
iRMX™86 UNIVERSAL DEVELOPMENT INTERFACE
REFERENCE: MANUAL

I I

CONTENTS

PAGE

CHAPTER 1
INTRODUCTION TO THE UNIVERSAL DEVELOPNENT INTERFACE................ 1-1

CHAPTER 2
UDI SYSTEM CALLS IN THE iRMXTH 86 ENVIRONMENT
System Call Dictionary ••••••••••••••••• , .•••••••••••••••••••••••••••
Overview ••••••••••••••••••••••••••••••• ~ •••••••••••••••••••••••••••

Memory Management Sys tern Calls ••••••• , ••••••••••••••••••••••••••••
File-Handling System Calls ••••••••••• I ••••••••••••••••••••••••••••

Condition Codes and Exception Handling Calls •••••••••••••••••••••
Naking UDI Calls from Programs in PL/M-86 and ASM86 ••••••••••••••••

Example PL/M-86 Calling Sequence •••••.••••••••••••••••••••••••••••
Example ASM86 Calling Sequence •••••••••••••••••••••••••••••••••••

Descriptions of System Calls ••••••••••• , ••••••••••••••••••••••••••••
DQ$ALLOCATE ••
DQ$ATTACH •••••••••••••••••••••••••••• " •••••••••••••••••••••••••••
DQ$CHANGE$ACCESS •••
DQ$CHANGE$EXTENSION •••••••••••••••••• , ••••••••••••••••••••••••••••
DQ$CLOSE •••
DQ$CREATE •••••••••••••••••••••••••••• ,. •••••••••••••••••••••••••••
DQ$DECODE$EXCEPTION ••
DQ$DEtODE$TIME ••••••••••••••••••••••• " •••••••••••••••••••••••••••
DQ$DELETE ••
DQ$DETACH ••
DQ$EXIT ••
DQ$FILE$INFO •••
DQ$FREE ••
DQGETARGUMENT ••
DQGETCONNECTION$STATUS •••
DQGETEXCEPTION$HANDLER •••
DQGETSIZE ••
DQGETSYSTEM$ID •••
DQGETTIME ••
DQ$OPEN ••
DQ$OVERLAY •••
DQ$READ ••
DQ$RENAME ••
DQ$RESERVE$IO$MEMORY •••
DQ$SEEK ••
DQ$SPECIAL •••
DQ$SWITCH$BUFFER •••
DQ$TRAP$CC •••
DQ$TRAP$EXCEPTION ••
DQ$TRUNCATE ••
DQ$WRITE •••

UDI :iii

2-1
2-4
2-4
2-4
2-5
2-6
2-7
2-7
2-7
2-8
2-9
2-10
2-12
2-13
2-14
2-15
2-16
2-18
2-19
2-20
2-22
2-25
2-26
2-28
2-30
2-31
2-32
2-33
2-34
2-37
2-39
2-41
2-42
2-44
2-46
2-49
2-51
2-52
2-53
2-54

CONTENTS
(continued)

CHAPTER 3
UDI EXAMPLE

PAGE

The Example Listing. ••• 3-1
Compiling and Linking.. 3-5

APPENDIX A
DATA TyPES... A-I

APPENDIX B
iRMX~ 86 EXCEPTION CODES... B-1

2-1.
B-1.

1-1.
2-1.

TABLES

System Call Dictionary •••••••••••••••••••••••••••••••••••••
Exception Code Ranges ••••••••••••••••••••••••••••••••••••••

FIGURES

The Application-Software-Hardware Model ••••••••••••••••••••
Chronology of System Calls •••••••••••••••••••••••••••••••••

UDI iv

2-1
B-1

1-1
2-4

CHAPTER1
INTRODUCTION TO THE

UNIVERSAL DEVELOPMENT INTERFACE

Intel's Universal Development Interface (known in this manual as the UDI)
is a set of system calls that is compat:ible with each of Intel's
operating systems. If an application system makes UDI system calls but
no explicit calls to the resident Intel operating system, the application
can be transported between operating systems. Figure 1-1 illustrates the
relationship between application code, the processing hardware, and the
layers of software that lie in between.

APPLICATION CODE IN INTEL APPLICATION LANGUAGE(S)

RUN·TIME LIBRARIES
FOR

NON·MATH EMATICAL FEATU RES

UDI LIBRARIES

OPERATING SYSTEM

iAPX 86,88,186,188 OR 2U6

8087
OR

80287
SUPPORT
LIBRARY

8087
OR

80287

x-636

Figure 1-1. The Application-·Software-Hardware Model

UDI 1-1

INTRODUCTION TO THE UNIVERSAL DEVELOPMENT INTERFACE

In Figure 1-1, the downward arrows represent command flow and data flow
from the application code down to the hardware, where the commands are
ultimately executed. (Not shown in thE~ figure is another set of arrows
showing the upward flow of data from the hardware to the application
code.) Note that one of the downward arrows is crossed out, signifying
that the application code does not makE! direct calls to the operating
system. Rather, all interaction betweEm the application code and the
operating system is done through the UJOI software.

By letting the UDI serve as the link bE!tween an application and the
operating system, it is possible to swi,tch operating systems simply by
changing the interface between the UDI and the operating system. In
other words, all that is necessary to make an application transportable
between operating system environments Is a UDI library for each operating
system. This library always presents the same interface to the
application, but its interface with the2: operating system is designed
specifically and exclusively for that operating system. Intel provides
UDI libraries for the iRMX 86, iRMX 88, Series III, and Series IV
operating systems.

The UDI system calls, while presenting a standard interface to user
programs, behave somewhat differently \Jhen used in different operating
system environments. The reason for this is that the operating systems
each have many unique characteristics, and some of them are reflected in
the results of the UDI calls. For information about the UDI and the
minor behavioral differences it exhibits between operating systems, refer
to the RUN-TIME SUPPORT MANUAL FOR iAPX 86,88 APPLICATIONS.

The next chapter discusses the UDI in the context of the iRMX 86
Operating System.

UDI 1-·.2

CHAPTER 2
UDI SYSTEM CALLS IN

THE: iRMXTM 86 ENVIRONMENT

The purpose of this chapter is to describe the requirements and behavior
of UDI system calls in the iRMX 86 environment.

SYSTEM CALL DICTIONARY

This section presents, in Table 2-1, a list of the UDI calls, arranged by
functional category. Each entry in the list includes the name of the
call, a concise description of its purpose, and its page number in this
chapter.

SYSTEM CALL

DQ$EXIT

DQ$OVERLAY

DQ$TRAP$CC

DQ$ALLOCATE

DQ$FREE

DQGETSIZE

DQ$RESERVE$­
IO$MEMORY

Table 2-1. System Call Dictionary

FUNCTION PERFORMED

PROGRAM-CONTROL CALLS

Exits from the current application job.

Causes the specified overlay to be loaded.

Assigns Control-C procedure.

MEMORY-MANAGEMENT CALLS

Requests a memory segment of a specified size.

Returns a memory segment to the system.

Returns the size of a memory segment.

Requests memory to be set aside for
overhead to be incurred by I/O operations.

UDI 2-1

PAGE

2-20

2-37

2-51

2-8

2-25

2-31

2-42

UDI SYSTEM CALLS IN THE iRMXTII 86 ENVIRONMENT

Table 2-1. System Call Dietionary (continued)

SYSTEM CALL FUNCTION PEl .FORMED

DQ$ATTACH

DQ$CHANGE$­
ACCESS

DQ$CHANGE$­
EXTENSION

DQ$CLOSE

DQ$CREATE

DQ$DELETE

DQ$DETACH

DQ$FILE$INFO

DQGETCON­
NECTION$STATUS

DQ$OPEN

DQ$READ

DQ$RENAME

DQ$SEEK

DQ$SPECIAL

DQ$TRUNCATE

DQ$WRITE

FILE-HANDLING

Creates a connection

Changes the access r:
file or directory.

Changes the extension

Closes a file connect

Creates a file.

Deletes a file.

Closes a file and de:

Returns data about a

Returns the status o~

Opens a file connect:

CALLS

to a file.

ghts associated with a

of a file name.

ion.

etes a connection to it.

file connection.

a file.

on.

Reads the next sequel ce of bytes from a file.

Renames a file.

Moves the current POl ition pointer of a file.

Sets the line-edit mo de for a terminal.

Truncates a file to l specified length.

Writes a sequence of bytes to a file.

UDI 2-2

PAGE

2-9

2-10

2-12

2-13

2-14

2-18

2-19

2-22

2-28

2-34

2-39

2-41

2-44

2-46

2-53

2-54

UDI SYSTEM CALLS IN THE ~lMX~ 86 ENVIRONMENT

Table 2-1. System Call Dictionary (continued)

SYSTEM CALL

DQ$DECODE$­
EXCEPTION

DQGETEXCEPT­
ION$HANDLER

DQ$TRAP$­
EXCEPTION

DQ$DECODE$TIME

DQGETARGUMENT

DQGET­
SYSTEM$ID

DQGETTIME

DQ$SWITCH$BUFFER

FUNCTION PERFORMED

EXCEPTION-HANDLING CALLS

Converts an numeric exception code into its
equivalent mnemonic.

Returns a POINTER to the current exception
handler ..

Identifies a custom exception handler to
replace the current handler.

UTILITY CALLS

Returns system time and date in both binary
and ASCII-character format.

Returns an ar gumen t from a command line.

Returns the name of the underlying
operating system supporting the UDI.

(Obsolete: included for compatability.)

Selects a new buffE~r to contain command
lines.

UDI 2-3

PAGE

2-15

2-30

2-52

2-16

2-26

2-37

2-33

2-49

UDI SYSTEM CALLS IN THE iRMX'" 86 ENVIRONMENT

OVERVIEW

This section discusses the functions of the many of the system calls,
highlighting the interrelationships, if any, among the calls in the
functional groups of Table 2-1.

MEMORY MANAGEMENT SYSTEM CALLS

When the iRMX 86 Operating System loads and runs a program, the program is
allocated memory, in an amoun t that depE!nds upon how the program was
configured. The portion of memory not occupied by loaded code and data
the free space pool -- is available to the program dynamically, that is,
while the program runs. The Operating System manages memory as segments
that programs can obtain, use, and return.

Programs can use the UDI system calls named DQ$ALLOCATE and DQ$FREE to get
memory segments from the pool, and to r'E!turn segments to the pool,
respectively. They can also call DQ$GE'1'$SIZE to receive information about
allocated memory segments.

FILE-HANDLING SYSTEM CALLS

About one-half of UDI system calls are used to manipulate files. Figure
2-1 shows the chronological relationships among the most frequently used
file-handling system calls.

ATTACH

OPEN CLOSE r--------- DETACH

DELETE

CREATE 1
x-327

Figure 2-1. Chronolo~r.f Of System Calls

UDI SYSTEM CALLS IN THE iRMXTH 86 ENVIRONMENT

The key to using iRMX 86 files is the connection. A program wanting to
use a file first obtains (a token for) a connection to the file and then
uses the connection to perform operati.ons on the file. Other programs can
simultaneously have their own connecti,ons to the same file. Each program
having a connection to a file uses its connection as if it has exclusive
access to the file.

A program obtains a conn.~ction by calling DQ$ATI'ACH (if the file already
exists) or DQ$CREATE (to create a new file). When the program no longer
needs the connection, it can call DQ$DETACH to delete the connection. To
delete both the connection and the file, the program calls DQ$DELETE.

Once a program has a connection, it can call DQ$OPEN to prepare the
connection for input/output operations. The program performs input or
output operations by calling DQ$READ a.nd DQ$WRITE. It can move the file
pointer associated with the connection by calling DQ$SEEK. When the
program has finished doing input and output to the file, it can close the
connection by calling DQ$CLOSE. Note that the program opens and closes
the connection, not the file. Unless the program deletes the connection,
it can continue to open and close the connection as necessary.

If a program calls DQ$DELETE to delete a file, the file cannot be deleted
while other connections to the file exist. In that case, the file is
marked for deletion and is not actually deleted until the last of the
connections is deleted. During the time that a file is marked for
deletion, no new connect:tons to it may be created.

CONDITION CODES AND EXCEPTION HANDLING CALLS

Every UDI call except DQ$EXIT returns a numeric condition code specifying
the result of the call. Each condition code has a unique mnemonic name by
which it is known. For example, the code 0, indicating that there were no
errors or unusual conditions, has the name E$OK. Any other condition
means there was a problem, so these conditions are called exceptions.

Exception conditions are classified as:

• Environmental Conditions. These are generally caused by
conditions outside the control of a program; for example, device
errors or insuff:tcient memory.

• Programmer Errors. These are typically caused by mistakes in
programming (for -example, "bad parameter"), but "divide-by-zero",
"overflow", "range check", and errors detected by the 8087 80287
Numeric Processor Extension (hereafter referred to generically as
the NPX) are also classified as programmer errors.

The iRMX 86 NUCLEUS REFERENCE MANUAL contains a list of condition codes
that the iRMX 86 Operating System can return, with the mnemonic and
meaning of each code.

UDI 2-5

UD I SYSTEM CALL SIN THE iRMX'" 86 ENVIRONMENT

When an exception condition is detected, the normal (default) system
action is to display an error message at the console and terminate the
program. However, your program can establish its own exception handler by
calling DQ$TRAP$EXCEPTION. The exception handler can interpret condition
codes that are returned by calling DQ$DECODE$EXCEPTION. The rest of this
section provides some facts that you nE!ed in order to write your own
exception handler.

After an exception condition occurs and before your exception handler gets
control, the iRMX 86 Operating System does the following:

1. Pushes the condition code onto the stack of the program that made
the system call having the exception condition.

2. Pushes the number of the paramE!ter that caused the exception onto
the stack (1 for the first parameter, 2 for the second, et c.).

3. Pushes a word onto the stack (reserved for future use).

4. Pushes a word for the NPX onto the stack.

5. Initiates a long call to the exception handler.

If the condition was not caused by an E!rrOneous parameter, the responsible
parameter number is zero. If the exception code is E$NDP, the fourth item
pushed onto the stack is the NPX statuB word, and the NPX exceptions have
been cleared.

Programs compiled under the SMALL model of segmentation cannot have an
alternate exception handler, but must use the default system exception
handler. This is because alternate exeeption handlers must have a LONG
POINTER, which is not available in the SMALL model.

HAKING UDI CALLS FROM PL/M-86 AND ASH86 PROGRAMS

This section describes how to make UDI calls from a program, using the
DQ$ALLOCATE system call as an example. You can easily generalize from
this example to see how to make the other UDI calls. There are two
examples: one for a call from a PL/M-B6 program and one for a call from
an ASM86 program.

The way this chapter shows the DQ$ALLOCATE system call syntax is the
following:

base$addr DQ$ALLOCATE (s ize, except$ptr);

There are three parameters: size (whieh has the WORD data type),
except$ptr (which has the POINTER data type), and base$addr (which has
WORD data type or the SELECTOR data type, depending on the version of
PL/M-86) •

Each of the examples that follow request 128 bytes of memory and point to
a WORD named "ERR" where the condition code is to be returned.

UDI 2·--6

UDI SYSTEM CALLS IN THE iRMXT" 86 ENVIRONMENT

EXAMPLE PL/M-86 CALLING SEQUENCE

DECLARE ARRAY BASE
ERR

WORD, (or SELECTOR)
WORD;

ARRAYBASE D Q$ALLOCATE (1 28, @ERR);

EXAMPLE ASM86 CALLING SEQUENCE

MOV
PUSH
LEA
PUSH
PUSH
CALL
MOV

AX,128
AX
AX,ERR

first parameter

DS second parameter
AX
DQALLOCATE
ARRAYBASE,AX ; returned value

This example is applicable to programs assembled according to the COMPACT,
MEDIUM, and LARGE models of segmentation. For the SMALL model, omit
pushing the DS segment register.

DESCRIPTIONS OF SYSTEM CALLS

This section contains descriptions of the UDI system calls, which are
arranged alphabetically. Every system call description contains the
following information in this order:

• The name of the system call.

• A brief summary of the function of the call.

• The form of the call as it is :invoked from a PL/M-86 program, with
symbolic names for each parameter.

• Definition of input and output parameters.

• A complete explanation of the system call, including any
information you will need to use the system call.

UDI 2·-7

OQ$ALLOCATE

DQ$ALLOCATE

DQ$ALLOCATE requests a memory segment from the free memory pool.

base$addr DQ$ALLOCATE (size, exc,ept$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS

base$addr

except$ptr

DESCRIPTION

A WORD which,

if not zero, contains the size, in bytes, of
the requested segment. If the size parameter
is not a multiple of 16, it will be rounded up
to the neareE:t multiple of 16 before the
allocation request is processed.

if zero, indicates that the size of the request
is 65536 (64K) bytes.

A SELECTOR, into which the Operating System places
the base address of the memory segment. If the
request fails because the memory requested is not
available, this value will be OFFFFH, and the
system will return an E$MEM exception code.

A POINTER to a l~rORD where the system places the
condition code. Condition codes are described in
Appendix B.

The DQ$ALLOCATE system call is used to request additional memory from the
free space pool of the program. Tasks may use the additional memory for
any desired purpose.

UDI 2 ·-8

DQ$ATTACH

The DQ$ATTACH system call creates a connection to an existing file.

connection

INPUT PARAMETER

path$ptr

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

DQ$ATTACH (path$ptr, except$ptr);

A POINTER to a STRING containing the pathname of
the file to be attached.

A TOKEN for the connection to the file.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call allows a. program to obtain a connection to any existing
file. When the DQ$ATTACH call returns a connection, all existing
connections to the file remain valid.

OQ$ATTACH

Your program can use the DQ$RESERVE$IO$MEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls
DQ$ATTACH and for buffers when the program calls DQ$OPEN. The advantage
of reserving memory is that the memory is guaranteed to be available when
needed. If memory is not reserved, a eall to DQ$ATTACH might not be
successful because of a memory shortage. See the description of
DQ$RESERVE$IO$MEMORY later in this chapter for more information about
reserving memory.

UDI 2-9

OQ$CHANGE$ACCESS

DQ$CHANGE$ACCESS

The DQ$CHANGE$ACCESS lets you change t"t-:le access rights of the owner of a
file (or directory), or the access rights of the WORLD user.

CALL DQ$CHANGE$ACCESS (path$ptr, user, access, except$ptr);

INPUT PARAMETERS

path$ptr

user

access

OUTPUT PARAMETER

except$ptr

A POINTER to a STRING containing a pathname of the
file.

A BYTE specifying the user whose access is to be
ehanged:

Value

o
1

Owner of the file
WORLD (all users on the system)

A BYTE specifying the type of access to be granted
the user. This word is to be encoded as follows.
(Bit 0 is the low-order bit.)

o USle~r can delete the file or directory
1 Read (the file) or List (the

di:rectory)
2 Append (the file) or Add entry (to

the: directory)
3 Update (read and write to the file)

or Change Access (to the directory)
4-7 Should be zero

A POINTER to a N"ORD where the system places the
condition code. Condition codes are described in
Appendix B.

UDI 2-10

OQ$CHANGE$ACCESS

DESCRIPTION

In the general iRMX 86 environment, every program is associated with a
user object, usually referred to as the default user for the program.
The default user consists of one or more user IDs. Each file has an
associated collection of user ID-access mask pairs, where each mask
defines the access rights the corresponding user 10 has to the file.
When the program calls DQ$CREATE to create a file or DQ$ATTACH to get
another connection to a file, the resulting connection receives all
access rights corresponding to user IDs that are both associated with the
file and in the default user. The purpose of the DQ$CHANGE$ACCESS system
call is to change, for a particular file, the access rights associated
with a particular user 10. This has the effect of changing the access
granted when the program makes subsequent calls to DQ$ATTACH to get
further connections to the file.

In the UDI subset of the iRMX 86 environment, a default user has two
IDs. One of them, called the owner ID, is associated with the program.
The other, called the WORLD, is associated universally with all
programs. DQ$CHANGE$ACCESS can changE~, for the file, the access mask of
either the owner 10 or the WORLD.

Chang~ng the access rights for a user 10 have no effect on connections
already obtained by the program. However, all subsequently-obtained
connections reflect the changed access rights.

For more information about user IDs, default users, access masks, WORLD,
access rights, owner IDs, and how connections are related to all of these
entities, refer to the ilRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL.

NOTE

DQ$CHANGE$ACCESS affects only
connections made after the call is
issued. It does not affect existing
connections to the file.

UDI 2-11

OQ$CHANGE$EXTENSION

DQ$CHANGE$EXTENSION

DQ$CHANGE$EXTENSION changes or adds the extension at the end of a file
name stored in memory (not the file namf~ on the mass storage volume).

CALL DQ$CHANGE$EXTENSION (path$ptr, extension$ptr, except$ptr);

INPUT PARAMETERS

path$ptr

extension$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a STRING containing a pathname of the
f.ile to be renamE!d.

A POINTER to a sf~ries of three bytes containing
the characters to be added to the pathname. This
is not a STRING. You must include three bytes,
even if some are blank.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

This is a facility for editing strings that represent file names in
memory. If the existing file name has an extension, DQ$CHANGE$EXTENSION
replaces that extension with the specified three characters. Otherwise,
DQ$CHANGE$EXTENSION adds the three characters as an extension.

For example, a compiler can use DQ$CHANGE$EXTENSION to edit a string
containing the name, such as :AFDl:FILE.,SRC, of a source file to the
name, such as :AFDl: FILE.OBJ, of an objf~ct file, and then create the
object file.

Note that iRMX 86 file names may contain multiple periods, but if they
do, the extension, if any, consists of the characters following the last
period. Note also that an extension may contain more than three
characters, but any extension created or changed by DQ$CHANGE$EXTENSION
has at most three (non-blank) characterB.

The three-character extension may not contain delimiters recognized by
DQGETARGUMENT but may contain trailing blanks. If the first character
pointed to by extension$ptr is a space, DQ$CHANGE$EXTENSION deletes the
existing extension, if any, including the period preceding the extension.

UDI 2-]2

DQ$CLOSE

DQ$CLOSE waits for completion of I/O operations (if any) taking place on
the file, empties output buffers, and frees all buffers associated with
the connection.

CALL DQ$CLOSE (connection, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for a f i.le connection that is currently
opE~n.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

The DQ$CLOSE system call closes a connection that has been opened by the
DQ$OPEN system call. It performs the following actions, in order:

1. Waits until all currently-running I/O operations for the
connection are completed.

2. Ensures that information, if any, in a partially-filled output
buffer is written to the file.

3. Releases all buffers associated with the connection.

4. Closes the connection. The connection is still valid, and can be
re-opened if necessary.

UDI 2-13

DQ$CLOSE

OQ$CREATE

DQ$CREATE

DQ$CREATE creates a new file and establishes a connection to the file.

connection = DQ$CREATE (path$ptr, c~xcept$ptr);

INPUT PARAMETER

path$ptr

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

A POINTER to a STRING containing a pathname of the
file to be created.

A TOKEN for thE: connection to the file.

A POINTER to a l-lORD where the system places the
condition code. Condition codes are described in
Appendix B.

This call creates a new file with the name you specify and returns a
connection to it. If a file of the same name already exists, it is
truncated to zero length and the data in it is destroyed.

To prevent accidentally destroying a file, call DQ$ATTACH before calling
DQ$CREATE. If the file does not exist, DQ$ATTACH returns an E$FNEXIST
exception code.

UDI 2·-14

DQSDECODESEXCEPTION

DQ$DECODE$EXCEPTION

DQ$DECODE$EXCEPTION translates an exception code into its mnemonic.

CALL DQ$DECODE$EXCEPTION (except$code, buff$ptr, except$ptr);

INPUT PARAMETER

except$code

OUTPUT PARAMETERS

buff$ptr

except$ptr

DESCRIPTION

A WORD containing the numeric exception code that
is to be translated.

A POINTER to a buffer (at least 81 bytes long)
into which the system returns the mnemonic in a
STRING.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

Your program can call DQ$DECODE$EXCEPTION to exchange a numeric exception
code for its hexadecimal equivalent followed by its mnemonic. For
example, if you pass DQ$DECODE$EXCEPTION a value of 2 in the except$code
parameter, the system returns the following string to the area pointed to
by the buff$ptr parameter:

0002: E$MEM

The hexadecimal values and mnemonics for condition codes are listed in
Appendix B.

UDI 2--15

DQ$DECODE$TIME

DQ$DECODE$TIME

DQ$DECODE$TIME returns the current system time and date as a Double Word
integer and as a series of ASCII charaeter bytes.

CALL DQ$DECODE$TIME (time$ptr, exeept$ptr);

OUTPUT PARAMETERS

time$ptr

except$ptr

A POINTER to a Btructure of the following form:

DECLARE DT STRUCTURE(
SYSTEM$TIME
DATE (8)
TIME (8)

DWORD,
BYTE,
BYTE) ;

If the value in SYSTEM$TIME is 0 when
DQ$DECODE$TIME is called, DQ$DECODE$TIME returns
t.he current datE~ and time in the DT structure, as
follows. (See the following DESCRIPTION section
for format information.):

SYSTEM$TIME receives the time as the number of
seconds sinc«~ midnight, January 1, 1978.

DATE receives the date portion of the time, in
the form of ASCII characters.

TIME receives the time-of-day portion of the
time, in the form of ASCII characters.

If the value in SYSTEM$TIME is not a when
DQ$DECODE$TIME fs called, DQ$DECODE$TIME accepts
that value as the number of seconds since
midnight, January 1, 1978, decodes the value, and
returns it in the DATE and TIME fields.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

UDI 2-16

DQ$DECODE$TIME

DESCRIPTION

This system call returns the indicated date and time, each as a series of
ASCII bytes. (Note that they are not STRINGs.)

DATE has the form MM/DD/YY for month, day, and year. The two slashes (/)
are in the third and sixth bytes. For example, the date January 15th of
1982 would be returned as:

01/15/82

TIME has the form HH:MM:SS for hours, minutes, and seconds, with
separating colons (:). The value for hours ranges from 0 through 23.
For example, the time 20 seconds past 3:12 PM would be returned as:

15:12:20

If, when you call DQ$DECODE$TlME, the SYSTEM$TlME parameter is zero, the
call first gets the system time (number of seconds since midnight,
January 1, 1978) and then decodes it into the series of bytes as just
described.

But if SYSTEM$TlME is not: zero on input, DQ$DECODE$TlME uses it as the
time to decode.

One thing your program can do with DQ$DECODE$TIME is first to call
DQ$FILE$INFO to get two IMORD values associated with a file (the last
time the file was updated and the time the file was created). Then the
program can call DQ$DECODE$TIME to interpret the times.

UDI 2·-17

DQ$DELETE

DQ$DELETE

DQ$DELETE deletes an existing file.

CALL DQ$DELETE (path$ptr, except$ptr);

INPUT PARAMETER

path$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a STRING containing a pathname of the
file to be deleted.

A POINTER to a HORD where the system places the
condition code. Condition codes are described in
Appendix B.

A program can use this system call to delete a file. The immediate
action this call takes is to mark the file for deletion. It does this
rather than abruptly deleting the file .• because it will not delete any
file as long as there are existing connections to the file. DQ$DELETE
will delete the file only when there a:ce no longer any connections to the
file, that is, when all existing conneetions have been detached. On the
other hand, once the file is marked for deletion, no more connections may
be obtained for the file by way of DQ$ATTACH.

UDI 2-18

DQ$DETACH

DQ$DETACH deletes a connection (but not: the file) established by
DQ$ATTACH or DQ$CREATE.

CALL DQ$DETACH (connection, except~;ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETER

except~ptr

DESCRIPTION

A TOKEN for the file connection to be deleted.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call deletes a file connection. If the connection is open,
the DQ$DETACH system call automatically closes it first (see DQ$CLOSE).
DQ$DETACH also deletes the file if the file has been marked for deletion
and this is the last existing connection to the file.

UDI 2--19

OQ$OETACH

DQ$EXIT

DQ$EXIT

DQ$EXIT transfers control from your program to the iRMX 86 Operating
System. It does not return any value to the calling program, not even a
condition code.

CALL DQ$EXIT (end$code);

INPUT PARAMETERS

end$code

DESCRIPTION

A WORD containing the encoded reason for
termination of the program. See the following
description for information about this value.

DQ$EXIT terminates a program. Before the actual termination, all of the
program's connections are closed and d4~tached, and all memory allocated to
the program by DQ$ALLOCATE is returned to the memory pool.

DQ$EXIT does not return a condition code to the calling program.

If the calling program is running as an I/O job, the calling task,
normally the command line interpreter (CLI), receives an iRMX 86 condition
code based on the value your program supplied in the end$code field when
it called DQ$EXIT. This assumes the following sequence of events:

1. The CLI calls RQ$CREATE$IO$JOB, specifying a response mailbox in
the call.

2. Your program, running as a task in the created I/O job, performs
its duties and then calls DQ$EXIT, specifying an end$code value.

3. DQ$EXIT converts the end$code value into an iRMX 86 condition
code, as follows:

iRMX 86
end$code Condition Associated
Value Code Mnemonic Meaning

0 OCOH E$UNKNOWN$EXIT Termination was normal.
1 OCIH E$WARNING$EXIT Warning messages were

issued.
2 OC2H E$ERROR$EXIT Errors were detected.
3 OC3H E$FATAL$EXIT Fatal errors were detected.
4 OC4H E$ABORT$EXIT The job was aborted.
5-65535 OCOH E$UNKNOWN$EXIT Cause of termination not

known.

UDI 2--20

4. DQ$EXIT calls RQ$EXITIOJOB, specifying the iRMX 86 condition
code in the user$fault$code field.

5. RQ$EXIT$IO$JOB places the cond:ltion code into the user$fault$code
field of a message. Then RQ$EXIT$IO$JOB sends the message to the
response mailbox set up by the earlier call to RQ$CREATE$IO$JOB.

6. The CLI, when it obtains the mE~ssage from the respons email box,
can take appropriate actions. Note that it can call
DQ$DECODE$EXCEPTION first, to eonvert the condition code into its
associated mnemonic.

The CLI program supplied with the iRMX 86 Operating System ignores these
UDI condition codes when they are returned in the user$fault$code field
of the response message. Therefore, if you want the CLI to take actions
based on that code, you must provide your own CLI.

For more information about RQ$CREATE$IOJOB, RQEXITIOJOB, and the
format of the response message, see thE~ iRMX 86 EXTENDED I/O SYSTEH
REFERENCE MANUAL.

UDI 2-21

OQ$EXIT

OQ$FILE$INFO

DQ$FILE$INFO

DQ$FILE$INFO returns information about a file.

CALL DQ$FILE$INFO (connection, mode, file$info$ptr, except$ptr);

INPUT PARAMETERS

connection

mode

OUTPUT PARAHETERS

file$info$ptr

A TOKEN containing a connection for the file.

An encoded BYTE specifying whether DQ$FILE$INFO is
to return the User ID of the owner of the file.
Encode as follo~,s:

Value

o
1

Do not return owner's User ID.
Return the owner's User ID.

A POINTER to a structure into which the requested
i.nformation is to be returned. The form of the
structure is:

DECLARE FDATA STRUCTURE(
OWNE R(15) STRING,
LENGTH DWORD,
TYPE BYTE,
OWNER$ACCESS BYTE,
WORLD$ACCESS BYTE,
CREATE$TU1E DWORD,
LASTMODTIME DWORD,
RESERVED(20) BYTE);

where:

O\VNER A STRING containing (if requested)
the User ID of the file owner.

TYPE A value indicating the type of file,
aB follows:

Value File Type

o Data file
1 Directory file

UDI 2-22

OQSFILESINFO

OWNER$ACCESS An encoded BYTE whose bits
specify the type of access
granted to the owner, as
follows. When a bit is set, it
means the type of access is
granted; otherwise the type of
access is denied. (Bit a is the
low-order bi t.)

Bit Associated Type of Access

a Delete
1 Read (the data file) or

Display (the directory)
2 Append (to the data file)

or Add Entry (to the
directory)

3 Update (read and write to
the file) or Change Access
(to the directory)

WORLD$ACCESS An encoded BYTE whose bits
specify the type of access
granted to the WORLD (all users
on the system). When a bit is
set, it means the type of access
is granted; otherwise the type of
access is denied. (Bit a is the
low-order bit.)

CREATE$TIME

Bit Associated Type of Access

a Delete
1 Read (the data file) or

Display (the directory)
2 Write (to the data file) or

Add Entry (to the directory)
3 Update (read and write to

the file) or Change Access
(to the directory)

The date and time that the file
was created, expressed as the
number of seconds since midnight,
January 1, 1978. (You can
convert this date/time to ASCII
characters by calling
DQ$DECODE$TIME.)

UDI 2-23

OQSFILESINFO

except$ptr

DESCRIPTION

LASTMODTIlli~ The date and time that the file
or directory was last modified.
For data files, modified means
written or truncated; for
directories, modified means an
entry was changed or an entry was
added. (You can convert this
date/time to ASCII characters by
calling DQ$DECODE$TlME.)

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

The DQ$FILE$INFO returns information about a data file or a directory
file.

UDI 2-24

DQ$FREE

DQ$FREE returns to the system a segment of memory obtained earlier by
DQ$ALLOCATE.

CALL DQ$FREE (base$addr, except$ptr);

INPUT PARAMETER

base$addr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN containing the base address of the segment
to be deleted. This value is the token returned
by DQ$ALLOCATE when the segment was obtained.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

The DQ$FREE system call returns the specified segment to the memory pool
from which it was allocated.

UDr 2-·25

OQSFREE

OQGETARGUMENT

DQGETARGUMENT

The DQGETARGUMENT system call returns arguments, one at a time, from a
command line entered at the system conBole. This command line is either
that which invoked the program containtng the DQGETARGUMENT call or a
command line entered while the program was running.

delimit$char

INPUT PARAMETER

argument$ptr

OUTPUT PARAMETERS

delimit$char

except$ptr

DESCRIPTION

DQGETARGUMENT (argument$ptr, except$ptr);

A POINTER to a buffer which will receive the
argument in the form of a STRING. The buffer must
be at least 81 bytes long.

A BYTE which receives the delimiter character.

A POINTER to a l~'ORD where the system places the
condition code. Condition codes are described in
Appendix B.

Your program can call GET$ARGUMENT to get arguments from a command line.
Each call returns an argument and the delimiter character following the
argument.

Your program can use this command in two ways. One way is to get
arguments from the command line used to invoke the program at the
console. In this case, you can assume that the command line is already
in a buffer that has automatically been provided for this purpose.

The other way to use this command is to get arguments from command lines
that are entered in response to requests from your program. In this
case, your program must supply a buffer when calling DQ$READ, so this is
the buffer you want to be used when your program calls DQGETARGUMENT.
To set this up, your program must call DQ$SWITCH$BUFFER before the call
to DQGETARGUMENT.

UDI 2-<26

DQGETARGUMENT

A delimiter is returned only if the exception code is zero. The
following delimiters are recognized by the iRMX 86 Operating System:

) (If $ % \ + > <--

as well as a space () and all characters with ASCII values in the range
o through 20R.

Before returning arguments in response to DQGETARGUMENT, the system
does the following editing on the contents of the command buffer:

• It strips out ampersands (&) and semicolons (;).

• Where multiple blanks are adjaeent to each other between
arguments, it replaces them with a single blank. (Tabs are
treated as blanks.)

• It converts lowercase characters to uppercase unless they are
part of a quoted string.

When returning arguments in response to DQGETARGUMENT, the system
considers strings enclosed between matching pairs of single or double
quotes to be literals. The enclosing quotes are not returnerl as part of
the argument.

EXAMPLE

The following example illustrates the arguments and delimiters returned
by successive calls to DQGETARGUMENT. The example assumes that the
contents of the buffer are

PLM86 LINKER.PLM PRINT(:LP:) NOLIST

The following shows what is returned in this case if DQGETARGUMENT is
called five times.

CALL NUMBER

1
2
3
4
S

ARGUMENT RETURNED

(OSR)PLH86
(OAR) LINKER. P LM
(OSR)PRINT
(04R):LP:
(06R)NOLIS T

DELIMITER RETURNED

space
space

(
)

cr

Note that the argument returned has the form of an iRMX 86 strine, with
the first byte devoted to specifying the length of the string. In the
second call, there are ten characters :in the argument, so the first byte
contains OAR.

Note that the last delimiter for each example is a carriage return (cr).
This is how your program can determine that there are no more arguments
in the command line.

UDI 2--27

OQGETCONNECTION$STATUS

DQGETCONNECTION$STATUS

The DQGETCONNECTION$STATUS system call returns information about a file
connect ion.

CALL DQGETCONNECTION$STATUS (connection, info$ptr, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETERS

info$ptr

A WORD containing a token for the connection whose
status is desire d.

A POINTER to a structure into which the Operating
System is to plaee the status information. The
structure has the following format:

DECLARE INFO STRUCTURE(

Where:

OPEN
ACCjESS
SEEK
FILEPTR

BYTE,
BYTE,
BYTE,
DWORD) ;

OPEN 1 if the connection is open; 2
otherwise.

ACCESS Access privileges of the
connection. The right is granted if
the corresponding bit is set to 1.
(Bit 0 is the low-order bit.)

Bit Access

0 Delete
1 Read
2 Write
3 Update (read and

write)

UDI 2-.2.8

except$ptr

DESCRIPTION

SEEK

FILE$PTR

oa$G ET$CON N ECTION$STATUS

Types of seek supported.

Value

o
3

Meaning

No seek allowed
Seek forward and
backward

Other values are not meaningful.

This DWORD integer marks the current
position in the file. The position
is expressed as the number of bytes
from the beginning of the file, the
first byte being byte O. This field
is undefined if the file is not open
or if seek is not supported by the
device. (For example, seek
operations are not valid for a line
printer.)

A POINTER to a lNORD where the system places the
condition code. Condition codes are described in
Appendix B.

DQGETCONNECTION$STATUS returns information about a file CONNECTION.
You might use this system call, for example, if your program has
performed several read or write operations and it is necessary to
determine where the file pointer is now located.

UDI 2--29

oaSG ETSEXCEPTIONSHAN OLER

DQGETEXCEPTION$HANDLER

DQGETEXCEPTION$HANDLER returns the address of the current exception
handler.

CALL DQGETEXCEPTION (address$ptr, except$ptr);

OUTPUT PARAMETERS

address$ptr

except$ptr

DESCRIPTION

A POINTER to a POINTER into which this system call
returns the entry point of the current exception
handler.

A POINTER to a l-J"ORD where the system places the
condition code. Condition codes are described in
Appendix B.

DQGETEXCEPTION$HANDLER is an system call that returns to your program
the address of the current exception handler. This is the address
specified in the most recent call» if i3.ny» to DQ$TRAP$EXCEPTION.
Otherwise the value returned is the address of the system default
exception handler.

This routine always returns a two-word pointer» even if called from a
program compiled under the SMALL model of segmentation.

DQGETEXCEPTION$HANDLER is used in conjunction with DQ$TRAP$EXCEPTION
and DQ$DECODE$EXCEPTION. See the descriptions of these calls for more
information.

UDI 2-30

OQGETSIZE

DQGETSIZE

DQGETSIZE returns the size of a previously-allocated memory segment.

size = DQGETSIZE (base$addr, except$ptr);

INPUT PARAMETER

base$addr

OUTPUT PARAMETERS

size

except$ptr

DESCRIPTION

A TOKEN for a segment of memory that has been
allocated by the DQ$ALLOCATE call. This is the
same address returned by DQ$ALLOCATE when the
segmen t was allocate d.

A WORD which,

if not zero, contains the size, in bytes, of
the segment identified by the base$addr
parameter.

if zero, indicates that the size of the segment
is 65536 (64K) bytes.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

The GET$SIZE system call returns the size, in bytes, of a segment. The
size of the segment might not be exactly what was originally requested
for the segment, because DQ$ALLOCATE allocates memory in 16-byte
paragraphs. If a request is for a size that is not a multiple of 16,
DQ$ALLOCATE increases the size of the request to the next higher multiple
of 16 before acting upon the request.

UDI 2-31

Da$G ET$SYSTEM$I D

DQGETSYSTEM$ID

DQGETSYSTEM$ID returns the identity of the operating system providing
the environment for the UDI.

CALL DQGETSYSTEM$ID (id$ptr, except$ptr);

OUTPUT PARAMETERS

id$ptr

except$ptr

DESCRIPTION

A POINTER to a 21-byte buffer into which
DQGETSYSTEM$ID places a STRING identifying the
operating system.

A POINTER to a ~rORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call returns the string:

iRMX 86

followed by 13 blanks.

UDI 2-32

OQGETTIME

DQ$GE T$TIME

DQGETTIME returns the current date and time in character format.

CALL DQGETTIME (buff$ptr, except$ptr);

This system call performs no action except that it returns. It is
included only for compati.bility with previous versions of the UDI. You
should use the DQ$DECODE$TIME system call for this function.

UDI 2-·33

OQ$OPEN

DQ$OPEN

The DQ$OPEN system call opens a file for I/O operations t specifies how
the file will be accessed t and specifiE~s the number of buffers needed to
support the I/O operations.

CALL DQ$OPEN (connection t access t num$buf t except$ptr);

INPUT PARAMETERS

connection

access

num$buf

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the file connection to be opened.

A BYTE specifying how the connection will be used
to access the f :Lle. This value is encoded as
follows:

Value

1
2
3

Read only
Write only
Update (both reading and writing)

A BYTE containing the number of buffers needed for
this connection~ Specifying a value larger than 0
tmplicitly requE!sts that "double buffering" (that
1s t read-ahead and/or write-behind) is to be
performed automatically.

A POINTER to a \AIORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call prepares a connection for use with DQ$READ t DQ$WRITE t

DQ$SEEK, and DQ$TRUNCATE commands. Any number of connections to the same
file may be open simultaneously.

The DQ$OPEN system call does the follo~Ting:

UDI 2-34

• Creates the requested buffers.

• Sets the connection's file pointer to zero. This a place marker
that tells where in the file the next I/O operation is to begin.

• Starts reading ahead if num$buf is greater than zero and the
access parameter is "Read only" or "Update."

Selecting Access Rights

The system does not allow reading using a connection open for writing
only nor writing using a connection opE~n for reading only. If you are
not certain how the connection will be used, specify updating. However,
if the specified connection does not support the specified type of
access, an exception code is returned.

Selecting the Number of Buffers

The process of deciding how many buffers to request is based on three
considerations -- compatibility, memory, and performance.

COMPATIBILITY. If you expect to run your UDI program on other systems,
you should request no more than two buffers.

MEMORY. The amount of memory used for buffers is directly proportional
to the number of buffers. So you can save memory by using fewer buffers.

PERFORMANCE. The performance consideration is more complex. Up to a
certain point, the more buffers you allocate, the faster your program can
run. The actual break-even point, where more buffers don't improve
performance, depends on m.any variables,. Often, the only way to determine
the break-even point is to experiment. However, the following statements
are true of every system:

• To overlap I/O wi,th computation, you must request at least two
buffers.

• If performance is not at all important but memory is, request no
buffers.

Requesting zero buffers means that no buffering is to occur. That is,
each DQ$READ or DQ$WRITE is followed immediately by the physical I/O
operation necessary to perform the requested reading or writing.
Interactive programs should open :CI: and :CO: with a request for no
buffers.

UDI 2-·35

Oa$OPEN

oaSOPEN

If your program normally calls DQ$SEEK before calling DQ$READ or
DQ$WRITE, it should request one buffer.,

Your program can use the DQ$RESERVE$IO~?MEMORY call to reserve memory that
the UDI can use for its internal data Btructures when the program calls
DQ$ATTACH and for buffers when the program calls DQ$OPEN. The advantage
of reserving memory is that the memory is guaranteed to be available when
needed. If memory is not reserved, a eall to DQ$OPEN might not be
successful because of a memory shortage. See the description of
DQ$RESERVE$IO$MEMORY later in this chapter for more information about
reserving memory.

UDI 2-36

I

DQ$OVERLAY

In systems using overlays, the root module calls DQ$OVERLAY to load an
overlay module.

CALL DQ$OVERLAY (name$ptr, except$ptr);

INPUT PARAMETER

name$ptr

OUTPUT PARAMETER

A POINTER to a STRING containing the name of an
overlay module. The name must be in uppercase.

DQSOVERLAY

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

A root module in an overlay system calls DQ$OVERLAY each time it wants to
load an overlay module.

If your assembly language or PL/M-86 program uses the DQ$OVERLAY
procedure, you should take care to ensure that you link the UDI library
to your program correctly. The iAPX 86, 88 FAMILY UTILITIES USER'S GUIDE
contains an example of li.nking an overlay program. This example list s a
two-step link process, as follows:

1. Link the root and each of the overlays separately, specifying the
OVERLAY control, but not the BIND control, in each LINK86 command.

2. Link all the output modules together in one module, specifying
the BIND control, but not the OVERLAY control.

This is the same process you should use when linking your iRMX 86 overlay
programs.

UDI 2-,37

OQ$OVERLAY

In addition, you must link the entire UDI library to the root portion of
the program and not to any of the overlays. To do this, use the INCLUDE
control to include the UDI externals file when assembling or compiling
the root portion of the progra~ By i~~luding this file with the root
module, you ensure that the root module: makes external references to all
UDI routines. This prevents unsatisfied external references when the
root is linked to the overlays.

UDI 2-38

DQ$READ

The DQ$READ system call copies bytes from a file into a buffer.

bytes$read

INPUT PARAMETERS

connection

buff$ptr

bytes$max

OUTPUT PARAMETERS

bytes$read

except$ptr

DESCRIPTION

DQ$READ (connection, buff$ptr, bytes$max,
except$p tr) ;

A TOKEN for the connection to the file. This
connection must be open for reading or for both
reading and writing, and the file pointer of the
connection must point to the first byte to be read.

A POINTER to thE~ buffer that is to receive the
data from the file.

A WORD containing the maxinum number of bytes to
be read from the file.

A WORD containing the number of bytes actually
read. This number is always equal to or less than
the bytes$max.

A POINTER to a t-;rORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call reads a collection of contiguous bytes from the file
associated with the connection. The bytes are placed into the buffer
specified in the call.

The Buffer

The buff$ptr parameter tells the Operating System where to place the
bytes when they are read. Your program must provide this buffer.
DQ$READ copies as many bytes as it is instructed to copy (unless it
encounters the end of the file), so if the buffer is not long enough,
copying continues beyond the end of the buffer.

UDI 2-39

DQ$READ

DQ$READ

Number of Bytes Read

The number of bytes that your program requests is the maximum number of
bytes that DQ$READ copies into the buffer. However, there are two
circums tances under which the system rE!ads fewer bytes.

• If the DQ$READ detects an end of file before reading the number
of bytes requested, it returns only the bytes preceding the end
of file. In this case, the bytes$read parameter is less than the
bytes$desired parameter, yet no exceptional condition is
indicated.

• If an exceptional condition occurs during the reading operation,
information in the buffer and t.he value of the bytes$read
parameter are meaningless and should be ignored.

Connection Requirements

The connection must be open for reading or updating. If it is not,
DQ$READ returns an exceptional condition.

UDI 2--40

OQ$RENAME

DQ$RENAME

The DQ$RENAME system call changes the pathname of a file.

CALL DQ$RENAME (path$ptr, new$path~?ptr, except$ptr);

INPUT PARA}lETERS

path$ptr

new$path$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a STRING that specifies the pathname
for the file to be renamed.

A POINTER to a STRING that specifies the new
pathname for the file. This path must not refer
to an existing file.

A POINTER to a ~vORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call allows your programs to change the pathname of a data
file or a directory. Be aware that when you rename a directory, you are
changing the pathnames of all files contained in the directory. When you
rename a file to which a connection exists -- this is permitted -- the
connection to the renamed file remains established.

A file's pathname may be changed in any way, provided that the file or
directory remains on the same volume.

UDI 2-41

OQ$RESERVE$IO$MEMORY

DQ$RESERVE$IO$MEMORY

The DQ$RESERVE$IO$MEMORY lets your program reserve enough memory to
ensure that it can open and attach the files it will be using.

CALL DQ$RESERVE$IO$MEMORY (ntunber$files, number$buffers, except$ptr);

INPUT PARAMETERS

number$f iles

ntunber$buffers

OUTPUT PARAMETER

except$ptr

DESCRIPTION

The maximum ntunber of files the program will have
attached simultaneously. This value must not be
greater than 12., Moreover, no more than 6 of
these files may be open simultaneously.

The total number of buffers (up to a maximum of
12) that will bE! needed at one time. For example,
if your program will have two files open at the
same time, and E!ach of them has two buffers
(specified when they are opened), number$files
should be two and number$buffers four.

A POINTER to a '~10RD where the system places the
condition code. Condition codes are described in
Appendix B.

DQ$RESERVE$IO$MEMORY sets aside memory on behalf of the calling program,
guaranteeing that it will be available when needed later for attaching
and opening files. This memory is used for internal UDI data structures
when the program requests file connect:Lons via DQ$ATTACH and for buffers
when the program opens file connections via DQ$OPEN. Memory reserved in
this way is not eligible to be allocatE!d by DQ$ALLOCATE. Your program
should call DQ$RESERVE$IO$MEMORY befor(~ making any calls to DQ$ALLOCATE.

In the call to DQ$RESERVE$IO$MEMORY, you may specify as many as 12 files
(that can be attached using the reserv(~d memory) and as many as 12
buffers (that can be requested when opE!ning files).

UDI 2--42

NOTE

If a program calls DQ$RESERVE$IO$MEMORY
after making one or more calls to
DQ$ATTACH or DQ$OPEN, the memory used
by those calls are immediately applied
against the file and buffer counts
specified in the DQ$RESERVE$IO$MEMORY
call, possibly exhausting the memory
supply being reque8ted.

DQ$RESERVE$IO$MEMORY

If your program calls DQ$RESERVE$IO$MEMORY more than once in a program,
it simply changes the amount of memory reserved.

RESTRICTION

This system call is effective only if your program uses exclusively UDI
system calls to communicate with the j~MX 86 Operating System.

UDI 2-43

DQ$SEEK

DQ$SEEK moves the file pointer associated with the specified connection.

CALL DQ$SEEK (connection, mode, movl~$count, except$ptr)

INPUT PARAMETERS

connection

mode

move$count

A TOKEN for the open connection whose file pointer
is to be moved.

A BYTE indicating the type of file pointer
movement being rE~quested, as follows:

Mode

1

2

3

4

Move the pointer backward by the
specified move count. If the move
count is large enough to position the
pointer past the beginning of the file,
set the pointer to the first byte
(position zero).

Set the pointer to the position
specified by the move count. Position
zero is the first position in the
file. Moving the pointer beyond the
end of the file is permitted.

Move the file pointer forward by the
specified move count. Moving the
pointer beyond the end of the file is
permitted.

First move the pointer to the end of
the flle and then move it backward by
the specified move count. If the
specij:ied move count would position the
pointer beyond the front of the file,
set the pointer to the first byte in
the file (position zero).

A DWORD spec:lfying how far, in bytes, the file
pointer is to be moved.

UDI 2-4·4

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

When performing non-sequential I/O, your programs can use this system
call to position the file pointer before using the DQ$READ, DQ$TRUNCATE,
or DQ$WRITE system calls. The location of the file pointer specifies
where in the file a DQ$READ, DQ$WRITE, or DQ$TRUNCATE operation is to
begin. If your program is performing sequential I/O on a file, it need
not use this system call.

It is legitimate to position the file pointer beyond the end of a file.
If your program does this and then invokes the DQ$READ system call,
DQ$READ behaves as though the read operation began at the end of file.
If your program calls DQ$WRITE when th.~ file pointer is beyond the end of
the file, the data is written as requested. Be aware that if you expand
your file in this manner, the expanded portion of the file can contain
undefined information.

UDI 2-·45

OQ$SEEK

OQ$SPECIAL

DQ$SPECIAL

DQ$SPECIAL specifies whether line edit:Lng features are to be available to
operators entering information at the console.

CALL DQ$SPECIAL (mode, conn$ptr, except$ptr);

INPUT PARAMETERS

mode

conn$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A BYTE used to specify the mode of terminal
.input. The values and their meanings are:

Value

1 Transparent

2 LinE! editing

3 ImmE~diate transparent

Each of these types is explained in the
DESCRIPTION section.

A POINTER to a TOKEN for a connection to the :CI:
file. The connE!ction mus t have been established
by DQ$ATTACH.

A POINTER to a ~rORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call changes the mode in which your program receives input
from a console input device. When your system starts to run, the mode is
line editing (mode 2). But by using DQ$SPECIAL you can change from line
editing to one of the transparent modes., or back to line editing.

UDI 2-A·6

OQ$SPECIAL

The Line Editing Modes

The meanings of the mode parameter are. as follows:

Value

1

2

3

Meaning

Transparent. Interacti.ve programs often need to obtain
characters from the console exactly as they are typed.
This is made possible by transparent mode. In transparent
mode, all characters are placed in the buffer specified by
the call to DQ$READ. (The only exceptions are CTRL/C,
which terminates the program, and CTRL/D, which is
discardedD) DQ$READ returns control to the calling
program when the number of characters entered equals the
number of characters specified in the read request.

Line Edit~. This option means that the console operator
has the opportunity to correct typing errors with special
keys before the application program receives the
characters typed. Line editing characters and their
effects are described following the descriptions of these
line editing modes.

Immediate Transparent. This option is nearly the same as
Transparent 1 mode, except that in Transparent 3 mode
DQ$READ returns control to your program immediately after
it is caLLed, regardless of whether any characters have
been typed since the last call to DQ$READ. If no
characters have been typed, this is indicated by the
bytes$read parameter of the DQ$READ call. Characters that
are typed between successive calls to read the terminal
are held :In the "type-ahead" buffer.

The Line Editing Characters

The following characters and control characters have the following
special editing capabilities on console input when line editing mode
(mode 2) is in effect:

CARRIAGE RETURN
or

LINE FEED

RUBOUT

Terminates the current line and positions the
cursor at the beginning of the next line.
Entering either of these characters adds a
carriage return/line feed pair to the input line.

lDeletes (rubs out) the previous character in the
:input line. Each RUBOUT removes a character from
both the screen and the type-ahead buffer, and
moves the cursor back to that character position.

UDI 2·-47

OQ$SPECIAL

CTRL/R

CTRL/U

CTRL/X

If the current :input line is not empty, this
character repri.nt s the line with editing already
performed. Th~s enables the operator to see the
effects of the l~diting performed since the most
recent line tenninator was entered. If the
current line is empty, CTRL/R reprints the
previous line. Additional CTRL/Rs display
previous lines until all saved lines have been
displayed. Aftler that, each additional CTRL/R
displays the laB t line again.

Discards the current line and the entire contents
of the type-ahead buffer.

Discards the current input line. It also displays
the "If" charactc~r at the terminal, followed by a
carriage return/line feed.

UDI 2-lJ8

OQ$SWITCH$BU FFER

DQ$SWITCH$BUFFER

DQ$SWITCH$BUFFER substitutes a new command line for the existing one.

char$offset

INPUT PARAMETER

buff$ptr

OUTPUT PARAMETERS

char$offset

except$ptr

DESCRIPTION

DQ$SWITCH$BUFFER (buff$ptr, except$ptr);

A POINTER to a STRING containing the "new" command
line, that is, the one whose arguments are to be
returned by subsequent calls to DQGETARGUMENT.

A WORD into which the UDI places a number. This
number represents the number of bytes from the
bE~ginning of the "old" command line to the last
character of the last argument so far processed by
DQGETARGUMENT. In other words, the value in
char$offset tells how many characters in the old
command line have been processed by the time of
this call.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

When your program is invoked from the console, the Operating System
places the invocation cOInmand into a buffer. Typically, your program
will use DQGETARGUMENT to obtain the arguments in that command. If
your program subsequently calls DQ$READ to obtain an additional command
line from the console, it can call DQ$SWITCH$BUFFER to designate the
buffer with the new command line as that from which arguments are to be
obtained when DQGETARG1JMENT is caIIE!d.

You can use DQ$SWITCH$BUFFER any number of times to point to different
strings in your program. However, you cannot use DQ$SWITCH$BUFFER to
return to the command line that invoke!d the program, because only the
Operating System knows the location of that buffer. Therefore, you
should use DQGETARGUMENT to obtain all arguments of the invocation
command line before issu:ing the first call to DQ$SWITCH$BUFFER.

UDI 2--49

DQSSWITCHSBUFFER

A second service of DQ$SWITCH$BUFFER is that it returns the location of
the last byte of the last argument so far obtained from the old buffer by
calls to DQGETARGUMENT. Therefore, in addition to using
DQ$SWITCH$BUFFER to switch buffers, you can use it after one or more
DQGETARGUMENT calls to determine where in the buffer the next argument
starts. However, doing this "resets" the buffer, in the sense that the
next call to DQGETARGUMENT would return the first argument in the
buffer. To return to the desired point: in the buffer, where you can
continue to extract arguments, call DQS: SWITCH$BUFFER again, but when
doing so, use the sum of the starting address of the buffer and the value
returned by the previous call to DQ$SWITCH$BUFFER. The following is an
example showing how to us e the second service of DQ$SWITCH$BUFFER:

DECLARE
mybuffer$ptr
buff$ptr
arg$ptr
buff

next$char
char$offset
condition$code
delimit$char

•
•

POINTER,
POINTER,
POINTER,
STRUCTURE (

offset
segment:

WORD,
WORD,
WORD,
BYTE;

/* initialize buff$ptr and next$char */
buff$ptr = mybuff$ptr;
next$char = 0;

•
•

WORD,
WORD) AT (@buff$ptr),

/* determine where in the buffer the next argument starts */
char$offset = DQ$SWITCH$BUFFER(buff$ptr, @condition$code);

if condition$code <> E$OK then /* do error processing */
next$char = char$offset + nextS:ehar;

/* return to desired point in buffer */
buff.offset = buff.offset + cha.r$offset;
char$offset = DQ$SWITCH$BUFFER(buff$ptr, @condition$code);

if condition$code <> E$OK then /* do error processing */

/* get next argument */
delimit$char = DQ$GET$ARGUMENT(arg$ptr, @condition$ptr);

if condition$code <> E$OK then /* do error processing */

•

UDI 2-50

DQ$TRAP$CC

DQ$TRAP$CC

The DQ$TRAP$CC lets you specify a procedure that is to get control if an
operator enters CTRL/C at the console.

CALL DQ$TRAP$CC (entry$pnt, except$ptr);

INPUT PARAMETER

entry$pnt

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to thE~ entry point of your CTRL/C
procedure.

A POINTER to a vlORD where the system places the
condition code. Condition codes are described in
Appendix B.

Normally, when an operator enters CTRL/c at the console, the system
empties the type-ahead buffer and aborts the currently-executing
program. By calling DQ$TRAP$CC, your program can designate any other
procedure, so that it will automaticaLly get control instead whenever
CTRL/c is entered at the console.

UDI 2-51

OQ$TRAP$EXCEPTION

DQ$TRAP$EXCEPTION

DQ$TRAP$EXCEPTION substitutes an alternate exception handler for the
default exception handler provided by the operating system.

CALL DQ$TRAP$EXCEPTION (address$ptr, except$ptr);

INPUT PARAMETER

address$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a POINTER containing the entry point
of the alternatE~ exception handler.

A POINTER to a '~'ORD where the system places the
condition code. Condition codes are described in
Appendix B.

Normally, the exception handler terminates the program that made the call
producing the exception condition and displays a message to that effect
on the console screen. DQ$TRAP$EXCEPTION designates an alternative
exception handler as the one to which control should pass when an
exceptional condition occurs.

See the section EXCEPTION-HANDLING SYSTEM CALLS at the beginning of this
chapter for an explanation of the condttions of the stack when your
exception handler receives control.

UDI 2-52

OQ$TRUNCATE

DQ$TRUNCATE

DQ$TRUNCATE moves the end-of-file to the current position of a named file
connection's file pointer, thereby freeing the portion of the file lying
beyond the file pointer.

CALL DQ$TRUNCATE (connection, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for a connection to the named data file
that is to be truncated. The file pointer of this
connection marks the place where truncation is to
oecur. The byte indicated by the pointer is the
first byte to be dropped from the file.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call truncates a file at the current setting of the file
pointer and releases all file space beyond the pointer for reallocation
to other files. If the pointer is at or beyond the end of file, no
truncation is performed. Unless the file pointer is already at the
proper location, your program should use the DQ$SEEK system call to
position the pointer before calling DQ$TRUNCATE.

The connection should have write, or read and write access rights,
established when the connection was opened.

UDI 2--53

Oa$WRITE

DQ$WRITE

The DQ$WRITE system call copies a collE!ction of bytes from a buffer into
a file.

CALL DQ$WRITE (connection, buff$ptr, count, except$ptr;

INPUT PARAMETERS

connection

buff$ptr

count

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the connection to
the file into which the information is to be
written.

A POINTER to a buffer containing the data to be
written to the specified file.

A WORD containing the number of bytes to be
written from the buffer to the file.

A POINTER to a \llORD where the system places the
condition code. Condition codes are described in
Appendix B.

This system call causes the Operating System to write the specified
number of bytes from the buffer to the file.

Connection Requirements

If the connection is not open for writing or updating, DQ$WRITE returns
an exception code.

UDI 2-54

Number of Bytes Written

Occasionally, DQ$WRITE writes fewer bytes than requested by the calling
program. This happens under the following two circumstances:

• When DQ$WRITE encounters an I/O error.

• When the volume to which your program is writing becomes full.

Where the Bytes Are Written

DQ$WRITE starts writing at the location specified by the connection's
file pointer. After the writing operation is completed, the file pointer
points to the byte immediately following the last byte written.

If your program must reposition the file pointer before writing, it can
do so by using the DQ$SEEK system call.

UDI 2-55

OQ$WRITE

[
CHAPTER 3

____ , ______ . ________ U_D_IE_X_A_M_P_L_E~

This chapter presents an example of U])I system calls. After the program
listing are the compiler and linker commands used to build the program,
and a listing of the link map.

THE EXAMPLE LISTING

$compact
$optimize(3)
/ * •••..••••.•.•••••••••.•••••••.•...••• " •••••••......••.•••..•.•.•..••••••

Program UPPER
*
*
*
*
*
*
*
*

This program demonstrates the use of UDI file-handling and
command-line-parsing system calls. The program reads an input
file of characters and converts all lowercase alphabetic characters
to uppercase. The converted data are written to a second file.

*
*

UPPER expects the comm.and line that invokes it to be of the form:

* UPPER infile [TO outfile]

* * (If "TO outfile" is not specified,:CO: is asstmled.)
* "
*/

upper: DO;

/* Literal declaration of TOKEN as SELECTOR */

$include(:include:ltksel.lit)

/* External declaration files for UDI system calls */

$include(:include:uexit.ext)
$include(:include:uclose.ext)
$include(:include:uwrite.ext)
$include(:include:uread.ext)
$include(:include:uopen.ext)
$include(:include:ucreat.ext)
$include(:include:ugtarg.ext)
$include(:include:uatach.ext)
$include(:include:udcex.ext)

UDI 3-1

DECLARE
CR
LF
E$OK
TOKEN

DECLARE
co$conn

UDI EXAMPLE

LITERALLY 'ODH',
LITERALLY 'OAH',
LITERALLY '0'
LITERALLY 'SELECTOR';

TOKEN;

$subtitle('check$exception')

/* ••••••••••••••••••••••••••••••••••••• ~ •••••••••••••• ••••••••••••••••••••
* Procedure to check an exception COd4~. If the exception code is
* not E$OK, print a message and exit.
* u ••••••••••••••••••••••••••••••••••

*/

check$exception: PROCEDURE(exception, info$p) REENTRANT;
DECLARE

exception
info$p
info

count
char(l)

exc$buf

WORD,
POINTER,
BASED info$p STRUCTlJRE(

BYTE,
BYTE) ,

STRUCTURE (
count BYTE,
char(80) BYTE),

dummy WORD;

IF exception <> E$OK THEN
DO;

CALL dq$decode$exception(exeeption, @exc$buf, @dummy);

CALL dq$write(co$conn, @exc!,;buf.char, exc$buf.count, @dtnnmy) ;

CALL dq$write(co$conn, @(, : '), 2, @dummy);

CALL dq$write(co$conn, @inf o. cha r, info. count , @dtnnmy) ;

CALL dq$write(co$conn, @(CR:, LF), 2, @dummy) ;

CALL dq$exi t(3);
END;

END check$exception;

UDI 3-2

UDI EXAMPLE

$subtitle('Main')
/* ••••••••••••••••••••••••••••••••••••. ' •••••••••••••••••••••••••••••••••••
*
*
*

--- HAIN PROGRAM ---

* ••.•.•••••.••••.••••.••••••••••••••.. ' •.•.•...••.••••••••••••.•••.•.•.•••
*/

DECLARE st WORD;

DECLARE
in$name(50)
out$name(50)
in$conn
out$conn
delim

DECLARE
buffer(1024)
in$bp
in$char
nextchar
in$count
i

BYTE,
BYTE,
TOKEN,
TOKEN,
BYTE;

BYTE,
POINTER,
BASED in$bp BYTE,
BASED in$bp (2) BYTE,
WORD,
WORD;

/ * •••.••••••...•••..•••••••.•.•.•• I, •••••••••••••••••••••••••••••••••••

* Create a connection to :Co: (console output).
* u •••••••••••••••••••••••••••••••••••

*/

co$conn = dq$create(@(4, ':CO:'), (~st);

CALL dq$open(co$conn, 2, 0, @st);

/ * •••••••••.•.••••••..•.•••.•••••• I ••••••••••••••••••••••••••••••••••••

* Ignore the name of the program (the first argument).
* u •••••••••••••••••••••••••••••••••••

*/

delim = dqgetargument(@buffer, @st);
CALL check$exception(st, 0);
IF delim = CR THEN

CALL dq$exit(O);

UDI 3,-3

UDI EXAMPLE

/*
* Attach the input file, and open :Lt.
*•...................•...
*/

delim = dqgetargument(@in$name, @s t);
CALL check$exception(st, 0);

in$conn = dq$attach(@in$name, @st);
CALL check$exception(st, @in$name);

CALL dq$open(in$conn, 1, 2, @st);
CALL check$exception(st, @in$name);

/ * ••••••••••••••••.••••••••••••.•••.•••••.•••••••..•.•••••••••••••••••
* Find out if there is an output file specified. If so, attach
* and open it. If not, use :CO: for output.
*••.•.•..•.•...•.......••.•.••• ~ ••...••••.••.•..•.•......•.•.
*/

IF delim <> CR THEN
DO;

END;
ELSE

delim = dqgetargument(@buffer, @st);
CALL check$exception(st, 0);
IF (delim = CR) OR

(buffer(O) <> 2) OR
(buffer(l) <> 'T') OR
(buffer(2) <> '0') THEN
DO;

END;

CALL dq$write(co$conn, @('Invalid output file', CR,
LF), 21, @st);

CALL dq$exi t(3);

delim = dqgetargument(@out!?name, @s t);
CALL check$exception(st, 0);

out$conn = dq$create(@out$name, @st);
CALL check$exception(st, @out$name);

CALL dq$open(out$conn, 2, 2, @st);
CALL check$exception(st, @out$name);

out$conn co$conn;

UDI 3-4

unI EXAMPLE

1* ••••••••••••••••••••.•••••••••.•• 0 •••••••••••••••••• ••••••••••••••••

* Read from input, convert, and write to output
* 0 ••••••••••••••••••••••••••••••••••

*1

DO WHILE 1;
in$count = dq$read(in$conn, @buffer, size(buffer) , @st);
CALL check$exception(st, @in$name);
IF in$count = 0 THEN

GOTO endoffile;

DO i=O TO in$count'-l;
IF (buffer(i) >= 'a') AND (buffer(i) (= 'z') THEN

buffer(i) = buffer(i) + 'A'-'a';
END;

CALL dq$wr ite(out$conn, @buffer" in$count, @s t) ;
CALL check$exception(st, @out$name);

END;
endoff ile:

1 * ••••••••••••••••.•••••••••••••••• " ••••••••••.•••••••••••••••••••••••
* Close input and output files, mld exit
*•........... "
*1

CALL dq$close(in$conn, @st);
CALL check$exception(st, @in$name);

CALL dq$close(out$conn, @st);
CALL check$exception(st, @out$name);

CALL dq$exit(O);

END upper;

CO~1PILING AND LINKING

The program UPPER was compiled and link'ed on an iRMX 86-based system with
the following commands:

attachfile : sd: I ib/rmx8 6 as : lib:
plm86 upper. p86
link86 upper. obj, : lib: compac.lib to upper bind mempool(5000H)

The link map is on the next page.

UDI 3-5

UDI EXAM1)LE

iRMX 86 8086 LINKER, V2.0

INPUT FILES: UPPER.OBJ, :LIB:COMPAC.LIH
OUTPUT FILE: UPPER
CONTROLS SPECIFIED IN INVOCATION COMMAND:

BIND MEMPOOL(5000H)
DATE: 14/02/83 TIME: 12:05:37

LINK MAP OF MODULE UPPER

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

02F6H ------ W CODE
OOlEH ------ W CONST
0475H ------ W DATA
0454H ------ W STACK
OOOOH ------ W MEMORY
OOOOH ------ G ??SEG

INPUT MODULES INCLUDED:
UPPER. OBJ (UPPER)
:LIB:COMPAC.LIB(DQATTACH)
:LIB:COMPAC.LIB(DQCLOSE)
:LIB:COMPAC.LIB(DQCREATE)
:LIB:COHPAC.LIB(DQDECODEEXCEPTION)
:LIB:COMPAC.LIB(DQEXIT)
:LIB:COMPAC.LIB(DQGETARGUMENT)
:LIB:COMPAC.LIB(DQOPEN)
:LIB:COMPAC.LIB(DQREAD)
:LIB:COMPAC.LIB(DQWRITE)
:LIB:COHPAC.LIB(SYSTEMSTACK)

GROUP MAP

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
OOOOH CODE

GROUP NAME: DGROUP
OFFSET SEGMENT NAME
OOOOH CONST
OOlEH DATA

SYMBOL TABLE OF MODULE UPPER

BASE OFFSET TYPE SYMBOL

G(l) 0293H PUB DQATTACH
G(l) 02A9H PUB DQCREATE
G(l) 02BFH PUB DQEXIT
G(l) 02D5H PUB DQOPEN
G(l) 02EBH PUB DQWRITE

CLASS OVERLAY
CODE
CONST
DATA
STACK
MEMORY

BASE OFFSET TYPE SYMBOL

G(l) 029EH PUB DQCLOSE
G(l) 02B4H PUB DQDECODEEXCEPTION
G(l) 02CAH PUB DQGETARGUMENT
G(l) 02EOH PUB DQREAD
S(4) 006CH PUB SYSTEMSTACK

UDI 3-6

APPENDIX A
DATA TYPES

The following data types are recognized by the iRMX 86 Operating System.

BYTE

WORD

INTEGER

POINTER

OFFSET

SELECTOR

TOKEN

STRING

DWORD

An uns:lgned, eight-b it binary number.

An unsigned, two-byte, binary number.

A signed, two-byte, binary number. Negative numbers
are stored in two' s-'complement form.

Two consecutive words containing the base address of a
(64K-byte processor) segment and an offset in the
segment. The offset is in the word having the lower
address.

A word whose value represents the distance from the
base address of a segment.

The base address of a segment.

A word or selector whose value identifies an object.
A token can be declared literally a WORD or a SELECTOR
depend:lng on your needs.

A sequence of consecutive bytes. The value contained
in the first byte is the number of bytes that follow
it in the string.

A 4-byte unsigned bfnary number.

UDI A--l

APPENDIX B
iRMXTM 86 CON DITION CODES

This appendix contains the exception codes that are generated by the
iRMX 86 Operating System. Exception codes are any condition codes other
than E$OK, the normal codE~. Exception codes are classed as either
"Environmental Conditions" or "Programmer Errors", although the latter
includes certain hardware errors as well as errors that result from
programming.

The values of these exception codes fall into ranges based on the iRMX 86
layer which first detects the condition. Table B-1 lists the layers and
their respective ranges, with numeric values expressed in hexadecimal
notation.

Table B-1. Exception Code Ranges

Layer Environmental Programming

Nucleus 1R to 1FR 8000R to 801FR

I/O Systems 20R to 5FR 8020R to 805FH

Application Loader 60R to 7FR 8060R to 807FR

Human Interface 80R to AFR 8080R to 80AFR

Universal Development COR to DFR 80COR to 80DFR
Interface

Reserved for Intel EOR to 3FFFR 80EOR to BFFFR

Reserved for users 4000H to 7FFFR COOOR to FFFFR

The iRMX 86 NUCLEUS REFERENCE MANUAL gives the value of each code and its
associated mnemonic, as wE~ll as a short description of its significance.
In addition, the table shows the layer(s) of the system that could
generate the code, in case you wish to refer the the appropriate manual.

UDI B-1

• @

Primary references are underscored.

access to a file 2-10, 2-23, 2-28, 2-34
ALLOCATE system call 2-4, 2-8, 2-42
application model 1-1 ---
ASM86 command 2-6
ATTACH system caLL 2-5, 2,-9

CHANGE$ACCESS system call 2-10
CHANGE$EXTENSION system call 2-12
CLOSE system call 2-5, 2-13
command line 2-26, 2-49-----
condition codes 2-5, 2-15, 2-20, B-1
connection 2-5, 2-9, 2-13, 2-14, 2-19, 2-28, 2-44
Control-C 2-51
CREATE system call 2-5, 2-14

data types A-1
date 2-16, 2-33
DECODE$EXCEPTION
DECODE$TIME 2-16
default user 2-11
DELETE system call
DETACH system call

end of file 2-40

2-6, 2-15

2-5, 2,-18
2-5, 2-19

environmental conditions 2-5, B-1
example 3-1
exception handling 2-5, 2-15, 2-30, 2-52, B-1
EXIT system call 2-20
extension of a file 2-12

file access 2-10, 2-23, 2-28, 2-34
file extension 2-12
file handling 2-4
FILE$INFO system call 2-22
file pointer 2-5, 2-44, 2-53
FREE system call 2-4, 2-25
free space pool 2-4, 2-8,-2-42

GET$ARGUMENT system call 2-26, 2-49
GET$CONNECTION$STATUS syst'em call 2-28
GET$EXCEPTION$HANDLER system call 2-30
GET$SIZE system call 2-4, 2-31

UDI Index-1

INDEX

INDEX (continued)

GET$SYSTEM$ID system call 2-32
GET$TlME system call 2-33

input/output calls 2-4, 2-39, 2-54
interface to languages 2-6

language interface 2-6
line editing 2-46

memory management 2-4

OPEN system call 2-5, 2-34
operating system 1-1, 2-32
overlay 2-37
OVERLAY system call 2-37
owner ID 2-11
owner of a file 2-10, 2-22

pathname of a file 2-41
PL/M-86 2-6
programmer errors 2-5, B-1

READ system call 2-5, 2-39
RENAME system call 2-4-1---
RESERVEIOMEMORY system call 2-9, 2-~~2

SEEK system call 2-5, 2-44
segment 2-4, 2-8, 2-25~31
SPECIAL system call 2-46
SWITCH$BUFFER system call 2-26, 2-49
system calls (DQ$) 2-1

time 2-16, 2-33
TRAP$CC system call 2-51
TRAP$EXCEPTION system call 2-6, 2-52
TRUNCATE system call 2-53

Universal Development Interface (UDI) l-1

WRITE system call 2-5, 2-54
WORLD user 2-10, 2-23

UDI Index-2

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	A-01
	A-02
	B-01
	B-02
	idx01
	idx02

