iIRMX™86 UNIVERSAL DEVELOPMENT INTERFACE
REFERENCE MANUAL

CONTENTS

PAGE

CHAPTER 1
INTRODUCTION TO THE UNIVERSAL DEVELOPMENT INTERFACEeceeseeccccocccss 1-1

CHAPTER 2

UDI SYSTEM CALLS IN THE iRMX™ 86 ENVIRONMENT

System Call Dictionary-ooooooocoo.oooooooooo-oo.ooooo.-oooo-.oco--o

OVerVieWeeeosesoovscesssescsssoscsccssssnssssscsssssscssossscsoscssscss
Memory Management System CallSeecscsssoesscssssssscsccsscscscsnse
File_Handling System CallSeeeesccscsssnsssoscsasosscesssssssscscsssss
Condition Codes and Exception Handling CallSeeescccccsccccocsccne

Making UDI Calls from Programs in PL/M—86 and ASM86oooooooooooo.ooo
EXample PL/M—86 Calling Sequence.....o..............-..........-.
Example ASM86 Calling SeqUENCEseessessesessscecrsssscscscssssssssce

Descriptions of System CallSeeeseessescncssessssssescsesscosccssssccss
DQsALLOCATE..............................'.."......."..........
DQsATTACH..........‘....‘..........'.\'......".....'.............
DQSCHANGESACCESSeceososcessosesssscssssosscasscssasccsssscssascccase
DQSCHANGESEXTENSIONcscoooosoocescocsosesssonssccscscssssssssscsssssss

DQSCLOSE.....IQ..I..............l..l......QI.......I............' 2-13

[|

Nl? NN NN TPO NN DN
H‘S‘c(x'ﬂ‘ﬂ NOoOY DS BB

I
N

DQ$CREATE.I..Q.............‘.0..‘....1..........'...........'..... 2-14

DQ$DECODE$EXCEPTION..ooo.oooooooooooooouooooo.ooooooono.oooo.oaoo 2-15
DQ$DECODE$TIME...........'.....O.....\.............'...-.......... 2_16

DQSDELETE..ooo.oouo'oooooooaoooo--.onoooooooco-.oo-ooo-ooooo'ocoo 2_18
DQsDETACH..-...-ooo-.0..00-000.00.0000ooooo.o.ooooooooo..-o.oo.oo 2_19
DQsEXIToo.ooooooco-ao..o..o-o.oo-uoo.oo-o-ooaoo.ooco.coo-o-ooooo; 2-20
DQSFILESINFO--........-.oo.ono-.ooooooooo'ooonoco-ooooooooooooooo 2-22
DQsFREEoooooooao..ooo-aoo-ooooooooooo.o-ooooooo-ccoooooo-coo..c-o 2-25

DQGETARGUMENT....ooo‘.oooo.ooooooooooooooooooooooooooono-oooooo 2-26
DQSGET$CONNECTION$STATUS'........Q.........‘......0.....'....0... 2—28
DQGETEXCEPTION$HANDLER.ooooocooo-oooocoooo.oooooo.ocooooooooooo 2-30
DQGETSIZE.-........tooo.ooo-uooooo-oooo-o.oooo.oooooooo-ooooooo 2_31
DQsGETSSYSTEMsIDOQOOOQ..00.I.c.Qol'CI.O....IQ...................o 2—32
DQGETTIMEcoo.oo.oooooaoooooooooo~oo.-ooo.'ooooocao.oooooooonooo 2-33

DQsOPEN........'.............0..................'.......‘..'..... 2_34
DQsoVERLAY...O.................Q....'.................'....0..... 2—37
DQsREAD.........Ol.........‘....’.................0......‘..'.'.. 2_39

DQsRENAME...........-........-................................... 2—41
DQ$RESERVE$IO$MEMORYIOO000!0..000000000000.000000...00.00.0.00.00 2=42
DQ$SEEK.'ooooooooooootoooooc-oooooooooooooooooooooooooooo-o--oooo 2_44
DQ$SPECIAL-.ooo-oooooooooooou-oooo-ooo.oocoooooooooc.ooooo.-oo-nc 2-46
DQ$SWITCH$BUFFER'..oooo'olooll.oo.ol.cot-.oc‘o.cooo..oo.l'oo.t..o 2_49
DQ$TRAP$CC.OQ.....Q.O0.0.c.oo.ooo.o.oooo.0.0..00...0.0.00..OOOI.O 2-51
DQ$TRAP$EXCEPTION.ooo-ooooooooo-oooo.o.oocoaoo.ooo-o.cocooooooooo 2-52
DQ$TRUNCATEQ....D....0.000..000.-.500.0ooootloooooo....on.o0.0.0. 2-53

DQSWRITE...‘..........I0...............O..l........I.....l....... 2—54

UDI {iii

CONTENTS
(continued)

PAGE

CHAPTER 3

UDI EXAMPLE

The Example LiStingoo.cooo.oo-o-.oo-oooooo.oon-ocoo--oooo.o.oooooto 3-1
Compiling and Linking...........................-.......o.......... 3-5

APPENDIX A

DA.TA TYPES.C...'........0.0...'.......'.................'.'......" A-l

APPENDIX B
iRh’iX"' 86 EXCEPTION CODES'...................l.....l.........'.....' B-l

2-1,
B_lo

TABLES

System Call Dictionary.ooooooooooocoo.loon.oooocoooo'-no-oo 2-1
Exception Code Ranges........-.lo.o-ooooooo.ooooooo'o.oo.oo B-1

FIGURES

The Application‘SOftwarE‘Hardware Modeleseoossosssccccscsnses 1-1
Chronology of System CallSeesocvsecscsosssosscssssssscscssonse 2-4

k%

UDI iv

CHAPTER1
INTRODUCTION TO THE
UNIVERSAL DEVELOPMENT INTERFACE

Intel's Universal Development Interface (known in this manual as the UDI)
is a set of system calls that is compatible with each of Intel's
operating systems. If an application system makes UDI system calls but
no explicit calls to the resident Intel operating system, the application
can be transported between operating systems. Figure 1-1 illustrates the
relationship between application code, the processing hardware, and the
layers of software that lie in between.

APPLICATION CODE IN INTEL APPLICATION LANGUAGE(S)

i L
A 4
RUN-TIME LIBRARIES
FOR
NON-MATHEMATICAL FEATURES
§ |
N 4 8087
OR
UDI LIBRARIES 80287
SUPPORT
. LIBRARY
A 4
OPERATING SYSTEM
| | | | L
L 4 A 4 L 4
8087
iAPX 86, 88, 186, 188 OR 286 OR
80287

x-636

Figure l-1l« The Application-Software-Hardware Model

UDI 1-1

INTRODUCTION TO THE UNIVERSAL DEVELOPMENT INTERFACE

In Figure 1-1, the downward arrows represent command flow and data flow
from the application code down to the hardware, where the commands are
ultimately executed. (Not shown in the figure is another set of arrows
showing the upward flow of data from the hardware to the application
code.) Note that one of the downward arrows is crossed out, signifying
that the application code does not make direct calls to the operating
systems Rather, all interaction between the application code and the
operating system is done through the UDI software.

By letting the UDI serve as the link between an application and the
operating system, it is possible to switch operating systems simply by
changing the interface between the UDI and the operating system. In
other words, all that is necessary to make an application transportable
between operating system environments {s a UDI library for each operating
systems This library always presents the same interface to the
application, but its interface with the operating system is designed
specifically and exclusively for that operating systemes Intel provides
UDI libraries for the iRMX 86, iRMX 88, Series III, and Series IV

operating systems.

The UDI system calls, while presenting a standard interface to user
programs, behave somewhat differently when used in different operating
system environments. The reason for this is that the operating systems
each have many unique characteristics, and some of them are reflected in
the results of the UDI calls. For information about the UDI and the
minor behavioral differences it exhibits between operating systems, refer
to the RUN-TIME SUPPORT MANUAL FOR iAPX 86,88 APPLICATIONS.

The next chapter discusses the UDI in the context of the iRMX 86
Operating System.

%k

UDI 1-2

CHAPTER 2
- UDI SYSTEM CALLS IN
THE iRMX™ 86 ENVIRONMENT

The purpose of this chapter is to describe the requirements and behavior
of UDI system calls in the iRMX 86 environment.

SYSTEM CALL DICTIONARY

This section presents, in Table 2-1, a list of the UDI calls, arranged by
functional category. Each entry in the list includes the name of the
call, a concise description of its purpose, and its page number in this
chapter.

Table 2-1., System Call Dictionary

SYSTEM CALL FUNCTION PERFORMED PAGE

PROGRAM-CONTROL CALLS

DQSEXIT Exits from the current application job. 2-20
DQSOVERLAY Causes the specified overlay to be loaded. 2-37
DQSTRAPSCC Assigns Control-C procedure. 2-51

MEMORY-MANAGEMENT CALLS

DQSALLOCATE Requests a memory segment of a specified size. 2-8
DQSFREE Returns a memory segment to the system. 2-25

DQSGETSSIZE Returns the size of a memory segment. 2-31
DQSRESERVES - | Requests memory to be set aside for 2-42
I0$SMEMORY overhead to be incurred by I/0 operations.

UDI 2~1

UDI SYSTEM CALLS IN THE iRMX™ 86 ENVIRONMENT

Table 2-1., System Call Dictionary (continued)

SYSTEM CALL FUNCTION PERFORMED PAGE

FILE-HANDLING CALLS

DQSATTACH Creates a connection to a file. 2-9
DQ$CHANGES - Changes the access rights associated with a 2-10
ACCESS file or directory.
DQS$CHANGES - Changes the extension of a file name. 2-12
EXTENSION
DQ$CLOSE Closes a file connection. 2-13
DQSCREATE Creates a file. 2-14
DQSDELETE Deletes a file. 2-18
DQS$DETACH Closes a file and deletes a connection to it. 2-19
DQSFILESINFO Returns data about a file connection. 2-22
DQSGETSCON- Returns the status of a file. 2-28
NECTIONS$ STATUS
DQ$SOPEN Opens a file connection. 2-34
DQSREAD Reads the next sequence of bytes from a file. 2-39
DQSRENAME Renames a file. 2-41
DQ$SEEK Moves the current position pointer of a file. 2-44
DQSSPECIAL Sets the line-edit mode for a terminal. 2-46
DQSTRUNCATE Truncates a file to a specified length. 2-53
DQSWRITE Writes a sequence of bytes to a file. 2~54

UDI 2-2

UDI SYSTEM CALLS IN THE iRMX" 86 ENVIRONMENT

Table 2-1. System Call Dictionary (continued)

SYSTEM CALL FUNCTION PERFORMED PAGE
EXCEPTION-HANDLING CALLS

DQSDECODES - Converts an numeric exception code into its 2-15
EXCEPTION equivalent mnemonic.

DQSGETSEXCEPT- Returns a POINTER to the current exception 2-30
IONSHANDLER handler.

DQSTRAPS — Identifies a custom exception handler to 2-52
EXCEPTION replace the current handler.

UTILITY CALLS
DQSDECODESTIME Returns system time and date in both binary 2-16
and ASCII-character format.

DQSGET$SARGUMENT Returns an argument from a command line. 2-26
DQSGETS - Returns the name of the underlying 2-37
SYSTEMSID operating system supporting the UDI.

DQSGETSTIME (Obsolete: included for compatability.) 2-33

DQSSWITCHSBUFFER | Selects a new buffer to contain command 2-49

lines.

UDI 2-3

UDI SYSTEM CALLS IN THE iRMX™ 86 ENVIRONMENT

OVERVIEW

This section discusses the functions of the many of the system calls,
highlighting the interrelationships, if any, among the calls in the
functional groups of Table 2-1,

MEMORY MANAGEMENT SYSTEM CALLS

When the iRMX 86 Operating System loads and runs a program, the program is
allocated memory, in an amount that depends upon how the program was
configured. The portion of memory not occupied by loaded code and data ——
the free space pool —— 1s available to the program dynamically, that is,
while the program runs. The Operating System manages memory as segments
that programs can obtain, use, and return.

Programs can use the UDI system calls named DQSALLOCATE and DQSFREE to get
memory segments from the pool, and to return segments to the pool,

respectively. They can also call DQSGEISSIZE to receive information about
allocated memory segments.

FILE-HANDLING SYSTEM CALLS

About one~half of UDI system calls are used to manipulate files. Figure
2—-1 shows the chronological relationships among the most frequently used
file~handling system calls.

ATTACH

',_J

READ WRITE
OPEN - SEEK
TRUNCATE

Y

CLOSE - DETACH DELETE

x-327

L_\'

CREATE

Figure 2-1. Chronology Of System Calls

UDI 2-4

UDI SYSTEM CALLS IN THE iRMX" 86 ENVIRONMENT

The key to using iRMX 86 files is the connection. A program wanting to
use a file first obtains (a token for) a connection to the file and then
uses the connection to perform operations on the files Other programs can
simultaneously have their own connections to the same file. Each program
having a connection to a file uses its connection as if it has exclusive
access to the file.

A program obtains a connection by calling DQSATTACH (if the file already

exists) or DQSCREATE (to create a new file). When the program no longer

needs the connection, it can call DQSDETACH to delete the connection. To
delete both the connection and the file, the program calls DQSDELETE.

Once a program has a connection, it can call DQSOPEN to prepare the
connection for input/output operations. The program performs input or
output operations by calling DQSREAD and DQSWRITE. It can move the file
pointer associated with the connection by calling DQSSEEK. When the
program has finished doing input and output to the file, it can close the
connection by calling DQSCLOSE. Note that the program opens and closes
the connection, not the file. Unless the program deletes the connection,
it can continue to open and close the connection as necessary.

If a program calls DQSDELETE to delete a file, the file cannot be deleted

while other connections to the file exist. 1In that case, the file is
marked for deletion and is not actually deleted until the last of the

connections is deleted. During the time that a file is marked for
deletion, no new connections to it may be created.

CONDITION CODES AND EXCEPTION HANDLING CALLS

Every UDI call except DQSEXIT returns a numeric condition code specifying
the result of the call. Each condition code has a unique mnemonic name by
which it is known. For example, the code 0, indicating that there were no

errors or unusual conditions, has the name E$OK. Any other condition
means there was a problem, so these conditions are called exceptions.

Exception conditions are classified as:
e Environmental Conditions. These are generally caused by

conditions outside the control of a program; for example, device
errors or insufficient memory.

) Programmer Errors. These are typically caused by mistakes in
programming (for example, "bad parameter"), but "divide-by-zero”,
"overflow", "range check", and errors detected by the 8087 80287
Numeric Processor Extension (hereafter referred to generically as
the NPX) are also classified as programmer errors.

The iRMX 86 NUCLEUS REFERENCE MANUAL contains a list of condition codes
that the iRMX 86 Operating System can return, with the mnemonic and
meaning of each code.

UDI 2-5

UDI SYSTEM CALLS IN THE 3iRMX" 86 ENVIRONMENT

When an exception condition is detected, the normal (default) system
action is to display an error message at the console and terminate the
programs However, your program can establish its own exception handler by
calling DQSTRAPSEXCEPTION. The exception handler can interpret condition
codes that are returned by calling DQSDECODESEXCEPTION. The rest of this
section provides some facts that you need in order to write your own
exception handler.

After an exception condition occurs and before your exception handler gets
control, the iRMX 86 Operating System does the following:

l. Pushes the condition code onto the stack of the program that made
the system call having the exception condition.

2. Pushes the number of the parameter that caused the exception onto
the stack (1 for the first parameter, 2 for the second, etc.).

3. Pushes a word onto the stack (reserved for future use).

4, Pushes a word for the NPX onto the stack.,

5. Initiates a long call to the exception handler.
If the condition was not caused by an erroneous parameter, the responsible
parameter number is zero. If the exception code is ESNDP, the fourth item
pushed onto the stack is the NPX status word, and the NPX exceptions have
been cleared.
Programs compiled under the SMALL model of segmentation cannot have an
alternate exception handler, but must use the default system exception

handler. This is because alternate exception handlers must have a LONG
POINTER, which is not available in the SMALL model.

MAKING UDI CALLS FROM PL/M-86 AND ASM8: PROGRAMS

This section describes how to make UDI calls from a program, using the
DQSALLOCATE system call as an example. You can easily generalize from
this example to see how to make the other UDI calls. There are two
examples: one for a call from a PL/M-86 program and one for a call from
an ASM86 program.

The way this chapter shows the DQSALLOCATE system call syntax is the
following:

baseSaddr = DQSALLOCATE (size, exceptSptr);
There are three parameters: size (which has the WORD data type),
exceptSptr (which has the POINTER data type), and base$addr (which has
WORD data type or the SELECTOR data type, depending on the version of
Each of the examples that follow request 128 bytes of memory and point to
a WORD named "ERR" where the condition code is to be returned.

UDI 2-6

UDI SYSTEM CALLS IN THE iRMX" 86 ENVIRONMENT

EXAMPLE PL/M-86 CALLING SEQUENCE

DECLARE ARRAY BASE WORD, (or SELECTOR)
ERR WORD;

ARRAYBASE = DQSALLOCATE (128, @ERR);

EXAMPLE ASM86 CALLING SEQUENCE

MOV AX,128

PUSH AX ; first parameter
LEA AX,ERR

PUSH DS ; second parameter
PUSH AX H

CALL DQALLOCATE

MOV ARRAYBASE ,AX ; returned value

This example is applicable to programs assembled according to the COMPACT,
MEDIUM, and LARGE models of segmentation. For the SMALL model, omit
pushing the DS segment register.

DESCRIPTIONS OF SYSTEM CALLS

This section contains descriptions of the UDI system calls, which are
arranged alphabetically. Every system call description contains the
following information in this order:

° The name of the system call.

e A brief summary of the function of the call.

¢ The form of the call as it is invoked from a PL/M-86 program, with
symbolic names for each parameter.

° Definition of input and output parameters.

e A complete explanation of the system call, including any
information you will need to use the system call,

UDI 2-7

DQSALLOCATE

DQ$SALLOCATE

DQSALLOCATE requests a memory segment from the free memory pool.

base$Saddr = DQSALLOCATE (size, except$ptr);

INPUT PARAMETER
size A WORD which,

if not zero, contains the size, in bytes, of
the requested segment. If the size parameter
is not a multiple of 16, it will be rounded up
to the nearest multiple of 16 before the
allocation request is processed.

if zero, indicates that the size of the request
is 65536 (64K) bytes.

OUTPUT PARAMETERS

2]
<
2]
-
m
=
O
>
—
r
(]

base$addr A SELECTOR, into which the Operating System places
the base address of the memory segment. If the
request fails because the memory requested is not
available, this value will be OFFFFH, and the
system will return an ESMEM exception code.

exceptS$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

The DQSALLOCATE system call is used to request additional memory from the

free space pool of the program. Tasks may use the additional memory for
any desired purpose.

UDI 2-8

DQSATTACH

DQSATTACH

The DQSATTACH system call creates a connection to an existing file.

connection = DQSATTACH (pathSptr, exceptS$ptr);

INPUT PARAMETER

path$ptr A POINTER to a STRING containing the pathname of
the file to be attached.

OUTPUT PARAMETERS
connection A TOKEN for the connection to the file.

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call allows a program to obtain a connection to any existing
file. When the DQSATTACH call returns a connection, all existing
connections to the file remain valid.

Your program can use the DQSRESERVESIO$MEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls
DQSATTACH and for buffers when the program calls DQSOPEN. The advantage
of reserving memory is that the memory is guaranteed to be available when
needed. If memory is not reserved, a call to DQSATTACH might not be
successful because of a memory shortage. See the description of
DQSRESERVESIOSMEMORY later in this chapter for more information about
reserving memory.

UDI 2-9

DQ$CHANGESACCESS

DQSCHANGESACCESS

The DQSCHANGESACCESS lets you change the access rights of the owner of a
file (or directory), or the access rights of the WORLD user.

CALL DQSCHANGESACCESS (path$ptr, user, access, except$ptr);

INPUT PARAMETERS

path$ptr A POINTER to a STRING containing a pathname of the
file.
user A BYTE specifying the user whose access is to be
changed:
Value User
7))
a 0 Owner of the file
H 1 WORLD (all users on the system)
ii access A BYTE specifying the type of access to be granted
> the user. This word is to be encoded as follows.
; (Bit 0 is the low-order bit.)
7]
Bit Meaning
0 User can delete the file or directory
1 Read (the file) or List (the
directory)
2 Append (the file) or Add entry (to
the directory)
3 Update (read and write to the file)
or Change Access (to the directory)
4-7 Should be zero
OUTPUT PARAMETER
exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

UDI 2-10

DQ$CHANGESACCESS

DESCRIPTION

In the general iRMX 86 environment, every program is associated with a
user object, usually referred to as the default user for the program.

The default user consists of one or more user IDs. Each file has an
associated collection of user ID—access mask pairs, where each mask
defines the access rights the corresponding user ID has to the file,

When the program calls DQSCREATE to create a file or DQSATTACH to get
another connection to a file, the resulting connection receives all
access rights corresponding to user IDs that are both associated with the
file and in the default user. The purpose of the DQSCHANGESACCESS system
call is to change, for a particular file, the access rights associated
with a particular user ID. This has the effect of changing the access
granted when the program makes subsequent calls to DQSATTACH to get
further connections to the file.

In the UDI subset of the iRMX 86 environment, a default user has two
IDs. One of them, called the owner ID, is associated with the program.
The other, called the WORLD, is associated universally with all
programs. DQSCHANGESACCESS can change, for the file, the access mask of
either the owner ID or the WORLD.

Changing the access rights for a user ID have no effect on connections
already obtained by the program. However, all subsequently—-obtained
connections reflect the changed access rights,

For more information about user IDs, default users, access masks, WORLD,

access rights, owner IDs, and how connections are related to all of these
entities, refer to the iRMX 86 BASIC 1/0 SYSTEM REFERENCE MANUAL.

NOTE

DQSCHANGESACCESS affects only
connections made after the call is
issued. It does not affect existing
connections to the file.

UDI 2-11

DQSCHANGESEXTENSION

STIVO WALSAS

DQS$SCHANGESEXTENSION

DQSCHANGESEXTENSION changes or adds the extension at the end of a file
name stored in memory (not the file name on the mass storage volume).

CALL DQ$CHANGESEXTENSION (path$ptr, extensionSptr, except$ptr);

INPUT PARAMETERS

path$Sptr A POINTER to a STRING containing a pathname of the
file to be renamed.

extension$ptr A POINTER to a series of three bytes containing
the characters to be added to the pathname. This
is not a STRING. You must include three bytes,
even if some are blank.

OUTPUT PARAMETER

exceptS$Sptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This is a facility for editing strings that represent file names in
memory. If the existing file name has an extension, DQSCHANGES$EXTENSION
replaces that extension with the specifiled three characters. Otherwise,
DQSCHANGESEXTENSION adds the three characters as an extension.

For example, a compiler can use DQSCHANGESEXTENSION to edit a string
containing the name, such as :AFDI:FILE.SRC, of a source file to the
name, such as :AFD1:FILE.OBJ, of an object file, and then create the
object file,

Note that iRMX 86 file names may contain multiple periods, but if they
do, the extension, if any, consists of the characters following the last
periods Note also that an extension may contain more than three
characters, but any extension created or changed by DQ$SCHANGESEXTENSION
has at most three (non-blank) characters.

The three-character extension may not contain delimiters recognized by
DQSGETSARGUMENT but may contain trailing blanks. If the first character
pointed to by extension$ptr is a space, DQSCHANGESEXTENSION deletes the
existing extension, if any, including the period preceding the extension.

UDI 2-12

DQ$CLOSE

DQ$CLOSE

DQSCLOSE waits for completion of I/0 operations (if any) taking place on
the file, empties output buffers, and frees all buffers associated with
the connection.

CALL DQSCLOSE (connection, exceptS$Sptr);

INPUT PARAMETER

connection A TOKEN for a file connection that is currently
open.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

%)
-l
-
b7
O
=
LLi
=
)
>
7s

DESCRIPTION

The DQ$CLOSE system call closes a connection that has been opened by the
DQSOPEN system call. It performs the following actions, in order:

l. Waits until all currently—running I/0 operations for the
connection are completed.

2. Ensures that information, if any, in a partially-filled output
buffer is written to the file.

3+ Releases all buffers assoclated with the connection.

4. Closes the connection. The connection is still valid, and can be
re-opened if necessary.

UDI 2-13

DQ$SCREATE

"
=<
0
-]
m
=
O
>
-
-
»

DQSCREATE

DQSCREATE creates a new file and establishes a connection to the file.

connection = DQSCREATE (pathSptr, except$ptr);

INPUT PARAMETER

path$ptr A POINTER to a STRING containing a pathname of the
file to be created.

OUTPUT PARAMETERS
connection A TOKEN for the connection to the file.
except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This call creates a new file with the name you specify and returns a
connection to its If a file of the same name already exists, it is
truncated to zero length and the data in it is destroyed.

To prevent accidentally destroying a file, call DQSATTACH before calling

DQSCREATE. If the file does not exist, DQSATTACH returns an ESFNEXIST
exception code.

UDI 2-14

DQ$DECODESEXCEPTION

DQ$DECODESEXCEPTION

DQ$DECODESEXCEPTION translates an exception code into its mnemonic.

CALL DQSDECODESEXCEPTION (except$code, buff$ptr, except$ptr);

INPUT PARAMETER

exceptScode

OUTPUT PARAMETERS

buff$Sptr

except$ptr

DESCRIPTION

A WORD containing the numeric exception code that
is to be translated.

A POINTER to a buffer (at least 81 bytes long)

into which the system returns the mnemonic in a
STRING.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

Your program can call DQSDECODESEXCEPTION to exchange a numeric exception
code for its hexadecimal equivalent followed by its mmnemonice. For
example, if you pass DQSDECODESEXCEPTION a value of 2 in the except$code
parameter, the system returns the following string to the area pointed to
by the buff$ptr parameter:

0002: ESMEM

The hexadecimal values and mnemonics for condition codes are listed in

Appendix B.

UDI 2-15

DQ$SDECODESTIME

DQS$DECODESTIME

DQSDECODESTIME returns the current system time and date as a Double Word
integer and as a series of ASCII character bytes.

CALL DQSDECODESTIME (timeSptr, except$Sptr);

OUTPUT PARAMETERS
timeSptr A POINTER to a structure of the following form:

DECLARE DT STRUCTURE(

SYSTEMSTIME DWORD,
DATE (8) BYTE,
TIME (8) BYTE);

If the value in SYSTEMSTIME is O when
DQSDECODESTIME is called, DQSDECODESTIME returns
the current date and time in the DT structure, as
follows. (See the following DESCRIPTION section
for format information.):

SYSTEMSTIME receives the time as the number of
seconds since midnight, January 1, 1978.

(%)
=<
n
-
. m
=
O
>
~-
L
. D

DATE receives the date portion of the time, in
the form of ASCII characters.

TIME receives the time-of-day portion of the
time, in the form of ASCII characters.

If the value in SYSTEMSTIME is not O when
DQSDECODESTIME is called, DQSDECODESTIME accepts
that value as the number of seconds since
midnight, January 1, 1978, decodes the value, and
returns it in the DATE and TIME fields.

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

UDI 2-16

DQ$DECODESTIME

DESCRIPTION

This system call returns the indicated date and time, each as a series of
ASCII bytes. (Note that they are not STRINGs.)

DATE has the form MM/DD/YY for month, day, and year. The two slashes (/)
are in the third and sixth bytes. For example, the date January 15th of
1982 would be returned as:

01/15/82

TIME has the form HH:MM:SS for hours, minutes, and seconds, with
separating colons (:). The value for hours ranges from O through 23.
For example, the time 20 seconds past 3:12 PM would be returned as:

15:12:20

If, when you call DQSDECODESTIME, the SYSTEMSTIME parameter is zero, the
call first gets the system time (number of seconds since midnight,
January 1, 1978) and then decodes it into the series of bytes as just
described.

But if SYSTEMSTIME is not zero on input, DQSDECODESTIME uses it as the
time to decode.

One thing your program can do with DQSDECODESTIME is first to call
DQSFILESINFO to get two DWORD values associated with a file (the last
time the file was updated and the time the file was created). Then the
program can call DQSDECODESTIME to interpret the times.

UDI 2-17

DQS$SDELETE

%))
o
-
m
=
O
>
-
-
()]

DQ$DELETE

DQSDELETE deletes an existing file.

CALL DQSDELETE (pathSptr, exceptSptr);

INPUT PARAMETER

pathSptr A POINTER to a STRING containing a pathname of the
file to be deleted.

OUTPUT PARAMETER

exceptS$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

A program can use this system call to delete a files The immediate
action this call takes is to mark the file for deletion. It does this
rather than abruptly deleting the file, because it will not delete any
file as long as there are existing connections to the file. DQSDELETE
will delete the file only when there are no longer any connections to the
file, that is, when all existing connections have been detached. On the
other hand, once the file is marked for deletion, no more connections may
be obtained for the file by way of DQSATTACH.

UDI 2-18

DQS$SDETACH

DQSDETACH

DQSDETACH deletes a connection (but not the file) established by
DQSATTACH or DQSCREATE.

CALL DQSDETACH (connection, except$ptr);

INPUT PARAMETER

connection A TOKEN for the file connection to be deleted.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call deletes a file connection. If the connection is open,
the DQSDETACH system call automatically closes it first (see DQ$CLOSE).
DQSDETACH also deletes the file if the file has been marked for deletion
and this is the last existing connection to the file.

UDI 2-19

DQSEXIT

DQSEXIT

DQSEXIT transfers control from your program to the iRMX 86 Operating
Systemes It does not return any value to the calling program, not even a
condition code.

CALL DQSEXIT (endScode);

INPUT PARAMETERS

end$code A WORD containing the encoded reason for
termination of the programs See the following
description for information about this value.

DESCRIPTION

DQSEXIT terminates a program. Before the actual termination, all of the
program's connections are closed and detached, and all memory allocated to
the program by DQSALLOCATE is returned to the memory pool.

DQSEXIT does not return a condition code to the calling program.

If the calling program is running as an I/0 job, the calling task,
normally the command line interpreter (CLI), receives an iRMX 86 condition
code based on the value your program supplied in the endScode field when
it called DQSEXIT. This assumes the following sequence of events:

(4]
%
-]
m
=
O
>
-
r-
n

l. The CLT calls RQSCREATE$SIO0$JOB, specifying a response mailbox in
the call.

2. Your program, running as a task in the created I/0 job, performs
its duties and then calls DQS$EXIT, specifying an end$code value.

3. DQSEXIT converts the endScode value into an iRMX 86 condition
code, as follows:

iRMX 86
endScode Condition Associated
Value Code Mnemonic Meaning
0 0COH ESUNKNOWNSEXIT Termination was normal.
1 0ClH ESWARNINGSEXIT Warning messages were
issued.
2 0C2H ESERRORSEXIT Errors were detected.
3 0c3H ESFATALSEXIT Fatal errors were detected.
4 0C4H ESABORTSEXIT The job was aborted.
5-65535 OCOH ESUNKNOWNSEXIT Cause of termination not
knowne

UDI 2--20

DQSEXIT

4o DQSEXIT calls RQSEXITSIOSJOB, specifying the iRMX 86 condition
code in the userS$faultScode field.

5. RQSEXITSIOSJOB places the condition code into the user$fault$code
field of a message. Then RQSEXITSIOSJOB sends the message to the
response mailbox set up by the earlier call to RQSCREATESIOS$JOB.

6. The CLI, when it obtains the message from the response mailbox,
can take appropriate actions. Note that it can call

DQSDECODESEXCEPTION first, to convert the condition code into its
associated mnemonic.

The CLI program supplied with the iRMX 86 Operating System ignores these
UDI condition codes when they are returned in the user$fault$code field
of the response message. Therefore, if you want the CLI to take actions
based on that code, you must provide your own CLI.

For more information about RQSCREATESIOSJOB, RQSEXITSIOS$SJOB, and the

format of the response message, see the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL.

UDI 2-21

DQSFILESINFO

DQSFILESINFO

DQSFILESINFO returns information about a file.

CALL DQSFILESINFO (connection, mode, file$infoS$ptr, except$ptr);

INPUT PARAMETERS

connection A TOKEN containing a connection for the file.

mode An encoded BYTE specifying whether DQSFILESINFO is

to return the User ID of the owner of the file.
Encode as follows:

Value Meaning
Do not return owner's User ID.
L »n 1 Return the owner's User ID.
=<
N
hv |
m
% OUTPUT PARAMETERS
> . ,
F: file$infoS$ptr A POINTER to a structure into which the requested
7)) information is to be returneds The form of the

structure is:

DECLARE FDATA STRUCTURE(

OWNER(15) STRING,
LENGTH DWORD,
TYPE BYTE,
OWNE RSACCESS BYTE,
WORLDSACCESS BYTE,
CREATESTIME DWORD,
LASTSMODSTIME DWORD,
RESERVED(20) BYTE);
where:
OWNER A STRING containing (if requested)
the User ID of the file owner.
TYPE A value indicating the type of file,

as follows:

Value File Type

0 Data file
1 Directory file

UDI 2-22

DQSFILESINFO

OWNERSACCESS An encoded BYTE whose bits
specify the type of access
granted to the owner, as
follows. When a bit is set, it
means the type of access is
granted; otherwise the type of
access is denied. (Bit 0 is the
low—-order bit.)

Bit Associated Type of Access

0 Delete

1 Read (the data file) or
Display (the directory)

2 Append (to the data file)
or Add Entry (to the
directory)

3 Update (read and write to
the file) or Change Access
(to the directory)

WORLDSACCESS An encoded BYTE whose bits
specify the type of access
granted to the WORLD (all users
on the system). When a bit is
set, it means the type of access
is granted; otherwise the type of
access is denied. (Bit 0 is the
low—order bit.)

Bit Associated Type of Access

Delete

1 Read (the data file) or
Display (the directory)

2 Write (to the data file) or
Add Entry (to the directory)

3 Update (read and write to
the file) or Change Access
(to the directory)

CREATESTIME The date and time that the file
was created, expressed as the
number of seconds since midnight,
January 1, 1978. (You can
convert this date/time to ASCIT
characters by calling
DQSDECODESTIME.)

UDI 2-23

DQSFILESINFO

LASTSMODSTIME The date and time that the file
or directory was last modified.

For data files, modified means
written or truncated; for
directories, modified means an
entry was changed or an entry was
added. (You can convert this
date/time to ASCII characters by
calling DQS$DECODESTIME.,)

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

The DQSFILESINFO returns information about a data file or a directory
file.

7]
%
-
m
=
O
>
-
-
(%)

UDI 2-24

DQ$FREE

DQSFREE

DQSFREE returns to the system a segment of memory obtained earlier by
DQSALLOCATE.

CALL DQSFREE (base$addr, exceptSptr);

INPUT PARAMETER
base$addr A TOKEN containing the base address of the segment

to be deleteds This value is the token returned
by DQSALLOCATE when the segment was obtained.

OUTPUT PARAMETER
exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

The DQSFREE system call returns the specified segment to the memory pool
from which it was allocated.

UDI 2-25

DQSGETSARGUMENT

1)
<
(2]
-]
m
=
.0
>
-
-
(7]

DQSGETSARGUMENT

The DQSGETSARGUMENT system call returns arguments, one at a time, from a
command line entered at the system console. This command line is either
that which invoked the program containing the DQSGETSARGUMENT call or a
command line entered while the program was running.

delimitSchar = DQSGETSARGUMENT (argument$ptr, except$ptr);

INPUT PARAMETER

argumentSptr A POINTER to a buffer which will receive the
argument in the form of a STRINGe The buffer must
be at least 81 bytes long.

OUTPUT PARAMETERS

delimitSchar A BYTE which receives the delimiter character.

exceptS$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

Your program can call GETSARGUMENT to get arguments from a command line.
Each call returns an argument and the delimiter character following the
argument.

Your program can use this command in two ways. One way 1s to get
arguments from the command line used to invoke the program at the
console. In this case, you can assume that the command line is already
in a buffer that has automatically been provided for this purpose.

The other way to use this command is to get arguments from command lines
that are entered in response to requests from your programe In this
case, your program must supply a buffer when calling DQSREAD, so this is
the buffer you want to be used when your program calls DQSGETSARGUMENT.

To set this up, your program must call DQSSWITCH$SBUFFER before the call
to DQSGETSARGUMENT.

UDI 2-26

DQSGETSARGUMENT

A delimiter is returned only if the exception code is zero. The
following delimiters are recognized by the iRMX 86 Operating System:

,) (= # 1 $ T N + = > <~

as well as a space () and all characters with ASCII values in the range
0 through 20H.

Before returning arguments in response to DQSGET$SARGUMENT, the system
does the following editing on the contents of the command buffer:

° It strips out ampersands (&) and semicolons ().

e Where multiple blanks are adjacent to each other between
arguments, it replaces them with a single blank. (Tabs are
treated as blanks.)

° It converts lowercase characters to uppercase unless they are
part of a quoted string.

When returning arguments in response to DQSGET$ARGUMENT, the system
considers strings enclosed between matching pairs of single or double
quotes to be literals. The enclosing quotes are not returned as part of
the argument.

EXAMPLE

The following example illustrates the arguments and delimiters returned
by successive calls to DQSGETSARGUMENT. The example assumes that the
contents of the buffer are

PLM86 LINKER.PLM PRINT(:LP:) NOLIST

The following shows what is returned in this case if DQSGETSARGUMENT is
called five times.

CALL NUMBER ARGUMENT RETURNED DELIMITER RETURNED

1 (O5H)PLMB6 space
2 (OAH)LINKER.PLM space
3 (O5H)PRINT (
4 (04H) : LP:)
5 (0O6H)NOLIST cr

Note that the argument returned has the form of an iRMX 86 string, with
the first byte devoted to specifying the length of the string. In the
second call, there are ten characters in the argument, so the first byte
contains OAH.

Note that the last delimiter for each example is a carriage return (cr).
This is how your program can determine that there are no more arguments
in the command line.

UD1I 2-27

DQ$GETSCONNECTIONSSTATUS

DQSGETS$CONNECTIONSSTATUS

The DQSGET$CONNECTIONSSTATUS system call returns information about a file
connection.

CALL DQSGETSCONNECTIONSSTATUS (connection, info$ptr, exceptSptr);

INPUT PARAMETER

connection A WORD containing a token for the connection whose
status is desired.

OUTPUT PARAMETERS

n infoSptr A POINTER to a structure into which the Operating
ag System is to place the status information. The
- structure has the following format:
m
= DECLARE INFO STRUCTURE(
Y OPEN BYTE,
F: ACCESS BYTE,
o SEEK BYTE,
FILESPTRS DWORD) ;
Where:
OPEN 1 if the connection is open; 2
otherwise.
ACCESS Access privileges of the

connections The right is granted if
the corresponding bit is set to l.
(Bit 0 is the low-order bit.)

Bit Access
0 Delete
1 Read
2 Write
3 Update (read and
write)

UDI 2-28

DQ$SGETSCONNECTIONSSTATUS

SEEK Types of seek supported.
Value Meaning
0 No seek allowed
3 Seek forward and
backward

Other values are not meaningful.

FILESPTR This DWORD integer marks the current
position in the file. The position
is expressed as the number of bytes
from the beginning of the file, the
first byte being byte 0. This field
is undefined if the file is not open
or if seek is not supported by the
device. (For example, seek

operations are not valid for a line
printer.)

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B,

DESCRIPTION

DQSGETSCONNECTIONSSTATUS returns information about a file CONNECTION.
You might use this system call, for example, if your program has
performed several read or write operations and it is necessary to
determine where the file pointer is now located.

UDI 2--29

DQSGETSEXCEPTIONSHANDLER

DQSGETSEXCEPTIONSHANDLER

DQSGETSEXCEPTIONSHANDLER returns the address of the current exception
handler.

CALL DQSGETSEXCEPTION (address$ptr, except$ptr);

OUTPUT PARAMETERS

addressSptr A POINTER to a POINTER into which this system call
returns the entry point of the current exception
handler.

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

DQSGETSEXCEPTIONSHANDLER is an system call that returns to your program
the address of the current exception handler. This is the address
specified in the most recent call, if any, to DQSTRAPSEXCEPTION.
Otherwise the value returned is the address of the system default
exception handler.

1Y)
<
n
-
m
=
O
>
r
r
w

This routine always returns a two-word pointer, even if called from a
program compiled under the SMALL model of segmentation.

DQSGETSEXCEPTIONSHANDLER is used in conjunction with DQSTRAPSEXCEPTION

and DQSDECODESEXCEPTION. See the descriptions of these calls for more
information.

UDI 2-30

DQS$SGETSSIZE

DQSGETSSIZE

DQSGET$SIZE returns the size of a previously—allocated memory segment.

size = DQSGETSSIZE (baseS$addr, exceptSptr);

INPUT PARAMETER

baseSaddr A TOKEN for a segment of memory that has been
allocated by the DQSALLOCATE call. This is the
same address returned by DQSALLOCATE when the
segment was allocated.

OUTPUT PARAMETERS
size A WORD which,
if not zero, contains the size, in bytes, of
the segment identified by the baseSaddr

parametere.

if zero, indicates that the size of the segment
is 65536 (64K) bytes.

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

The GETSSIZE system call returns the size, in bytes, of a segment. The
size of the segment might not be exactly what was originally requested
for the segment, because DQSALLOCATE allocates memory in 16-byte
paragraphs. If a request is for a size that is not a multiple of 16,
DQSALLOCATE increases the size of the request to the next higher multiple
of 16 before acting upon the request.

UDI 2-31

DQSGETSSYSTEMSID

1]
%
-
m
=
0O
>
-
r
(7]

DQSGETS$SYSTEMSID

DQSGET$SYSTEMSID returns the identity of the operating system providing
the environment for the UDI,

CALL DQSGETSSYSTEMSID (id$ptr, except$ptr);

OUTPUT PARAMETERS
idSptr A POINTER to a 21-byte buffer into which
DQSGETSSYSTEMSID places a STRING identifying the
operating systemn.
except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION
This system call returns the string:
iRMX 86

followed by 13 blanks.

UDI 2-32

DQS$SGETSTIME

DQSGE TS$TIME

DQSGETSTIME returns the current date and time in character format.

CALL DQS$GETSTIME (buff$ptr, exceptSptr);

This system call performs no action except that it returns. It is
included only for compatibility with previous versions of the UDI. You
should use the DQSDECODESTIME system call for this function.

UDI 2-33

DQ$SOPEN

%)
<
172]
-
m
=
O
>
-
-
(7]

DQSOPEN

The DQSOPEN system call opens a file for I/0 operations, specifies how

the file will be accessed, and specifies the number of buffers needed to
support the I/0 operations.

CALL DQS$SOPEN (connection, access, num$buf, except$ptr);

INPUT PARAMETERS
connection

access

num$buf

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the file connection to be opened.

A BYTE specifying how the connection will be used

to access the file. This value is encoded as
follows:

Value Meaning
1 Read only
2 Write only
3 Update (both reading and writing)

A BYTE containing the number of buffers needed for
this connection. Specifying a value larger than 0
implicitly requests that “"double buffering” (that
is, read-ahead and/or write-behind) is to be
performed automatically.

A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

This system call prepares a connection for use with DQSREAD, DQSWRITE,
DQSSEEK, and DQSTRUNCATE commands. Any number of connections to the same
file may be open simultaneously.

The DQSOPEN system call does the following:

UDI 2-34

DQ$OPEN

° Creates the requested buffers.

° Sets the connection's file pointer to zero. This a place marker
that tells where in the file the next I/0O operation is to begin.

e Starts reading ahead if num$Sbuf is greater than zero and the
access parameter is "Read only" or "Update.™

Selecting Access Rights

The system does not allow reading using a connection open for writing
only nor writing using a connection open for reading only. If you are
not certain how the connection will be used, specify updating. However,
if the specified connection does not support the specified type of
access, an exception code is returned.

Selecting the Number of Buffers

The process of deciding how many buffers to request is based on three
considerations —— compatibility, memory, and performance.

COMPATIBILITY. If you expect to run your UDI program on other systems,
you should request no more than two buffers.

MEMORY. The amount of memory used for buffers is directly proportional
to the number of buffers. So you can save memory by using fewer buffers.

PERFORMANCE. The performance consideration is more complex. Up to a
certain point, the more buffers you allocate, the faster your program can
rune The actual break-even point, where more buffers don't improve
performance, depends on many variables. Often, the only way to determine
the break—even point is to experiment. However, the following statements
are true of every system:

. To overlap I/0 with computation, you must request at least two
buffers.,

] If performance is not at all important but memory is, request no
buffers.

Requesting zero buffers means that no buffering is to occur. That is,
each DQSREAD or DQSWRITE is followed immediately by the physical I/O
operation necessary to perform the requested reading or writing.
Interactive programs should open :CI: and :CO: with a request for no
buffers.

UDI 2-35

DQSOPEN

N
=<
n
—f
m
=
O
>
—
r
- »

If your program normally calls DQSSEEK before calling DQSREAD or
DQSWRITE, it should request one buffer.

Your program can use the DQSRESERVESIOSMEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls
DQSATTACH and for buffers when the program calls DQSOPEN. The advantage
of reserving memory is that the memory is guaranteed to be available when
needed. If memory is not reserved, a call to DQ$OPEN might not be
successful because of a memory shortage. See the description of
DQSRESERVESIOSMEMORY later in this chapter for more information about
reserving memory.

UDI 2-36

DQ$OVERLAY

DQSOVERLAY

In systems using overlays, the root module calls DQSOVERLAY to load an
overlay module.

CALL DQSOVERLAY (name$ptr, exceptSptr);

INPUT PARAMETER

nameSptr A POINTER to a STRING containing the name of an
overlay module. The name must be in uppercase.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

A root module in an overlay system calls DQSOVERLAY each time it wants to
load an overlay module.

If your assembly language or PL/M—-86 program uses the DQSOVERLAY
procedure, you should take care to ensure that you link the UDI library
to your program correctly. The 1APX 86, 88 FAMILY UTILITIES USER'S GUIDE
contains an example of linking an overlay programe. This example lists a
two-step link process, as follows:

le Link the root and each of the overlays separately, specifying the
OVERLAY control, but not the BIND control, in each LINK86 command.

2. Link all the output modules together in one module, specifying
the BIND control, but not the OVERLAY control.

This is the same process you should use when linking your iRMX 86 overlay
programs.

UDI 2-37

DQSOVERLAY

X%
=<
N
B
)
=
O
»r
-
-
w

In addition, you must link the entire UDI library to the root portion of
the program and not to any of the overlays. To do this, use the INCLUDE
control to include the UDI externals file when assembling or compiling
the root portion of the programe By including this file with the root
module, you ensure that the root module makes external references to all
UDI routines. This prevents unsatisfied external references when the
root is linked to the overlays.

UDI 2-38

DQS$SREAD

DQSREAD

The DQSREAD system call copies bytes from a file into a buffer.

bytes$read = DQSREAD (connection, buffSptr, bytesSmax,
exceptSptr);

INPUT PARAMETERS

connection A TOKEN for the connection to the file. This
connection must be open for reading or for both
reading and writing, and the file pointer of the
connection must point to the first byte to be read,

buffSptr A POINTER to the buffer that is to receive the
data from the file.

bytesSmax A WORD containing the maximum number of bytes to
be read from the file.

OUTPUT PARAMETERS

7]
-l
-l
<
o
=
L
n
>
n

bytes$Sread A WORD containing the number of bytes actually
reade This number is always equal to or less than
the bytesSmax.

exceptSptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call reads a collection of contiguous bytes from the file
associated with the connection. The bytes are placed into the buffer
specified in the call.

The Buffer

The buff$ptr parameter tells the Operating System where to place the
bytes when they are read. Your program must provide this buffer.
DQSREAD copies as many bytes as it is instructed to copy (unless it
encounters the end of the file), so if the buffer is not long enough,
copying continues beyond the end of the buffer,

UDT 2-39

DQS$SREAD

Number of Bytes Read

The number of bytes that your program requests is the maximum number of
bytes that DQSREAD copies into the buffer. However, there are two
circumstances under which the system reads fewer bytes.

® If the DQSREAD detects an end of file before reading the number
of bytes requested, it returns only the bytes preceding the end
of file. 1In this case, the bytes$read parameter is less than the
bytesSdesired parameter, yet no exceptional condition is
indicated.

. If an exceptional condition occurs during the reading operation,

information in the buffer and the value of the bytesS$read
parameter are meaningless and should be ignored.

Connection Requirements

The connection must be open for reading or updating. If it is not,
DQSREAD returns an exceptional condition.

1)
<
2]
-
m
=
o
>
-
r
()

UDI 2--40

DQSRENAME

DQ$RENAME

The DQSRENAME system call changes the pathname of a file.

CALL DQSRENAME (pathSptr, newSpath$ptr, except$ptr);

INPUT PARAMETERS

pathSptr A POINTER to a STRING that specifies the pathname
for the file to be renamed.

newSpathSptr A POINTER to a STRING that specifies the new
pathname for the file. This path must not refer
to an existing file.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call allows your programs o change the pathname of a data
file or a directory. Be aware that when you rename a directory, you are
changing the pathnames of all files contained in the directory. When you
rename a file to which a connection exists —- this is permitted —-- the
connection to the renamed file remains established.

A file's pathname may be changed in any way, provided that the file or
directory remains on the same volume.

UDI 2-41

DQ$RESERVES$SIOSMEMORY

DQSRESERVESI OSMEMORY

The DQSRESERVESIOSMEMORY lets your program reserve enough memory to
ensure that it can open and attach the files it will be using.

CALL DQSRESERVESIOSMEMORY (number$files, number$buffers, exceptSptr);

INPUT PARAMETERS

number$files The maximum number of files the program will have
attached simultaneously. This value must not be
greater than 12, Moreover, no more than 6 of
these files may be open similtaneously.

numberSbuffers The total number of buffers (up to a maximum of
12) that will be needed at one time. For example,
if your program will have two files open at the
same time, and each of them has two buffers
(specified when they are opened), number$files
should be two and numberS$buffers four.

OUTPUT PARAMETER

N’
%
-
L
=
O
>
-
r~
»

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

DQSRESERVESIOSMEMORY sets aside memory on behalf of the calling program,
guaranteeing that it will be available when needed later for attaching

and opening files. This memory is used for internal UDI data structures
when the program requests file connections via DQSATTACH and for buffers
when the program opens file connections via DQSOPEN. Memory reserved in
this way is not eligible to be allocated by DQSALLOCATE. Your program

should call DQSRESERVESIOSMEMORY before making any calls to DQSALLOCATE.

In the call to DQSRESERVESIOSMEMORY, you may specify as many as 12 files

(that can be attached using the reserved memory) and as many as 12
buffers (that can be requested when opening files).

UDI 2--42

DQ$RESERVES$IOSMEMORY

NOTE

If a program calls DQSRESERVESIOSMEMORY
after making one or more calls to
DQSATTACH or DQSOPEN, the memory used
by those calls are immediately applied
against the file and buffer counts
specified in the DQ$SRESERVESIOSMEMORY
call, possibly exhausting the memory
supply being requested.

If your program calls DQSRESERVESIOSMEMORY more than once in a program,
it simply changes the amount of memory reserved.

RESTRICTION

This system call is effective only if your program uses exclusively UDI
system calls to communicate with the IRMX 86 Operating System.

UDI 2-43

DQ$SEEK

DQSSEEK moves the file pointer associated with the specified connection.

CALL DQ$SEEK (connection, mode, moveS$count, except$ptr)

INPUT PARAMETERS

connection A TOKEN for the open connection whose file pointer
is to be moved.

mode A BYTE indicating the type of file pointer
movement being requested, as follows:

Mode Meaning

1 Move the pointer backward by the
specified move count. If the move
count is large enough to position the
pointer past the beginning of the file,
set the pointer to the first byte
(posit:ion zero).

)
<
2]
-]
m
=
O
>
-
-
7

2 Set the pointer to the position
specified by the move count. Position
zero 1.s the first position in the
file. Moving the pointer beyond the
end of the file is permitted.

3 Move the file pointer forward by the
specified move count. Moving the
pointer beyond the end of the file is
permitted.

4 First move the pointer to the end of
the file and then move it backward by
the specified move count. If the
specified move count would position the
pointer beyond the front of the file,
set the pointer to the first byte in
the file (position zero).

moveScount A DWORD specilfying how far, in bytes, the file
pointer is to be moved.

UDI 2-44

DQ$SEEK

OUTPUT PARAMETER

exceptS$Sptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B,

DESCRIPTION

When performing non—-sequential I/0, your programs can use this system
call to position the file pointer before using the DQSREAD, DQSTRUNCATE,
or DQSWRITE system calls. The location of the file pointer specifies
where in the file a DQSREAD, DQSWRITE, or DQSTRUNCATE operation is to
begin. If your program is performing sequential I/0 on a file, it need
not use this system call,

It is legitimate to position the file pointer beyond the end of a file,
If your program does this and then invokes the DQSREAD system call,
DQSREAD behaves as though the read operation began at the end of file.

If your program calls DQSWRITE when the file pointer is beyond the end of
the file, the data is written as requesteds Be aware that if you expand
your file in this manner, the expanded portion of the file can contain
undefined information.

UDI 2-45

DQ$SPECIAL

%)
=<
]
-]
m
=
O
>
r
-
(%]

DQSSPECIAL

DQSSPECIAL specifies whether line editing features are to be available to
operators entering information at the console.

CALL DQ$SPECIAL (mode, conn$ptr, except$ptr);

INPUT PARAMETERS

mode A BYTE used to specify the mode of terminal
input. The values and their meanings are:

Value Meaning

1 Transparent
2 Line editing
3 Immediate transparent

Each of these types is explained in the
DESCRIPTION section.

conn$ptr A POINTER to a TOKEN for a connection to the :CI:

file. The connection must have been established
by DQ$ATTACH.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call changes the mode in which your program receives input
from a console input device. When your system starts to run, the mode is
line editing (mode 2). But by using DQ$SPECIAL you can change from line
editing to one of the transparent modes, or back to line editing.

UDI 2-46

DQ$SPECIAL

The Line Editing Modes

The meanings of the mode parameter are as follows:

Value Meaning
1 Transparent. Interactive programs often need to obtain

characters from the console exactly as they are typed.
This is made possible by transparent mode. In transparent
mode, all characters are placed in the buffer specified by
the call to DQSREAD. (The only exceptions are CTRL/C,
which terminates the program, and CTRL/D, which is
discarded.) DQSREAD returns control to the calling
program when the number of characters entered equals the
number of characters specified in the read request.

2 Line Editing. This option means that the console operator
has the opportunity to correct typing errors with special
keys before the application program receives the
characters typede Line editing characters and their
effects are described following the descriptions of these
line editing modes.

3 Immediate Transparent. This option is nearly the same as
Transparent 1 mode, except that in Transparent 3 mode
DQSREAD returns control to your program immediately after
it is called, regardless of whether any characters have
been typed since the last call to DQSREAD. If no
characters have been typed, this is indicated by the
bytes$read parameter of the DQSREAD call. Characters that
are typed between successive calls to read the terminal
are held in the "type—ahead” buffer.

The Line Editing Characters

The following characters and control characters have the following
special editing capabilities on console input when line editing mode
(mode 2) is in effect:

CARRIAGE RETURN Terminates the current line and positions the
or cursor at the beginning of the next line.
LINE FEED Entering either of these characters adds a
carriage return/line feed pair to the input line.

RUBOUT Deletes (rubs out) the previous character in the
input line. Each RUBOUT removes a character from
both the screen and the type—ahead buffer, and
moves the cursor back to that character position.

UDI 2-47

DQS$SPECIAL

n
-<
n
-
m
=
O
>
r
r-
(7]

CTRL/R

CTRL/U

CTRL/X

If the current input line is not empty, this
character reprints the line with editing already
performede This enables the operator to see the
effects of the editing performed since the most
recent line terminator was entered. If the
current line is empty, CTRL/R reprints the
previous line. Additional CTRL/Rs display
previous lines until all saved lines have been
displayed. After that, each additional CTRL/R
displays the last line again.

Discards the current line and the entire contents
of the type—ahead buffer.

Discards the current input line. It also displays
the "#" character at the terminal, followed by a
carriage returr/line feed.

UDI 2-48

DQ$SWITCHS$SBUFFER

DQ$SWITCHSBUFFER

DQSSWITCHSBUFFER substitutes a new command line for the existing one.

char$offset = DQSSWITCHSBUFFER (buffS$ptr, except$ptr);

INPUT PARAMETER

buffSptr A POINTER to a STRING containing the "new" command
line, that is, the one whose arguments are to be
returned by subsequent calls to DQSGETSARGUMENT.

OUTPUT PARAMETERS

charSoffset A WORD into which the UDI places a number. This
number represents the number of bytes from the
beginning of the "o0ld" command line to the last
character of the last argument so far processed by
DQSGETSARGUMENT. 1In other words, the value in
char$Soffset tells how many characters in the old
command line have been processed by the time of
this call.

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

When your program is invoked from the console, the Operating System
places the invocation command into a buffer. Typically, your program
will use DQSGET$SARGUMENT to obtain the arguments in that command. If
your program subsequently calls DQSREAD to obtain an additional command
line from the console, it can call DQSSWITCHSBUFFER to designate the
buffer with the new command line as that from which arguments are to be
obtained when DQSGET$SARGUMENT is called.

You can use DQS$SWITCHSBUFFER any number of times to point to different
strings in your programs However, you cannot use DQSSWITCHSBUFFER to
return to the command line that invoked the program, because only the
Operating System knows the location of that buffer. Therefore, you
should use DQSGET$ARGUMENT to obtain all arguments of the invocation
command line before issuing the first call to DQSSWITCH$SBUFFER.

UDI 2-49

DQ$SWITCHSBUFFER

STIvO N3ILSAS

A second service of DQSSWITCHSBUFFER is that it returns the location of
the last byte of the last argument so far obtained from the old buffer by
calls to DQSGETSARGUMENT. Therefore, in addition to using
DQSSWITCHSBUFFER to switch buffers, you can use it after one or more
DQSGETSARGUMENT calls to determine where in the buffer the next argument
starts. However, doing this "resets"” the buffer, in the sense that the
next call to DQSGETSARGUMENT would return the first argument in the
buffer. To return to the desired point in the buffer, where you can
continue to extract arguments, call DQ$SWITCHSBUFFER again, but when
doing so, use the sum of the starting address of the buffer and the value
returned by the previous call to DQ$SWITCHSBUFFER. The following is an
example showing how to use the second service of DQSSWITCHSBUFFER:

DECLARE

mybuffer$ptr POINTER,

buf £$ptr POINTER,

argSptr POINTER,

buf f STRUCTURE(
of fset WORD,
segment: WORD) AT (@buffSptr),

nextS$Schar WORD,

charSoffset WORD,

condition$code WORD,

delimit$char BYTE;

/* initialize buff$ptr and nextSchar */
buff$ptr = mybuf fSptr;
next$char = 0;

/* determine where in the buffer the next argument starts */
char$offset = DQSSWITCHSBUFFER(buffSptr, @conditionS$Scode);
if condition$code <> E$OK then /* do error processing */
nextSchar = charS$offset + next$char;

/* return to desired point in buffer */
buff.offset = buff.offset + charSoffset;
charSoffset = DQSSWITCHSBUFFER(buff$ptr, @conditionS$code);
if condition$code <> ESOK then /* do error processing */

/* get next argument */
delimit$char = DQSGETSARGUMENT(arg$ptr, @condition$Sptr);
if condition$code <> ESOK then /* do error processing */

UDI 2-50

DQSTRAPSCC

DQ$TRAPSCC

The DQSTRAPSCC lets you specify a procedure that is to get control if an
operator enters CTRL/C at the console.

CALL DQSTRAPSCC (entry$pnt, except$ptr);

INPUT PARAMETER

entrySpnt

OUTPUT PARAMETER

exceptSptr

DESCRIPTION

Normally, when an operator enters CTRL/C at the console, the system

A POINTER to the entry point of your CTRL/C
procedure.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

empties the type-ahead buffer and aborts the currently-executing
programe By calling DQSTRAPSCC, your program can designate any other
procedure, so that it will automatically get control instead whenever
CTRL/C is entered at the console.

UDI 2-51

DQS$TRAPSEXCEPTION

DQSTRAPSEXCEPTION

DQSTRAPSEXCEPTION substitutes an alternate exception handler for the
default exception handler provided by t:he operating system.

CALL DQS$TRAPSEXCEPTION (address$Sptr, except$Sptr);

INPUT PARAMETER

addressSptr A POINTER to a POINTER containing the entry point
of the alternate exception handler.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

STIVO INILSAS

Normally, the exception handler terminates the program that made the call
producing the exception condition and displays a message to that effect
on the console screen. DQSTRAPSEXCEPTION designates an alternative

exception handler as the one to which control should pass when an
exceptional condition occurs.

See the section EXCEPTION-HANDLING SYSTEM CALLS at the beginning of this

chapter for an explanation of the conditions of the stack when your
exception handler receives control.

UDI 2-52

DQ$TRUNCATE

DQSTRUNCATE

DQSTRUNCATE moves the end-of-file to the current position of a named file
connection's file pointer, thereby freeing the portion of the file lying
beyond the file pointer.

CALL DQSTRUNCATE (connection, except$ptr);

INPUT PARAMETER

connection A TOKEN for a connection to the named data file
that is to be truncated. The file pointer of this
connection marks the place where truncation is to
occurs The byte indicated by the pointer is the
first byte to be dropped from the file,

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call truncates a file at the current setting of the file
pointer and releases all file space beyond the pointer for reallocation
to other files. If the pointer is at or beyond the end of file, no
truncation is performed. Unless the file pointer is already at the
proper location, your program should use the DQSSEEK system call to
position the pointer before calling DQS$TRUNCATE.

The connection should have write, or read and write access rights,
established when the connection was opened.

UDI 2-53

DQSWRITE

DQSWRITE

The DQSWRITE system call copies a collection of bytes from a buffer into
a file.

CALL DQSWRITE (connection, buff$ptr, count, exceptS$Sptr;

INPUT PARAMETERS

connection A WORD containing a token for the connection to
the file into which the information is to be
written.

buff$ptr A POINTER to a buffer containing the data to be

written to the specified file.

count A WORD containing the number of bytes to be
written from the buffer to the file.

OUTPUT PARAMETER

)]
%
-
m
=
O
>
-
-
(2]

exceptS$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call causes the Operating System to write the specified
number of bytes from the buffer to the file.

Connection Requirements

If the connection is not open for writing or updating, DQSWRITE returns
an exception code.

UDI 2-%54

DQ$SWRITE

Number of Bytes Written

Occasionally, DQSWRITE writes fewer bytes than requested by the calling
programe This happens under the following two circumstances:

° When DQSWRITE encounters an I/0 error.

e When the volume to which your program is writing becomes full.

Where the Bytes Are Written

DQSWRITE starts writing at the location specified by the connection's
file pointer. After the writing operation is completed, the file pointer
points to the byte immediately following the last byte written.

If your program must reposition the file pointer before writing, it can
do so by using the DQSSEEK system call.

n
-
-l
<
o
=
w
-
(2]
>
(%)

*k®

UDI 2-55

CHAPTER 3
UDI EXAMPLE

This chapter presents an example of UDI system calls. After the program
listing are the compiler and linker commands used to build the program,
and a listing of the link map.

THE EXAMPLE LISTING

Scompact
Soptimize(3)
/*0...........0....00........'.......0.!!.0.......'..‘........0............
%

* Program UPPER

%

* This program demonstrates the use of UDI file-handling and

* command-line-parsing system calls. The program reads an input

* file of characters and converts all lowercase alphabetic characters

* to uppercase. The converted data are written to a second file.

%

* UPPER expects the command line that invokes it to be of the form:

*

* UPPER infile [TO outfile]

%

* (If "TO outfile" is not specified, :CO: is assumed.)
*..l.......CO.........................li.....".‘....ll.....‘.......0.....
*/

upper: DO;
/* Literal declaration of TOKEN as SELECTOR */
Sinclude(:includetltksel.lit)

/* External declaration files for UDI system calls */

S8include(:include:uexit.ext)
$include(:includetuclose. ext)
$include(:includetuwrite.ext)
$include(:include:uread. ext)
$include(:include:uopen.ext)
$include(:includetucreat.ext)
$include(:include:ugtarg.ext)
$include(:includetuatach.ext)
$include(:include:udcexsext)

UDI 3-1

UDI EXAMPLE

DECLARE

CR LITERALLY 'ODH',

LF LITERALLY 'OAH',
ESOK LITERALLY '0'

TOKEN LITERALLY 'SELECTOR';

DECLARE

coSconn TOKEN;

$subtitle('check$exception')

/*..............l‘........'............l)......II.......'..0.'.............

Procedure to check an exception code. If the exception code is
not ESOK, print a message and exit.

P08 0000 PO C RGOS0 BOC00CNNOI0 0000 OEIONOODOOPENNOOOOPOCODNESIOEOIOOEOSISOEOGSOEIOS

checkS$exception: PROCEDURE(exception, info$p) REENTRANT;

DECLARE

exception WORD,

info$p POINTER,

info BASED info$p STRUCTURE(
count BYTE,
char(1) BYTE),

excSbuf STRUCTURE (
count BYTE,
char(80) BYTE),

dummy WORD ;

IF exception <> ESOK THEN
DO;
CALL dqS$decode$exception(exception, @exc$buf, @dummy);
CALL dqSwrite(coS$Sconn, @excSbuf.char, excS$buf.count, @dummy);
CALL dq$write(coSconn, @(': '), 2, @dummy);
CALL dqS$write(co$conn, @info.char, info.count, @dummy);
CALL dqSwrite(co$conn, @(CR, LF), 2, Q@dummy);

CALL dq$exit(3);
END;

END checkS$exception;

UDT 3-2

UDI EXAMPLE

$subtitle('Main')

/*...C'..O.........0...'.0...'........Il..l’.......................Q.ll...'

*
*
*
%

*/

——- MAIN PROGRAM -—-

® 00000 N0 PP OOCOOPIONO OO0 OOONIOO PO OOORO0 LGSR OODOIDNOOOSPNOOSOEOOEPIOOSEOSEOIDOIOIDLETLSEDODS

DECLARE st WORD;

DECLARE
in$name(50) BYTE,
out$name(50) BYTE,
in$conn TOKEN,
out$conn TOKEN,
delim BYTE;
DECLARE
buffer(1024) BYTE,
in$bp POINTER,
inSchar BASED in$bp BYTE,
nextchar BASED inS$bp (2) BYTE,
inScount WORD,
i WORD ;

/*....0.0..’.....000...00......0..0....00.0..00..00.00.....0.0.00.0...
* (Create a connection to :CO: (console output).

*.0...00..0.'.....0....-.lo..o..ol'.o.o.0.0.'....0........'.0..0.000.'

*/
coSconn = dq$create(@(4, ':CO:'), @st);

CALL dq$open(co$conn, 2, 0, @st);

/*00.....0....0.0.0...Oo..l..o....u........oo..o".oo.o..o....l.0.....

* TIgnore the name of the program (the first argument).

® 0000000000000 SR RO DPOOPOOOOCOONDDOCDLOOROPOPNOOBNLROENPEOIREOEPIOIOENOEOSEOEBNOSNOIINSIDOS

*/

delim = dqSget$argument(@uffer, @st);
CALL check$exception(st, 0);
IF delim = CR THEN

CALL dqS$exit(0);

UDI 3-3

UDI EXAMPLE

/*..I.'.......Q...........’........."Q.".............................

* Attach the input file, and open it.

*.‘....0......l...—.‘......‘........'....................C..l........'

*/

delim = dqSgetargument(@inSname, @st);
CALL check$exception(st, 0);

inSconn = dq$attach(@inSname, @st);
CALL checkSexception(st, @in$name);

CALL dq$open(in$conn, 1, 2, @st);
CALL checkSexception(st, @in$name);

/*.I.........‘..........'....O.I.......l..............I."............

* Find out if there 1s an output file specified.s If so, attach
* and open it. If not, use :CO: for output.

*-o-oooooooouo.-o.oooooooooo.o-oo-o:no.o.ooc.o.nooo.o.oooooo.oo.ooo.oo

*/
IF delim <> CR THEN
DO;
delim = dqSgetSargument(@uffer, @st);
CALL checkS$exception(st, 0);
IF (delim = CR) OR
(buffer(0) <> 2) OR
(buffer(l) <> 'T') OR
(buffer(2) <> '0') THEN
DO;
CALL dqSwrite(coSconn, @('Invalid output file', CR,
LF), 21, @st);
CALL dqS$exit(3);
END;
delim = dqSgetSargument(@utHname, @st);
CALL checkS$exception(st, 0);
outSconn = dq$create(@ut$name, @st);
CALL checkSexception(st, Gout$name);
CALL dq$open(out$conn, 2, 2, @st);
CALL check$exception(st, @out$name);
END;
ELSE

outSconn = coSconn;

UDI 3-4

UDI EXAMPLE

/*"............'.......DO'........1!.................‘..........-'....

* Read from input, convert, and write to output
%

Q@ 00 0000000080000 0000 0POCICOOSSOOISNROPEODO0 OSSO OLORNOGEOECEOIESIOSEOIDOILBIOIPOSOLOEOIOLEOIEONOIOIDOIES

*/

DO WHILE 1;
inScount = dq$read(inS$conn, @buffer, size(buffer), @st);
CALL check$exception(st, @inS$name);

IF inScount = 0 THEN
GOTO endSofS$file;

DO i=0 TO in$count-1;
IF (buffer(i) >= "'a') AND (buffer(i) <= 'z') THEN
buffer(i) = buffer(i) + 'A'-'a';
END;

CALL dqSwrite(out$conn, @buffer, inScount, @st);
CALL checkSexception(st, @outSname);
END;
endoffile:

/*........'.......li......'..'.'...0...........l.....‘..‘...'......0..

* Close input and output files, and exit
*

® 900000000000 OOCDPOPOEDOOOCOOODOOCRNP OO ODLDODPPOEOEPORPORPORPSOOORLNRNOIOONBOENPOIIITOOS

*/

CALL dqS$close(in$conn, @st);
CALL checkSexception(st, @inS$name);

CALL dq$close(out$conn, @st);
CALL check$exception(st, @outS$name);

CALL dq$exit(0);

END upper;

COMPILING AND LINKING

The program UPPER was compiled and linked on an iRMX 86-based system with
the following commands:

attachfile :sd:1ib/rmx86 as :1lib:
plm86 upper.p86
1ink86 upper.obj, :lib:compac.lib to upper bind mempool(5000H)

The link map is on the next page.

UDI 3-5

UDI EXAMPLE

iRMX 86 8086 LINKER, V2.0

INPUT FILES: UPPER.OBJ, :LIB:COMPAC.LIB
OUTPUT FILE: UPPER
CONTROLS SPECIFIED IN INVOCATION COMMAND:

BIND MEMPOOL(5000H)
DATE: 14/02/83 TIME: 12:05:37
LINK MAP OF MODULE UPPER

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS
02F6H —===—=—- W CODE CODE
00lEH =-=--- %) CONST CONST
04750 ————-- %) DATA DATA
04540 —=——-- W STACK STACK
0000H --=--- W MEMORY MEMORY
0000H —--———- G ?77SEG

INPUT MODULES INCLUDED:
UPPER.OBJ (UPPER)
:LIB:COMPAC.LIB(DQATTACH)
:LIB:COMPAC.LIB(DQCLOSE)
:LIB:COMPAC.LIB(DQCREATE)
:LIB:COMPAC.LIB(DQDECODEEXCEPTION)
:LIB:COMPAC.LIB(DQEXIT)
:LIB:COMPAC.LIB(DQGETARGUMENT)
:LIB:COMPAC.LIB(DQOPEN)
:LIB:COMPAC.LIB(DQREAD)
:LIB:COMPAC.LIB(DQWRITE)
:LIB:COMPAC.LIB(SYSTEMSTACK)

GROUP MAP

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE

GROUP NAME: DGROUP
OFFSET SEGMENT NAME
0000H CONST

OOlEH DATA

SYMBOL TABLE OF MODULE UPPER

BASE OFFSET TYPE SYMBOL BASE

G(1) 0293H PUB DQATTACH G(1)

G(1) 02A9H PUB DQCREATE G(1)

G(1) 02BFH PUB DQEXIT G(1)

G(1) 02D5H PUB DQOPEN G(1)

G(1) 02EBH PUB DQWRITE S(4)
&%

UDI 3-6

OVERLAY

OFFSET

029EH
02B4H
02CAH
02EOH
006CH

TYPE

PUB
PUB
PUB
PUB
PUB

SYMBOL

DQCLOSE
DQDECODEEXCEPTION
DQGETARGUMENT
DQREAD
SYSTEMSTACK

APPENDIX A
DATATYPES

The following data types are recognized by the iRMX 86 Operating System.

BYTE

WORD

INTEGER

POINTER

OFFSET

SELECTOR

TOKEN

STRING

DWORD

An unsigned, eight-bit binary number.
An unsigned, two—-byte, binary number.

A signed, two—byte, binary number. Negative numbers
are stored in two's—complement form.

Two consecutive words containing the base address of a

(64K~-byte processor) segment and an offset in the

segment. The offset is in the word having the lower
address.

A word whose value represents the distance from the
base address of a segment.

The base address of a segment.

A word or selector whose value identifies an object.

A token can be declared literally a WORD or a SELECTOR
depending on your needse.

A sequence of consecutive bytes. The value contained
in the first byte is the number of bytes that follow
it in the string.

A 4-byte unsigned binary number.

*kk

UDI A-1

i APPENDIX B
iRMX™ 86 CONDITION CODES

This appendix contains the exception codes that are generated by the
iRMX 86 Operating Systeme Exception codes are any condition codes other
than E$OK, the normal code. Exception codes are classed as either
"Environmental Conditions" or "Programmer Errors”, although the latter
includes certain hardware errors as well as errors that result from
programming.

The values of these exception codes fall into ranges based on the iRMX 86

layer which first detects the condition, Table B-1 lists the layers and
their respective ranges, with numeric values expressed in hexadecimal
notation.

Table B-1l. Exception Code Ranges

Layer Environmental Programming

Nucleus 1H to 1FH 8000H to 801FH
I/0 Systems 20H to 5FH 8020H to 805FH
Application Loader 60H to 7FH 8060H to 807FH
Human Interface 80H to AFH 8080H to 80AFH
Universal Development COH to DFH 80COH to 80DFH

Interface

Reserved for Intel EOH to 3FFFH 80EOH to BFFFH
Reserved for users 4000H to 7FFFH COOO0H to FFFFH

The iRMX 86 NUCLEUS REFERENCE MANUAL gives the value of each code and its
associated mnemonic, as well as a short description of its significance.
In addition, the table shows the layer(s) of the system that could
generate the code, in case you wish to refer the the appropriate manual.

*kh%

UDI B-1

INDEX

Primary references are underscored.

access to a file 2-10, 2-23, 2-28, 2-34
ALLOCATE system call 2-4, 2-8, 2-42
application model 1-1 T

ASM86 command 2-6

ATTACH system call 2-5, 2-9

CHANGE$ACCESS system call 2-10

CHANGESEXTENSION system call 2-12

CLOSE system call 2-5, 2-13

command line 2-26, 2-49

condition codes 2-5, 2-15, 2-20, B-1

connection 2-5, 2-9, 2-13, 2-14, 2-19, 2-28, 2-44
Control-C 2-51

CREATE system call 2-5, 2-14

data types A-l
date 2-16, 2-33
DECODESEXCEPTION 2-6, 2-15
DECODESTIME 2-16

default user 2-11

DELETE system call 2-5,
DETACH system call 2-5,

T
=]
N o]

end of file 2-40

environmental conditions 2-5, B-1

example 3-1

exception handling 2-5, 2-15, 2-30, 2-52, B-1
EXIT system call 2-20

extension of a file 2-12

file access 2-10, 2-23, 2-28, 2-34
file extension 2-12

file handling 2-4

FILESINFO system call 2-22

file pointer 2-5, 2-44, 2-53

FREE system call 2-4, 2-25

free space pool 2-4, 2-8, 2-42

GETSARGUMENT system call 2-26, 2-49
GETSCONNECTIONSSTATUS system call 2-28
GETSEXCEPTIONSHANDLER system call 2-30
GET$SIZE system call 2-4, 2-31

UDI Index-1

INDEX (continued)

GET$SYSTEMSID system call 2-32
GET$STIME system call 2-33

input/output calls 2-4, 2-39, 2-54
interface to languages 2-6

language interface 2-6
line editing 2-46

memory management 2-4

-34

OPEN system call 2-5, 2-3
1-1, 2-32

operating system
overlay 2-37
OVERLAY system call 2-37
owner ID 2-11

owner of a file 2-10, 2-22

pathname of a file 2-41
PL/M-86 2-6
programmer errors 2-5, B-1

READ system call 2-5, 2-39
RENAME system call 2-41
RESERVESIOSMEMORY system call 2-9, 2-42

SEEK system call 2-5, 2-44

segment 2-4, 2-8, 2-25, 2-31

SPECIAL system call 2-46
SWITCHSBUFFER system call 2-26, 2-49
system calls (DQS) 2-1

time 2-16, 2-33

TRAPSCC system call 2-51

TRAPSEXCEPTION system call 2-6, 2-52
TRUNCATE system call 2-53

Universal Development Interface (UDI) 1-1

WRITE system call 2-5, 2-54
WORLD user 2-10, 2-23

kkk

UDI Index—2

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	A-01
	A-02
	B-01
	B-02
	idx01
	idx02

