXAMINING MEMORY-M

=
m
=
o
3
<
0
o
=
=
>
-4
O
7

M EXPRESSION
TO EXPRESSION

M ITEM:EX-
PRESSION TO
EXPRESSION

This option displays the values of a series of
consecutive locations., The EXPRESSIONs determine the
beginning and ending offsets, respectively; the
second EXPRESSION must be greater than the first.

The current segment base is used as a base. After
displaying the locations, the Debugger sets the
current offset to the value of the second

expression. If the specified range of locations is

incompatible with the current display mode —--- for
example, an odd number of locations is not compatible
with the word or pointer modes —--—- then all words or

pointers that lie partially or totally inside the
range are displayed.

Examples: (1) M 4 TO 6
0300:0004 15 26 37
%

(2) MW
*
M4 TO 6
0300:0004 2615 4837
%*

These examples display a consecutive series
of memory locations in both byte and word
mode. Notice that the base set in the last
example (300) is still used.

This option is just Like M EXPRESSION TO EXPRESSION,
except that ITEM is used as a base in the address

calculation, and after the operation ITEM is the new
segment base.

Example: M!B
*

D MEM = 100

*

M 400: .MEM TO .MEM +4

0400:0100 FF A0 16 22 El

%
After setting the output mode to byte and
defining a numeric variable .MEM, this
example sets the base to 400 and displays
five consecutive memory locations beginning
with offset 100 (.MEM). Upon completion of
this example, the current offset is 400 and
the current base is 104.

Debugger 4-50

EXAMINING MEMORY-M

DESCRIPTION

This command displays the contents of memory without disturbing those
contents. Be aware, however that all of the options change the current

offset, and some of them change the current segment base. None changes
the current display mode.

Debugger 4-51

SETTING THE CURRENT DISPLAY MODE—-M

=
m
=
(]
)
<
0
o
=
=
>
=
O
7]

SETTING THE CURRENT DISPLAY MODE -- M

This command specifies the way in which the Debugger will display
output. The syntax for the M command is as follows:

1563

OOEE

PARAMETERS
! Indicates that the display mode is being changed.
B, W, Specifies the mode of display. B indicates byte mode,
P, A W indicates word mode, P indicates pointer mode, and

A indicates ASCII mode.

DESCRIPTION

This command sets the display mode for further Debugger output. When the
Debugger next displays memory, it will display the memory according to
the mode specified with this command.

EXAMPLES

M!B
*

This command instructs the Debugger to display all further output in byte
mode.

MIW
*

This command instructs the Debugger to display all further output in word
mode.

Debugger 4-52

DEBUGGER COMMANDS

COMMANDS TO INSPECT SYSTEM OBJECTS

The commands in this section allow you to examine iRMX 86 objects in
detail. They give specific information about the Nucleus object types.

Figure 4-2 illustrates the general syntax for all the commands in this
section.

O, ()
O,
@ Crren >
r @ —(TEm
R 7\
\UJ Y
{X\/ |TEM>

1564

Figure 4-2. Syntax Diagram For Inspecting System Objects

The second letter of the command indicates the type of object to inspect,
as follows:

Job
Task
Exchange

Segment
Composite
Extension

oo Aaag

The remainder of this section describes the commands in detail.

Debugger 4-53

INSPECTING A COMPOSITE~IC

INSPECTING A COMPOSITE -- IC

This command displays the principal attributes of the specified

composite. The syntax for the IC command is as follows:
1565
PARAMETER
ITEM Token for the composite object to be inspected.

DESCRIPTION
- The IC command displays the principal attributes of the composite object
= whose token is represented by ITEM. Figure 4-10 depicts the form of the
% display produced by IC.
m
0
-]
1]
(=) ————— iRMX86 COMPOSITE REPORT -————-
s COMPOSITE TOKEN bbbb CONTAINING JOB gege
§ EXTENSION TOKEN ccee # TOKEN SLOTS hhhh
> TOKEN(S) ffffJ/dddde £ffffJj/dddde f£fffJ/dddde ffffJ/dddde
O
n

NAME(S)

aaaaaaaaaaaa 4agaaaaaaaaaa aaaaadaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaadaaaaa aaaaaaaaaaaa

Figure 4-3. An iRMX™ 86 Composite Report

The following describes the fields in Figure 4-3:

Field

aaaaaaaaaaaa

bbbb

Meaning

Each such field contains a name under which the

composite is cataloged in the object directory of
either the job containing the composite or the root
jobe If the composite is not cataloged in either
directory, "NONE FOUND" is displayed here.

Hexadecimal token for the composite.

Debugger 4--54

Field

cccc

dddd

ffff

g88¢8

hhhh

INSPECTING ACOMPOSITE-IC

Meaning

Hexadecimal token for the extension that represents
license to create this type of composite.

Hexadecimal token for one of the components of the
composite object.

Single letter that indicates the type of object dddd.
This field can have any of the following values:

composite

segment

job

mailbox

region

semaphore

task

extension

a task whose stack has overflowed or whose
code was loaded by the iRMX 86 Application
Loader

¥ H RGO O

Hexadecimal token for the job that contains object
dddd.

Hexadecimal token for the job that contains composite
object bbbb.

Hexadecimal value specifying the maximum allowable
number of component objects that the composite object
can comprise,

Debugger 4-55

INSPECTING AN EXCHANGE-IE

INSPECTING AN EXCHANGE -- IE

This command displays the principal attributes of a mailbox, semaphore,
or region whose token 1s specified. The syntax of the IE command is as

follows:
_/ _ 1566
PARAMETER
ITEM Token for the exchange to be inspected.
DESCRIPTION

The IE command displays the principal attributes of the mailbox,

semaphore, or region whose token is represented by ITEM. It produces
three kinds of output, one for each kind of exchange.

Mailbox Display

=
(7}
‘
m
0
-
0
=)
=
=
>
=
O
7

Figure 4-4 depicts the form of display produced by IE for a mailbox.

----- iRMX86 MAILBOX REPORT —-———-

MAILBOX TOKEN bbbb CONTAINING JOB hhhh
TASKS WAITING ccce # OBJECTS WAITING 1iid
FIRST WAITING ddddf/eeeef QUEUE DISCIPLINE 333i33iij
CACHE SIZE g£888g

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-4. An iRMX™ 85 Mailbox Report

Debugger 456

INSPECTING AN EXCHANGE-IE

The following describes the fields in Figure 4-4:

Field

aaaaaaaaaaaa

bbbb

ccce

dddd

eecee

8888

hhhh

Meaning

Each such field contains a name under which the
mailbox is cataloged in the object directory of either
the mailbox's containing job or the root job. If the
mailbox 1s not cataloged in either directory, "NONE
FOUND" 1s displayed here.

Hexadecimal token for the mailbox.

Number, in hexadecimal, of tasks in the mailbox's task
queue.

Token for the containing job of either the first task
waiting in the task queue or the first object waiting
in the object queue. Because at least one of these
queues is empty, dddd is not ambiguous. If both
queues are empty, dddd is absent.

Token for either the first task waiting in the task
queue or the first object waiting in the object
queue. Because at least one of these queues is empty,

eeee is not ambiguous. If both queues are empty, eeece
is 0000.

Single letter that indicates the type of the first
task waiting in the task queue or the first object
waiting in the object queue. Because at least one of
these queues is empty, f is not ambiguous. If both
queues are empty, f is blank, Otherwise, f has one of
the following values:

composite
segment
job
mailbox
region
semaphore
task
extension

XKHLWAIRLOAO

Number, in hexadecimal, of objects that the
mailbox's high performance object queue is
capable of holding.

Hexadecimal token for the job containing the
mailbox.

Debugger 4-57

N
(o]
=
.
=
=
O
3]
=
Q
w
o
0
Z

INSPECTING AN EXCHANGE-IE

Field Meaning
iiid Number, in hexadecimal, of objects in the

mailbox's objeci: queue.
33jiiiii Description of the manner in which waiting tasks

are queued in the mailbox's task queue. The
possible values are FIFO and PRIORITY.

Semaphore Display

Figure 4-5 depicts the form of the display produced by IE for a semaphore.

————— iRMX86 SEMAPHORE REPORT -—-—-

SEMAPHORE TOKEN bbbb CONTAINING JOB ggesg
TASKS WAITING ccece QUEUE DISCIPLINE hhhhhhhh
CURRENT VALUE dddd MAXIMUM VALUE iiii
> FIRST WAITING eeeeJ/ffffT
)
U NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
gg aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
-
o ™
g Figure 4-5, An iRMX" 86 Semaphore Report
=
>
ig The following describes the fields in Filgure 4-5:
»
Field Meaning
aaaaaaaaaaaa Each such field contains a name under which the

semaphore is cataloged in the object directory of
either the semaphore's containing job or the root
jobe If the semaphore is not cataloged in either
directory, "NONE FOUND" is displayed here.

bbbb Hexadecimal token for the semaphore.

ccee Number, in hexadecimal, of tasks waiting in the
queue,

dddd Number, in hexadecimal, of units currently in the

custody of the semaphore.

eeee Hexadecimal token for the containing job of the
first waiting task. It is absent if no tasks are
wailting.

Debugger 4-58

INSPECTING AN EXCHANGE-IE

Field Meaning
ffff Hexadecimal token for the first waiting task. It is
0000 if no tasks are waiting.
ggge Hexadecimal token for the semaphore's containing job.
hhhhhhhh Description of the manner in which waiting tasks are

queued in the semaphore's task queue. The possible
values are FIFO and PRIORITY.

1iid Maximum allowable number, in hexadecimal, of units
that the semaphore may have in its custody.

Region Display

Figure 4-6 depicts the form of display produced by IE for a region.

————— iRMX86 REGION REPORT ————-
REGION TOKEN bbbb CONTAINING JOB eeee
TASKS WAITING ccee QUEUE DISCIPLINE fEEEEEFF
TASK IN REGION dddd FIRST WAITING gg8g

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaad aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-6. An iRMX™ 86 Region Report

n
Q
=
<
=
=
o
o
-
O
[}
o
L]
=

The following describes the fields in Figure 4-7:

Field Meaning
aaaaaaaaaaaa Each such field contains a name under which the region

i1s cataloged in the object directory of either the job
containing the region or the root job. If the region

is not cataloged in either directory, "NONE FOUND" is

displayed here.

bbbb Hexadecimal token for the region.

ccece Number, in hexadecimal, of tasks awaiting access to
the data protected by the region.

Debugger 4-59

INSPECTING AN EXCHANGE-IE

Field Meaning
dddd Hexadecimal token for the task that currently has
access.,
eeee Hexadecimal token for the job that contains the region.
fEEfEfeef Manner in which waiting tasks are queued at the
region. Possible values are FIFO, PRIORITY, and
INVALID.

=
(7]
0
m
0
-
2]
(=}
=
=
>
=
O
7]

Debugger 4-60

INSPECTING A SEGMENT-IC

INSPECTING A SEGMENT -- IG

This command displays the principal attributes of the specified segment.
The syntax for the IG command is as follows:

1567

PARAMETER

ITEM Token for the segment to be inspected.

DESCRIPTION

The IG command displays the principal attributes of the segment whose

token is represented by ITEM. Figure 4-7 depicts the form of the display
produced by IG.

————— iRMX86 SEGMENT REPORT —=~—-

SEGMENT TOKEN bbbb CONTAINING JOB dddd
SEGMENT BASE ceccee SEGMENT LENGTH eeeee

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa Aaaaaaaaaaaaa

Figure 4-7. An iRMX" 86 Segment Report

The following describes the fields in Figure 4-7:

Field Meaniqg

aaaaaaaaaaaa Each such field contains a name under which the
segment is cataloged in the object directory of either
the segment's containing job or the root job. If the
segment 1s not cataloged in either directory, "NONE
FOUND" is displayed here.

bbbb Hexadecimal token for the segment.

Debugger 4-61

INSPECTING A SEGMENT-IG

Field Meaning

cecce Base address of the segment.

dddd Hexadecimal token for the job that contains the
segment.,

eeecee Number, in hexadecimal, of bytes in the segment.

-
»
v
m
0
-]
0
o
-
=
>
=
0
w

Debugger 4-62

INSPECTING AJOB-1

INSPECTING A JOB -—- 1J

This command lists the principal attributes of a specified job. The
syntax for the IJ command i1s as follows:

ITEM

1568

PARAMETERS

ITEM A token for the job to be inspected.

0 If this option is included, the job's object directory
is also listed. 1If omitted, the object directory is
not listed.

DESCRIPTION

The IJ command lists the principal attributes of a job whose token is
represented by ITEM. It also lists the object directory if the O option
is included. TIf there is a large number of entries in the object
directory, the control-0 character can be used to prevent data from

rolling off the screen. The control-O0 special character is described in
Chapter 2.

Figure 4-8 depicts the form of the display produced by the IJ command.

Debugger 4-63

INSPECTING AJOB-1IJ

————— iRMX86 JOB REPORT =————-

JOB TOKEN bbbb PARENT JOB 3333
POOL MAXIMUM ccee POOL MINIMUM kkkk
CURRENT ALLOCATED dddd CURRENT UNALLOCATED 1111
CURRENT # OBJECTS eeee CURRENT # TASKS mmmm
MAXIMUM # OBJECTS ffff MAXIMUM # TASKS nnnn
CURRENT # CHILD JOBS ggegg DELETION PENDING PPP
EXCEPTION MODE hhhh EXCEPTION HANDLER qqqq:rrrr
MAXIMUM PRIORITY iiidi

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

————— OBJECT DIRECTORY —-——-—-—

MAXIMUM SIZE uuuu VALID ENTRIES VvV
NAME TOKEN NAME TOKEN NAME TOKEN
5S558S888SSSs tttt ssssssssssss tttt $5888SS888sSs tttt

E Figure 4-8. An iRMX" 86 Job Report
(7]
L)
0
-] The following describes the fields in Figure 4-8:
0
g Field Meaning
E aaaaaaaaaaaa Each such field contains a name under which the job is
= cataloged in the object directory of either the job's
o parent job or the roct job. If the job is not
» cataloged in either directory, "NONE FOUND" is printed
here,
bbbb Hexadecimal token for the job.
ccee Maximum number, in hexadecimal, of 16-byte paragraphs

that the job's pool can contain.

dddd Number of paragraphs that have been either allocated
to tasks in the job or lent to child jobs.

eeee Number, in hexadecimal, of existing objects in job
bbbb.
fE£ff Maximum number, in hexadecimal, of objects that can

exist simultaneously in job bbbb.

gegg Number, in hexadecimal, of existing jobs that are
offspring of job bbbb.

Debugger 4~-64

Fielg

hhhh

iiii

3333

kkkk

1111

mmmm

nnnn

PPP

94999

rrrr

S$858888S585SSS

tttt

INSPECTING AJOB-1J

Meaning

Exception mode for the job's default exception
handler. Possible values are as follows:

When to Pass Control

Value To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions
INVALID Never

Hexadecimal value that indicates the maximum
(numerically lowest) allowable priority for tasks in
the job.

Hexadecimal token for the parent of job bbbb., If job
bbbb is the root job, however, jjjj is "ROOT".

Minimum number, in hexadecimal, of 16-byte paragraphs
that the job's pool can contain.

Number, in hexadecimal, of unused 16—byte paragraphs
in the job's initial pool.

Number, in hexadecimal, of tasks currently in the job.

Maximum number, in hexadecimal, of tasks that can
exist simultaneously in job bbbb.

Indicator which tells whether a task has attempted to
delete the job but was unsuccessful because the job
has obtained protection from the DISABLESDELETION
system call, The possible values of ppp are YES and
NO.

Base, in hexadecimal, of the start address of the
job's default exception handler.

Hexadecimal offset, relative to qqqq, of the start
address of the job's default exception handler.

Each such field contains the name under which an
object is cataloged in the job's object directory. If

there are no entries in the object directory, these
fields are blank,

Each such field contains a token, in hexadecimal, of
the object whose name (in the directory) appears next
to it.

Debugger 4-65

INSPECTING A JOB-1IJ

Field Meaning

uuuu Maximum allowable number, in hexadecimal, of entries
in the job's object directory.

VAA'AY Number, in hexadecimal, of entries currently in the
job's object directory.

-4
»
v
m
(7]
-
1]
o)
=
=
>
<
O
7]

Debugger 4-66

INSPECTING A TASK-IT

INSPECTING A TASK —- IT

This command lists the principal attributes of a specified task. The
syntax for the IT command is as follows:

1569

PARAMETER

ITEM Token for the task to be inspected.

DESCRIPTION

The IT command displays the principal attributes of the task whose token
is represented by ITEM. Figure 4-9 depicts the form of display produced
by IT.

------ iRMX86 TASK REPORT ———--

TASK TOKEN bbbb CONTAINING JOB kkkk
STACK SEGMENT BASE ceee STACK SEGMENT OFFSET 1111
STACK SEGMENT SIZE dddd STACK SEGMENT LEFT mrmm
CODE SEGMENT BASE eeee DATA SEGMENT BASE nnnn
INSTRUCTION POINTER £EEE TASK STATE PPPPPPPP
STATIC PRIORITY ggeg DYNAMIC PRIORITY qq4q
SUSPENSION DEPTH hhhh SLEEP UNITS REQUESTED rrrr
EXCEPTION MODE 1111 EXCEPTION HANDLER ssss:tttt
NPX TASK 333

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa Aaaaaaaaaaaaa Aaaaaaaaaaaaa

Figure 4-9. An iRMX" 86 Task Report

The following describes the fields in Figure 4-9:
Field Meaning

aaaaaaaaaaaa Each such field contains a name under which the task
is cataloged in the object directory of either the
task's containing job or the root jobs If the job is
not cataloged in either directory, "NONE FOUND" is
displayed here.

Debugger 4-67

INSPECTING A TASK—IT

Field Meaning

bbbb Hexadecimal token for the task.

ccee Base address, in hexadecimal, of the task's stack
segment.

dddd Size, in bytes, of the task's stack segment.

eeee Base address, in hexadecimal, of the task's code
segment.

ffff Current value, in hexadecimal, of the task's

instruction pointer.
gggg Hexadecimal priority of the task.
hhhh Current number, in hexadecimal, of "suspends” against

the task. Before the task can be made ready, each
"suspend” must be countered with a "resume”.

iiii Exception mode for the task's exception handler.
EE Possible values are as follows:
/1)
© When to Pass Control
Fg Value To Exception Handler
-]
e) 0 Never
(o) 1 On programmer errors only
2 2 On environmental conditions only
E 3 On all exceptional conditions
i; iji Indicator which tells whether the task uses the NPX.
(7 The possible values of jjj are YES and NO.
kkkk Hexadecimal token for the task's containing job.
1111 Hexadecimal offset, relative to cccc, of the task's

stack segment.

mmmm Hexadecimal number of bytes currently available in the
task's stack.

nnnn Base address, in hexadecimal, of the task's data
segment.
PPPPPPPP Current execution state of the task. Possible values

are "READY", "ASLEEP", "SUSPENDED", "ASLEEP/SUSP",
"BROKEN", and "INVALID".

qqqq A temporary, hexadecimal priority that is sometimes

assigned to the task by the Nucleus. This is done to
improve system performance.

Debugger 4--68

Field

rrrr

S8Ss

tttt

INSPECTING A TASK-IT

Meaning

If the task is asleep or asleep/suspended, this is the
number of 1/100 second sleep units that the task
requested just prior to going to sleep. If the task
is ready or suspended, qqqq is 0000.

Base, in hexadecimal, of the start address of the
task's exception handler.

Hexadecimal offset, relative to ssss, of the start
address of the task's exception handler.

Debugger 4-69

INSPECTING AN EXTENSION-IX

INSPECTING AN EXTENSION -- IX

This command displays the principal attributes of the specified extension
object. The syntax for the IX command is as follows:

|TEN>—
1570

ITEM Token for the extension object to be inspected.

PARAMETER

DESCRIPTION

The IX command displays the principal attributes of the extension whose

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

E token is represented by ITEM. Figure 4-10 depicts the form of the
%} display produced by IX.

m

(¢

-]

(2]

O iRMX86 EXTENSION REPORT ———--

= EXTENSION TOKEN bbbb CONTAINING JOB dddd
E TYPE CODE cccee DELETION MAILBOX eeee
=

O

7]

Figure 4-10. An iRMX" 86 Extension Report

The following describes the fields in Figure 4-10:
Field Meaning

aaaaaaaaaaaa Each such field contains a name under which the
extension is cataloged in the object directory of
either the job containing the extension or the root
job. 1If the extension is not cataloged in either
directory, "NONE FOUND" is displayed here.

bbbb Hexadecimal token for the extension.

Debugger 4--70

Field

ccece

dddd

eeee

INSPECTING AN EXTENSION-IX

Meanhyi

Hexadecimal type code associated with composite
objects licensed by this extension.

Hexadecimal token for the job containing this
extension.

Hexadecimal token for the deletion mailbox associated
with the extension. If there is no deletion mailbox
for the extension, "NONE" is displayed here.

Debugger 4-71

SANVHINOD M3IA

DEBUGGER COMMANDS

COMMANDS TO VIEW OBJECT LISTS

The commands in this section allow you to view lists of iRMX 86 objects.
Figure 4—11 illustrates the general syntax for commands in this section.

v

50000

t N
5]
~

1

0000

oA

1571

Figure 4-11. Syntax Diagram For Viewing iRMX™ 86 Object Lists

The second letter of the command indicates the type of object list to
display, as follows:

Jobs

Tasks

Ready tasks
Suspended tasks
Asleep tasks
Exchanges
Waiting Task queues
Mailbox queues
Segments
Composites
Extensions

OO H> noAaGg

The remainder of this section describes the commands in detail.

Debugger 4-72

VIEWING THE ASLEEP TASKS-VA

VIEWING THE ASLEEP TASKS -- VA

This command displays a list of asleep tasks. The syntax for the VA
command is as follows:

1572

PARAMETER
ITEM Token for a job. If this option is included, the
Debugger lists only those asleep tasks that are
contained in the specified job, If this option is
omitted, all asleep iasks in the system are listed.
DESCRIPTION

The VA command displays suspended tasks as:

SA = jjjjJ/teetT jijjJ/ttttT ooe jjjjI/ttteT

where:
tttt Token of an asleep task.

ARER Token for the job containing the task. An asterisk

following the task token indicates that the task has
overflowed its stack.

Debugger 4-73

VIEWING COMPOSITES-VC

VIEWING COMPOSITES -- VC

This command displays a list of composite objects. The syntax for the VC
command is as follows:

ITEM
1573
PARAMETER
ITEM Token for a job. 1If this option is included, the
Debugger lists only the composite objects contained in
the specified job. 1f this option is omitted, all
composite objects in the system are displayed.
DESCRIPTION

The VC command displays composite objects as:

CL = jjjjJ/ccceC jjjijd/ccccC oee jjijI/ccceC

where:

cecee Token for a composite object.

3iij Token for the job containing the composite object.

Debugger 4-74

VIEWING EXCHANGES ~- VE

This command displays a list of exchanges.

The syntax for the VE command
is as follows:

ITEM
1574
PARAMETER
ITEM Token for a job. If this option is included, the

Debugger lists only those exchanges that are contained
in the specified job. 1If this option is omitted, all
exchanges in the system are listed.

DESCRIPTION

The VE command lists exchanges as:

EL = jjjjJ/xxxxt jjjjI/xxxxt «e. jjjjJ/xxxxt

where:
XXXX Token for an exchange.

Type of the exchange (M for mailbox, S for semaphore,
or R for region).

jiii Token for the job containing the exchange.

Debugger 4-75

VIEWING SEGMENTS -- VG

This command displays a list of segments. The syntax for the VG command
is as follows:

ITEM
1575
PARAMETER
ITEM Token for a job. 1If this option is included, the
Debugger lists only the segments contained in the
specified job. If this option is omitted, all
segments in the system are displayed.
DESCRIPTION
=
m The VG command displays segments as:
<
0
o 3
E GL = jj3jJ/ggegeC jiiil/eeeeG .. 33133/ 888G
>
=
g where:
gggg Token for a segment.
ijij Token for the job containing the segment.

Debugger 4-~76

VIEWING JOBS -V

VIEWING JOBS -- VJ

This command displays a list of jobs.

The syntax for the VJ command is
as follows:
ITEM
1676
PARAMETER
ITEM

Token for a job. If this option is included, the

Debugger lists only those jobs that are children of

the specified job. If this option is omitted, all
jobs in the system are listed.

DESCRIPTION

The VJ command displays jobs as:

JL = ppppJ/3jjiJ ppppI/3jijJ «.. ppppI/3jjid
where:
jiii Job token.
PPPP Token of its parent job.

If the job designated by
3jjjj is the root job, then "ROOT" replaces "ppppJ”.

Debugger 4-77

VIEWING MAILBOX OBJECT QUEUES—-VM

VIEWING MAILBOX OBJECT QUEUES -- VM

This command displays object queues at mailboxes. The syntax for the WM
command is as follows:

ITEM

1577

PARAMETER

ITEM Token for a mailbox or a job. If you specify a
mailbox token for this option, the Debugger lists only
the object queue associated with the specified
mailbox. If you specify a job token for this option,
the Debugger lists all object queues in the specified
jobe 1If you omit this option, the Debugger displays
object queues for all exchanges in the system.

DESCRIPTION

The VM command displays object queues at mailboxes as:

ML jjj3jJ/mmmmM
ML j3j3jjJ/mmmmM

jjjjJ/oooot jjjjJ/oooot ... jjjjJ/ooo00t
jjjjJ/oooot jjijjJ/oooot «.. jjjijI/ooo00t

([]

ML j3jjJ/mmmmM = jjjjJ/oooot jjjjJ/ovoot ... jjjjJ/oooot

where:
mmmm Token for a mailbox.
0000 Token for an object in that mailbox's object queue,
t Type of the object (J for job, T for task, M for

mailbox, S for semaphore, and G for segment).

jiij Token for the job containing the mailbox or object.

Debugger 4--78

VIEWING READY TASKS—VR

VIEWING READY TASKS -- VR

This command displays a list of ready tasks. The syntax for the VR
command is as follows:

1578

PARAMETER
ITEM Token for a job. If this option is included, the
Debugger lists, in priority order, the ready tasks
that are contained in the specified job. If this
option is omitted, all ready tasks in the system are
listed in order of priority.
DESCRIPTION

The VR command displays ready tasks as:

RL = jjjjJ/ttetT jijjI/etetT oos jijjI/eteeT

where:
tttt Token of a ready task.

33ij Token for the job containing the task., An asterisk

following a task token indicates that the task has
overflowed its stack.

Debugger 4-79

VIEWING SUSPENDED TASKS-VS

VIEWING SUSPENDED TASKS -- VS

This command displays a list of suspended tasks. The syntax for the VS
command is as follows:

PARAMETER

ITEM

DESCRIPTION

ITEM

1579

Token for a job., If this option is included, the
Debugger lists only those suspended tasks that are
contained in the specified job. If this option is
omitted, all suspended tasks in the system are listed.

The VS command displays suspended tasks as:

SL = jjjjJ/ttteT jjjjI/ttetT oo j3jjJ/ttetT

where:

ttet

3333

Token of a suspended task.

Token for the job containing the task. An asterisk

following a task token indicates that the task has
overflowed its stack.

Debugger 4--80

VIEWING TASKS —-- VT

This command displays a list of tasks. The syntax for the VT command is
as follows:

ITEM
1580
PARAMETER
ITEM Token for a job., If this option is included, the

Debugger lists only those tasks that are contained in
the specified job. TIf this option is omitted, all
tasks in the system are listed.

DESCRIPTION

The VT command displays tasks as:

TL = jjjjJ/teeeT j3jiT/teetT oo jFjI/ttttT

where:
tttt Task token.

jiiji Token for the job that contains the task. An asterisk
following a task token indicates that the task has
overflowed its stack.

Debugger 4-81

VIEWING WAITING TASK QUEUES-VW

SANVININOO M3IA

VIEWING WAITING TASK QUEUES -- VW

This command displays the waiting task queues at exchanges. The syntax

for the VW command is as follows:

ITEM

1581

PARAMETER

ITEM Token for an exchange or a job. If you specify an
exchange token for this option, the Debugger lists
only the task queue associated with the specified
exchange. 1If you specify a job token for this option,
the Debugger lists all task queues 1n the specified
job. If you omit this option, the Debugger displays

task queues for all exchanges in the system.

DESCRIPTION

The VW command displays task queues at exchanges as:

WL jjjjJ/xxxxt = jjjjI/eeetT j3jjI/etttT oo jjjiI/ttteT
WL 33j3T/xxxxt = jjjjJ/eeetT jjj3T/etetT ooo jIjII/LLLELET

.
.

WL §3j3J/xxxxt

§33jI/etttT F3iFI/ttetT oee jjiiT/LEttT

where:

XXXX Token for an exchange.

t Type of the exchange (M for mailbox, S for semaphore,

or R for region).

tttt Token for a task which is queued at that exchange.

iiij Token for the job containing the task. An asterisk
indicates that either the task has overflowed its

stack or the task was loaded by the Application Loader.

Debugger 4-82

VIEWING EXTENSIONS -- VX

This command displays either a list of extension objects or a list of

composite objects associated with a particular extension object. The
syntax for the VX command is as follows:

ITEM
1582
PARAMETER
ITEM Token for an extension object. If this option is

included, the Debugger lists all composite objects
associated with the specified extension object. If
this object is omitted, the Debugger lists all
extension objects in the system.

DESCRIPTION

If the ITEM parameter is omitted, the VX command displays extension
objects as follows:

XL = §333J/xxxxX jj3jI/xxxxX «ee jijiI/ xxxxX

where:

XXXX Token for an extension object.

jiji Token for the job containing the extension.

If the ITEM option is included, the VX command lists the composite
objects associated with a particular extension object as follows:

XL jjijI/xxxxX = kkkkJ/ccceC kkkkJ/ccceC ... kkkkJ/ccecC

where:

XXXX Token for the extension object.

Debugger 4~83

VIEWING EXTENSIONS-VX

jiii Token for the job containing the extension.

ccce Token for the composite object that is associated with
the specified extension.

kkkk Token for the job containing the composite object.

Debugger 4-84

DEBUGGER COMMANDS

COMMANDS TO EXIT THE DEBUGGER

The Q command described in this section allows you to exit the Debugger
and resume processing.

Debugger 4-85

EXITING THE DEBUGGER-Q

EXITING THE DEBUGGER -- Q

This command exits the Debugger. The syntax for the Q command is as

follows:
—O—

1583

DESCRIPTION

The Q command deactivates the Debugger. When a debugging session is
terminated, the tables and lists the Debugger maintains are not
destroyed. Q also displays the message "EXIT iRMX 86 DEBUGGER".

m
a
]
0
=)
=
=
»
<
0
7]

k%

Debugger 4-86

CHAPTER 5
CONFIGURATION

The Debugger is a configurable layer of the Operating System. It
contains several options that you can adjust to meet your specific
needs. To make configuration choices, Intel provides three kinds of
information:

e A list of configurable options.
. Detailed Information about the options.
° Procedures to allow you to specify your choices.

The balance of thils chapter provides the first category of information.
To obtain the second and third categories of information, refer to the
iRMX 86 CONFIGURATION GUIDE.

Debugger configuration is almost identical to Terminal Handler
configuration (except that only one Debugger can be present in the
application system). Debugger configuration involves selecting
characteristics of the Debugger's Terminal Handler and specifying
information about the processor board and the terminal. The following
sections describe the configurable options available on the Debugger.

BAUD RATE

You can set the baud rate for the Debugger's Terminal Handler to any of
the following values:

110
150
300
600
1200
2400
4800
9600
19200

The default baud rate for the Debugger's Terminal Handler is 9600.

Debugger 5-1

CONFIGURATION

BAUD COUNT

The baud count provides a way to calculate internal timer values given
the clock input frequency. The baud count sets the limits on the baud
rate attributes of the Debugger's Terminal Handler. If your system's
programmable interval timer (PIT) has a clock input frequency other than
1.2288 megahertz, you must set the baud count. The default value for the
baud count is 4.

RUBOUT MODE AND BLANKING CHARACTER

There are two ways to rubout a character:
. Copying mode

° Blanking mode

In the copying mode, the character being deleted from the current line is
re-echoed to the display. For example, entering "CAT" and then striking
RUBOUT three times results in the display "CATTAC".

In the blanking mode, the deleted character is replaced on the CRT screen
with the blanking character. For example, entering "CAT" and then
striking RUBOUT three times deletes all three characters from the display.

The copy mode is the default mode. The default blanking character for
the blanking mode is a space (20H).

USART
The USART is a device that, depending upon the application, can be used
either to convert serial data to parallel data or to convert parallel

data to serial data. The Debugger's Terminal Handler requires a 8251A
USART as a terminal controller. You can specify:

e The port address of the USART. The default value for the port
address is ODS8H.

° The interval between the port addresses for the USART.

) The number of bits of valid data per character that can be sent
from the USART. The default value for the number of bits is 7.

Debugger 5-2

CONFIGURATION

PIT

You can specify the following information about the programmable interval
timer (PIT):

e The port address of the PIT. The default value for the port
address is ODOH.

° The interval between the port addresses for the PIT.

° The number of the PIT counter connected to the USART clock
input. The default value is 2.

MAILBOX NAMES

You can change the default names of both the input mailbox (RQTHNORMIN)

and the output mailbox (RQTHNORMOUT). The new names must not be over 12
alphanumeric characters in length.

INTERRUPT LEVELS

You can specify the interrupt levels used by the Debugger's Terminal

Handler for input and output. You choose interrupt levels by selecting a
value that corresponds to a particular interrupt value. The default

value for the input interrupt level is 68H and the default value for the
output interrupt level is 78H.

k%

Debugger 5-3

APPENDIX A
ERROR MESSAGES

This appendix lists the error messages that can occur when you enter
Debugger commands. Since the Debugger reads commands on a line-by-line
basis, it will not issue an error message for a command until you
terminate the command with an end-of-line character (carriage return or
line feed). Then, if the Debugger detects an error, it generates a
display of the following form:

command portion #
error message

where command portion consists of the command up to the point where the

Debugger detected the error, and error message consists of one of the
following:

Message Description

ATTEMPT TO MODIFY NON-RAM You tried to define a breakpoint at a
LOCATION non-RAM memory location.

BREAKPOINT TASK NOT AN You specified the N command, but the
NDP TASK breakpoint task was not designated as

an Numeric Processor Extension task at
its creation.

COMMAND TOO COMPLEX In order to process your commands, the
Debugger maintains a semantic stack, on
which it places all the semantic
entities of your command. Your command
was too complex and overflowed this
stack. To correct this problem, you
should first define numeric variables
for some of your more complex
expressions, and then use these
variables in your command in place of
the expressions.

DEBUGGER POOL TOO SMALL In order to process your command, the
Debugger tried to create an iRMX 86
segment. However, there was not enough
free space in the system to create this
segment.

DUPLICATE SYMBOL You attempted to define a numeric or

breakpoint variable name that was
already defined.

Debugger A-1

ERROR MESSAGES

Message

EXECUTION BREAKPOINT
ALREADY DEFINED

INTERRUPT TASK NOT ON
BREAKPOINT LIST

INVALID TASK STATE

INVALID TOKEN

ITEM NOT FOUND
NO BREAKPOINT TASK
SYNTAX ERROR

TASK NOT ON BREAKPOINT LIST

TASK NOT SUSPENDABLE.
WILL BE BROKEN WHEN
SUSPENDABLE

UNDEFINED SYMBOL

Description

You attempted to define (or redefine)
an execution breakpoint at an address
which already specifies an execution
breakpoint. This breakpoint may have
been set up by the Debugger or by the
iSBC 957B Monitor and must be deleted
before a new one can use this location.

You att-empted to make an interrupt

task the current breakpoint task
without first suspending that interrupt
task. An interrupt task can only be
made the current breakpoint task by
first incurring a breakpoint.

The Nucleus-maintained task descriptor
contains inconsistent information. You
have probably overwritten this area of
memory., It is unlikely that the task
can continue to run.

You specified a token for a different
kind of object than that required by
the command.

You tried to delete or change a
nonexistent numeric variable.

You entered the R or N command without
first establishing a breakpoint task.

The command is syntactically incorrect.

You tried to remove a task from the
breakpoint list with the G command when
the task was not on the list,

You entered the BT command to estab—
1lish a breakpoint task, but the
Debugger could not suspend the task in
its current state (for example, the
task currently has access to a

region). The Debugger will suspend the
task when it becomes possible to do
this.

The Debugger was unable to find the
specified symbol in the local symbol
table, the object directory of the
breakpoint task's job, or the root
object directory.

Debugger A-2

ERROR MESSAGES

UNKNOWN BREAKPOINT The Debugger encountered a breakpoint
iAPX 86, 88 MONITOR for which it had no record. It tried
NOT CONFIGURED to pass the breakpoint to the Monitor

but could not because the Monitor is
not included in your system,

Kk

Debugger A-3

INDEX

Primary references are underscored.

8087 Numeric Processor Extension (NPX) 4-33, 4-35

address 4-38
altering
breakpoint task's NPX registers 4-28
breakpoint task's registers 4-32
asleep tasks 4-73

B command 4-15
baud count 5-2
BL command 4-18
breakpoint
commands 4-10
list 4-18
parameters 4-15
task 4-11, 4-19, 4-20
variables 4~7
BT command 4-19, 4-20

capabilities of the Debugger 1-3
carriage return 2-1
changing
breakpoints 4-21
memory 4-40
numeric variables 4-5
commands 4-1
dictionary 4-2
syntax 3-1
composites 4-54, 4-74
constant 3-2
Control-D 1-3, 2-2
Control-0 2-1
Control-Q 2-1
Control-Ss 2-1
conventions 3-1
Crash Analyzer 1-2

CROOT.LIB library 1-4
current
address 4-38
display mode 4-38, 4-52
offset 4-38
segment base 4-38

Debugger Index-l

INDEX (continued)

D command 4-6
DB command 4-23
Debugger capabilities 1-3
defining
breakpoints 4-23
numeric variables 4-6
deleting
breakpoints 4-36
numeric variables 4-9
dictionary of commands 4-2
display mode 4-38, 4-52
displaying objects lists 4-72

end-of-line characters 2-1

error messages A-1

escape character 2-1

establishing the breakpoint task 4-19

examining
breakpoints 4-25
memory 4-48

exception breakpoint 4-10
differences 4-13
display 4-12

exchange breakpoint 4-10
display 4-12

exchanges 4-56, 4-75

execution breakpoint 4-10
display 4-11

exiting the Debugger 4-86

expression 3-3

extensions 4-70, 4-83

G command 4-27

IC command 4-54
ICE-86 1-2
IE command 4-56
IG command 4-61
IJ command 4-63
in-circuit emulator (ICE) 1-2
inspecting
composites 4-54
exchanges 4-56
extensions 4-70
jobs 4-63
segments 4-61
tasks 4-67
inspecting system objects 4-53
invoking the Debugger 1-3
iSBC 286 monitor 1-1
iSDM 86 monitor 1-1
IT command 4-67
item 3-3
IX command 4-70

jobs 463, 4-77

Debugger Index—-2

INDEX (continued)

line feed 2-1
listing
breakpoint task 4-20
numeric and breakpoint variables 4-7

M command 4-40, 4-48, 4-52
mailbox object queues 4-78
memory

commands 4-37

changing 4-40

examining 4-48
messages A-l

name 3-2

NPX registers 4-28, 4-30

numeric variables
defining 4-5
changing 4-8
deleting 4-9

object lists 4-72
objects 4-53
offset 4-38

pictorial syntax representation 3-1
Programmable Interval Timer (PIT) 5-2

Q command

R command 4-32, 4-34

ready tasks 4-79

registers 4-32, 4-34
NPX 4-28, 4-30

resuming
output from application tasks 2-1
task execution 4-27

rubout mode 5-2

segment base 4-38
segments 4-61, 4-76
setting the current display mode 4-52
special characters 2-1
starting the Debugger 1-3
supressing output from application tasks
suspended tasks 4-80
symbol table 4-4
symbolic name commands 4-4
symbols 3-2
syntax 3-1
system
debugging tools 1-1
exception handler 1-3
objects 4-53
System Debug Monitor (SbB) 1-1

2-1

Debugger Index-3

INDEX (continued)

table of symbols 4-4
tasks 4-67, 4-81
terminating Debugger commands 2-2

USART 5-2

VA command 4-73
VC command 4-74
VE command 4-75
VG command 4-76

viewing

asleep tasks 4-73

breakpoint list 4-18

breakpoint parameters 4-15
breakpoint task's NPX registers 4-30
breakpoint task's registers 4-34
composites 4-74

exchanges 4-75

extensions 4-75

jobs 4-77

mailbox object queues 4-78
object lists 4-72

ready tasks 4-79

segments 4-76

suspended tasks 4-80

tasks 4-81

waiting tasks 4-82

waiting tasks 4-82

Z command 4-9, 4-36

%k
Debugger Index—4

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	4-82
	4-83
	4-84
	4-85
	4-86
	5-01
	5-02
	5-03
	5-04
	A-01
	A-02
	A-03
	A-04
	idx01
	idx02
	idx03
	idx04

