
iRMX ™ 86 HUMAN INTERFACE
REFERENCE MANUAL

I I

CONTENTS

CHAPTER 1
OVERVIEW
Resident Human Interface Commands ••••••••••••••••••••••••••••••••••
Human Interface System Calls •••••••••••••••••••••••••••••••••••••••
Standard Initial Program.o •••
Multi-Access Support ••••• o •••
Wild-Card Pa thnames •••••• 0 •••

CHAPTER 2
SUPPORTING MULTIPLE TERMINALS
Communicating with Terminals via the Basic and Extended I/O Systems
Using the Multi-Access Human Interface •••••••••••••••••••••••••••••

Standard Initial Program •••
Customized Initial Program •••••••••••••••••••••••••••••••••••••••

CHAPTER 3
COMMAND PARSING
Standard Command-Line Structure ••••••••••••••••••••••••••••••••••••
Parsing the Command Line. < ••

Parsing Input and Output Pathnames •••••••••••••••••••••••••••••••••
Wild-Card Characters in Input and Output Pathnames •••••••••••••••••
Parsing Other Parameters •..•••
Parsing Nonstandard Command Lines ••••••••••••••••••••••••••••••••••

Variations on the Standard Command Line ••••••••••••••••••••••••••
Other Nonstandard Command Lines ••••••••••••••••••••••••••••••••••

Switching to Another Parsing Buffer ••••••••••••••••••••••••••••••••
Obtaining the Command Nam'~ •••

CHAPTER 4
I/O AND MESSAGE PROCESSING
Establishing Input and Output Connections ••••••••••••••••••••••••••

Using CGETINPUT$CONNECTION •••••••••••••••••••••••••••••••••••••
Using CGETOUTPUT$CONNECTION ••••••••••••••••••••••••••••••••••••
Example Program Scenario •••

Communicating with the Operator's Terminal •••••••••••••••••••••••••
Formatting Exception Codes into Messages •••••••••••••••••••••••••••

CHAPTER 5
COMMAND PROCESSING
Creating a Command Connection ••••••••••••••••••••••••••••••••••••••
Sending Command Lines to the Command Connection and Invoking the

Command •••
Deleting the Command Connection ••••••••••••••••••••••••••••••••••••
Example •••••...• f) ••

iii

PAGE

1-2
1-2
1-3
1-3
1-4

2-1
2-1
2-2
2-3

3-1
3-5
3-5
3-8
3-10
3-13
3-13
3-15
3-15
3-17

4-1
4-1
4-1
4-2
4-3
4-4

5-1

5-2
5-3
5-3

I

I

I

• ® CONTENTS
(continued)

CHAPTER 6
PROGRAM CONTROL
How the Default Control-C Mechanism Works ••••••••••••••••••••••••••
Providing Your Own Control-C Mechanism •••••••••••••••••••••••••••••

CHAPTER 7
CREATING HUMAN INTERFACE COMMANDS
Elements of a Human Interface Command ••••••••••••••••••••••••••••••

Parsing the Command Line •••
Avoiding the Use of Certain System Calls •••••••••••••••••••••••••
Terminating the Command ••
INCLUDE Files ••

Producing an Executable Command ••••••••••••••••••••••••••••••••••••

CHAPTER 8
HUMAN INTERFACE SYSTEM CALLS
C$CREATE$COMMAND$CONNECTION ••••••••••••
C$DELETE$COMMAND$CONNECTION ••
C$FORMAT$EXCEPTION •••
CGETCHAR •••
CGETCOMMAND$NAME •••
CGETINPUT$CONNECTION •••
CGETINPUT$PATHNAME •••
CGETOUTPUT$CONNECTION ••
CGETOUTPUT$PATHNAME ••
CGETPARAMETER •••••••••••• ~ •••••••••••••••••••••••••••••••••••••••
C$SEND$CO:t1r1AND ••••••••• tI •••

C$SEND$CO$RESPONSE •••
C$SEND$EO$RESPONSE •••
CSETPARSE$BUFFER •••

CHAPTER 9
CONFIGURATION OF THE HUMAN INTERFACE
Resident Configuration •••
Nonresident Configuration ••

APPENDIX A
HUMAN INTERFACE TYPE DEFINITIONS •••••••••••••••••••••••••••••••••••

APPENDIX B
HUMAN INTERFACE EXCEPTION CODES ••••••••••••••••••••••••••••••••••••

iv

PAGE

6-1
6-1

7-1
7-1
7-2
7-2
7-2
7-3

8-4
8-8
8-9
8-11
8-13
8-15
8-20
8-25
8-31
8-34
8-38
8-45
8-48
8-51

9-1
9-2

A-I

B-1

CONTENTS
(continued)

APPENDIX C
STRING TABLE FORMAT ••••••••••••••••••••.••••••••••••••••••••••••••••

8-1.
A-I.
B-1.
B-2.
B-3.

3-1.
3-2.
5-1.
C-1.

TABLES

System Call Dictionary ••••••••. , ••••••••••••••••••••••••••••
Type Definitions •••••••••••••• ~ ••••••••••••••••••••••••••••
Human Interface Exception Codes ••••••••••••••••••••••••••••
Exception Code Ranges •••••••••. , ••••••••••••••••••••••••••••
Conditions and Their Codes •••• ~ ••••••••••••••••••••••••••••

FIGUR8S

CGETINPUT$PATHNAME and C$GET~;OUTPUT$PATHNAME Example •••••
CGETP ARAMETER Example •••••••• , ••••••••••••••••••••••••••••
Command Connection Example
String Table Format ••

v

PAGE

C-1

8-2
A-I
B-1
B-2
B-3

3-7
3-12
5-3
C-1

CHAPTER 1
OVERVIEW

The iRMX 86 Human Interface is a layer of the Operating System that
allows console operators to load and execute program files (also called
commands) from terminals. When the Human Interface begins running, it:

• Creates an iRMX 86 job for each terminal configured in the Human
Interface. This job (also called the interactive job) furnishes
the application environment; all commands entered by the operator
run as offspring jobs of the operator's interactive job.

• Assigns an area of main memory for the operator (this occurs as
part of creating the interactive job). Any commands that the
operator runs use this area of memory.

• Starts an initial program (this also occurs as part of creating
the interactive job). The initial program is the operator's
interface to the Operating System. It is a command line
interpreter (CLI), a program that reads its instructions from the
terminal. The Human Interface supplies a standard initial
program which reads commands from the terminal and invokes the
commands based on that terminal input. You can also supply your
own initial programs. In fact, there can be a separate initial
program for each terminal, if necessary.

When an operator enters information at a Human Interface terminal, the
operator communicates with thE! initial program. With the standard
initial program, the operator invokes a. command by specifying the
pathname of the file that contains the command (and optionally specifying
parameters). The initial program reads the information from the terminal
and invokes Human Interface system calls to load the command into main
memory from secondary storage" create an iRMX 86 job for the command (as
an offspring of the operator's interactive job), and begin command
execution.

The Human Interface provides several features that aid both operators and
programmers. These features i.nclude:

• A set of Intel-supplied commands.

• A group of system calls to aid programmers in writing their own
commands.

• A standard command line interpreter (CLI).

• Multi-access support.

• Support for wild-card pathnames.

This chapter provides an overview of these features.

Human Interface 1-1

OVERVIEW

I RESIDENT HUMAN INTERFACE COMMANDS

I

In addition to the code for the resident Human Interface, Intel has
written a variety of commands which you can use with any application
system that includes the Human Interfacc~. Included are:

• File management commands (such as COPY, DELETE, BACKUP, RESTORE,
and others)

• Device and volume management commands (such as ATTACHDEVICE,
FORMAT, DISKVERIFY, and others)

• General Utility commands (such as DEBUG, DATE, SUBMIT, and others)

The iRMX 86 OPERATOR'S MANUAL contains eomplete descriptions of all
commands supplied with the Human Interface.

HUMAN INTERFACE SYSTEM CALLS

The Human Interface provides a set of system calls that programmers can
use in commands they write. The follow':ing categories of system calls are
available:

• Command-parsing system calls

• I/O and message-processing system calls

• Command-processing system calls

• Program control system calls

The command parsing system calls provide the ability to parse the command
line, allowing you to isolate and ident:ify the parameters in a command
line. They also allow you to determine the command name and parse other
buffers of text. Chapter 3 provides further discussion of the command
parsing system calls.

The I/O and message processing system calls allow you to establish
connections to input and output files, eommunicate with the terminal, and
format exception codes into a ready-to-'display form. Chapter 4 provides
a further discussion of the I/O and message processing system calls.

The command processing system calls allow you to invoke interactive
commands programmatically. Chapter 5 p:rovides a further discussion of
the command processing system calls.

The program control system call allows you to override the default
Control-C handling task provided by the Human Interface. Chapter 6
provides a further discussion of progrrun control.

Human Interface 1-2

OVERVIEW

STANDARD INITIAL PROGRAM

As stated previously, when an operator activates a terminal, the Human
In terface as signs an ini tial program to the opera tor. Thi s ini tial
program is the first program to run. The identity of this initial
program is determined by a privileged operator (normally called the
system manager) when adding new users to the system. This process is
described in the iRMX 86 CONFIGURATION GUIDE.

Although the initial program can be almost anything -- from an editor to
a Basic interpreter -- the Human Interface supplies a standard initial
program called the Human Interface command line interpreter (CLI). The
func tion of the Human In terface CLI is to read inpu t from the terminal
and invoke commands based on that input. This eLI (or a user-supplied
CLI) is required to allow an operator to invoke commands.

MULTI-ACCESS SUPPORT

The Basic I/O System supports multiple terminals by providing device
dri vers tha t communica te wi th mul tipleo-terminal hardware. The Human
Interface adds to this support by providing identification and protection
of users based on user IDs. This support is called multi-access support.

Wi th mul ti -access support, mul tiple op4~ra tors can communica te wi th the
Operating System. The Human Interface assigns each operator a unique
identification, called a user ID, and a separate area of memory in which
to run commands. When an operator creates files or attaches devices, the
Human Interface marks the operator as the owner of those files or
devices. Access to the files by other users depends on the permission
granted those users by the owner.

To run a multi-access Human Interface, a privileged operator (the system
manager) must first set up the proper directory structure and provide
several files containing information about the operators that can access
the system. This process is described in the iRMX 86 CONFIGURATION GUIDE.

Programmers who wri te commands do no t have to wri te their code
differently for a multi-access Human Interface than for a single-access
Human Interface. The only difficulty a command might experience in a
multi-access environment that it wouldn't experience in a single-access
environment involves accessing files and devices. When a command is
invoked by an operator, the command inherits the operator's user ID.
Thus the command can perform operations only on files and devices to
which the invoking operator has access~

Human Interface 1-3

I

I

OVERVIEW

WILD-CARD PATHNAMES

The Human Interface supports the use of wild-card characters in file
names. This gives the operator a shorthand method of specifying several
files in a single reference. The wild-'card characters supported by the
Human Interface are:

? Matches any single character

* Matches any sequence of characters (including zero characters)

The iRMX 86 OPERATOR'S MANUAL describeH how an operator can use wild-card
characters when entering commands.

Programmers who write their own Human Interface commands do not have to
provide special code to support wild-card pathnames as long as they use
the Human Interface system calls C$GET~iINPUT$PATHNAME and
CGETOUTPUT$PATHNAME to obtain the file names from the command line.
The Human Interface contains the mechanism to interpret the wild cards
and return the correct file name to thE~ calling command. Refer to
Chapter 3 for more information about these system calls.

Human Interf,3.ce 1-4

CHAPTER 2
SUPPORTING MULTIPLE TERMINALS

The iRMX 86 Operating System provides two ways for you to implement
multiple-terminal support on your application system. You can:

• Write application tasks that use the system calls of the Basic
and Extended I/O Systems to communicate directly with multiple
terminals.

• Use the multi-access Human Interface.

This chapter discusses both methods.

COMMUNICATING WITH TERMINALS VIA THE BASIC AND EXTENDED I/O SYSTEMS

One method of providing multiple terminal support is to omit the Human
Interface from your system, write your own application programs that
access the terminals directly, and configure these programs as tasks in
the Operating System. The Basic I/O System provides device drivers that
allow tasks to communicate with multiple terminals. Therefore, if your
system contains the necessary hardware, your application tasks can use
Basic and Extended I/O System calls to communicate with each terminal in
your system.

If you communicate with the terminals directly, without using the Human
Interface, you can tailor your terminal interface to meet your exact
needs. This might result in smaller, faster code than the Human
Interface (but at the expense of an increased program development
effort). This method requires you to write a great deal of code that the
Human Interface already supplies.

If you plan to use this method of providing multiple terminal support,
none of the information contained in this manual applies to you. Refer
to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL and the iRMX 86 EXTENDED
I/O SYSTEM REFERENCE MANUAL for informa.tion about the system calls you
can use to communicate with terminals.

USING THE MULTI-ACCESS HUMAN INTERFACE

The other method of providing multiple-terminal support is to use the
multi-access support provided by the Human Interface. The multi-access
support includes code required to communicate with multiple terminals.

Human Interface 2-1

SUPPORTING MULTLPLE TERMINALS

It uses the same Basic and Extended I/O System calls that you would have
to use if you implemented the method described in the previous section.
However, the multi-access Human Interface also provides high-level
support for this communication. For example, from a terminal in a
multi-access system, an operator can execute commands, run development
programs (like editors, compilers, and so on), and run other application
programs. If you decide to use the multi-access support features of the
Human Interface, you can still tailor your system to meet your individual
needs. An important way of doing this is by selecting, for each
operator, the initial program that runs when that operator accesses the
Human Interface. There are two choices:: the initial program supplied
with the Human Interface (the standard CLI) or initial programs that you
write. The user description files maintained by the system manager
identify this choice to the Human Interface (refer to the iRMX 86
CONFIGURATION GUIDE for more information). By selecting the initial
program, you can greatly influence the operator's interface to the Human
Interface.

STANDARD INITIAL PROGRAM

The Human Interface supplies a command line interpreter (CLI) as the
standard initial program. During init:lalization, the Human Interface CLI
performs the following operations:

• Displays a sign-on message.

• Creates an iRMX 86 object call(~:d a command connection in which it
places information received from the terminal. Refer to Chapter
5 for more information about cc::nnmand connections.

• Attaches or creates the operator's :PROG: directory.

• Submits the file :PROG:R?LOGON for processing.

After this initial processing, the Human Interface CLI performs the
following operations:

• Displays the Human Interface prompt (-) and reads input from the
terminal (using the Human Interface system call
C$SEND$CO$RESPONSE).

• Places the information it reads into the command connection
(using the Human Interface system call C$SEND$COMMAND). After
receiving a complete command, the command connection removes the
command name portion, load~ thE~ file containing the command, and
passes the parameters to the command.

• Recognizes the ampersand (&) mark in a command line and displays
a different prompt (**) when a continuation line is required.

• Displays error messages in the event of certain operator errors.

Human Interface 2-2

SUPPORTING MULTIPLE TERMINALS

This is the user environment described in the iRMX 86 OPERATOR'S MANUAL.
If it satisfies the needs of your application system, you can assign the
Human Interface CLI to each operator as an initial program.

CUSTOMIZED INITIAL PROGRAMS

If the standard initial program does not meet your needs, you have the
option of providing your own initial programs. These initial programs
might be similar to the Human Interface CLI, or they might be completely
different kinds of progra.ms. For example, you could write a CLI that
allows access to files in selected directories only. This would prevent
an operator from accidentally modifying other files. Or if you want a
particular operator to use only Basic-language programs, a Basic
interpreter might be the initial program for that operator. You can
select the initial progra.m for each operator. You specify this selection
in the user description files maintainled by the system manager (refer to
the iRMX 86 CONFIGURATION GUIDE).

If you provide your own initial program, this program must obey the
following rules:

• It must perform input and output via logical names :CI: and :CO:.

• If it requires the ability to run Human Interface commands, it
must create an iRMX 86 object called a command connection (via
the C$CREATE$COMMAND$CONNECTION system call). If the initial
program does not create a command connection, it (and any other
application tasks) cannot use the following Human Interface
system calls:

CGETINPUT$PATHNAME
CGETOUTPUT$PATHNAME
C$SEND$CO$RESPONSE
C$SEND$EO$RESPONSE
C$SEND$COMMAND
C$DELETE$COMMAND$CONNECTION

• If it does not create a command connection but still wishes to
use the Human Interface system calls CGETPARAMETER and
CGETCHAR, it must first invoke the CSETPARSE$BUFFER system
call.

• If it receives an end-of-file indication from the terminal, it
must terminate processing.

• It must invoke the Extended I/O System call EXITIOJOB to
terminate processing. It must not use the PL/M-86 or ASM86
RETURN statement for this purpose.

Refer to Chapter 8 for detailed descriptions of the Human Interface
system calls mentioned in this section. Refer to the iRMX 86 EXTENDED
I/O SYSTEM REFERENCE MANUAL for information about the EXITIOJOB system
call.

Human Interface 2-3

CHAPTER 3
COMMAND PARSING

Whenever a Human Interface operator enters characters at a terminal to
invoke a command, an initial program associated with that operator reads
that information and causes the Operating System to invoke the command.
When it invokes the command, the Operating System places the parameters
into a parsing buffer. One of the first things that the command must do
is to read the parsing buffer, break the command line into individual
parameters, and determine the correct action to take based on the number
and meaning of the parameters.

The Human Interface provides several system calls to parse command lines
that follow a standard structure. It also provides other system calls to
process nonstandard formats. This chapter:

• Defines the standard structure of command lines

• Describes the system calls used to parse commands having this
structure

• Discusses how to switch from one parsing buffer to another
parsing buffer

• Describes system ealls you can use to parse nonstandard commands

• Describes a system call that you can use to obtain the command
name the operator used when invoking the command

STANDARD COMMAND-LINE STRUCTURE

The standard structure of a Human Interface command line consists of a
number of elements separated by spaces. It is recommended that your
commands follow this strueture. However, if you require a different
structure, refer to the "Parsing Nonstandard Command Lines" section of
this chapter. The standard structure 1.s as follows (square brackets []
indicate optional portions):

command-name [inpath-list [preposition outpath-list]] [parameters] cr

where:

command-name Pathname of the file containing the command's
executable object code.

Human Interface 3-1

inpath-list

preposition

outpath-list

COMMAND PARSING

One or more pathnames, separated by commas, of files
that the Human Interface reads as input during command
execution. Individual pathnames can contain wild-card
characters to signi:Ey multiple files. Refer to the
iRMX 86 OPERATOR'S l1ANUAL for a description of the
wild-card characters and their usage. You can use the
CGETINPUT$PATHNAME system call to process this
inpath-list.

A word that tells the Human Interface how to handle
the output. The standard structure supports the
following prepositions:

TO

OVER

AFTER

The Human Interface writes the output
to a new file indicated by the output
pathname. If the file already exists,
the 11uman Interface queries the
operator as follows:

<pathname), already exists, OVERWRITE?

If the operator enters a Y or an R
(upp(:~rcase or lowercase), the Human
Interface replaces the existing file
with the new output. Any other
character causes the Human Interface to
proceed with the next pair of input and
output files.

The :Human Interface writes the output
to the file indicated by the output
pathname. It overwrites any
information that currently exists in
the file.

The Human Interface appends the output
to the end of the file indicated by the
output pathname.

You can use the CGETOUTPUT$PATHNAME system call to
process the preposition.

One or more pathnamE!s, separated by commas, of files
that are to receive the output during command
execution. The total number of pathnames in this list
and the number of wlld cards used depends on the
inpath-list. Refer to the iRMX 86 OPERATOR'S MANUAL
for more information. You can use the
CGETOUTPUT$PATHNA~lli system call to process the
outpath-list.

Human Interface 3-2

parameters

cr

COMMAND PARSING

Parameters that cause the command to perform
additional or extended services during command
execution. The standard structure supports parameters
with the following formats:

value-list The parameter consists solely of
one or more groups of characters
(called values) separated by
commas. When the value-list is
present in the command line, the
command performs the service
indicated by the values.

keyword=value-list A keyword with an associated value
(or list of values, separated by
commas). The keyword portion
identifies the kind of service to
perform, and each value supplies
further information about the
service request.

keyword(value-list) Alternate form of the previous
format.

keyword value-list A keyword with an associated value
(or list of values, separated by
commas). Like the previous two
formats, the keyword portion
identifies the kind of service to
perform and each value portion
provides more information about
the service. However, the keyword
must be identified to the command
as a preposition (refer to the
description of the CGETPARAMETER
system call for more information).

You use the CGETPARAMETER system call to process the
parame.ter.

Line terminator character. The RETURN (or CARRIAGE
RETURN) key and NEW LINE (or LINE FEED) key are both
line terminators.

The Human Interface also supports the following special characters:

continuation
character

An ampersand character (&). When an operator includes
an ampersand in the command line as the last character
before the line terminator, the Human Interface
assumes that the command invocation continues on the
next line. If the standard Human Interface command
line interpreter (or any custom command line
interpreter that uSles C$SEND$COMMAND to invoke
commands) processes the operator's command entry, the
ampersand (and the line terminator that follows) are

Human Interface 3-3

connnent
character

quoting
characters

COMMAND PARSING

edited out of the parsing buffer. Then the
continuation line is read and appended to the parsing
buffer. This process continues until the operator
enters a line without a continuation character.
Therefore, when the command receives control, its
parsing buffer contains a single command invocation,
without intermediate continuation characters or line
termi.na tors.

A semicolon character (;). The Human Interface
considers this character and all text that follows it
on a line to be a non-executable comment. If the
standard Human Interface command line interpreter (or
any custom command line interpreter that uses
C$SEND$COMMAND to invoke commands) processes the
operator's connnand entry, all comments are edited out
of the parsing buffer. Therefore, individual commands
do not have to seareh for and discard comments.

Two single-quote (') or double-quote (") characters
remove the semantics of special characters they
surround (but you must use the same character for both
the beginning and ending quote). If a command line
contains quoted characters, the Human Interface system
calls that invoke the command and parse the connnand
line do not perform any special functions associated
with the surrounded characters. For example, an
ampersand surrounded by double quotes is interpreted
as a single ampersand and not a continuation character.

The quotes remove the semantics of characters that are
special to the Human Interface but not special to
other layers of the Operating System. Therefore
quotes do not remove the semantics of characters such
as :, /, and I, which are special to the I/O System.

To include the quoting character in the quoted string,
the operator must specify the character twice or use
the other quoting character. For example:

'can' 't' or "can't"

causes:

can't

to be entered in thE! command line.

Human Interface 3-4

COMMAND PARSING

PARSING THE COMMAND LINE

When a command begins executing, a parsing buffer associated with the
command contains all the parameters that the operator entered when
invoking the command (everything except the command-name portion of the
invocation line). The Human Interface maintains a pointer for this
parsing buffer which initially points to the first parameter. By
invoking any of the following Human Interface system calls, the command
can read the parameters from the parsing buffer:

CGETINPUT$PATHNAME
CGETOUTPUT$PATHNAME
CGETPARAMETER
CGETCHAR

Each of the first three system calls rE~ads an entire parameter
the Human Interface to mov'e the pointer to the next parameter.
system calls understand quoting characters, remove the special
from quoted characters, and discard the quote characters.

and causes
These

meaning

The last system call, CGETCHAR, sees the parsing buffer as a string of
characters. It reads a single character and causes the Human Interface
to move the pointer to the next character. It does not understand the
notion of quoting characters; therefore it does not remove the special
meaning from quoted characters, nor dOE~s it skip over the quotes. Except
for positioning the parsing pointer to a particular place in the buffer,
CGETCHAR should not be used with the first three system calls.

PARSING INPUT AND OUTPUT PATHNAMES

If you restrict the invocation lines of the commands you write to a form
that is similar to the standard format discussed earlier in this chapter,
you can use the system calls CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME to identify the input and output pathnames in the
command line. Since the command line ean contain multiple pathnames, you
might have to invoke these system calls several times to obtain all the
pathnames. However, the first call to CGETINPUT$PATHNAME reads the
entire inpath-list (the list of pathnarnes separated by commas) into a
buffer, moves the parsing pointer to the next parameter, and returns the
first pathname to the command. Likewise, the first call to
CGETOUTPUT$PATHNAME notes the preposition (TO, OVER, or AFTER), reads
the entire outpath-list into a buffer, moves the parsing pointer to the
parameter after the outpath-list, and returns the first pathname to the
command. Succeeding CGETINPUT$PATHNlillE and C$GET$OUTPUT$PATHNAME calls
return additional pathnames from the buffers created previously, but they
do not move the parsing pointer to the next parameter.

For example, if the parsing buffer contains:

A,B TO C,D

Human Interface 3-5

I

COMMAND PAJ~SING

the first call to CGETINPUT$PATHNAME obtains both input pathnames (A
and B) and returns the first one (A) to the caller. The first call to
CGETOUTPUT$PATHNAME obtains both outlmt pathnames (C and D) and returns
the first one (C) to the caller. C$GET:?OUTPUT$PATHNAME also identifies
TO as the preposition.

These system calls handle single pathna,.mes, lists of pathnames, and
pathnames containing wild-card characters. However, because of this
versatility and because output pathnames are dependent on input pathnames
when both use wild-card characters, you must make calls to
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME in a particular order. To
use these system calls effectively, obey the following rules:

1. Always call CGETINPUT$PATHN~[E to obtain the input pathname
before calling CGETOUTPUT$PATHNAME to obtain the corresponding
output pathname. This is necessary because with wild-card
characters, the identity of the output pathname depends on the
identity of the input pathname. Therefore, CGETOUTPUT$PATHNAME
cannot determine the output pathname until CGETINPUT$PATHNAME
determines the corresponding input pathname.

2. Always alternate your calls to CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME. This is necessary to handle wild-card
characters and lists of pathnaml:!s. If you invoke two calls to
CGETINPUT$PATHNAME without an intermediate call to
CGETOUTPUT$PATHNAME, you will not be able to obtain the first
output pathname. Similarly, if you invoke two calls to
CGETOUTPUT$PATHNAME without an intermediate call to
CGETINPUT$PATHNAME, the second call returns invalid information.

CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME return the pathnames in
the form of iRMX 86 strings. Each stri.ng is a group of bytes in which
the first byte contains the number of ASCII bytes that follow. For these
system calls, the remaining bytes in the string contain the pathname. If
CGETINPUT$PATHNAME returns a zero-length string (that is, the first
byte is zero), you know that there are no more pathnames to obtain.

After calling CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to obtain
the input file and corresponding output file, you can use the system
calls CGETINPUT$CONNECTION and C$GET$OUTPUT$CONNECTION to obtain
connections to those files. Chapter 4 eontains more information about
CGETINPUT$CONNECTION and C$GET$OUTPUT:?CONNECTION. Upon obtaining
connections to the files, you can perform the necessary I/O operations.

Figure 3-1 contains an example of a program that uses
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME in its command-line
parsing (it also uses CGETINPUT$CONNECTION and C$GET$OUTPUT$CONNECTION
to obtain connections to the files. This command is a partial example of
a COpy command that you could implement.

Human Interbice 3-6

COMMAND PARSING

/***
* This example demonstrates the use of the following Human Interface *
* system calls: *
*
*
*
*
*
*

rqCget$input$pathname
rqCget$output$pathname
rqCget$input$connection
rqCget$output$connection

*
*
*
*
*
*

*
*
*
*
*
*

This program is a posBible implementation of a COpy utility whose *
purpose is to copy data from successive input files to corresponding *
output files. For example, to copy file A to file B, file C to file *
D, and file E to file F, an operator could specify the following *
command line: *

* * COpy A,C,E TO B,D,F *
***/

copy: DO;

$include (hexcep.lit)
$include (iexioj.ext)
$include (hgticn.ext)
$include (hgtipn.ext)
$include (hgtocn.ext)
$include (hgtopn.ext)

DECLARE (input$pathname, output$pathname) structure (
length
char (41)

output$prep byte,
(input$token, output$token)
excep word,
exitexcep word;

word,

/* Get the first input pathname string */

byte,
byte),

CALL rqCget$input$pathname (@input$pathname, SIZE(input$pathname),
@excep) ;

IF excep <> E$OK THEN
CALL rq$exit$io$job (exitexcep, 0, @excep);

DO WHILE (input$pathname.length <> 0); /* A zero length indicates no more
input parameters. */

/* Get the corresponding output pathname string */
output$prep = rq$Cgetoutput$pathn.ame (@output$pathname,

SIZE(output$pathname),
@(7, 'TO :CO:'), @excep);

IF excep <> E$OK THEN
CALL rq$exit$io$job (exitexcep, 0, @excep);

Figure 3-1. CGETINPUT$PATHNAME And C$GET$OUTPUT$PATHNAME Example

Human Interface 3-7

COMMAND PARSING

1* Establish connection with the pair of input and output files *1

input$token = rq$Cgetinput$conneetion (@input$pathname, @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (exitexcep:t 0, @excep);

output$token = rq$Cgetoutput$connection (@output$pathname,
output$prep, @excep);

IF excep <> E$OK THEN
CALL rq$exit$io$job (exitexcep. 0, @excep);

Code to copy data and close both files

1* Get the next input pathname string *1
CALL rqCget$input$pathname (@input$pathname, SIZE(input$pathname),

@exc(~p) ;
IF excep <> E$OK THEN

CALL rq$exit$io$job (exitexcep:, 0, @excep);

END 1* DO WHILE *1

1* Finish 1/0 processing *1
CALL rq$exit$io$job (exitexcep, 0, @exeep);

END copy;

Figure 3-1. CGETINPUT$PATHNAME And C$GET$OUTPUT$PATHNAME Example
(continued)

WILD-CARD CHARACTERS IN INPUT AND OUTPUT PATHNAMES

Wild-card characters provide a shorthand notation for specifying several
files in a single reference. The Human Interface supports two wild-card
characters for use in the last component of input or output pathnames.
The wild-card characters are:

? The question mark matches any single character. For example,
the name "FILE?" could imply all of the following names (and
more) :

FILE1
FILE2
FILEX

Human Interface 3-8

*

COMMAND PARSING

The asterisk matches any sequence of characters (including
zero characters). For example, the name "*FILE" could imply
all of the following files (and more):

OBJECTFILE
FILE
VI.2FILE
AFILE

The iRMX 86 OPERATOR'S MANUAL describes how to use wild-card characters
when entering commands. It also discusses restrictions and operational
characteristics of which an operator should be aware. Refer to that
manual for more information about using wild-card characters in file
names.

The CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME system calls
automatically handle pathnames that contain wild-card characters. They
treat a wild-carded pathname as a list of pathnames.

CGETINPUT$PATHNAME matches wild cards. That is, each time you call it,
it compares the wild-carded component with the files in the specified
directory and returns the pathname of the next file that matches. For
example, if an input pathname is:

:PROG:PLM/A*

CGETINPUT$PATHNAME searchs the :PROG::PLM directory and returns the
pathname of the next file that begins ~Tith the letter "A."

CGETOUTPUT$PATHNAME generates wild cards. Each time you call it, it
compares the wild-carded output pathname with the wild-carded input
pathname and with the most recent pathname returned by
CGETINPUT$PATHNAME. Then it generates a corresponding output pathname
based on that information. The output pathname could refer to an
existing file or to a file which does not yet exist.

As an example, suppose an operator's de!fault directory contains the
following files:

ALPHA
All
ADAM

BETA
BIl:
CII

Now suppose that you have written a cOD~and called REFINE that reads some
information from an input file, adjusts that information in some manner,
and writes the information to an output: file. Assuming that you
interleaved the calls to CGETINPUT$PA.THNAME and C$GET$OUTPUT$PATHNAME
correctly when you wrote the command, an operator could enter a command
line as follows:

REFINE A*,B* TO C*,D*

Human Interface 3-9

COMMAND PARSING

In this case, CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME return
pathnames as follows:

Pathname list returned
by CGETINPUT$PATHNAME

ALPHA
All
ADAM
BETA
Bll

PARSING OTHER PARAMETERS

Corresponding pathname list
.!'eturned by CGETOUTPUT$PATHNAME

CLPHA
Cll
CDAM
DETA
Dll

The CGETPARAMETER system call is also available for parsing command
lines of the standard format. You can llse this system call for the
following purposes:

• To parse parameters which appear after the input and output
pathnames.

• To parse all parameters, if the command does not use input and
output files.

• To parse the input and output pathnames, if the command requires
a preposition other than TO, OVER, or AFTER.

If you use CGETPARAMETER to parse input and output pathnames, you must
provide additional code to handle wild-card characters that may appear in
the command line. This is unlike C$GET~;rNPUT$PATHNAME and
CGETOUTPUT$PATHNAME which handle wild--card characters automatically.
For example, suppose a command line contains the pathname:

FILE*

If you use CGETINPUT$PATHNAME to parse this parameter, the system call
assumes that FILE* is a wild-carded pathname. It searches the operator's
default directory and returns the pathname of the first file whose name
starts with the characters "FILE". Subsequent calls to
CGETINPUT$PATHNAME return other pathnames that meet the conditions.

However, if you use CGETPARAMETER to parse the same parameter, the
system call returns the value:

FILE*

It does not know that the characters represent a,pathname, nor does it
know that the asterisk represents a wild card.

When called, CGETPARAMETER parses a s:lngle parameter and moves the
pointer of the parsing buffer to the next parameter. The parameter
returned as a result of this call can be in any of the following forms:

Human Interface 3-10

value-list

keyword = value-list
or

keyword (value-list)

keyword value-list

COMMAND PARSING

A value or group of values separated by
commas. The system call returns the entire
list in the form of a string table
(described in Appendix C). It places each
of the values in the value list in a
separate string.

A keyword indicating the kind of parameter,
followed by a value (or group of values,
separated by commas). The presence of the
equal sign or the parentheses lets the
system call recognize keyword parameters
without foreknowledge of the keywords. It
also informs the system call that the
characters following the equal sign (or the
characters in parenthesis) represent a
value-list and not a separate parameter.
The system call returns the keyword in a
string and the value-list in a string table.

A keyword indicating the kind of parameter,
followed by a value (or group of values,
separated by commas). In this case, since
the keyword and value-list are separated by
spaces instead of by an equal sign or
parentheses, the keyword is referred to as a
preposition. In order for the system call
to recognize that this structure is a
keyword/value-list instead of two separate
parameters, you must supply, as input to the
system call, a string table containing all
the possible prepositions that could occur.
The system call checks this list to
determine whether a group of characters
separated by spaces is a preposition keyword
or a separate parameter.

Individual parameters are separated by spaces.

In general, the value-list of a parameter is either a single value or a
list of values separated by commas. CGETPARAMETER returns each of
these values as a string in a string table. However, an individual value
can itself consist of a value-list. If a group of values (separated by
commas) is enclosed in parentheses, CGETPARAMETER treats the values as
a single value, returning them in single string. For example, in the
following value-list:

A,(B,C,D),E

CGETPARAMETER considers "B,C,D" as a single value. Therefore, the
value-list consists of three values: "A", "B,C,D", and "E".

Figure 3-2 contains an example of a program that uses CGETPARAMETER in
its command-line parsing.

Human Interface 3-11

COMMAND PARSING

/***
* This example demonstrates the use of the following Human Interface *
* system call: *
*
*
*
*
*
*
*
*
*
*
*

rqCget$parameter

This program makes use of rqCget~jparameter to parse a keyword
parameter in a command line. Here" the keyword, "SIZE", is parsed
and its value portion converted to a word value and placed in
"size$val". For example, an operator could specify the following
command line:

PROG1 SIZE = 400

*
*
*
*
*
*
*
*
*
*
* * Note that if the "SIZE" parameter is not present, "size$val"receives *

* a default value. *
**************************************;:**********************************/

prog1: DO;

$include (hexcep.lit)
$include (hgtpar.ext)

DECLARE STRING LITERALLY 'STRUCTURE (len BYTE, str (1) BYTE)',
STRING$TABLE LITERALLY 'STRUCTURE (num$entries BYTE,

entries (1) BYTE)',
PARAMETER$KEYWORD$MAX LITERALLY '20',
VALUE$TABLE$MAX LITERALLY '80':1
DEFAULT$SIZE LITERALLY '100';

DECLARE value$table$buf (VALUE$TABLE$~\X) BYTE, /* Receives
value */

value$table STRING$TABLE AT «(8'value$table$buf),
valuestrptr POINTER,

string table

value$str BASED value$str$ptr STRING; /* For referencing strings
in the string table */

DECLARE parameter$keyword$buf (PARAMETE:R$KEYWORD$MAX) BYTE, /* Receives
the keyword
string */

parameter$keyword STRING AT (@parameter$keyword$buf),
excep WORD,
(size$val, i) WORD;

Figure 3-2. CGETP'ARAMETER Example

Human Interface 3-12

COMMAND PARSING

1* Get the next parameter, if present *1
IF (rqCget$parameter (@parameter$keyword, PARAMETER$KEYWORD$MAX,

@value$table, VALUE$TABLE$MAX,
0,0,
@excep)) THEN

IF (parameter$keyword.str(O) = 'S') AND 1* Is the keyword 'SIZE'? *1
(parameter$keyword.str(l) = 'I') THEN

DO;
valuestrptr = @value$table.entries; 1* Point to 1st entry in

table *1
size$val = 0;
DO i = ° to value$str.len - 1; 1* Convert number string to word

value *1

END;
ELSE

size$val
size$val
END;

= size$val * 10;
size$val + (value$str.str(i) - 30H);

size$val DEFAULT$SIZE; I*If the 'SIZE' parameter is not present,
use the default size. *1

Continue with the rest of the program

Figure 3-2. CGETPARAMETER Example (continued)

PARSING NONSTANDARD COMMAND LINES

If the command line you write follows the recommended structure described
earlier in this chapter, you can use CGETINPUT$PATHNAME,
CGETOUTPUT$PATHNAME, and C$GET$PAR~~TER to parse the command line.
However, if you require the invocation line to be of a different form,
you might not be able to use these system calls. The following sections
discuss two types of nonstandard command lines: one that is similar to
the standard and one that is completely different.

VARIATIONS ON THE STANDARD COMMAND LINE

The "Standard Command-Line Structure" section of this chapter recommends
that the first parameters of your commands be a list of input pathnames,
a preposition, and a list of output pathnames. With this convention,
commands always call CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME

Human Interface 3-13

COMMAND PARSING

first, before obtaining any optional parameters. Therefore, the input
and output pathnames are the only position-dependent parameters in your
commands; other parameters can appear 1n any order and can be optional.

However, suppose you want to structure your commands so that other
parameters appear before the input and output pathnames. You can still
use CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to parse the input and
output pathnames. But, you have to ensure that your command knows which
of the parameters contain the input and output pathnames. You can do
this in several ways. Two of them are:

• Enforce a rigid structure on the command line. For example,
suppose you want two parameters to appear before the input and
output pathnames, such as:

command pI p2 input-pathname prep output-pathname

Your command could use CGETPARAMETER to parse the first and
second parameters. Then it could use CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME to parse the input and output pathnames.
If you do this, pI and p2 are position-dependent parameters which
must be included whenever the eommand is invoked.

• Use a separate parameter as a Bwitch to inform the command that
the parameters that follow are input and output pathnames. This
method requires more code to implement but it can allow you to
make all your parameters (including the input and output
pathnames) position-independent.

For example, you could implement your command such that whenever
the operator entered a parametE!r called FROM, it would signal the
command that the next parameters were input and output
pathnames. This command could contain a main loop that used
CGETPARAMETER to parse parameters. Then, whenever it received
a parameter whose value was "FROM", it could call another portion
of code that used CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME. After r,etrieving the input and output
pathnames, the code could return to the main loop to continue
processing parameters.

A hypothetical command of this :sort might be called RETRIEVE, a
command that retrieves information from various data bases. The
operator could invoke this command with a command line such as:

RETRIEVE NAMES ADDRESSES PHONES FROM filel TO file2

In this command, operators can specify what they want to retrieve
before they specify where to ge~:t the information.

Human Interface 3-14

COMMAND PARSING

OTHER NONSTANDARD COMMAND LINES

In some instances, you might want your command line to look completely
different from that described earlier in this chapter. For example,
suppose you require a syntax in which the following rules apply:

• Spaces have no significance and can be omitted between parameters.

• You must place a prefix character before each parameter (a $
indicates an input file, an @ indicates an output file, and a -
indicates all other parameters.

With this kind of syntax, a user couldl invoke a command (in this example
the command is again called REFINE) as follows:

REFINE $infile-medium@outfile

Where infile is the file from which to read information, outfile is the
file in which REFINE should place its output, and medium is a parameter
that further directs the processing.

If you require the syntax outlined in this example (or any other
nonstandard syntax), you cannot use C$:GET$INPUT$PATHNAME,
CGETOUTPUT$PATHNAME, and C$GET$PA~rnTER to parse the individual
parameters. Any of these system calls would return the entire parameter
list as a single parameter.

For cases such as this, you can use the CGETCHAR system call to parse
the command line. This system call pE~rforms a single, simple operation.
It returns a single character from the command line and moves the pointer
to the next character. It does not understand the notion of parameters
as explained earlier in this chapter. Nor does it understand wild-card
characters or quoting characters.

CGETCHAR requires you to provide thE~ parsing algorithm in your own
program, because it makes no assumptions about the structure or order of
parameters. However, by using CGETGHAR you can enforce any command
syntax you choose.

Because CGETCllAR moves the pointer (:haracter by character, not
parameter by parameter, you should take care when using CGETCHAR in the
same program with CGETINPUT$PATHNMfl~, C$GET$OUTPUT$PATHNAME, and
CGETPARAMETER~ You must ensure that CGETCHAR leaves the pointer
pointing at the beginning of a parameter (or at blank characters which
immediately precede the parameter) before invoking any of the other
system calls.

SWITCHING TO ANOTHER PARSING BUFFER

When a command begins execution, it has a parsing buffer that is set up
by the Human Interface to contain the parameters of the command. The
command parsing system calls listed in this chapter operate on that
parsing buffer. This allows the command to parse its parameters.

Human Interface 3-15

I

COMMAND PARSING

Some commands might require the ability to parse additional lines of text
(for example, an editor needs to parse :lndi vidual editor commands) after
the original command invocation. A comraand such as this cannot use the
Human Interface-provided parsing buffer because it has no way of placing
information in the buffer, and because :It cannot reset the parsing
pointer to the beginning of the buffer.

To meet the needs of commands such as this, the Human Interface provides
a system call to change the parsing buffer from the one the Human
Interface provides to one that the command provides. This system call,
CSETPARSE$BUFFER, switches the parsing buffer and sets the parsing
pointer to the beginning of the buffer.

One of the parameters of the CSETPARSE$BUFFER system call (buff$p) is a
pointer to a buffer containing the text to be parsed. This buffer can
contain text read from the terminal, text read from a file, or even text
that you "hard code" into the command. After the call to
CSETPARSE$BUFFER, the following command parsing system calls obtain
information from the new parsing buffer:

CGETPARAMETER
CGETCHAR

The other command parsing calls (CGETlNPUT$PATHNAME and
CGETOUTPUT$PATHNAME) are not affected by calls to CSETPARSE$BUFFER.
These calls always obtain pathnames from the original parsing buffer (the
command line).

When you establish a new parsing buffer, CSETPARSE$BUFFER sets the
parsing pointer to the beginning of the buffer. This allows you to use
one buffer for parsing many lines of text. For example, suppose your
command has several sub-commands. Each time the operator enters a
sub-command, your command reads the sub-·command into a buffer, calls
CSETPARSE$BUFFER to reset the parsing pointer, and parses the
sub-command. The program flow for an operation like this could be:

1. Read the information from the terminal into a buffer (use
C$SEND$CO$RESPONSE, C$SENDEORESPONSE, or an Extended I/O System
call) •

2. Call CSETPARSE$BUFFER to set the parsing buffer to the buffer
containing the sub-command. This sets the parsing pointer to the
beginning of the buffer.

3. Parse the sub-command using CGETPARAMETER or CGETCHAR system
calls.

4. Perform the operations requested by the sub-command.

5. Go back to step 1. Continue thJLs loop until the operator exits
from the command.

Human Interfa(:.e 3-16

COMMAND PARSING

If you specify a zero value for the buff$p parameter of
CSETPARSE$BUFFER, the parsing buffer switches back to the original
command line buffer. However, the parsing pointer does not reset to the
beginning of the buffer; it remains pointing at the next parameter in the
command line. This allows you, if you wish, to parse part of the command
line, switch buffers and parse a portion of another buffer, and switch
back to the command line.

There is one problem with switching back and forth between parsing
buffers. Except when you switch to the command line buffer, every time
you call CSETPARSE$BUFFER, the parsing pointer moves to the start of
the buffer. Therefore, you lose your place in the buffer. However,
CSETPARSE$BUFFER returns, in its offset parameter, a value that
indicates the position of the pointer in the previous buffer. This value
specifies the offset of the pointer, in bytes, from the beginning of the
buffer. If you intend to switch back to that buffer (by again calling
CSETPARSE$BUFFER), you ean use this value to move the pointer to its
previous position.

One way to do this is to use the CGETCHAR system call to move the
parsing pointer back to its previous position. After switching back to
the original buffer, call CGETCHAR the number of times specified in the
offset parameter of the first CSETPARSE$BUFFER call (not the one that
switched back to the buffer). This positions the pointer to its previous
location. You can then continue parsing parameters from the point at
which you left off.

Another way to do this is by treating your parsing buffer as an array of
characters (an array called CHAR, for example). When you call
CSETPARSE$BUFFER the first time, you can specify the buff$p parameter
to point to the first element of the array (CHAR(O), for example). Then,
when you switch parsing buffers, CSETPARSE$BUFFER returns, in the
offset parameter, the number of bytes already parsed. When you switch
back to the first parsing buffer, you can use this offset value as an
index into the array; that is, have the buff$p parameter point to
CHAR(offset).

OBTAINING THE COMMAND NAME

A user invokes a command by specifying the pathname of the file
containing its object code and any parameters the command requires. The
Human Interface places the parameters in a parsing buffer, which the
command can access by invoking the system calls described earlier in this
chapter. In addi tion, the~ Human Interface places the command name in
another buffer. The command can obtain this name by calling
CGETCOMMAND$NAME.

CGETCOMMAND$NAME does not operate on the parsing buffer used by the
other command parsing system calls. Nor is it affected by the
CSETPARSE$BUFFER system. It can be called multiple times; each time it
returns the same command name.

Human Interface 3-17

COMMAND PARSING

If the operator enters the complete pat.hname of the command (including
the logical name), the command-name buffer contains exactly what the
operator entered. Howeve~ if the operator enters a command name without
a logical name, the Human ~terface automatically searches a number of
directories for the command. In this ease, the command-name buffer
contains not only the name the operator entered, but also the directory
containing the command (such as :SYSTEH:, :PROG:, or :$:).

Therefore, a command can use the value returned by CGETCOMMAND$NAME and
the ampersand pathname separator (&) to access the directory in which it
resides. For example, if "command-namE~" is the name received from
CGETCOMMAND$NAME, a command could aceess its directory by using the
pathname:

command-name &

It could access another file in the directory by specifying the pathname:

command-name&file

Human Interf,9.ce 3-18

• (ii)
CHAPTER 4

1/0 AND
MESSAGE PROCESSING

The Human Interface provides several system calls that establish
connections to input and output files, communicate with the operator's
terminal, and format exception codes into messages that can be sent to
the operator. This chapter discusses these system calls.

ESTABLISHING INPUT AND OUTPUT CONNECTIONS

The Human Interface provides two system calls for establishing
connections to input and output files: CGETINPUT$CONNECTION and
CGETOUTPUT$CONNECTION. These system calls are structured so that you
can use the output from CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME as
input to these system calls.

USING CGETINPUT$CONNECTION

CGETINPUT$CONNECTION obtains a conneetion to a file and opens that
connection for reading. One of the parameters of CGETINPUT$CONNECTION
is a pointer to a string containing the pathname of the file for which
the connection is sought. This pathnarne can be the pathname returned by
CGETINPUT$PATHNAME or it can be the pathname of any other file to which
you want a connection. If CGETINPUT!~CONNECTION cannot obtain a
connection to the specified file for any reason, it returns an exception
code and writes a message to :CO: (normally the operator's terminal) to
indicate the type of problem. For exmnple, if the specified input file
does not exist, CGETINPUT$CONNECTION displays the following message:

<pathname), file not found

The system call displays similar messages in other situations. Refer to
the description of CGETINPUT$CONNECTION in Chapter 7 for more
information.

Because CGETINPUT$CONNECTION returns messages to the operator in the
event of an exceptional condition, your command does not have to return
additional messages unless you require them. The command only has to
decide whether to abort or to continue with processing.

USING CGETOUTPUT$CONNECTION

CGETOUTPUT$CONNECTION obtains a connE~ction to a file and opens that
connection for writing. As in the case of CGETINPUT$CONNECTION, one of
the parameters of CGETOUTPUT$CONNECTION is a pointer to a string
containing the pathname of the file for which a connection is sought.

Human Interface 4-1

I/O AND MESSAGE PROCESSING

This pathname can be the pathname retu~C'ned by CGETOUTPUT$PATHNAME or it
can be the pathname of any other file to which you want a connection.
There is another parameter in CGETOUTPUT$CONNECTION which specifies the
type of preposition to use when writing to the output file (TO, OVER, or
AFTER). This preposition governs how data gets written to the file.

If you specify the TO preposition and the pathname of an existing file,
CGETOUTPUT$CONNECTION prompts the opj;rator for permission to delete the
existing file. This prompt appears as:

<pathname), already exists, OVERWRITE?

If the operator enters a "Y" or "y", the system call obtains the
connection to the existing file. If the operator enters "N" or "n", the
system call returns an exception code without obtaining a connection to
the file.

If you specify the OVER preposition, C!?GET$OUTPUT$CONNECTION obtains the
connection without prompting the operator for permission.

If you specify the AFTER preposition, CGETOUTPUT$CONNECTION obtains the
connection without prompting the operator for permission. It also seeks
to the end of file before returning control. Thus any information you
write to the file will not overwrite the existing information. This is
unlike TO and OVER which cause CGETOUTPUT$CONNECTION to leave the file
pointer at the beginning of the file.

If the operator does not have the prop(;r access rights to the file, or if
for some reason CGETOUTPUT$CONNECTION cannot obtain a connection to the
file, CGETOUTPUT$CONNECTION returns an exception code and displays a
message at the operator's terminal. RE!fer to the description of
CGETOUTPUT$CONNECTION in Chapter 7 for more information.

EXAMPLE PROGRAM SCENARIO

A normal scenario for using CGETINPUT$CONNECTION and
CGETOUTPUT$CONNECTION is as follows:

DO;

Obtain input pathname from command line with CGETINPUT$PATHNAME

Obtain output pathname from command line with
CGETOUTPUT$PATHNAME

Obtain connection to input filE! with CGETINPUT$CONNECTION

Obtain connection to output fi1e with CGETOUTPUT$CONNECTION

Read information from input file

Perform command operations on information

Human Interface 4-2

I/O AND MESSAGE PROCESSING

Write information to output file

Delete connections to input and output files

UNTIL no more input and output pathnames remain

The program listing in Figure 3-1 shows an implementation of this
scenario.

COMMUNICATING WITH THE OPERATOR'S TERMINAL

The Human Interface provides two systern calls that ease the process of
communicating with the operator's termJlnal. They are C$SEND$CO$RESPONSE
and C$SEND$EO$RESPONSE. Each of these system calls combines into a
single system call several operations that you would normally perform
when communicating with the terminal.

In its general form, C$SEND$CO$RESPONSE establishes connections to :CI:
(console input) and :CO: (console output), writes a message to :CO:, and
reads a message from :CI:. As input to this system call, you can specify
the message to be sent, the size of the message to be received, and the
buffer to receive the message. Depending on the values you choose for
the parameters, you can either:

• Send a message and receive a message

• Send a message without waiting to receive a message

• Receive a message without sending anything

If you use C$SEND$CO$RESPONSE, you do not have to invoke other system
calls to attach, open, read from, or wlrite to the operator's terminal.

There is a difference between C$SEND$CO$RESPONSE and C$SENDEORESPONSE.
C$SEND$CO$RESPONSE deals specifically l~ith the logical names :CI: and
:CO:. Therefore, its input and output can be redirected to files by
changing the pathnames represented by these logical names. This is what
happens when an operator places a command in a SUBMIT file; SUBMIT
assumes that :CI: is the SUBMIT file and that :CO: is the output file
specified in the SUBMIT command. On the other hand, while
C$SEND$EO$RESPONSE performs the same operations as C$SEND$CO$RESPONSE,
C$SEND$EO$RESPONSE always reads information from and writes information
to the operator's terminal. Input and output cannot be redirected with
C$SEND$EO$RESPONSE.

C$SEND$EO$RESPONSE is especially useful if you have multiple tasks
communicating with a single terminal. If a task uses either of these
system calls and requests a response from the terminal, no other output
is displayed at the terminal until the operator enters a response to the
first system call. After the operator responds, tasks can send further
information to the terminal. This mechanism, when used by all the tasks
which communicate with the terminal, prevents the operator from receiving
several requests for information before being able to respond to the
first one.

Human Interface 4-3

I

I

I/O AND MESSAGE PROCESSING

FORMATTING MESSAGES BASED ON EXCEPTION CODES

Whenever you include iRMX 86 system calls in the code of a command that
you write t it is possible for those system calls to encounter exceptional
conditions. Exceptional conditions are divided into two categories:
programming errors and environmental conditions. Programming errors
occur when the iRMX 86 Operating System detects a condition that normally
can be avoided by correct coding. Envi.ronmental conditions t in contrast t

are generally outside the control of the application program.

Even the most thoroughly debugged comma::lds can encounter exceptional
conditions. The exceptional conditions: can arise from invalid operator
entries t lack of secondary storage space t media errors t and other
problems over which the command has no eontrol. The Human Interface
provides a default exception handler to handle exceptional conditions in
commands that you write. This exception handler receives control on the
occurrence of all exceptional conditions. It displays the exception code
value and mnemonic at the operator's te:rminal and aborts the command.

In many cases t you might want to providlc~ your own exception handling t
either to pass additional information to the operator or to allow the
operator another chance to enter correct information. In such cases t you
can use the Nucleus system calls GET$EXCEPTION$HANDLER and
SET$EXCEPTION$HANDLER to assign your O~11 exception handler or to cancel
the effect of the default exception handler on some or all exceptions
that occur in your command. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for more information about these system calls.

When you perform your own exception handling t you will probably create
special messages that you return to the operator in the event of certain
exceptional conditions. However t you might not want to create messages
for all possible exception codes. For this situation t the Human
Interface provides the the C$FORMAT$EXCEPTION system call.

C$FORMAT$EXCEPTION accepts an exception code value as input and returns a
string whose contents describe the exceptional condition. You can use
this string as input to a system call such as C$SEND$CO$RESPONSE to write
the information to the operator terminal. By using C$FORMAT$EXCEPTION t

you can return a message to the operator for all exceptional conditions t

but you do not have to enlarge your program by including the text of
these messages in the code of your command.

The text portion of the string produced by C$FORMAT$EXCEPTION consists of
the exception code value and mnemonic in the following format:

value : mnemonic

You can display this string as is, or you can place additional
explanatory text in the string before displaying it.

Human Interface 4-4

CHAPTER 5
~COMMAND PROCESSING

When you write your own command, you might want to perform an operation
that is already provided in another co~nand (such as copying one file to
another, displaying a directory, etc.). Instead of duplicating the code
for this operation in your command, you can invoke Human Interface system
calls to issue the commands themselves. The effect of making these
system calls is the same as that produc,ed by an operator entering a
command line at the terminal. The Human Interface provides three system
calls to facilitate this process of programmatic command invocation:
C$CREATE$COMMAND$CONNECTION, C$SEND$COW~ND, and
C$DELETE$COMMAND$CONNECTION.

Invoking commands programmatically involves the following operations:

• Creating an object (called a command connection) to store the
command invocation lines

• Sending the command line to the command connection and invoking
the command

• Deleting the command connection

This chapter discusses these operations and provides an example of how
the iRMX 86 system calls appear in a program.

CREATING A COMMAND CONNECTION

Before you can send a command line to the Operating System to be invoked,
you must create an object (called a command connection) to store the
command line. The C$CREATE$COMMAND$CONNECTION system call creates this
object and returns a token for the command connection. The token can be
used in calls to C$SEND$COMMAND (to send command lines to the object) and
in calls to C$DELETE$COMMAND$CONNECTION (to delete the object after using
it).

When you call C$CREATE$COMMAND$CONNECTION, you also specify tokens for
the connections that serve as command input and command output for the
invoked command. This allows you to redirect input and output for the
invoked command to secondary storage files. Or you can specify the
normal :CI: and :Co:.

The command connection is necessary to support the processing of
multiple-line commands without interference from other tasks. If not for
the command connections, the Operating System would be unable to
determine which continuation line went with which command when many tasks
were sending command lines to be processed. The command connection
provides a place to store command lines until the command is complete.

Human Interface 5-1

I

COMMAND PROCESSING

SENDING COMMAND LINES TO THE COMMAND CONNECTION AND INVOKING THE COMMAND

The C$SEND$COMMAND system call sends command lines to a command
connection and t when the command invocation is complete t invokes the
command. One of the parameters of this system call is the token for a
command connection t which identifies the command connection to use.
Another parameter is a pointer to a string which must contain a command
line. The format of the command line 1.s the same as the format for
entering the command line at a terminal. The command can be any iRMX 86
Human Interface command (as described 1.n the iRMX 86 OPERATOR'S MANUAL)
or any command that you write.

If the string specified as a parameter to C$SEND$COMMAND contains a
complete command invocation t C$SEND$C01~[MA.ND places the command line in
the command connection and invokes the command.

However t if the string does not contain the entire command invocation
(that iS t it contains the n&n as a continuation character)t
C$SEND$COMMAND places the command line in the command connection without
invoking the command. It also returns a condition code informing the
calling program that the command is continued. Additional C$SEND$COMMAND
calls place continuation lines in the (~.ommand connection t combining them
with the command lines already there. When C$SEND$COMMAND sends the last
portion of the command invocation (a 11.ne without a continuation
character)t it also invokes the entire command.

Once you call C$SEND$COMMAND enough times to place a complete command
invocation in the command connection t C$SEND$COMMAND invokes the
command. This involves loading the cOl1uuand from secondary storage and
starting it running. The C$SEND$COMMAND call that invokes the command
does not return control until the invoked command finishes processing.
Once the command finishes processing, you can use the command connection
for invoking other commands.

The C$SEND$COMMAND system call contains two pointers to words that
receive iRMX 86 condition codes. One of these (called except$ptr in the
system call description) points to a word that receives the status of the
C$SEND$COMMAND system call. An E$OK indicates that C$SEND$COMMAND
received the full command invocation and invoked the command. An
E$CONTINUED indicates that the command invocation is not complete (the
last line contained a continuation character). Other exception codes
indicate other problems with the system call.

The other pointer (called command$except$ptr in the system call
description) points to a word that receives the status of the invoked
command. This allows you to determine the status of the invoked command.

Human Interface 5-2

COMMAND PROCESSING

DELETING THE COMMAND CONNECTION

After you have finished invoking commands programmatically, you must
delete the connnand connection. The C$DELETE$COMMAND$CONNECTION system
call performs this operation. You do not need to delete the connnand
connection after each command invocation, because the command connection
is re-usable. However, you should delete the command connection after
performing all C$SEND$COMMAND operations. This frees the memory used by
the data structures of the command connection.

EXAMPLE

Figure 5-1 contains an example of a program that uses
C$ CREATE $ COMMAND$ CONNECTION , SEND$COMMAND, and DELETE$COMMAND$CONNECTION.
It invokes the Human Interface COpy cOlnmand programmatically.

/*************************************:k*********************************
* *
*
*
*
*
*
*
*
*
*
*
*
*

This example demonstrates the use of the following Human Interface *
advanced standard functions: *

*
rqCcreate$command$connection *
rqCsend$command *
rqCdelete$command$connection *

*
This program uses the previous system calls to invoke the command *
COPY :F1:0LD to :F1:NEW from within and then continue normal *
processing. The program is invoked with the command line: *

*
PROG2 *

**************************************7k**********************************/

prog2: DO;

$include (hexcep.lit)
$include (hcrccn.ext)
$include (hsndcmd.ext)
$include (hdlccn.ext)
$include (iexioj.ext)
$include (hgtincn.ext)
$include (hgtocn.ext)

DECLARE (ci$token, co$token, command$connection$token) WORD,
(excep, comexcep, exexcep) WORD;

DECLARE output$prep BYTE;

Figure .5-1. Command Connection Example

Human Interface 5-3

COMMAND PROCESSING

/* Invoke utility to copy file OLD to file NEW */

/* Get tokens for CI and CO */
ci$token = rq$Cgetinput$connection(@(~f, ':CI: '), @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (excep, 0, exexeep);
co$token = rq$Cgetoutput$connection(@(4, ':CO:'), output$pre~, @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (excep, 0, exexc:ep);

/* Create command connection */
command$connection$tok = rqCcreate$command$connection (@ci$token,

co$token, 0,
@excep) ;

/* Send command to copy files */
CALL rqCsend$command (command$connectlon$tok,

@(23,'COPY :F1:0LD TO :F1:NEW'),
(~comexcep, @excep);

IF excep <> E$OK THEN
CALL rq$exit$io$job (excep, 0, exexeep);

/* Delete command connection */
CALL rqCdelete$command$connection (command$connection$tok, @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (excep, 0, exexeep);

Rest of program

/* Finish I/O processing */
CALL rq$exit$io$job (excep, 0, @exexcep);

END prog2;

Figure 5-1. Command Connectlon Example (continued)

Human Interface 5-4

CHAPTER 6
PROGRAM CONTROL

Normally, when a Human Interface command is executing, an operator cannot
communicate with the command (or with the application system in general)
unless the command initiates the communication by requesting input from
the terminal. This can present problems if an operator inadvertently
enters the wrong command, or if the operator decides while the command is
executing that the command is unnecessary. Under these circumstances,
the operator can enter a Control-C character. In the default case, the
Control-C causes the Human Interface to abort the currently-executing
command. However, you can override the default Control-C mechanism by
providing your own code to process Control-C characters. This chapter
discusses how to do this.

HOW THE DEFAULT CONTROL-C MECHANISM WORKS

When the operator enters a Control-C, the Operating System sends a unit
to a semaphore. In the default case, it sends the unit to a semaphore
established by the Human Interface. A Human Interface task waits at that
semaphore to receive the unit. When it receives the unit, it aborts the
command that is currently executing and returns control to the operator.
The Human Interface task then waits at the semaphore for another unit.

This Control-C facility allows operators to cancel commands while the
commands are executing. It is a valuable facility that can be used with
your commands without requiring you to provide special implementation
code.

PROVIDING YOUR OWN CONTROL-C MECHANISM

With some commands that you write, you might want to override the default
Control-C mechanism. For example, suppose you write a text editor. An
operator invokes the editor with a Human Interface command and then
specifies edit commands to enter text into a buffer and modify that
text. While using the editor, the operator does not want a Control-C
character to abort the entire editing session, destroying text in the
editing buffer that may have taken an hour or more to create. Instead,
the operator might want a Control-C to abort an individual editor
command, but not abort the entire editor. In order to provide this
facility, your Human Interface command (the editor) must override the
default Control-C mechanism and provide its own code to handle Control-C
entries.

To override the default Control-C mechanism, you must change the
semaphore to which the Operating System. sends the unit when the operator
enters a Control-C. By changing the semaphore to one that you create,
you circumvent the Control-C task of the Human Interface.

Human Interface 6-1

PROGRAM CONTROL

You can use the S$SPECIAL system call of the Extended I/O System to
replace the Control-C semaphore. This system call is described in the
iRMX 86 EXTENDED I/O SYSTEM REFERENCE I~ANUAL. However, it has three
parameters that are important when changing the semaphore. They are:

connection

function

data$ptr

This parameter should contain the token for a
connection to the operator's terminal.

This parameter should contain the value 6 to indicate
the set signal character function.

This parameter should point to a structure of the
following form:

DECLARE signal!?pair
semaphore
character

STRUCTURE (
WORD,
BYTE) ;

where:

semaphore

character

A token for your new Control-C
semaphore.

The character code for the
Control-C character. If you use
the ASCII code (03), the Operating
System will place a unit in the
semaphore when an operator enters
Control-C. If you use the ASCII
code plus 20H (23H), the Operating
System clears out the terminal's
input buffers in addition to
placing the unit in the semaphore.

If your command task switches the Control-C semaphore, it must also
service that semaphore. It can do this either by creating a task that
waits continually at the semaphore for a unit or by containing in-line
code that periodically checks the semaphore. Once the job for the
initial command is deleted by the Human. Interface, then Control-C once
again becomes the default method for p:cogram control. The Human
Interface reactivates Control-C by res(~tting a semaphore when the
original command finishes. For example, once the text editor we used as
an example terminates, then the Human Interface resets the semaphore so
that Control-C becomes active.

In either case, when a unit is sent to the semaphore, the command (or the
task) must perform the necessary Control-C operation.

The program flow of such a command would be:

1. Call CREATE$SEMAPHORE to create the Control-C semaphore.

2. If you plan to create a Control-C task to service the semaphore,
call CATALOG$OBJECT to catalog the token for the semaphore in an
object directory.

Human Interface 6-2

PROGRAM CONTROL

3. Call S$ATTACH$FILE to obtain a connection to the terminal. Use
logical name :CI: as the pathname parameter.

4. Call S$OPEN to open the connection to the terminal for reading
only (mode 1).

5. If you plan to use a Control-C task, have the program call
CREATE$TASK to start the Control-C task.

6. Call S$SPECIAL to switch the Control-C semaphore to the one just
created. Use the token for the connection to the terminal as
input.

7. Continue with comlnand processing. If you are servicing the
Control-C semaphore in-line, periodically check the semaphore (by
calling RECEIVE$UNITS) to determine if it contains any units. If
you obtain a unit from the semaphore, perform the necessary
Control-C processing.

To service the Control-C with a task, the program flow of the Control-C
task would be:

1. Call LOOKUP$OBJECT to obtain the token for the semaphore.

2. Do forever:

a. Call RECEIVE$UNITS to obtain a unit from the semaphore.

b. Perform the operation that must occur when the operator
enters a Control-C.

Each method of servicing the Control-C semaphore has advantages and
disadvantages.

If your code services the Control-C semaphore with in-line code, you can
perform any operation that you want. You can branch to various
locations, you can start new tasks running, you can abort the command, or
you can perform any other function that: you wish. However, in order to
service the Control-C semaphore with in-line code, you must check the
semaphore periodically, to see if it contains a unit. When doing this,
you must ensure that you place the checks inside all program loops that
perform operations an operator might want to abort. Also, because you
can check the semaphore only periodically, you cannot guarantee a quick
response to the Control-C in all cases~

If you use a Control-C task, you can guarantee quick service because the
task is always waiting at the semaphorE~. However, because a separate
task services the Control-C, you can perform only a limited number of
operations in response to the Control-C.

• The task can send a message to the command, but then the command
would have to periodically check a mailbox. This has the same
disadvantages as in-line servicing with none of the advantages.

Human Interface 6-3

PROGRAM CONTROL

• The task can delete the com.man,d~. However, the task has no way of
knowing what operations the command was performing when the
operator entered the Control-C. If the command was updating an
internal table, deleting the command could corrupt your entire
system.

Therefore, unless you have a specific reason for using a Control-C task,
this manual recommends that you use in'-'line code to service the Control-C
semaphore.

Human Interface 6-4

CHAPTER 7
CREATING HUMAN

INTERFACE COMMANDS

This chapter discusses the steps that you must perform to create your own
Human Interface commands. It discusses the necessary elements of a
command as well as how to compile (or assemble) and link your code.

To perform the operations described in. this chapter you must have either
an iAPX 86-based Microcomputer Development System (such as a Series III)
or an iRMX 86-based system that includes the Human Interface commands.
Either system must have an editor, the necessary compiler or assembler,
and the utility programs (such as LINK86).

ELEMENTS OF A HUMAN INTERFACE COMMAND

This section discusses the rules that every command you write must obey.
It also suggests some programming prac.tices to make coding and using your
command easier.

PARSING THE COMMAND LINE

If you are going to allow the operator to enter parameters when invoking
the command, the first thing your comm.and should do is parse the command
line. Chapter 3 describes the Human Interface system calls that you can
use for this. To support lists of pathnames and wild-carded pathnames,
the flow of a program that uses input and output files should be:

1. Call CGETINPUT~?PATHNAME to obtain the first input pathname.

2. Call CGETOUTPUT$PATHNAME to obtain the preposition and first
output pathname.

3. Call CGETPARAMETER as many times as necessary to get all the
parameters.

4. Do until no more input pathnames remain:

a. Call CGETINPUT$CONNECTION to obtain a connection to the
input file.

b. Call CGETOUTPUT$CONNECTION to obtain a connection to the
output file.

c. Read the information from the input file, perform the command
operations based on that input, and write information to the
output file.

Human Interface 7-1

CREATING HUMAN INTEI~ACE COMMANDS

d. Call S$DELETE$CONNECTION (Extended I/O System call) to delete
the connections to the input and output files.

e. Call CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to obtain
the next input and output pathnames.

AVOIDING THE USE OF CERTAIN SYSTEM CALLS

When you write the code for your Human Interface command, you can use any
of the iRMX 86 system calls, depending on the requirements of your
command. However, some system calls arE! intended primarily for use in
system-level jobs (those jobs that you configure into the Operating
System rather than invoking as Human Interface commands). In the
descriptions of system calls, the iRMX Et6 reference manuals contain
cautions concerning those system calls that you should avoid using.

In particular, avoid iRMX 86 objects (and their associated system calls)
that, by their use, make your command immune to deletion. Regions and
extension objects (described in the iRMK 86 NUCLEUS REFERENCE MANUAL) are
examples of such objects.. If your comm:amd becomes immune to deletion, a
Control-C that an operator enters to cancel the command will have no
effect; also the operator's terminal may lock up when the command
finishes processing.

TERMINATING THE COMMAND

When the operator invokes a command, thE~ Operating System loads the
command into memory and creates an I/O job as the environment in which
the command runs. (The iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL
discusses I/O jobs.) Until the command finishes processing, the operator
is unable to run any other commands. In order to finish processing
correctly, any task in the command that exits must do so by calling
EXITIOJOB (an Extended I/O System call, described in the iRMX 86
EXTENDED I/O SYSTEM REFERENCE MANUAL). This system call causes the
Operating System to delete the I/O job containing the command, therefore
returning control to the operator. If the command omits the call to
EXITIOJOB, the operator might not be able to enter further commands.

INCLUDE FILES

When you write the source code for your commands, you can use $INCLUDE
statements to include the following kind.s of information: external
declarations of system calls, literal de:finitions of exception codes, and
common pieces of code that you declare.

Human Interfa.ce 7-2

CREATING HUMAN INTERFACE COMMANDS

As part of writing the code for your commands, you must declare each
iRMX 86 system call as an external procedure. Instead of writing this
code yourself, you can use the $INCLUDE statement to include this
information from files on one of the iRMX 86 release diskettes. This
diskette contains a file for each system call, with the external
declaration of that system call as the contents of the file. To use
these files, simply deternline the system calls that your command uses and
place into your source code $INCLUDE statements for the corresponding
external declaration files.

You also require literal definitions of exception codes so that you can
refer to the exception codes by their m.nemonics instead of by their
values (for example, E$MEM instead of 2H). The Include Files release
diskette contains several files (one for each layer of the Operating
System) consisting of LITERALLY statements. Each file defines all the
iRMX 86 condition code mn(~monics used 1.n that layer. You should copy
these files, delete entries if you can guarantee that the deleted
exception codes will never appear, and use $INCLUDE statements to include
them in the compilation of your commandl.

Refer to the iRMX 86 INSTALLATION GUIDE for information about the release
diskettes and the files contained in them. Refer to the PL/M-86 USER'S
GUIDE for information about the $INCLUDE statement.

PRODUCING AN EXECUTABLE COMMAND

After you have written the source code for your command, you must produce
object code that can be executed in an iRMX 86 environment. This
involves the following procedure:

1. Compile (or assemble) the command using the appropriate
translators. When you do this, ensure that the names you specify
in $INCLUDE statements specify the correct devices and
directories.

2. Using LINK86, link the code to iRMX 86 interface libraries (and
any other libraric~s that you require) and produce a relocatable
object module that the Operating System can load anywhere in
memory. The format of the LINK86 command is:

LINK86 &
command-pathname, &
:dir:HPIFC.LIB, &
:dir:LPIFC.LIB, &
:dir:EPIFC.LIB, &
:dir:IPIFC.LIB, &
:dir:RPIFC.LIB, &
:dir:other.lib &

TO ou tpu t'-pa thname &
PRINT(mapfile-pathname) SYMBOLCOLUMNS(2) &
OBJECTCONTROLS(PURGE) &
BIND SEGSIZE(STACK(staeksize)) MEMPOOL(minsize,maxsize)

Human Interface 7-3

CREATING HUMAN INTERFACE COMMANDS

where:

command­
pathname

other. lib

output­
pathname

mapfile­
pathname

stacksize

minsize
maxsize

Complete pathname of the file containing your
compiled (or assembled) command. You can link in
several files or libraries at this point, if
necessary.

Any other files or libraries that you need to
link with your command.

Complete pathn.:lme of the file in which LINK86
places the linked command.

Complete pathname of the file on which LINK86
places the link map.

Size, in bytes, of the stack needed by the
command and any system calls that the command
makes. The Human Interface uses this value when
it creates a job for the command. Be sure the
stack is large enough to handle both user and
system requirements. Refer to the iRMX 86
PROGRAMMING TECHNIQUES manual for information
about stack requirements of the system calls.

Minimum and maximum amount of dynamic memory,
in bytes, required by the command. The command
uses this memo:ry when it creates iRMX 86
objects. The Human Interface uses the minsize
and maxsize values when it creates a job for the
command. Be sure that these values are large
enough to satisfy the needs of your command and
small enough tCI allow the command to be loaded
into the operator's memory partition.

This command produces relocatable code that the Operating
System can load into any available memory. If you require
your command to be available as absolute code, you can use
LINK86 and LOC86 to produc'2: this code. Refer to the
iAPX 86, 88 FAMILY UTILITIES USER'S GUIDE for more
information about LINK86 a:ctd LOG86. If you require absolute
code for your commands, you must also configure the Operating
System in such a way that it reserves the memory locations
required by the command.][f it does not, the command, when
loaded into the system, could overwrite Operating System or
user informa.tion. Refer to the iRMX 86 CONFIGURATION GUIDE
for more information about Operating System configuration.

If you are using an iRMX 86-based systE!m to compile and link your
command, the command is now ready for execution. An operator can invoke
the command by entering the pathname of the file containing the linked
command (the output-pathname in the LINK86 command).

Human Interface 7-4

CREATING HUMAN INTERFACE COMMANDS

If you are using a Microcomputer Development System to compile or link
your command, you must connect the development system to your iRMX 86
application system via the monitor and use the Human Interface UPCOPY I
command to copy the linked command from the development system disk to an
iRMX 86 secondary storage device. The UPCOPY command is described in the
iRMX 86 OPERATOR'S MANUAL. After you transfer the linked command to an
iRMX 86 secondary storage device, an operator can invoke the command by
entering its pathname.

**~:

Human Interface 7-5

CHAPTERS
HUMAN INTERFACE

SYSTEM CALLS

The Human Interface system calls described in this chapter are presented
in alphabetical sequence without regard to functional organization. A
functional grouping of the calls according to type is provided in the
System Call Dictionary in Table 8-1. J~or each call, the information is
organized into the following categories:

• Brief functional description.

• Calling sequence format.

• Input parameter definitions, if applicable.

• Output parameter definitions, if applicable.

• Considerations and consequences of call usage.

• Potential exception codes, and their possible causes.

This chapter refers to PL/M-86 data types such as BYTE, WORD, and
SELECTOR and iRMX 86 data types such as STRING. These words, when used
as data types, are always capitalized; their definitions are found in
Appendix A. This chapter also refers to an iRMX 86 data type called
TOKEN. If your compiler supports the SELECTOR data type, you can declare
a TOKEN to be literally a SELECTOR or a WORD. The word "token" in lower
case refers to a value that the iRMX 86 Operating System assigns to an
object. The Operating System returns this value to a TOKEN (the data
type) when it creates the object.

If you are a new user of the Human Interface calls, it is suggested that
you review the parsing considerations in Chapter 3 before writing your
source code. You should also review the format of the released Human
Interface commands. They are described in the iRMX 86 OPERATOR'S MANUAL.

This chapter assumes that you are familiar with several terms and
concepts that are common to the iRMX 86 Operating System. If you are
not, you should read INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM and the
chapters in the iRMX 86 NUCLEUS REFERENCE MANUAL that refer to the terms
"memory pool" and "catalog."

Human Interface 8-1

Table 8-1. System Call Dictionary

r-s-y-s-t-e-m--C-a-l-l-------------~I--------S-y-n-o-p--s~-s------------------------~r-p-a-g-e~

CGETINPUT$CONNECTION

CGETOUTPUT$CONNECTION

CGETCHAR

CGETINPUT$PATHNAME

CGETPARAMETER

CGETOUTPUT$PATHNAME

CSETPARSE$BUFFER

CGETCOMMAND$NAME

C$FORMAT$EXCEPTION

C$SEND$CO$RESPONSE

C$SEND$EO$RESPONSE

I/O Processirg Calls

Return an EI)S connection for
the specifie l input file.

Return an EIOS connection for
the specified output file.

Command Parsilg Calls

Get a charac :er from the command line

Parse the con~and line and return an
input pathnaOle.

Parse the cOD~and line for the next
parameter and return it as a
keyword name and a value.

Parse the cmlmand line and return
an output pa:hname.

Parse a buff!r other than the
current commlnd line.

Return the c)mmand name by which the
the current !ommand was invoked

Message Proces~ing Calls

Create a def~ult message for an
exception cole and place it in a
user buffer.

Send a message to the command
output (CO) and read a response
from the command input (CI).

Send a message to the operator's
terminal and return a response from
that termina:.

Human Interface 8-2

8-15

8-25

8-11

8-20

8-34

8-31

8-51

8-13

8-9

8-45

8-48

Table 8-1. System Call Dictionary (continued)

System Call Synopsis Page

Command Processing Calls

~---------------------------~~--------------------------------------.~--------~

C$CREATE$COMMAND$CONNECTION Create a command connection and
return a token. 8-4

C$DELETE$COMMAND$CONNECTION Delete a specific command
connection.

C$SEND$COMMAND Concatenate command lines into
the data structure created by
CREATE$COMMAND$CONNECTION and
then invoke the command.

Human Interface 8-3

8-8

8-38

C$CREATE$COMMAND$CONNECTION

I

C$CREATE$COMMAND$CONNECTION

C$CREATE$COMMAND$CONNECTION, a command processing call, creates an iRMX
86 object called a command connection t:hat is required in order to invoke
commands programmatically.

command $ conn

INPUT PARAMETERS

default$ci

default$co

flags

OUTPUT PARAMETERS

command$conn

except$ptr

DESCRIPTION

RQCCREATE$COMMAND$:CONNECTION(defaul t$ci, default$co,
flags, except$ptr);

A TOKEN for a connection that is used as the :CI:
(eonsole input) for any commands you invoke using
this command connection.

A TOKEN for a co"nnection that is used as the :CO:
for any commands you invoke using this command
connection.

A WORD used to indicate that the Human Interface
should return an E$ERROROUTPUT exception code if
the system call C$SEND$EO$RESPONSE is used by any
task. If the USI2:r wants the exception code, then
the parameter is set to one (1); otherwise, the
parameter must equal zero (0).

A TOKEN which receives a token for the new command
connection.

A POINTER to a WORD in which the Human Interface
returns a condition code.

You can use this call when you want to invoke a command programmatically
instead of interactively. It provides a place to store command lines
until the command invocation is complet:e.

The call creates an iRMX 86 object caLled a command connection and
returns a token for that command connection. The C$SEND$COMMAND system
call can use this token to send command lines to the command connection,
where they are stored until the command invocation is complete. The
command connection also defines default :CI: and :CO: connections that
are used by any commands invoked via this command connection.

Human Interface 8-4

C$CREATE$COMMAND$CONNECTION

Although a job can contain multiple cOlnmand connections, the tasks in a
job cannot create command connections simultaneously. Attempts to do
this result in an E$CONTEXT exception code. Therefore, it is advisable
for one task to create the command connections for all tasks in the job.

A possible application where the param(~ter "flags" might be set to one
is when you want to write a custom CLI to perform batch jobs in the
background. When any of the background batch jobs attempt to communicate
with the terminal through C$SEND$EO$RESPONSE, the Human Interface issues
an exception code. In this way, the Human Interface keeps all the jobs
in the background. Note--the Human Interface CLI does not provide
resident background or batch processing capability.

EXCEPTION CODES

E$OK No exceptional conditions were encountered.

E$ALREADY$ATTACHED While creating a STREAM file, the Extended I/O
System was unable to attach the : STREAM: device
because another task had already invoked a Basic
I/O system call to attach the : STREAM: device.

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$EXIST

E$FNEXIST

At least one of the following is true:

• Two command connections were being created
simultaneously by two tasks in the same job •

• The calling task's job is not an I/O job.(Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL for information about I/O jobs.)

The : STREAM: dev:lce, the default$ci device, or the
default$co device was in the process of being
detached.

The Extended I/O System attempted the physical
attachment of th(~ : STREAM: device. This device had
formerly been only logically attached. In the
process, the Extended I/O System found that the
device and the device driver specified in the
logical attachment were incompatible. The
Operating System would not have returned this
exception code if the : STREAM: device had been
properly configured.

The default$ci or default$co parameter is not a
token for an existing job.

The : STREAM: fil.~ does not exist or is marked for
deletion.

Human Interface 8-5

I

C$CREATE$COMMAND$CONNECTION

I

I

I

I

E$IFDR

E$INVALID$FNODE

E$IOMEM

E$LIMIT

The Extended I/O System attempted to obtain
information about the default$ci or default$co
connection. However, the request for information
resulted in an irr~alid file driver request.

The fnode associated with the specified file is
invalid. Delete the file.

The Basic I/O System job does not currently have a
block of memory large enough to allow the Human
Interface to create a stream file.

At least one of the following is true:

• The object directory of the calling task's job
has already reached the maximum object directory
size.

• The calling task's job has exceeded its object
limit.

• The calling task's job (or that job's default
user object) is already involved in 255
(decimal) I/O operations.

• The calling task's job is not I/O job. (Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL for information about I/O jobs.)

ELOGNAME$NEXIST The call was unable to find the logical name

E$MEM

ENOPREFIX

ENOTCONNECTION

ENOTLOG$NAME

ENOUSER

: STREAM: in the object directories of the local
job, the global job, or the root job.

The memory available to the calling task's job is
not sufficient to complete the call.

The calling task's job does not have a valid
default prefix.

The default$ci or default$co parameter is a token
for an object, not a connection to a file.

The logical name : STREAM: refers to an object that
is not a file or device connection.

The calling task's job does not have a valid
default user object.

Human Interface 8-6

E$PARAM

E$SUPPORT

C$CREATE$COMMAND$CONNECTION

The system call forced the Extended I/O System to
attempt the physlcal attachment of the : STREAM:
device, which had formerly been only logically
attached. In the process, the Extended I/O System
found that the stream file driver is not properly
configured into your system, so the physical
attachment is not possible.

The default$ci or default$co connection was not
created by this job.

Human Interface 8-7

I

C$DELETE$COMMAND$CONNECTION

C$DELETE$COt~D$CONNECTION

C$DELETE$CO~1AND$CONNECTION, a command processing call, deletes a command
connection object and frees the memory used by the command connection's
data structures.

~~C_A_L_L~R_Q_$_C_$_D_E_L_ET_E_'$_C_O_~~ND~$~_O_N~~(CO~a_n_d_$_C_Onn~,_e_x_c_e_p_t_$_p_t_r_)_;~~_~

INPUT PARAMETER

co~and$conn

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for a valid command connection.

A POINTER to a WORD in which the Human Interface
returns a condition code.

This call deletes a command connection object previously defined in a
C$CREATE$COMMAND$CONNECl'ION call and r(~leases the memory used by the
command connection's data structures.

EXCEPTION CODES

E$OK

E$EXIST

E$TYPE

No exceptional conditions were encountered.

The command$conn parameter is not a token for an
existing object.

The command$conn parameter is a token for an object
that is not a command connection object.

Human Interface 8-8

C$FORMAT$EXCEPTIO

C$FORMAT$EXCEPTION

C$FORMAT$EXCEPTION, a message processing call, creates a default message
for a given exception code and writes that message into a user-provided
string.

CALL RQCFORMAT$EXCEPTION(buff$p, buff$max, exception$code,
reserved$byte, except$ptr);

INPUT PARAMETERS

buff$max

exception$code

reserved$byte

OUTPUT PARAMETER

buff$p

except$ptr

DESCRIPTION

A WORD that specifies the maximum number of bytes
that may be contained in the string pointed to by
buff$p.

A WORD containing the exception code value for which
a message is to be created.

A BYTE reserved for future use. Its value must be
one (1).

A POINTER to a STRING into which the Human Interface
concatenates the formatted exception message.

A POINTER to a WORD in which the Human Interface
returns a condition code.

C$FORMAT$EXCEPTION causes the Human Interface to create a message for the
exception code. The message consists of the exception code value and
exception code mnemonic in the following format:

value : mnemonic

where the mnemonics are provided by the Human Interface from an internal
table and are listed in Appendix B of this manual.

The call concatenates the message to the end of the string pointed to by
the buff$p pointer and updates the count byte to reflect the addition. If
a string is not already present in the buffer, the first byte of the
buffer must be a zero. The message added by C$FORMAT$EXCEPTION will not
be longer than 30 characters (not including the length byte).

Human Interface 8-9

C$FORMAT$EXCEPTION

EXCEPTION CODES

E$OK

E$PARAM

E$STRING

E$STRING$BUFFER

No exceptional conditions were encountered.

An undefined excI::ption code value was specified.

The message to be returned exceeds the length limit
of 255 characters.

The buffer pointl::d to by the buff$p parameter is
not large enough to contain the exception message.

Human Interface 8-10

CGETCHA

CGETCHAR

CGETCHAR, a command parsing call, gets a character from the parsing
buffer.

char RQCGET$CHAR(except$ptr);

OUTPUT PARAMETERS

char

except$ptr

DESCRIPTION

A BYTE in which the Human Interface places the next
character of the parsing buffer. A null (OOH)
character is returned when parsing buffer's pointer
is at the end of the buffer.

A POINTER to a WORD in which the Human Interface
returns a condition code.

When an operator invokes a command, the command's parameters are placed
in a parsing buffer. The CGETCHAR system call gets a single character
from that buffer and moves the parsing pointer to the next character.
Consecutive calls to CGETCHAR return consecutive characters from the
parsing buffer.

EXCEPTION CODES

E$OK

E$CONTEXT

E$LIMIT

No exceptional conditions were encountered.

The calling task's job is not an I/O job. Refer to
the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL
for information about I/O jobs.

At least one of the following situations occurred.

• The object directory of the calling task's job
has already reached the maximum object directory
size •

• The calling task's job has exceeded its object
limit.

Human Interface 8-11

I

CGETCHAR

I E$MEM

• The calling task's job is not an I/O job. Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL for information about I/O jobs.

The memory available to the calling task's job is
not sufficient to complete the call.

Human Interface 8-12

CGETCOMMAND$NAME

CGETCOMMAND$NAME

CGETCOMMAND$NAME, a command parsing eall, obtains the pathname of the
command that the operator used when invoking the command.

CALL RQCGET$COMMAND$NAME (path$name$p, name$max, except$ptr);

INPUT PARAMETER

name$max

OUTPUT PARAMETERS

path$name$p

except$ptr

DESCRIPTION

A WORD that specifies the length in bytes of the
string pointed to by the path$name$p parameter.

A POINTER to a STRING that receives the name of the
command (the last component of the pathname).

A POINTER to a WORD in which the Human Interface
returns a condition code.

If a command needs to know the name under which it was invoked, the
CGETCOMMAND$NAME returns this information. This information is
available to each command and is stored in a buffer that is separate from
the parsing buffer. Therefore, calling CGETCOMMAND$NAME does not
obtain information from the parsing buffer, nor does it move the parsing
pointer.

If the operator invokes the command without specifying a logical name,
the Human Interface automatically searehes a number of directories for
the command. In such cases, the value returned by CGETCOMMAND$NAME
also includes the directory name (such as :SYSTEM:, :PROG:, or :$:) as a
prefix to the command name.

EXCEPTION CODES

E$OK

E$LIMIT

No exceptional conditions were encountered.

The calling task's job was not created by the Human
Interface.

Human Interface 8-13

CGETCOMMAND$NAME

I E$PATHNAME$SYNTAX The specified pathname contains invalid characters.

E$STRING$BUFFER

E$TIME

The buffer point(~d to by the path$name$p parameter
is not large enough to contain the command name.

The calling task's job was not created by the Human
Interface.

Human Interface 8-14

CGETINPUT$CONNECTIO

CGETINPUT$CONNECTION

CGETINPUT$CONNECTION, an I/O processing call, returns an Extended I/O
System connection to the specified input file.

connection

INPUT PARAMETER

path$name$p

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

RQCGET$INPUT$CONNECTION(path$name$p, except$ptr);

A POINTER to a STRING containing the pathname of
the file to be accessed.

A TOKEN in which the Operating System returns the
token for the connection to the specified pathname.

A POINTER to a WORD in which the Human Interface
returns a condition code.

CGETINPUT$CONNECTION obtains a connection to the specified file. This
connection is open for reading and has the following attributes:

• Read only

• Accessible to all users

• Has two 1024-byte buffers (The buffer size may be different than
the default valuE~ of 1024 bytes.)

CGETINPUT$CONNECTION causes an error message to be displayed at the
operator's terminal (:CO:) whenever the Operating System encounters an
exceptional condition. The exceptional condition that triggers the error
message can either be one of those listed for CGETINPUT$CONNECTION or
it can be one of those associated with the Extended I/O System calls
S$ATTACH$FILE and S$OPEN~ The following messages can occur:

• <pathname), file does not exist

The input file does not exist.

Human Interface 8-15

C$G ET$I N PUT$CON N ECT ION

I

• <pathname> , invalid file type

The input file was a data file and a directory was required, or
vice versa.

• <pathname>, invalid logical nane

The input pathname contains a logical name that is longer than 12
characters, that contains unmatched colons, or that contains
invalid characters.

• <pathname> , logical name does not exist

The input pathname contains a logical name that does not exist.

• <pathname>, READ access required

The user does not have read access to the input file.

• <pathname> , <exception value>: <exception mnemonic>

An exceptional condition occurred when CGETINPUT$CONNECTION
attempted to obtain the input connection. The <exception value>
and <exception mnemonic> portions of the message indicate the
exception code encountered. RE!fer to "Exception Codes" in this
call description and to the descriptions of S$ATTACH$FILE and
S$OPEN in the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

EXCEPTION CODES

E$OK

E$ALREADY$­
ATTACHED

E$CONTEXT

EDEVDETACHING

No exceptional conditions were encountered.

The device containing the file specified in the
path$name$p parameter is already attached.

At least one of the following is true:

• The calling task's job is not an I/O job.
(Refer to the :lRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for information about I/O jobs.)

• The calling task's job was not created bj the
Human InterfacE~.

The device specified in the path$name$p parameter
is in the process of being detached.

Human Interface 8-16

E$DEVFD

E$EXIST

E$FACCESS

E$FNEXIST

E$FTYPE

E$ILLVOL

E$INVALID$­
FNODE

EIOHARD

E$IOMEM

EIOOPRINT

CGETINPUT$CONNECTION

The call attempted the physical attachment of a
device that had formerly been only logically
attached. In the process, the call found that the
device and the device driver specified in the
logical attachment were incompatible.

The specified device does not exist.

The specified connection does not have read access
to the file.

At least one of the following is true:

• The target file does not exist or is marked for
deletion.

• While attaching the file pointed to by the
path$name$p parameter, the call attempted the
physical attaehment of the device as a named
device. It could not complete this process
because the device specified when the logical
attachment was made was not defined during
configuration.

The path pointed to by the path$name$p parameter
contained a file name that should have been the
name of a directory, but is not. (Except for the
last file, each file in a pathname must be a named
directory.

The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached. The
call found that the volume did not contain named
files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

Whi.le attempting to access the file specified in
the path$name$p parameter, the call detected a hard
I/O error. This means that another call is
probably useless.

While attempting to create a connection, the call
needed memory from the Basic I/O subsystem's memory
pool. However, the Basic I/O System job does not
currently have a block of memory large enough to
allow this call to run to completion.

While attempting to access the file specified in
the path$name$p parameter, the call found that the
device was off-line. Operator intervention is
required when given this code.

Human Interface 8-17

I

I

CGETINPUT$CONNECTION

I
I

EIOSOFT

EIOUNCLASS

E$LIMIT

ELOGNAME$­
NEXIST

ELOGNAME$­
SYNTAX

E$MEDIA

E$MEM

ENOPREFIX

ENOTLOG$NAME

ENOUSER

E$PARAM

While attempting to access the file specified in
the path$name$p parameter, the call detected a soft
I/O error. It tried the operation again but was
unsuccessful. &lother try might be successful.

An unknown type of I/O error occurred while this
call tried to access the file given in the
path$name$p parameter.

At least one of the following is true:

• The calling task's job or the job's default user
object is already involved in 255 (decimal) I/O
operations.

• The calling task's job was not created by the
Human Interfaee.

The pathname for the specified device contains an
explicit logical name. The call was unable to find
this name in the object directories of the local
job, the global job, or the root job.

The pathname pointed to by the path$name$p parameter
contains a logical name. However, the logical name
contains an unmatched colon, is longer than 12
characters, has zero (0) characters, or contains
invalid characters.

The specified device was off-line.

The memory available to the calling task's job is
not sufficent to complete the call.

The calling task's job does not have a valid
default prefix.

The logical name specified by the path$name$p
parameter does not refer to a file or device
connection.

The calling task's job does not have a valid
default user.

At least one of the following is true:

• The system call forced the Extended I/O System
to attempt the physical attachment of the device
referenced by the path$name$p parameter. This
device had fonnerly been only logically
attached. In the process, the Extended I/O
System found that the logical attachment
referred to a file driver (named, physical, or
stream) that is not configured into your system,
so the physical attachment is not possible.

Human Interface 8-18

CGETINPUT$CONNECTION

E$PATHNAME$­
SYNTAX

E$SHARE

• The connection to the specified file cannot be
opened for reading.

The specified pathname contains invalid characters.

The files sharing attribute currently does not
allow new connections to the file to be opened for
reading.

E$STREAM$SPECIAL The call attemptE~d to attach a stream file and in
so doing issued an invalid stream file request.

Human Interface 8-19

I

CGETINPUT$PATHN ME

CGETINPUT$PATHNAME

CGETINPUT$PATHNAME, a command parsing call, gets a pathname from the
list of input pathnames in the parsing buffer.

CALL RQCGET$INPUT$PATHNAME(path$name$p, path$name$max, except$ptr);

~--.-------------~

INPUT PARAMETER

path$name$max

OUTPUT PARAMETERS

path$name$p

except$ptr

DESCRIPTION

A WORD that specifies the length in bytes of the
string pointed to by the path$name$p parameter.
The maximum length that you can specify is 256
bytes (255 characters for the pathname and one byte
for the count).

A POINTER to a STRING which receives the next
pathname in the pathname list. A zero-length
string indicates that there are no more pathnames.

A POINTER to a WORD in which the Human Interface
returns a condition code.

The first call to CGETINPUT$PATHNAME retrieves the entire input
pathname list and moves the parsing poJ.nter to the next parameter.
CGETINPUT$PATHNAME stores the list in an internal buffer and returns
the first pathname to the string pointed to by the path$name$p
parameter. Succeeding calls to CGETlNPUT$PATHNAME return additional
pathnames from the input pathname list but do not move the parsing
pointer. CGETINPUT$PATHNAME denotes the end of the pathname list by
returning a zero-length string.

CGETINPUT$PATHNAME accepts wild-card characters in the last component
of a pathname. It treats a wild-carded pathname as a list of pathnames.
To obtain each pathname, it searches in the parent directory of the
wild-carded component, comparing the wi.ld-carded name with the names of
all files in the directory. It returns the next pathname that matches.

The pathname returned by CGETINPUT$PATHNAME can be used for any
purpose. However, it is most often us(~d in a call to
CGETINPUT$CONNECTION, to obtain a connection.

Human Interface 8-20

EXCEPTION CODES

E$OK

E$ALREADY$­
ATTACHED

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$EXIST

E$FACCESS

E$FLUSHING

CGETINPUT$PATHNAME

No exceptional conditions were encountered.

The device containing the file pointed to by the
path$name$p parameter is already attached.

At least one of the following is true:

• The calling task's job is not an I/O job.
(Refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for more information about I/O
jobs.)

• The task called CGETOUTPUT$PATHNAME before
calling C$GET!?INPUT$PATHNAME.

The device pointed to by the path$name$p parameter
is in the process of being detached.

The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, the Extended
I/O System found that the device and the device
driver specified in the logical attachment were
incompatible.

At least one of the following is true:

• The connection to the parent directory of the
file pointed to by the path$name$p parameter, is
not a token for the existing job.

• The calling task's job was not created by the
Human Interface.

The connection used to open the directory does not
have read access to the directory.

The device containing the directory was in the
process of being detached.

Human Interface 8-21

I

e$G ET$I N PUT$PATH NAM E

I

I

E$FNEXIST

E$FTYPE

E$IFDR

E$ILLVOL

E$INVALID$­
FNODE

EIOHARD

E$IOMEM

EIOOPRINT

At least one of the following is true:

• The target file does not exist or is marked for
deletion.

• While attaching the parent directory of the file
pointed to by the path$name$p parameter, the I/O
System attempt(~d the physical attachment of the
device as a named device. It could not complete
this process because the device specified when
the logical attachment was made was not defined
during configuration.

The path pointed to by the path$name$p parameter
contained a file name that should have been the
name of a directory, but is not. (Except for the
last file, each f:lle in a pathname must be a named
directory.

The specified file is a stream or physical file.

The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached. The
call found that the volume did not contain named
files. This prev~nted the call from completing
physical attachm€'~1.t because the named file driver
was requested dur:ing logical attachment.

The fnode for the specified file is invalid, so the
file must be deIE~ted.

While attempting to access the parent directory of
the file pointed to by the path$name$p parameter,
the call detected a hard I/O error. This means
that another call is probably useless.

While attempting to create a connection, this call
needed memory from the Basic I/O subsystem's memory
pool. However, the Basic I/O System job does not
cu.rrently have a block of memory large enough to
allow this call to run to completion.

While attempting to access the parent directory of
the file pointed to by the path$name$p parameter,
this call detected that the device was off-line.
Operator intervention is required.
C$FORMAT$EXCEPTION returns the value EIONOT$READY
for this code.

Human Interface 8-22

EIOSOFT

EIOUNCLASS

E$LIMIT

E$LIST

ELOGNAME$­
NEXIST

ELOGNAME$­
SYNTAX

E$MEDIA

E$MEM

ENOPREFIX

ENOTLOG$NAME

ENOUSER

CGETINPUT$PATHNAME

While attempting to access the parent directory of
the file pointed to by the path$name$p parameter t
this call detected a soft I/O error. It tried the
operation againt but was unsuccessful. Another try
might be successful.

An unknown type of I/O error occurred while this
call tried to access the parent directory of the
file pointed to by the path$name$p parameter.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job or the job's default user
object is already involved in 255 (decimal) I/O
operations.

• The calling task's job was not created by the
Human Interface.

The last value of the input pathname list is
missing. For example t "ABLEtBAKER t " has no value
following the second comma.

The pathname for the specified device contains an
explicit logical name. The call was unable to find
this name in the object directory of the local job t
the global job, or the root job.

The pathname poil1Lted to by the path$name$p parameter
contains a logical name. However, the logical name
contains an unmatched colon, is longer than 12
characters, has zero (0) characters t or contains
invalid characters.

The specified device was off-line.

The memory available to the calling task's job is
not sufficient to complete the call.

The calling task's job does not have a valid
default prefix.

The logical name specified by the path$name$p
parameter does nOit refer to a file or device
connection.

The calling task's job does not have a valid
default user object.

Human Interface 8-23

I

I

I

CGETINPUT$PATHNAME

E$PARAM

E$PARSE$TABLES

E$PATHNAME$­
SYNTAX

E$SHARE

E$STREAM$­
SPECIAL

E$STRING

E$STRING$BUFFER

E$SUPPORT

E$WILD$CARD

At least one of the following is true:

• The Extended I/O System attempted the physical
attachment of the device pointed to by the
path$name$p parameter. This device had formerly
been only logically attached. In the process,
the Extended I/O System found that the logical
attachment referred to a file driver (named,
physical, or stream) that is not configured into
your system, so the physical attachment is not
possible.

• The connection to the parent directory cannot be
opened for reading.

The call detected an error in an internal table
used by the Human Interface.

The specified pat"hname contains invalid characters.

The connection to the parent directory cannot be
opened for reading.

The Extended I/O System attempted to attach a
stream file and in so doing iBsued an invalid
stream file request.

The pathname to be returned exceeds the length
limit of 255 characters.

The buffer pointed to by the path$name$p parameter
was not large enough for the pathname to be
returned.

This call attempted to read the parent directory of
the pathname pointed to by the path$name$p
parameter. However, the file driver corresponding
to that directory does not support this operation.

The pathname to be returned contains an invalid
wild-card specification.

Human Interface 8-24

CGETOUTPUT$CONNECTIO

CGETOUTPUT$CONNECTION

CGETOUTPUT$CONNECTION, an I/O processing call, parses the command line
and returns an Extended I/O System connection referring to the requested
output file.

connection = RQCGET$OUTPUT$CONNECTION(path$name$p, preposition,
except$ptr);

INPUT PARAMETERS

path$name$p

preposition

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

A POINTER to a STRING containing the pathname of
the file to be accessed.

A BYTE that defines which preposition to use to
create the output file. Use one of the following
values to specify the preposition mode:

Value Meaning

0 Use same preposition as was
returned by the last
CGETOUTPUT$PATHNAME call

I TO
2 OVER
3 AFTER

4-255 Undefined, results in an error

A TOKEN in which the Human Interface returns a
token for the connection to the output file.

A POINTER to a WORD in which the Human Interface
returns a condition code.

CGETOUTPUT$CONNECTION obtains a connection to the specified file. This
connection is open for writing and has the following attributes:

• Write only

• Accessible to all

Human Interface 8-25

CGETOUTPUT$CONNECTION

I

I

I

If the call to CGETOUTPUT$CONNECTION specifies the TO preposition and
the output file already exists, CGETOUTPUT$CONNECTION issues the
following message to the terminal (:CO:):

<pathname), already exists, OVERWRITE?

If the operator enters Y, y, R, or r, GGETOUTPUT$CONNECTION returns a
connection to the existing file, allowing the command to write over the
file. Any other response causes C$GET~;OUTPUT$CONNECTION to generate an
E$FILEACCESS exception code.

CGETOUTPUT$CONNECTION causes an error message to be displayed at the
operator's terminal (:CO:) whenever an exceptional condition occurs. The
exceptional condition that triggers the error message can be either one
of those listed for CGETOUTPUT$CONNECrION or one of those associated
with an Extended I/O System call. The following messages can occur:

• <pathname), DELETE access required

The user does not have delete access to an existing file.

• <pathname), directory ADD entry access required

The user does not have add entry access to the parent directory.

• <pathname), file does not exist:

The output file does not exist~

• <pathname), invalid file type

The output file was a data filH and a directory was required, or
vice versa.

• <pathname), invalid logical name

The output pathname contains a logical name that is longer than
12 characters, that contains unmatched colons, or that contains
invalid characters.

• <pathname), logical name does ThJt exist

The output pathname contains a logical name that does not exist.

Human Interface 8-26

CGETOUTPUT$CONNECTIOt

• <pa thname>, <excE~ption value>: <exception mnemonic>

An exceptional condition occurred when CGETOUTPUT$CONNECTION
attempted to obtain the input connection. The <exception value>
and <exception mnemonic> portions of the message indicate the
exception code encountered. Refer to "Exception Codes" in this
call description and to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL.

EXCEPTION CODES

E$OK

E$ALREADY$­
ATTACHED

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$EXIST

E$FACCESS

No exceptional conditions were encountered.

The Extended I/O System was unable to attach the
device containing the file because the Basic I/O
System has already attached the device.

The calling task's job was not created by the Human
Interface.

The device referred to by the path$name$p parameter
was in the process of being detached.

The call attempted the physical attachment of a
device that had formerly been only logically
attached. In the process, the call found that the
device and the device driver specified in the
logical attachmE:~nt were incompatible.

The connection parameter for the device containing
that file is not a token for an existing object.

At least one of the following is true:

• The default user for the calling task's job did
not have update access to an existing file
and/or add-entry access to the parent directory.

• TheTa or OVER preposition was specified and the
default user for the calling task's job did not I
have the ability to truncate the file.

Human Interface 8-27

CGETOUTPUT$CONNECTION

I

I
I

E$FNEXIST

E$FTYPE

E$IFDR

E$ILLVOL

E$INVALID$­
FNODE

EIOHARD

E$IOMEM

EIOOPRINT

At least one of the following is true:

• The target file does not exist or is marked for
deletion.

• While attaching the file pointed to by the
path$name$p parameter, the Extended I/O System
attempted the physical attachment of the device
as a named device. It could not complete this
process because the device specified when the
logical attachment was made was not defined
during configuration.

The path pointed to by the path$name$p parameter
contained a file name that should have been the
name of a directory, but is not. (Except for the
last file, each file in a pathname must be a named
directory.

The call requested information about the specified
file, but the request was an invalid file driver
request.

The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached. The
call found that the volume did not contain named
files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the file specified in
the path$name$p parameter, the call detected a hard
I/O error. This means that another try is probably
useless.

While attempting to create a connection, this call
needed memory from the Basic I/O subsystem's memory
pool. However, the Basic I/O System job does not
currently have a block of memory large enough to
allow this call to run to completion.

While attempting to access the file specified in
the path$name$p parameter, the call detected that
the device was off-line. Operator intervention is
required.

Human Interface 8-28

EIOSOFT

EIOUNCLASS

E$ IO$WRPROT

E$LIMIT

ELOGNAME$­
NEXIST

ELOGNAME$­
SYNTAX

E$MEDIA

E$MEM

ENOPREFIX

ENOTLOG$NAME

ENOUSER

CGETOUTPUT$CONNECTION

While attempting to access the file specified in
the path$name$p parameter, the call detected a soft
I/O error. It tried the operation again but was
unsuccessful. Another try might be successful.

An unknown type of I/O error occurred while this
call tried to access the file given in the
path$name$p paran~ter.

While attempting to obtain an input connection to
the file specified in the path$name$p parameter,
this call found that the volume containing the file
is wTite-protected.

At least one of the following is true:

• The calling task's job or the job's default user
object is already involved in 255 (decimal) I/O
operations.

• The calling task's job is not an I/O job.
(Refer to the iRMX 86 EXTENDED I/O SYSTEM
IlliFERENCE MANUAL for more information about I/O
jobs.)

The specified pathname contains an explicit
logical name. The call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

The pathname pointed to by the path$name$p parameter
contains a logical name. However, the logical name
contains unmatched colons, is longer than 12
characters, or contains invalid characters.

The specified device was off-line.

The memory available to the calling task's job is
not sufficient to complete the call.

The calling task's job does not have a valid
default prefix.

The logical name specified by the path$name$p
parameter does not refer to a file or device
connection.

The calling task's job does not have a valid
default user object.

Human Interface 8-29

I

I

CGETOUTPUT$CONNECTION

I

I

E$PARAM

E$PATHNAME$­
SYNTAX

E$PREPOSITION

E$SHARE

E$SPACE

E$STREAM$
SPECIAL

The system call forced the Extended I/O System to
attempt the physlcal attachment of the device
referenced by th(2: path$name$p parameter. The
device had formerly been only logically attached.
In the process, the Extended I/O System found that
the logical attacbnent referred to a file driver
(named, physical, or stream) that is not configured
into your system, so the physical attachment is not
possible.

The specified pathname contains invalid characters.

One of the following is true:

• The command li.ne contained an invalid
preposition value (a value greater than 3).

• The command ltne contained a zero as the
preposition value. This indicated that the same
preposition WclS to be used as in the last
CGETOUTPUT$PATHNAME call. However, this is
the first call to CGETOUTPUT$PATHNAME.

The new connection cannot be opened for writing.

One of the following is true:

• The volume is full.

• The volume already contains the maximum number
of files.

The Extended I/O System attempted to attach a
stream file and 1n so doing issued an invalid
stream file requl~st.

Human Interface 8-30

CGETOUTPUT$PATHNAM

CGETOUTPUT$PATHNAME

CGETOUTPUT$PATHNAME, a command parsing call, gets a pathname from the
list of output pathnames in the parsing buffer.

preposition

INPUT PARAMETERS

RQCGET$OUTPUT$PATHNAME(path$name$p, path$name$max,
default$output$p, except$ptr);

path$name$max A WORn that spec:lfies the length in bytes of the
string pointed t() by the path$name$p parameter.
The maximum length that you can specify is 256
bytes (255 characters for the pathname and one byte
for the count).

default$output$p A POINTER to a STRING containing the command's
default standard output. If the first invocation
of this system call does not encounter a
TO/OVER/AFTER preposition, the text of this
parameter 'will be used as though it had appeared in
the command line.. The text must specify TO, OVER,
or AFTER for the output mode. Examples: TO :CO:
or TO :LP:.

OUTPUT PARAMETERS

preposition

path$name$p

except$ptr

A BYTE describing the preposition type that
CGETOUTPUT$PATHNAME encountered. You can pass
this value to CGETOUTPUT$CONNECTION when
obtaining an output connection to the file. The
value will be onE~ of the following:

Value

1
2
3

!1eaning

TO
OVER
AFTER

A POINTER to a STRING that receives the next
pathname in the pathname list.

A POINTER to a WORD in which the Human Interface
returns a condition code.

Human Interface 8-31

CGETOUTPUT$PATHNAME

I

DESCRIPTION

You should not call CGETOUTPUT$PATHNAME before first calling
CGETINPUT$PATHNAME.

The first call to CGETOUTPUT$PATHNAME retrieves the preposition
(TO/OVER/AFTER) and the entire output pathname list; it then moves the
parsing pointer to the next parameter. If the parsing buffer does not
contain a preposition and pathname list, CGETOUTPUT$PATHNAME uses the
default pointed to by the default$output$p parameter (and does not move
the parsing pointer). After retrieving the pathname list,
CGETOUTPUT$PATHNAME stores it in an :lnternal buffer, returns the first
pathname in the string pointed to by the path$name$p parameter, and
returns the preposition in the preposition parameter. Succeeding calls
to CGETOUTPUT$PATHNAME return additional pathnames from the output
pathname list (as well as the preposition), but they do not move the
parsing pointer. CGETINPUT$PATHNAME denotes the end of the pathname
list by returning a zero-length string in the string pointed to by
path$name$p.

CGETOUTPUT$PATHNAME accepts wild-card characters in the last component
of a pathname. It generates each output pathname based on this
wild-carded pathname, the corresponding wild-carded pathname that was
input to CGETINPUT$PATHNAME, and the most recent input pathname
returned by CGETINPUT$PATHNAME.

The pathname returned by CGETOUTPUT$PATHNAME can be used for any
purpose. However, it is most often used in a call to
CGETOUTPUT$CONNECTION to obtain a connection to the file. In such a
case, CGETOUTPUT$CONNECTION processes the TO/OVER/AFTER preposition.
If the pathname is used as input to a system call other than
CGETOUTPUT$CONNECTION, the interpretation of the TO/OVER/AFTER
preposition is the user's responsibility.

EXCEPTION CODES

E$OK

E$CONTEXT

E$DEFAULT$SO

No exceptional conditions were encountered.

The calling task's job was not created by the Human
Interface.

The default output string pointed to by
default$output$p contained an invalid preposition
or pathname.

Human Interface 8-32

E$LIMIT

E$MEM

E$PATHNAME$­
SYNTAX

E$STRING

E$STRING$­
BUFFER

E$UNMATCHED$­
LISTS

E$WILDCARD

CGETOUTPUT$PATHNAME

At least one of the following is true:

• The calling task's job has already reached its
limit.

• The calling task's job was not created by the
Human Interface.

The memory available to the calling task's job is
not sufficient to complete the call.

The specified pathname contains invalid characters.

The pathname to be returned exceeds the length
limit of 255 characters.

The buffer pointed to by the path$name$p parameter
was not large enough for the pathname to be
returned.

The numbers of files in the input and output lists
are not same.

The output pathname contains an invalid wild-card
specification.

Human Interface 8-33

I

CGETPARAMETER

CGETPARAMETER

GET$PARAMETER, a command parsing call, gets a parameter from the parsing
buffer.

more = RQCGET$PARAMETER(name$p, name$max, value$p, value$max,
index$p, predict$list$p, except$ptr);

INPUT PARAMETERS

name$max

value$max

predict$list$p

OUTPUT PARAMETERS

more

name$p

value$p

AWaRD that spectfies the length in bytes of the
string pointed to by the name$p parameter. The
maximum length is 256 bytes (255 characters for the
name and one byte for the count).

A WORD that speci.fies the length in bytes of the
string pointed to by the value$p parameter. The
maximum length is 65535 decimal bytes.

A POINTER to a STRING$TABLE, as described in
Appendix C, that specifies the values that this
system call accepts as prepositions. The
predict$list$p POINTER should be zero if you do not
intend to retrie~e parameters that use prepositions.

A BYTE value that: indicates whether or not the
current call to C:;~GET$PARAMETER returned a
parameter. A va1ue of OOh indicates that there are
no more parameters (and that no parameter was
returned); a valUl4~ of OFFh indicates that a
parameter was returned.

A POINTER to a STRING that receives the keyword
portion of the parameter. If this parameter does
not contain a key",ord portion, the Human Interface
returns a null (zero-length) string.

A POINTER to a STRING$TABLE, as described in
Appendix C, that receives the value portion of the
parameter. If thE! value portion contains a list of
values separated by commas, the Human Interface
returns the values to the string table one value
per string.

Human Interface 8-34

CGETPARAMETER

index$p

except$ptr

DESCRIPTION

A POINTER to a BYTE that receives the index to the
list of prepositions pointed to by predict$list$p.
ThiB index identifies the name$p keyword as a
preposition and identifies it out of the list of
possible prepositions. If the predict$list$p list
is empty, or if the keyword name is not contained
in the predict$list$p list, the system call returns
a value of zero for the index. That is, the index
will be non-zero only if a keyword exists and it is
one of the prepositions in the predict$list$p list.

A POINTER to a WORD in which the Human Interface
returns a condition code.

CGETPARAMETER retrieves one parameter from the parsing buffer and moves
the parsing pointer to the next parameter. The parameter can be one of
the following:

• keyword/value-list parameter us.ing parentheses
• keyword/value-list parameter using an equal sign
• keyword/value-list parameter wi.th the keyword as a preposition
• value-list without a keyword

A description of the types, format, and. syntax of acceptable parameters
is provided in Chapter 3.

CGETPARAMETER places the keyword portion of the parameter in the string
pointed to by name$p; it places the keyword list in the string table
pointed to by value$p.

Without input from you, CGETPARAMETER cannot determine whether groups
of characters separated by spaces are separate parameters or a single
parameter that uses a preposition. CGETPARAMETER uses the list of
prepositions that you supply in the string table pointed to by
predict$list$p to determine the prepositions that can appear. When
CGETPARAMETER retrieves a parameter, it obtains from the parsing buffer
the next group of characters that are separated by spaces. Then it
checks those characters against those in the predict$list$p list. If the
characters match one of the values in the list, CGETPARAMETER realizes
that the characters represent a preposition and not an entire parameter;
it then obtains the next group of characters separated by spaces as the
value portion of the parameter.

EXCEPTION CODES

E$OK No exceptional conditions were encountered.

Human Interface 8-35

I

CGETPARAMETER

E$CONTEXT

I E$CONTINUED

E$LIMIT

E$LIST

E$LITERAL

E$MEM

E$PARAM

The calling task's job was not an I/O job. Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL
for information about I/O jobs.

The call found a continuation character in the
parse buffer. Command lines should not contain
continuation characters.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job was not an I/O job.
Refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for information about I/O jobs.

At least one of the following is true:

• The parameter contains an unmatched parenthesis.

• A value in the value list is missing or an
improper value was entered. Examples of both
these conditions follow:

Value

A,B,
A,B=C,D

A,B(C,E),F

Comments

No value following second comma.
The equal sign can not be used
unless it is between quotes: 'B=C'
is valid.
The parentheses can not be used in
a value unless it is between
quotes or set off by commas.
A,B,(C,E),F is valid.

The call found a literal (quoted string) in the
parsing buffer with no closing quote. This
condition should not occur in the command line
buffer.

The memory available to the calling task's job is
not sufficient to complete the call.

The predict$list!?p parameter pointed to a string
table, but the index$p parameter was set to zero
(0) •

Human Interface 8-36

E$PARSE$TABLES

E$SEPARATOR

E$STRING

E$STRING$BUFFER

CGETPARAMETER

The call found an error in an internal table used
by the Human Interface.

The call found an invalid command separator in the
parsing buffer. This condition should not occur in
the command line buffer. The following is a list
of invalid command separators: ><, <>, II, I, [,
and].

The string to be returned as the parameter name or
one of the parameter values exceeds the length
limit of 255 characters.

The string to be returned as the parameter name or
one of the parameter values exceeds the buffer size
provided in the call.

Human Interface 8-37

I

C$SEND$COMMAND

C$SEND$COMMAND

C$SEND$COMMAND, a command processing call, sends command lines to a
command connection created by C$CREATE$COMMAND$CONNECTION and, when the
command is complete, invokes the command.

CALL RQCSEND$COMMAND(command$conn:, line$p, command$except$ptr,
except$ptr);

INPUT PARAMETERS

command$conn

line$p

OUTPUT PARAMETERS

command$ex­
cept$ptr

except$ptr

DESCRIPTION

A TOKEN for the command connection that receives
the command line.

A POINTER to a STRING containing a command line to
execute.

A POINTER to a WORD in which the Human Interface
returns a condition code indicating the status of
the invoked command. This parameter is undefined
if an exceptional condition code is returned in the
word pointed to ~y except$ptr.

A POINTER to a WORD in which the Human Interface
returns a condition code indicating the status of
the C$SEND$COMMAND system call.

You can use this system call when you ",ant to invoke a command
programmatically instead of interactively. It stores a command line in
the command connection created by the C$CREATE$COMMAND$CONNECTION call,
concatenates the command line with any others already stored there, and
(if the command invocation is complete) invokes the command. The command
can be any standard Human Interface command (as described in the iRMX 86
OPERATOR'S MANUAL) or a command that you create.

As described in greater detail in Chapt:<er 3, a command invocation can
contain several continuation marks. The continuation mark (&) indicates
that the command line is continued on the next line. If the command line
sent by C$SEND$COID1AND is continued on another line (that is, contains a
continuation mark), the Human Interface returns an E$CONTINUED exception
code and does not invoke the command. You can then call C$SEND$COMMAND
any number of times to send the continuation lines.

Human Interface 8-38

C$SEND$COMMAND

C$SEND$COMMAND concatenates the original command line and all
continuation lines into a single command line in the command connection.
It removes all continuation marks and all comments from this ultimate
command line.

When the command invocation is complete (that is, the line sent by
C$SEND$COMMAND does not contain a continuation mark) the Human Interface
parses the connnand pathname from the command line. If no exception
conditions halt the process at this point, the Human Interface requests
the Application Loader to load and exeeute the command.

An Application Loader call creates an I/O job for the command. Then the
Application Loader validates the header, group definition and segment
definition records of the command's object file. Refer to the 8086
FAMILY UTILITIES USER'S GUIDE for explanations of segments, groups and
object file formats.

C$SEND$COMMAND returns two condition codes: one for the C$SEND$COMMAND
call and one for the invoked command. The word pointed to by the
except$ptr parameter returns the C$SEND$COMMAND conditions, as described
under the EXCEPTION CODES heading in this command description. The word
pointed to by the command$except$ptr returns the invoked command's
condition codes; the values returned depend on the command invoked. The
E$CONTROL$C exception code can be returned at either place.

EXCEPTION CODES

E$OK

E $ ALREADY $­
ATTACHED

EBADGROUP

EBADHEADER

EBADSEGMENT

E$CHECKSUM

E$CONTEXT

No exceptional conditions were encountered.

The Extended I/O System was unable to attach the
device containing the object file because the Basic
I/O System has already attached the device.

The object file represented by the command's
pathname contain~~d an invalid group definition
record.

The object file represented by the command's
pathname does not begin with a header record for a
loadable object module.

The object file represented by the command's
pathname contains an invalid segment definition
record.

At least one record of the object file represented
by the command's pathname contains a checksum
error. This situation could occur if the CHECKSUM
amount calculated during the read operation did not
match the CHECKSUM field of the record being read.

The calling task's job was not created by the Human
Interface.

Human Interface 8-39

I

I

C$SEND$COMMAND

E$CONTlNUED

I EDEVDETACHING

E$DEVFD

E$EOF

E$EXIST

E$FACCESS

E$FIXUP

E$FLUSHING

The Operating System detected a continuation
character while scanning the command line pointed
to by the line$p parameter. This condition should
occur if the command line is to continue on the
next line.

The device contalning the object file was in the
process of being detached.

The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, the Extended
I/O System found that the device and the device
driver specified in the logical attachment were
incompatible.

The Application Loader encountered an unexpected
end of file on the object file represented by the
command's pathname.

At least one of the following is true:

• The call detached the device containing the
object file before completing the loading
operation.

• The command$conn parameter is not the token for
a command connection.

The default user for the calling task's job does
not have read access to the object file.

When the Application Loader loads an LTL
(load-time-Iocatable) program, the Loader must
adjust some of the addresses used in the code to
reflect actual loaded code addresses. This
adjustment is known as a fixup and is contained on
a fixup record. The Application Loader detected an
invalid fixup reeord in the object file. Refer to
the iRMX 86 LOADER REFERENCE MANUAL for an
explanation of LTL code.

The device containing the object file was being
detached.

Human Interface 8-40

E$FNEXIST

E$FTYPE

E$ILLVOL

E$INVALID$­
FNODE

EIOHARD

E$IOMEM

EIOOPRINT

EIOSOFT

EIOUNCLASS

C$SEND$COMMAND

At least one of the following is true:

• The file in the command's pathname is either
marked for deletion or does not exist.

• While attaching the file specified in the line$p
parameter, the Extended I/O System attempted the
physical attaehment of the device as a named
device. It could not complete this process
because the device specified when the logical
attachment was made was not defined during
configuration.

The path pointed to by the path$name$p parameter
contained a file name that should have been the
name of a directory, but is not. (Except for the
last file, each file in a pathname must be a named
directory.

The call a ttemptE~d the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached. The
call found that the volume did not contain named
files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the object file, this
call detected a hard I/O error. This means that
another try is probably useless.

The Basic I/O System does not currently have a
block of memory large enough to allow the Human
Interface to create the connection necessary to
allow this call to run to completion.

While attempting to access the object file, this
call found that the device was off-line. Operator
intervention is required. C$FORMAT$EXCEPTION
returns the valuc~ EIONOT$READY when given this
code.

While attempting to access the object file, this
call detected a soft I/O error. It tried again,
but was not successful. Another try might be
successful.

An unknown type of I/O error occurred while this
call tried to access the object file.

Human Interface 8-41

I

I

I

CSSENDSCOMMAND

I

I

EIOWRPROT

E$LIMIT

E$LITERAL

ELOGNAME$­
NEXIST

ELOGNAME$-
SYNTAX

E$MEDIA

E$MEM

ENOLOADER$MEM

While attempting to obtain an input connection to
the object file, the call found that the volume
containing the ftle is write-protected.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job, or the job's default
user object, :Ls already involved in 255
(decimal) I/O operations.

• The new I/O job, or its default user, is already
involved in 255 (decimal) I/O operations.

• The calling task's job is not an I/O job. Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL for in:Eormation about I/O jobs.

The call found a literal (quoted string) with no
closing quote while scanning the contents of the
command line pointed to by the line$p parameter.

The command's pathname contains an explicit logical
name but the call was unable to find this name in
the object directory of the local job, the global
job, or the root job.

The pathname pointed to by the path$name$p parameter
contains a logical name. However, the logical name
contains an unmatched colon, is longer than 12
characters, has zero (0) characters, or contains
invalid characte:cs.

The device containing the object file was off-line.

The memory available to the calling task's job, the
new I/O job, or the Basic I/O System job is not
sufficient to complete the call.

At least one of the following is true:

• The memory pool of the newly-created I/O job
does not currently have a block of memory large
enough to allow the Loader to run.

• The memory pool of the Basic I/O System's job
does not currently have a block of memory large
enough to allaw the Application Loader to run.

Human Interface 8-42

C$SEND$COMMAN~

ENOMEM

ENOPREFIX

The Application Loader attempted to load PIC or LTL
groups or segments. However, the memory pool of the
newly-created I/O job does not currently contain a
block of memory large enough to accommodate these
groups or segments. Refer to the iRMX 86 LOADER
REFERENCE MANUAL for an explanation of loading PIC or
LTL groups or segments.

The calling task's job does not have a valid default
prefix.

ENOSTART The object file represented by the command-pathname
does not specify the entry point for the program
being loaded.

ENOTCONNECTION The default$ci or default$co parameter is a token for
an object that is not a file connection.

ENOTLOG$NN~E The command pathname contains a logical name. The
logical name of an object that is neither a device
connection nor a file connection.

ENOUSER The calling task's job does not have a valid default
user.

E$PARAM

E$PARSE$TABLES

E$PATHNAME$­
SYNTAX

ERECFORMAT

ERECLENGTH

ERECTYPE

The Extended I/O System attempted the physical
attachment of a device containing the object file.
This device had formerly been only logically
attached. While attempting this, the Extended I/O
System found tha.t the logical attachment referred to
a file driver (named, physical, or stream) that is
not configured into your system. Hence the physical
attachment is not possible.

The call found an error in an internal table.

The command's pathname contains invalid characters.

At least one record in the object file contains a
record format error.

The object file contains a record that is longer than
the Loader's maximum record length. The Loader's
maximum record length is a parameter specified during
the configuration of the Loader. Refer to the
iRMX 86 CONFIGUF~TION GUIDE for details.

At least one of the following is true:

• At least one record in the file being loaded is of
a type that the Application Loader cannot process.

• The Application Loader has encountered records in
a sequence that it cannot process.

Human Interface 8-43

I

I

C$SEND$COMMAND

ESEGBOUNDS

E$SEPARATOR

E$STRING

E$STRING$BUFFER

E$TIME

E$TYPE

The Application Loader created multiple segments in
which to load information. One of the data records
in the object file specified a load address outside
of the created segments.

The call found an invalid separator while scanning
the command line. The following is a list of the
invalid command siaparators: ><, <>, II, I, [, and].

The size of" the command's pathname exceeds the
length limit of 255 (decimal) characters.

The size of the command's pathname exceeds the size
of the command name buffer specified during the
configuration of the Human Interface.

The calling task'B job was not created by the Human
Interface.

The command$conn parameter is token for an object
that is not a command connection.

Human Interface 8-44

C$SEND$CO$RESPONS

C$SEND$CO$RESPONSE

C$SEND$CO$RESPONSE, a message processing call, sends a message to :CO:
and reads a response from :CI:.

CALL RQCSENDCORESPONSE(responsH$p, response$max, message$p,
except$ptr);

INPUT PARAMETERS

message$p

response$max

OUTPUT PARAMETERS

response$p

except$ptr

DESCRIPTION

A POINTER to a STRING containing the message to be
sent to :CO:. If zero, no message is sent.

A WORD that specifies the length in bytes of the
string pointed to by the response$p parameter. If
response$max is ~:ero, no response from : CI: will be
requested; control returns to the calling task
immediately.

A POINTER to a STRING that receives the operator's
response from :CI:.

A POINTER to a WORn in which the Human Interface
returns a condition code.

When used with all its features, C$SEND$CO$RESPONSE sends the string
pointed to by message$p to :Co: and waits for a response from :CI:. It
places this response in the string pointed to by response$p. However, If
message$p is zero, C$SENDCORESPONSE omits sending the message to :CO:;
if either response$max or response$p is zero, it does not wait for a
response from :CI:. Therefore, the operations performed by
C$SEND$CO$RESPONSE depend on the values of the message$p and response$max
parameters, as follows:

message$12 response$max Action

zero zero Perform no I/O
zero non-zero Send no message, wait for input
non-zero non-zero Send message, wait for input
non-zero zero Send message, don't wait

Human Interface 8-45

C$SEND$CO$RESPONSE

If C$SEND$CO$RESPONSE requests a response from :CI:, output from other
tasks can be displayed at :CO: while the system waits for a response from
: CI: •

The main distinction between C$SEND$CO$;RESPONSE and C$SENDEORESPONSE
calls is that C$SEND$EO$RESPONSE always sends messages to and receives
messages from the operator's terminal; input and output cannot be
redirected to another device. In contrast, C$SEND$CO$RESPONSE sends
messages to :Co: and receives messages from :CI:; therefore, programs
such as SUBMIT can redirect this input and output.

EXCEPTION CODES

E$OK

E$CONTEXT

E$CONNECTION$­
OPEN

E$EXIST

E$FLUSHING

EIOHARD

EIOOPRINT

No exceptional conditions were encountered.

The calling task's job was not created by the Human
Interface.

At least one of the following is true:

• The connection to :CI: was not open for reading
or the connection to :CO: was not open for
writing.

• The connection to :CI: or :CO: was not open.

• The connection to :CI: or :CO: was opened with
A$OPEN rather than S$OPEN.

The token value for :CI: or :CO: is not a token for
an existing object.

The device containing the :CI: and :CO: files was
being detached.

While attempting to access the :CI: or :CO: file,
the Operating System detected a hard I/O error.

While attempting to access the :CI: or :CO: file,
this call found that the device was off-line.
Operator intervention is required.
C$FORMAT$EXCEPTION returns the value EIONOT$READY
for this code.

Human Interface 8-46

C$SEND$CO$RESPONSE

EIOSOFT

EIOUNCLASS

EIOWRPROT

E$LIMIT

E$MEM

While attempting to access the :CI: or :CO: file,
this call detected a soft I/O error. It tried
again, but was unsuccessful. Another try might be
successful.

An unknown type of I/O error occurred while this
call tried to access the :CI: or :CO: file.

While attempting to obtain a connection to the :CO:
file, this call found that the volume containing
the file is write-protected.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job, or the job's default
user object, is already involved in 255
(decimal) I/O operations.

• The calling task's job was not created by the
Human Interface.

The memory available to the calling task's job is
not sufficient to complete the call.

ENOTCONNECTION The call obtained a token for an object that should
have been a connection to :CI: or :Co: but was not
a file connection.

E$PARAM The call attempted to write beyond the end of a
physical file.

E$SPACE One of the following is true:

• The output volume is full.

• The call attempted to write beyond the end of a
physical file.

E$STREAM$SPECIAL When attempting to read or write to :CI: or :CO:,
the Extended I/O System issued an invalid stream
file request.

E$SUPPORT The connection to :CI: or :Co: was not created by
this job.

E$TIME The calling task's job was not created by the Human
Interface.

Human Interface 8-47

I

I

C$SEND$EO$RESPONSE

C$SEND$EO$RESPONSE

C$SEND$EO$RESPONSE, a message processing call, sends a message to and
reads a response from the operator's terminal.

CALL RQCSENDEORESPONSE(response$p, response$max, message$p,
except$ptr);

INPUT PARAMETERS

message$p

response$max

OUTPUT PARAMETERS

response$p

except$ptr

DESCRIPTION

A POINTER to a STRING containing the message to be
sent to the operator's terminal. If zero, no
message is sent.

A WORD that specifies the length in bytes of the
string pointed to by the response$p parameter. If
response$max is zero, no response from the
operator's terminal will be requested; control
returns to the calling task immediately.

A POINTER to a SYRING that receives the operator's
response from the terminal.

A POINTER to a WORD in which the Human Interface
returns a condition code.

\>lhen used with all its features, C$SEND$EO$RESPONSE sends the string
pointed to by message$p to the operator's terminal and waits for a
response from the operator. It places this response in the string
pointed to by response$p. However, if message$p is zero,
C$SEND$EO$RESPONSE omits sending the message to the operator; if either
response$max or response$p is zero, it does not wait for a response.
Therefore, the operations performed by C$SEND$EO$RESPONSE depend on the
values of the message$p and response$max parameters, as follows:

message$E response$max Action

zero zero Perform no I/O
zero non-zero Send no message, wait for input
non-zero non-zero Send message, wait for input
non-zero zero Send message, don't wait

Human Interface 8-48

C$SEND$EO$RESPONSE

If C$SEND$EO$RESPONSE requests a response from the terminal, no other
output can be displayed at the terminal until C$SEND$EO$RESPONSE receives
a line terminator from the operator. However, the operator can choose to
ignore the displayed message by entering a line terminator only.

The main distinction between C$SEND$CO$RESPONSE and C$SENDEORESPONSE
calls is that C$SEND$EO$RESPONSE alwaY8 sends messages to and receives
messages from the operator's terminal; input and output cannot be
redirec ted to another dev:ice. In contras t, C$SEND$CO$RESPONSE sends
messages to :CO: and receives messages from :CI:; therefore programs such
as SUBMIT can redirect this input and output.

EXCEPTION CODES

E$OK

E$CONNECTION$­
OPEN

E$CONTEXT

E$ERROR$­
OUTPUT

E$EXIST

E$FLUSHING

EIOOPRINT

No exceptional conditions were encountered.

At least one of the following is true:

• The connection to :CI: was not open for reading
or the connection to :CO: was not open for
writing.

• The connection to :CI: or :CO: was not open.

• The connection to :CI: or :CO: was opened with
A$OPEN rather than S$OPEN.

The calling task" s job was not created by the Human
Interface.

Attempted to call SENDEORESPONSE through an
invalid method.

The token value for :CI: or :CO: is not a token for
an existing object.

The device containing the :CI: and :CO: files was
being detached.

While attempting to access the terminal, this call
found that the device was off-line. Operator
intervention is required. C$FORMAT$EXCEPTION
returns the value EIONOT$READY when given this
code.

Human Interface 8-49

C$SEND$EO$RESPONSE

I
I

E$LIMIT

E$MEM

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job or the job's default user
object is already involved in 255 (decimal) I/O
operations.

• The calling task's job was not created by the
Human Interface.

The memory pool of the calling task's job does not
currently have block of memory large enough to
allow this system call to run to completion.

ENOTCONNECTION The call obtained a token for an object that should
have been a connection to :CI: or :Co: but was not
a file connection.

E$PARAM The call attempted to write beyond the end of a
physical file.

E$STREAM$SPECIAL When attempting to read or write to :CI: or :CO:,
the Extended I/O System issued an invalid stream
file request.

E$SUPPORT

E$TlME

The connection to the terminal was not created by
this job.

The calling task II s job was not created by the Human
Interface.

Human Interface 8-50

CSETPARSE$BUFFER

CSETPARSE$BUFFER

CSETPARSE$BUFFER, a command parsing c:all, permits parsing the contents
of a buffer other than thE~ command line: buffer whenever the parsing
system calls are used.

offset RQCSET$PARSE$BUFFER(buff$p, buff$max, except$ptr);

INPUT PARAMETERS

buff$p

buff$max

OUTPUT PARAMETERS

offset

except$ptr

DESCRIPTION

.-~------.--------------------I

A POINTER to a buffer containing the text to be
parsed. If the buff$p is zero, the buffer used for
parsing reverts to the command line buffer and the
buff$max parameter is ignored.

A WORD that specifies the length in bytes of the
string pointed to by the buff$p parameter.

A WORD in which the Human Interface places the byte
offset from the start of the parsing buffer of the
last byte parsed in the previous parsing buffer.

A POINTER to a WORD in which the Human Interface
returns a condition code.

CSETPARSE$BUFFER allows you to parse buffers other than the command
line. You can change buffers at will; you can also revert to the command
line parsing buffer by calling CSETPARSE$BUFFER with buff$p=O.
However, only one parsing buffer per job can be active at any given time.

When called, CSETPARSE$BUFFER sets the parsing pointer to the beginning
of the specified buffer. However, it also returns a value (in the offset
parameter) that identifies the last byte parsed in the previous parsing
buffer. This gives you the ability, when switching back to the previous
buffer, of positioning the parsing pointer to its previous position with
successive calls to CGETCHAR.

Note that CSETPARSE$BUFFER does not affect the buffer from which
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME retrieve pathnames. These
system calls always obtain their pathnames from the command line.

Human Interface 8-51

CSETPARSE$BUFFER

EXCEPTION CODES

E$OK

E$CONTEXT

E$LIMIT

E$MEM

No exceptional conditions were encountered.

The calling task's job is not an I/O job. Refer to
the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL
for information about I/O jobs.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• This indicates that the calling task's job was
not created by the Human Interface.

The memory avail,8Lble to the calling task's job is
not sufficient to complete the call.

Human Interface 8-52

CHAPTER 9
CONFIGURATION OF

THE HUMAN INTERFACE

The Human Interface is a eonfigurable part of the Operating System. It
contains several options that you can adjust to meet your specific
needs. To help you make eonfiguration choices, Intel provides three
kinds of information:

• A list of configurable options

• Detailed informatJlon about the options

• Procedures to allow you to spee:ify your choices

The balance of this chapter provides the first category of information.
To obtain the second and third categories of information, refer to the
iRMX 86 CONFIGURATION GUIDE.

Human Interface configuration consists of two parts: resident
configuration and nonresident configuration. Resident configuration
involves configuring the portion of the Human Interface that resides in
system memory at all times. This confi.guration takes place during the
configuration of the entire Operating System, when you adjust parameters,
include or exclude layers of the Operating System, and generate an
executable version of the Operating System. You cannot change the
resident configuration without reconfiguring the entire Operating
System. Nonresident configuration involves setting up an iRMX 86
directory structure and placing information about users into iRMX 86
files. The nonresident configuration i.nformation must be present when
the application system starts running, but you can modify the information
in the nonresident configuration files while the system is running. For
the new nonresident configuration to take effect, you must reinitialize
your application system.

RESIDENT CONFIGURATION

When you perform the resident Human Interface configuration, you can
modify parameters of the Human Interfaee that affect all Human Interface
users. These include:

• Information about the Human Interface's initial job, such as
minimum and maximum memory pool size and whether jobs created by
the Human Interface expect to use the 8087 Numeric Processor
Extension.

• Information about the initial user (or single user, if a
single-access system), including terminal name, user ID, maximum
priority" pathname of initial program, and default directory.

Human Interface 9-1

CONFIGURATION OF THE HUMAN INTERFACE

• Information about the jobs created by the Human Interface,
including minimum and maximum memory pool sizes.

• Initial size of the buffer that the Human Interface uses when
constructing commands.

• Maximum length of a command pathname.

• List of directories that the Human Interface automatically
searches, in order, when trying to find a command.

• Pathname of the directory assigned to the logical name : SYSTEM:
and a list of pathnames and the logical names that you want the
Human Interface to assign upon initialization.

• Whether the Human Interface includes an initial program that is
linked to the Human Interface and used for all operators
(resident initial program), or whether a separate initial program
is used for each operator. If you include a resident initial
program, you can also specify lts pathname.

NONRESIDENT CONFIGURATION

The nonresident configuration involves specifying information about the
terminals and users that access a multi.·-access Human Interface.

For each terminal in the system you can specify:

• Terminal name

• Associated user name

• Memory partition size

• Maximum priority

• Pathname of the initial program

For each user in the system you can spec.ify

• User ID

• Password

• Memory partition size

• Default prefix

• Pathname of the initial program

• Maximum job priority

Human Interface 9-2

APPENDIX A
HUMAN INTERFACE
TYPE DEFINITIONS

The type definitions used in Human Interface system call description are
defined in Table A-I.

Table A-I. Type Definitions

Type Definition

BYTE

WORD

INTEGER

POINTER

SELECTOR

TOKEN

STRING

STRING$TABLE

An unsigned, eight-bit, binary number.

An unsigned, two-byte, binary number.

A signed, two-byte, binary number that is stored in
two's eomplement form.

Two consecutive words containing the base of a segment
and the offset into that segment. The offset must be
in the word having the lower address.

A I6-bit quantity that is equivalent to the base
portion of a pointer. Your PL/M compiler may not
support this data type.

A word or selector whose value identifies an object.
A TOKEN can be decla.red literally a WORD or a
SELECTOR, depending on your needs.

A sequence of consecutive bytes. The value contained
in the first byte is the number of bytes in the rest
of the string. Since a string contains only a single
byte in which to store the count, the maximum number
of characters that a. string can contain is 255. A
zero count specifies a null string.

A count byte followed by a sequence of consecutive
strings. The value contained in the count byte is the
number of strings in the rest of the string table.
Since the string table contains only a single byte in
which to store the count, the maximum number of
strings that a string table can contain is 255. A
zero count specifies a null string table.

Human Interface A-I

APPENDIX B
HUMAN INTERFACE
EXCEPTION CODES

Like other iRMX 86 software systems, the Human Interface returns a
condition code whenever a Human Interface call is invoked. If the call
executes without error, the Human Interface returns the code E$OK. When
an error is encountered during call execution, an exceptional condition
code is returned. The exceptional condition code may be returned either
from the Human Interface or from one of the other iRMX 86 layers residing
below it. The exception codes listed in Table B-1 are unique to the
Human Interface.

Table B-1. Human Interface Exception Codes

Programmer Errors:

E$PARSE$TABLES 8080U
EJOBTABLES 8081H
E$DEFAULT$SO 8083H
E$STRING 8084H
E$ERROR$OUTPUT 8085H

Environmental Errors:

E$OK OOOOH
E$LITERAL 0080H
E$STRING$BUFFER 0081H
E$SEPARATOR 0082H
E$CONTINUED 0083H
E$INVALID$NUMERIC 0084H
E$LIST 0085H
E$WILDCARD 0086H
E$PREPOSITION 0087H
E$PATH 0088H
E$CONTROL$C 0089H
E$CONTROL 008AH
E$UNMATCHED$LISTS 008BH
E$DATE 008CH
ENOPARAMETER 008DH
E$VERSION 008EH
EGETPATH$ORDER 008FH

Human Interface B-1

I

I

I

HUMAN INTERFACE EXCEPTION CODES

The values of condition codes fall into ranges based on the iRMX 86 layer
which first detects the condition. Table B-2 lists the layers and their
respective ranges, with numeric values expressed in hexadecimal
notation. Table B-3 lists all the excE!ption codes for the operating
system. All the exception codes are l:lsted to their type (environmental
errors, Nucleus programming errors, ete.). For more information on the
exception codes, consult the manual which describes the layer from which
the exception code originates.

Table B-2. Condition Code Ranges

I EnVi=:tal Programming
Layer ConditionB Errors

Nucleus OH to lFH 8000H to 801FH

I/O Systems 20H to 5FH 8020H to 805FH

Application Loader 60H to ~lFH 8060H to 807FH

Human Interface 80H to AFH 8080H to 80AFH

Universal Development COH to DFH 80COH to 80DFH
Interface

Reserved for Intel * EOH to 3FFFH 80EOH to BFFFH

Reserved for users 4000H to TFFFH COOOH to FFFFH

Note: * Exception codes in this range (130 to 14FH; 8130 to 814FH)
could occur if you are a user of an iRMX system with iMMX 800
software. Refer to iMMX 800 MULTIBUS MESSAGE EXCHANGE
REFERENCE MANUAL for an explanation of exception conditions
within this range.

Human Interface B-2

Category/
Mnemonic

E$OK

E$TIME

E$MEM

E$BUSY

E$LIMIT

E$CONTEXT

E$EXIST

E$STATE

ENOTCON­
FIGURED

E$INTER­
RUPT$SAT­
URATION

E$INTER­
RUPT$OV­
ERFLOW

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes

Meaning

The most recent system call was
successful.

Nucleus Environmental Conditions

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.

There is not sufficient memory avail­
able to satisfy a task's request.

Another task currently has access to the
data protected by a region.

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit.

A system call was issued out of context
or the Operating System was asked to
perform an impossible operation.

A token parameter has: a value which is
not the token of an e!xisting object.

A task attempted an operation which
would have caused an impossible
transition of a task's state.

This system call is not part of the
present configuration.

An interrupt task has accumulated the
maximum allowable number of SIGNAL$IN­
TERRUPT requests.

An interrupt task has accumulated more
than the maximum allowable amount of
SIGNAL$INTERRUPT requests.

Human Interface B-3

Numeric Code

Hex Decimal

OH o

1H 1

2H 2

3H 3

4H 4

SH 5

6H 6

7H 7

8H 8

9H 9

OAH 10

HUMAN INTERFACE EXCEPTION CODES

Table 8-3. Conditions And Their Codes (continued)

r---------------~----------------------.------------------~~------------_,

Category/
Mnemonic Meaning

Numeric Code

Hex Decimal

~==========~======~======~=:==========================~

I/O System Environme:ntal Conditions

r---------------T--~-------------i

E$FEXIST

E$FNEXIST

E$DEVFD

E$SUPPORT

E$EMPTY$­
ENTRY

EDIREND

E$FACCESS

E$FTYPE

E$SHARE

E$SPACE

E$IDDR

E$IO

E$FLUSHING

E$ILLVOL

EDEVOFF­
LINE

E$IFDR

The specified file al:ready exists.

The specified file does not exist.

The device driver and file driver are
incompatible.

The combination of pa:rameters entered
is not supported.

The specified entry in a directory file
is empty.

The specified directory entry index is
beyond the end of the directory file.

The connection does not have the correct
access to the file.

The requested operation is not valid for
this file type.

The requested operation attempted an
improper kind of file sharing.

There is no space left: on the volume.

An invalid device driver request
occurred.

An I/O error occurred~

The connection specifled in the call was
deleted before the op€!ration completed.

The device contains an invalid or

20H

21H

22H

23H

24H

25H

26H

27H

28H

29H

2AH

2BH

2CH

improperly-formatted -tlolume. 2DH

The device being accessed is now offline. 2EH

An invalid file driver request occurred. 2FH

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
~----------------~------------_____________ • ___________________ ~ ____________ __J

Human Interface B-4

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Category/
Mnemonic Meaning

Numeric Code

Hex Decimal

I/O System Environmental Conditions (continued)

E$FRAGMENT­
ATION

EDIRNOT$­
EMPTY

ENOTFILE$­
CONN

ENOTDEV­
ICE$CONN

E$CONN$NOT$­
OPEN

E$CONN$OPEN

E$BUFFERED$­
CONN

E$OUTSTAND­
ING$CONNS

E$ALREADY$­
ATTACHED

EDEV­
DETACHING

ENOTSAME$­
DEVICE

E$ILLOGICAL$­
RENAME

The file is too fragmented to be
extended. 30H

The call is attempting to delete a
directory that is not empty. 31H

The connection paramE~ter is not a
file connection, but it should be. 32H

The connection parameter is not a device
connection, but it should be. 33H

The connection is either closed or it is
open for access not compatible with the
current request. 34H

The task attempted to open a connection
that is already open. 35H

The specified connection was opened by
the EIOS, which specified one or more
buffers for the connection. 36H

A soft detach was specified, but
connections to the device still exist. 37H

The specified device is already attached.
38H

The file specified is on a device that
the Operating System is detaching. 39H

The existing pathname and the new path­
name refer to different devices. You
cannot simultaneously rename a file and
move it to another device. 3AR

The call is attempting to rename a di-
rectory to a new path containing itself. 3BH

Human Interface B-5

48

49

50

51

52

53

54

55

56

57

58

59

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Category/
Mnemonic

E$STREAM$­
SPECIAL

Meaning

I/O System Environmental (onditions (continued)

A stream file request is out of context.
Either it is a query request and another
query request is alrEady queued, or it is
a satisfy request an(either the request
queue is empty or a (uery request is

Numeric Code

Hex Decimal

queued. 3CH 60

E$INVALID$­
FNODE

E$PATHNAME$­
SYNTAX

E$FNODE$LIMIT

ELOGNAME$­
SYNTAX

E$IOMEM

E$MEDIA

ELOGNAME$­
NEXIST

ENOTOWNER

EIOJOB

EIOUNCLASS

The connection referf to a file with an
invalid fnode. You fhould delete this
file.

The specified pathnaDe contains invalid
characters.

The volume already centains the maximum
number of files. No more fnodes are
available for new fiJes.

The specified pathnane starts with a
colon (:), but it dOEs not contain a
second, matching colen.

The Basic I/O System has insufficient
memory to process a request.

The device containin~ a specified file
is not on-line.

The Extended I/O System was unable to
find the specified legical name in the
object directories ttat it checks.

The user who attempted to detach the
device is not the owrer of the device.

The Extended I/O System cannot create an
I/O job because the ~ize specified for
the object directory is too small.

An unknown type of I/O error occurred.

3DH 61

3EH 62

3F 63

40H 64

42H 66

44H 68

45H 69

46H 70

47H 71

50H 80
~---------------4--------_______________ , _____________________ -L _______________ ~

Human Interface B-6

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Category/
Mnemonic Meaning

I/O System Environmental Conditions (continued)

EIOSOFT A soft I/O error occurred. A retry might
be successful.

EIOHARD A hard I/O error occurred. A retry is
probably useless.

EIOOPRINT The device was off-line. Operator
intervention is required.

E$ IO$WRPROT The volume is write-protected.

EIONO$DATA A tape drive attempted to read the next
record, but it found no data

EIOMODE A tape drive attempted a read (write)
operation before the previous write
(read) completed

Application Loader Environmental Conditions

EBADGROUP

EBADHEADER

EBADSEGDEF

E$CHECKSUM

E$EOF

E$FIXUP

ENOLOADER$­
MEM

The group definition record contains an
invalid group component.

The object file contains an invalid
header record.

The object file contains an invalid
segment definition record.

A checksum error occurred while reading
a record.

The Application Loader encountered an
unexpected end-of-file while reading
a record.

The file contains an invalid fixup
record.

There is insufficient: memory to satisfy
the memory requirements of the
Application Loader.

Human Interface B-7

Numeric Code

Hex Decimal

51H 81

52H 82

53H 83

54H 84

55H 85

56H 86

61H 97

62H 98H

63H 99H

64H 100

65H 101

66H 102

67H 103

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Numeric Code
Category/
Mnemonic Meaning

Application Loa.der Environment-

ENOMEM

ERECFORMAT

ERECLENGTH

ERECTYPE

ENOSTART

EJOBSIZE

E$OVERLAY

E$LOADER$­
SUPPORT

ESEGBOUNDS

E$LITERAL

E$STRING$BUF­
FER

E$SEPARATOR

There is insufficient
PIC/LTL segments.

The file contains an
format..

The record length exc
size of the Applicatf

The file contains an

The Application LoadE
start address.

The maximum memory-pc
being loaded is smalJ
of memory required tc
file.

The overlay name doef
the overlay module ne

The file requires fee
by the Application Lc

One of the data reCOl
loaded by the Applicc
to an address outsidE
for it.

Human Interface EnvirOl.

The parsing buffer cc
with no closing quote

The string to be retl
size of the buffer tr
the call.

The parsing buffer co
separator.

Hex

al Conditions (continued)

memory to create
68H

invalid record
69H

eeds the configured
on Loader buffer. 6AH

invalid record type. 6BH

r could not find the
6CH

01 size of the job
er than the amount
load its object

6DH

not match any of
:mes. 6EH

tures not supported
ader as configured. 6FH

ds in a module
tion Loader referred
the segment created

70H

mental Conditions

ntains a literal . 80H

rned exceeds the
e user provided in

81R

ntains a command
82R

Human Interface B-8

Decimal

104

105

106

107

108

109

110

111

112

~--

~-

128

129

130

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Category/
Mnemonic Meaning

Numeric Code

Hex Decimal

Human Interface Environmental Conditions (continued)

E$CONTINUED

E$INVALID$­
NUMERIC

E$LIST

E$WILDCARD

E$PREPOSITION

E$PATH

E$CONTROL$C

E$CONTROL

E$UNMATCHED$­
LISTS

E$DATE

ENOPARAM­
ETERS

E$VERSION

EGETPATH$­
ORDER

The parse buffer contains a continuation
character.

A numeric value contains invalid
characters.

A value in the value list is missing.

A wild-card character appears in an
invalid context, such as in an inter­
mediate component of a pathname.

The command line contains an invalid
preposition.

The command line contains an invalid
pathname.

The user typed a CONTROL-C to abort the
command ..

The command line contains an invalid
control",

The number of files in the input and
output pathname lists is not the same.

The operator entered an invalid date.

A command expected pa.rameters, but
the operator didn't supply any.

The Human Interface is not compatible
with the version of the command the
operator invoked.

A command called CGETOUTPUT$PATHNAME
before calling CGETINPUT$PATHNAME

UDI Environmental Conditions

E$UNKNOWN$EXIT The program exited normally.

Human Interface B-9

83H 131

84H 132

8SH 133

86H 134

87H 135

88H 136

89H 137

8AH 138

8BH 139

8CH 140

8DH 141

8EH 142

8FH 143

OCOH 192

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

r----------------r------.--------.-----------------------~--------------__,

Category/
Mnemonic Meaning

Numeric Code

Hex Decimal

~==================:============:======-==-====================~

E$WARNING$EXIT

E$ERROR$EXIT

E$FATAL$EXIT

E$ABORT$EXIT

EUDIINTERNAL

* E$ZERO$­
DIVIDE

* E$OVERFLOW

E$TYPE

E$PARAM

EBADCALL

* E$ARRAY$­
BOUNDS

UDI Environmental Cond:l tions (continued)

-
The program issued W8l rning messages.

The program detected c~rrors.

A fatal error occurre d in the program.

The Operating System aborted the
program.

A UDI internal error occurred.

Nucleus Programmer Errors

A task attempted a divide in which
the quotient was larger than 16 bits.

An overflow interrupt occurred.

A token parameter refHrred to an
existing object that is not of the
required type.

A parameter that is nHither a token
nor an offset has an invalid value.

An OS extension recei"ed an invalid
function code.

Hardware or software has detected an
array overflow.

* ENDPSTATUS A Numeric Processor Extension (NPX)
error has occurred. OS extensions
can return the status of the NPX to
the exception handler.

* E$ILLEGAL$­
OPCODE

The iAPX 186 or 286 processor tried
to execute an invalid instruction

OC1H 193

OC2H 194

OC3H 195

OC4H 196

OC5H 197

8000H 32768

8001H 32769

8002H 32770

8004H 32772

8005H 32773

8006H 32774

8007H 32775

8008H 32776

~ ________ ----__ ~ __ ~ __ --__ . ____ -----------------------------L--------------~
* For iAPX 286-based systems, a CPU trap caused this exceptional

condition.
L-____________ ~ ________ -__ ~

Human Interfa.ee B-10

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Category/
Mnemonic

* E$EMULATOR$­
TRAP

Meaning

Nucleus Programmer Errors (continued)

The iAPX 186 or 286 processor tried
to execute an ESC instruction with
the "emulator" bit set in the
relocation register (iAPX 186) or
the machine status word (iAPX 286).

* E$INTERRUPT$- An iAPX 286 LIDT instruction changed
TABLE$LIMIT the interrupt table limit to a value

between 20H and 42H.

* E$CPUXFER$­
DATA$LIMIT

* ESEGWRAP$­
AROUND

E$CHECK$EX­
CEPTION

For an iAPX 286 processor, the
processor extension data transfer
exceeded the offset of OFFFFH in a
segment.,

For an iAPX 286 processor, either a
word opE~ration attempted a segment
wraparound at offset OFFFFH; or a
PUSH, CALL, or INT instruction
attemptE~d to execute while SP = 1.

A Pascal task has exceeded the bounds
of a CASE statement.

I/O System Programmer Errors

E$NOUSER No default user is defined.

E$NOPREFIX No default prefix is defined.

ENOTLOG$NAME The specified object is not a device
connection or file connection.

ENOTDEVICE A token parameter referred to an
existing object that is not, but
should be, a device connection.

Numeric Code

Hex Decimal

8009H 32777

800AH 32778

800BH 32779

800CH 32780

8017H 32791

8021H 32801

8022H 32802

8040H 32832

8041H 32833

* For iAPX 286-based systems, a CPU trap caused this exceptional
condition.

Human Interface B-ll

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Category/
Mnemonic Meaning

ENOTCON­
NECTION

EJOBPARAM

I/O System Programmer]

A token parameter ref
existing object that
should be, a file cor

Application Loader E

The maximum memory pc
for the job is less t
memory pool size spec:

Human Interface Pre

E$PARSE$TABLES There is an error in
parse tables.

EJOBTABLES An internal Human Int
was overwritten, caue
contain an invalid vs

E$DEFAULT$SO The default output na
is invalid.

E$STRING The pathname to be rE!
255 characters in len

rrors (continued)

I~rred to an
is not, but
nection.

-rogrammer Error

01 size specified
han the minimum
:ified.

,grammer Errors

the internal

,erface table
tng it to
Iue.

ne string

turned exceeds
gth.

l C$SEND$COMMAND E$ERROR$OUTPUT The command invoked 1:r

includes a call to C$
but the command connE'
permit C$SEND$EO$RESP

:3ENDEORESPONSE,
c.tion does not
)NSE calls.

E$RESERVE$­
PARAM

E$OPEN$PARAM

UDI ProgrammE~

The calling program t

memory for more than
buffers.

The calling program r
than two buffers when

r Errors

ried to reserve
12 files or

,~quested more
opening a file.

Human Interface B-12

Numeric Code

Hex Decimal

8042H 32834

8060H 32864

8080H 32896

8081H 32897

8083H 32898

8084H 32899

8085H 32900

80C6H 32966

80C7H 32967

APPENDIXC
STRING TABLE FORMAT

The iRMX 86 Operating System uses structures called strings to store
groups of ASCII characters (such as pathnames). The Operating System
assumes a string to be a series of consecutive bytes broken into two
portions: a count byte and text bytes. The first byte in the string is
the count byte; its value is set to the number of bytes in text portion
of the string. The text bytes contain the substance of the string.

The Operating System also uses another structure called a string table.
A string table consists of a count byte and a series of consecutive
strings. As with the string, the first byte in the string table is the
count byte; its value is set to the number of strings in the string
table. The diagram in Figure C-l shows the string$table parameter format.

BYTE: number of entries (n)

STRING: string 1

STRING: string 2

STRING: string 3

STRING: string n

Extra space, if any

1119

Figure C-l. String Table Format

Human Interface C-l

STRING TABLE FORMAT

EXAMPLE:

Assume you wish to generate a string table containing the words HAPPY,
GLAD, and SAD. The following declarati.ons would be needed:

DECLARE
p$table(*) BYTE DATA(3,

/* NUMBER OF STRINGS */
5, 'HAPPY' ,
4, 'GLAD' ,
3, 'SAD');

Human Interface C-2

Primary references are underscored.

AFTER preposition 3-2
ampersand (&) 3-3

Basic I/O System 2-1
BYTE data type A-I

C$CREATE$COMMAND$CONNECTION system call 2-3, 5-1, 8-4
C$DELETE$COMMAND$CONNECTION system call 2-3, 5-3, 8-8
C$FORMAT$EXCEPTION system call 4-4, 8-91
CGETCHAR system call 3-15, 3-17, 8-1f
CGETCOMMAND$NAME system call 3-17-:-S=~13
CGETINPUT$CONNECTION system call 3-6,~-1, 7-1, 8-15
CGETINPUT$PATHNAME system call 1-4, 2-3, 3-5, 7-~-20
CGETOUTPUT$CONNECTION system call 3-6, 4-1, 7-1, 8-~
CGETOUTPUT$PATHNAME system call 1-4, 2-3, 3-5, 7-~-31
CGETPARAMATER system call 2-3, 3-10, 7-1, 8-34
changing the parsing buffer 3-15
characters 8-11
:CI: 8-45
CLI 1-1, 2-2
:Co: 8-45
command connection 2-2, 8-38

creating 5-1, 8-4
deleting 8-8
example 5-3
sending commands 8-38

command creation 7-1
command line

interpreter (eLI) 1-1, 2-2
parsing 3-1, 7-1
structure 3-1

command name 3-1~ 3-17, 8,-13
command processing system-calls 5-1

example 5-3
commands 1-2
comment characters 3-4
communicating with the terminal 2-1, 4--3
condition codes B-1
configuration 9-1
connections 4-1

input 4-1, 8-15
output 4-1, 8-25

continuation characters 3-3, 8-38
continuation lines 2-2

Human InterfacE~ Index-l

INDEX

INDEX (continued)

Control-C handling 6-1
crea ting command connec t:Lons 5-1, 8-4
creating commands 7-1
C$SEND$CO$RESPONSE system call 2-2, 4-3, 8-45
C$SEND$COMMAND sys tern call 2-2, 2-3, 3--3, 5-2, 8-38
C$SEND$EO$RESPONSE system call 4-3, 8-Lf8
CSETPARSE$BUFFER system call 2-3, 3-1:6, 8-51
customized initial program 2-3

data types A-I
deleting command connections
dictionary of system calls
displaying exception codes
dynamic memory size 7-4

errors B-1

5-3, 8-8
8-2
4-4, 8-9

exception code formatting 4-4, 8-9
exception codes B-1
EXITIOJOB system call 2-3, 7-2
Extended I/O System 2-1
extension objects 7-2

I/O and message processing 4-1
INCLUDE files 7-2
initial program 1-1, 1-3, 2-2

customized 2-3
standard 2-2

inpath-list 3-2
input

connections 4-1, 8-15
pathnames 8-20

INTEGER data type A-I
interactive job 1-1

keyword 3-3, 3-11, 8-34

LINK86 command 7-3
LOC86 command 7-4
logon file 2-2

message processing system calls 4-1
messages 8-9, 8-15, 8-26
multi-access support 1-3, 2-1

nonresident configuration
nonstandard command lines

object code 7-3
obtaining a command name
outpath-list 3-2
output

connection 4-1, 8-25
pathnames 8-31

OVER preposition 3-2

9-2
3-13

3-17

Human InterfacH Index-2

INDEX (continued)

overview 1-1

parameters 3-3, 8-34
parsing

buffer 3-1, 3-15, 8-51
commands 3-1, 7-1
input and output pathnames
nonstandard command li.nes
parameters 3-10

pathnames
input 8-20

A-I

3-5
3-13

output 8-31
POINTER data type
preposition 3-2,
:PROG: directory
program control

3-11, 8-31, 8-35
2-2

6-1

quoting characters (' or ") 3-4

R?LOGON file 2-2
ranges of exception codes B-2
regions 7-2
resident configuration 9-1
restricted system calls 7-2

S$SPECIAL system call 6-2
SELECTOR data type A-I
semaphore 6-1
semicolon (;) 3-4
sending command lines to command connections 5-2
SET$EXCEPTION$HANDLER system call 4-4
stack size 7-4
standard initial program 1-3, 2-2
stream file 8-5
STRING$TABLE data type A-I, C-l
strings 3-6, A-I
structure of command lines 3-1
supplied commands 1-2
supporting multiple terminals 2-1
system call dictionary 8-2
system calls 1-2, 8-1

command-parsing 1-2, 3-1
command-processing 1-2, 5-1
I/O and message-processing 1-2, 4-1
program control 1-2, 6-1

system manager 1-3

terminal
communications 4-3
messages 8-45, 8-48

terminating the command 7-2
TO preposition 3-2
TOKEN data type A-I
type definitions A-I

Human Interface Index-3

INDEX (continued)

user ID 1-3

wild-card characters 1-4, 3-8, 8-20
WORD data type A-I

Human InterfacE~ Index-4

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	9-01
	9-02
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	idx01
	idx02
	idx03
	idx04

