intel

EXTENDED iRMX®II.3
OPERATING SYSTEM
DOCUMENTATION

VOLUME 3
SYSTEM CALLS

Order Number: 461846-001

intel Corporation

Copyright © 1988, intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly before the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

[ntel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to. the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an [ntel product. Noother circuit patent licenses are implied.

Intel snftware products are copvrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7 104.9 ta)y 9y,

No part of this decument may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify [ntel products:

Above 1ILBX 1PSC OpenNET

BITBUS Im IRMX ONCE

COMMputer iMDDX 1SBC Plug-A-Bubble

CREDIT IMMX 1ISBX PROMPT

Data Pipeline Insite 1ISDM Promware

genlus intel i858 QUEST

L int,|BOS 1ISXM QueX

1 [ntelevision Library Manager Ripplemode

2R intpligent Identifier MCSs RMX/80

ICE intgligent Programming Megachassis RUPI

1CEL [ntellec MICROMAINFRAME Seamless

s Intellink MULTIBUS SLD

iDBEP 105P MULTICHANNEL UPI

DIS 1iPDS MULTIMODULE VLSIiCEL
1PS

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microseft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centrenics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc, VAX and VMS are trademarks of Digital Equipment Corporation,
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM is a
registered trademark of International Business Machines. Soft-Scope isa registered trademark of
Concurrent Sciences.

Copyright® 1988, Intel Corporation

i

VOLUME PREFACE

MANUALS IN THIS VOLUME

This volume (Volume 3, Extended iRMX® II System Calls) contains the following manuals,
all of which document the iRMX II system calls. In each manual you will find the system
calls listed with their syntax and descriptions. Note that since these are reference manuals,
their format differs somewhat from the other iRMX II Operating System manuals.

Extended iIRMX® II Nucleus System Calls Reference Manual

Extended iRMX® [Basic I/O System Calls Reference Manual

Extended iIRMX® [Extended 1/0 System Calls Reference Manual

Extended iRMX® [] Application Loader System Calls Reference Manual

Extended iRMX® I Human Interface System Calls Reference Manual

Extended iRMX® 11 UDI System Calls Reference Manual

The Extended iRMX® Il Nucleus System Calls Reference Manual describes the use of all
Nucleus system calls.

The Extended iRMX® II Basic 1/O System Calls Reference Manual describes the use of all
BIOS system calls.

The Extended iRMX® II Extended I/0 System Calls Reference Manual describes the use of
all ETOS system calls.

The Extended iRMX® Il Application Loader System Calls Reference Manual describes the
use of all loader system calls.

The Extended iRMX® II Human Interface System Calls Reference Manual describes the use
of all Human Interface system calls.

The Extended iRMX® {1 UDI System Calls Reference Manual describes the use of all UDI
system calls.

iRMX® 11 System Calls Volume iii

VOLUME PREFACE

VOLUME CONTENTS

Manuals are listed in the order they appear in the volumes. For a synopsis of each manual,
refer to the Introduction to the Fxtended iRMX\ Il Operating System.

VOLUME 1: Extended iRMX® II Introduction, Installation, and Operating Instructions

Introduction to the Extended iRMX Il Operating System
Extended IRMX II Hardware and Software Installation Guide
Operator’s Guide to the Extended IRMX Il Human Interface
Master Index

VOLUME 2: Extended iRMX® II Operating System User Guides

Extended iRMX® II Nucleus User’s Guide

Extended iIRMX® II Basic I/O System User'’s Guide

Extended iRMX® II Extended 1/0 System User’s Guide

Extended iRMX® I Human Interface User’s Guide

Extended iRMX® Il Application Loader User’s Guide

Extended iRMX® II Universal Development Interface User's Guide
Device Drivers User’s Guide

VOLUME 3: Extended iRMX® II System Calls

Extended iRMX® II Nucleus System Calls Reference Manual

Extended iRMX® Il Basic [/0 System Calls Reference Manual
Extended iRMX® II Extended 1/0 System Calls Reference Manual
Extended IRMX® Il Application Loader System Calls Reference Manual
Extended iRMX® IT Human Interface System Calls Reference Manual
Extended iRMX® 1l UDI System Calls Reference Manual

VOLUME 4: Extended iRMX® Il Operating System Utilities
Extended iRMX® Il Bootstrap Loader Reference Manual
Extended iRMX® II System Debugger Reference Manual
Extended iRMX® IT Disk Verification Utility Reference Manual

Extended iRMX® I Programming Techniques Reference Manual
Guide to the Extended iIRMX® [Interactive Configuration Utility

VOLUME 5: Extended iRMX® I Interactive Configuration Utility Reference

Extended iRMX® II Interactive Configuration Utility Reference Manual

iv iRMX® [[System Calls Volume

REYV.

REVISION HISTORY

DATER

-001

Original [ssue.

01/88

intal

| EXTENDED iRMX®11
NUCLEUS SYSTEM CALLS
REFERENCE MANUAL

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright © 1988, intel Carporation, All Rights Reserved

PREFACE

INTRODUCTION

This manual documents the system calls of the Nucleus, the innermost layer of the
Extended iIRMX® II Operating System. The information provided in this manual is
intended as a reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the Extended iRMX 11 Nucleus User'’s Guide and with the PL/M-
286 programming language.

MANUAL ORGANIZATION

This manual presents logical groupings of Nucleus System calls. The individual calls
within each group are in alphabetical order for easy reference. The following list shows
how the system calls are grouped:

+ Calls for jobs

» Calls for mailboxes

» Calls for semaphores

+ Calls for segments and memory pools
+ Calls for descriptors

¢ Calls for all objects

» Calls for exception handlers

¢ Calls for exception handlers

o Calls for interrupt handlers, tasks, and levels
» Calls for composite objects

» Calls for extension objects

» Calls for deletion control

o Calls for operating system extensions
» Calls for regions

« Calls for MULTIBUS® II systems

Nucleus System Calls iii

PREFACE

iv

This manual uses the following conventions:

System call names appear as headings on the outside upper corner of each page. The
first appearance of each system call name is printed in ink; subsequent
appearances are in black ink.

Throughout this manual, most system calls are shown using a generic shorthand (such
as ACCEPT$CONTROL instead of RQSACCEPTSCONTROL). This convention is
used to make the names easier to understand. Only the calls that are iRMX I1
versions of iIRM X 1 system calls are spelled out completely (such as
RQESCREATESJOB). When you use the system calls in your programs, you must
specify the actual PL/M-286 external-procedure names.

You can also invoke the system calls from assembly language, but you must obey the
PL/M-286 calling sequences when doing so. For more information on these calling
sequences refer to the Extended iRMX 1T Programming Techniques Reference Manual.

Nucleus System Calls

CONTENTS

EXTENDED iRMX® Il NUCLEUS SYSTEM CALLS PAGE
I OUCTION. ..o es e e e s et e e e et e e s |
CREATESTOB ...t av e ee e n e ses et se et et 10
ROESCREATESTOB. ... e oo 18
DELETESJOB. ..ottt ee e s s e e s s e s 26
OFFSPRING ..ottt ettt sttt s e eee e e e s raane 28
RQESOFFESPRING ..ottt et ee s ese e as s e e s s e see e 31
CREATESTASK ..ottt ettt ee et ee e e ee et e e e e 34
DELETESTASK ..ot oo et nee e es e e e eeee s e sss s s s r s 38
GETIPRIORITY oottt e et et ee s e ereeee oo 41
GETITASKITOKENS ..ot eeres st s e ee e eeeneeeene e 43
RESUMESTASK ..ottt ettt sse s e eee e es e 45
SETIPRIORITY oottt ee e e r st s s s 48
SLEEDP . ettt sttt et e et et eeneneeenn 52
S S PE N DD T A S K e et es et e e e e e s e 54
CREATESMAILBOX ..o e et eee e es s s en s s ee e s ee 57
DELETESMAILBOX ..o ettt eee et es e s e s st e s s s s e 61
RECEIVESDATA ... e e eer e en e en s s e s e sas s e seanesnseees 63
RECEIVEIMESSAGE ..ot ee et es et evs et s s s et erenans 66
SENDSDATA .o ev e ee st e s e eee et ees s et et s e s st sass s s et e s tenesereenne 70
SENDSMESSAGE ..o e e ee e e et es e e 73
CREATESSEMAPHOREc.coooovii ettt et steress s r s e 77
DELETESSEMAPHORE ...t s e ee et 80
RECEIVESUNITS .o oot ee e e et ee et e, 83
SENDSUNITS Lo ee e er s s s s e e s es e e e ereis 86
CREATESSEGMENT oot ee st r s e resnssns e s s s s 89
DELETESSEGMENT ..o eee e ee e et et eee s s enesnee e 91
GETSPOOLSATTRIB ..ot oottt er et resner s b s as e e eneeee. 94
RQESGETIPOOLIATTRIB ..o teeee e e ees e eees et eraes et aese st 97
GETISIZE ..ottt es e er s e rae s e en e e er e eeessseeete s sensea s s sren 101
SETSPOOLIMIN ..ottt et et e ee e eeerea e s st sser s arne e san e s e sen e 104
RQSCREATESBUFFERSPOOL. ... ee e eer et es s, 106
RQSDELETESBUFFERSPOOL. ..ot er et ene e eeee e ven s 108
RQSRELEASESBUEFTFER ... ettt eee e aer e s 109
RQIREQUESTIBUFFER ...t re e e 111
RQESCHANGESDESCRIPTOR ..o teeeseereeeesse e eees s s 113
RQESCREATESDESCRIPTOR ... oo 116
RQESDELETESDESCRIPTOR ..ottt ettt e se e e 119
CATALOGIOBIECT .ottt osar s st a et e nn 121
RQESCHANGESOBIECTIACCESS ..ottt eeeenas 124

Nucleus System Calls

CONTENTS (continued)

vi

ROESGETSADDRESS ..ot 128
ROESGETSOBIECTSACCESS ...ttt 131
GETETYPEot ettt st s g s et e 135
LOOKUPSOBIECT ..ottt bt e 138
UNCATALOGSOBIECT .o sb s 141
GETSEXCEPTIHANDLER ...ttt 145
SETSEXCEPTIONSHANDLER ... 147
DISABLE ..ottt s 151
ENABLE ..ottt bbb bbb s b 154
ENDSINTITETASK ..ottt et s s e 157
ENTERSINTERRUPTc.ooiiiitiinn et b ar s s 158
EXITSINTERRUPT ...ttt ettt s s s s 162
GETILEVEL Lottt st b s 165
RESETSINTERRUPT ...t 167
SETSINTERRUPT ..ottt et et bbb sa e 171
SIGNALSINTERRUPT ... s e 176
ROESTIMEDSINTERRUPT ..ot 180
WAITSINTERRUPT ... s 184
ALTERSCOMPOSITE ... s 188
CREATESCOMPOSITE ...t ees 190
DELETESCOMPOSITE ...t s 193
INSPECTSCOMPOSITE ..ot 195
CREATESEXTENSION ..o s 197
DELETESEXTENSION ittt 200
DISABLESDELETION L. et e 203
ENABLESDELETION L.t 206
FORCESDEILETE ..ottt e 209
RQESSETSOSSEXTENSION ..o enreneesrene et 212
SIGNALSEXCEPTION ..ottt 215
ACCEPTICONTROL ..ottt ettt en e 218
CREATESREGION ..ot sb s b e 221
DELETESREGIONcoiiiiiiiiit ittt et s 223
RECEIVESCONTROL. ..ot e st snss s s sens 226
SENDSCONTROL ..ottt sttt ettt ettt 229
ATTACHSBUFFERSPOOL ..o oottt snesessseesssas e 232
ROSATTACHSPORT ..ooooot ot s 234
RQSIBROADCAST ..ottt 236
ROFBCANCEL ...ttt et 238
ROFBCONNECT ..ottt stk e 240
CREATESPORT ..ottt st 242
DELETESPORT ...ttt eieb sttt eb bbb 247
RQIDETACHSBUFFERSPOOL ..o csiresnenenenn e 248
ROQIDETACHSIPORT ..c.cooiiiiri ettt et ssiess sttt s sss st 250
RQIGETIHOSTIID ..ottt s s e e 252
GETSPORTSATTRIBUTESooiiiiiiiiiiei e enies s 253

Nucleus System Calls

CONTENTS (continued)

RQIRECEIVE ...t ss s sss s ssssssssensaas 256
RQIRECEIVESFRAGMENTc.ooiimiiiiiee st et essessassses e 260
RQFRECEIVESREPLYoooiiitiiiiiiieeeeeseeeees s s ess s ss st 262
RECEIVESSIGNAL ...ttt ss et sss st 266
RQISEND......coiiircetinereireesives st ssss e sss bbbt eeeeeenn e ene s ssneres 268
SENDSRSVP ..ottt v e ee s eenese e 271
RQESENDSREPLY ..o sisssses s eeseess e reseees 274
RQESENDSSIGNAL ..ottt ss ettt e 277
GETSINTERCONNECT ...ttt s se s ssssess s 278
ROFSETSINTERCONNECToeviiiiitieieeeete s ss s s sssnes 280

Nucleus System Calls vii

EXTENDED iRMX® II

NUCLEUS SYSTEM CALLS

INTRODUCTION

This manual presents the iIRMX® IT Nucleus system calls in functional groups and
provides a detailed description of each one.

The calling sequence for each call is the same as for the PL/M-286 interface. The
information for each system call is organized in the following order:

Throughout this manual, PL/M-286 data types such as BYTE, WORD, POINTER and
SELECTOR are used. In addition, the iRMX II data types TOKEN and STRING are
used. A TOKEN is a 16-bit value that uniquely identifies an iIRMX II object. A STRING
Is a sequence of consecutive bytes in which the first byte specifies the number of bytes that

A brief sketch of the effects of the call.

The PL/M-286 calling sequence for the system call.
Definitions of the input parameters, if any.
Definitions of the output parameters, if any.

A detailed description of the effects of the call.

An example of how the system call can be used.

The condition codes that can result from using the call, with a description of the
possible causes of each condition.

follow it in the string. When these terms are used as data types, they are always
capitalized.

Because TOKEN is not a PL/M-286 data type, you must declare it to be literally a

SELECTOR every place you use it. The word "token" in lowercase refers to a value that
the iRMX I Operating System returns to a TOKEN (the data type) when it creates the

object.

Nucleus System Calls

EXTENDED iRMX® II NUCLEUS SYSTEM CALLS

The examples used in this manual assume the reader is familiar with PL/M. In these
examples, the appropriate DECLARE and INCLUDE statements are made first. The

reader should note the use of an INCLUDE statement that declares all of the system calls
included in the iIRMX II Operating System.

Following this introduction is a system call dictionary in which the calls are grouped

according to type. The dictionary includes short descriptions and page numbers of the
complete descriptions that follow.

Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

CALLS FOR JOBS ...t n s as o s PAGE

CREATES$JOB -- Creates a job (whose memory pool is limited to IM
byte) with a task and returns a token for the Job........o.coouevveveeecniereceeceeeeeene. 10

RQESCREATESJOB -- Creates a job (with memory pool up to 16M

bytes)and a task and returns the token for the job.........c.coocovvviviororcrceer. 18
DELETESJOB - Deletes @ JOb ..ot ee s 20
OFFSPRING -- Provides a segment containing tokens of the schild

jobs of the specified JOb ... 28
RQESOFFSPRING -- Provides, in a user-supplied data structure, a list

of tokens for the child jobs of the specified job.......ccoooveiivniciiciiiee. 31
CALLS FOR TASKS ..ottt st st ens st ssa s PAGE
CREATESTASK -- Creates a task and returns a token for ite......cooverevcererinennen, 34
DELETESTASK -- Deletes a task that is not an interrupt taskcoooovioecvenee.e. 38
GETSPRIORITY -- Returns the static priority of a task.......cccoooooovvooeeorerinvcsneene. 41

GETSTASKSTOKENS -- Returns to the caller a token for either itself,
its job, its job’s parameter object, or the root Jobouecevereeerireeeece e, 43

RESUMESTASK -- Decreases a task’s suspension depth by one;
resumes (unsuspends) the task if the suspension depth becomes
SETSPRIORITY -- Changes a task’s Priority.c...ccoeveeerioneeronneisonsiosossossesseonee oo 48

SLEEP -- Places the calling task in the asleep state for a specified
AMOUNE OF TIME ..t 52

SUSPENDSTASK -- Increases a task’s suspension depth by one;

suspends the task if it is not already suspended...........c.coovrvecsiiniericreiiei e 54
CALLS FOR MAILBOXESocoiiiiiteeceeec e e et PAGE
CREATESMAILBOX -- Creates a mailbox and returns a token for

L ottt e R bbb bbbt e Rt 57
DELETESMAILBOX -- Deletes @ mailboX ..o 61

Nucleus System Calls 3

NUCLEUS SYSTEM CALL DICTIONARY

CALLS FOR MAILBOXES (continued) PAGE

RQSRECEIVESDATA -- Allows the calling task to receive a data
message from a mailbox; the task has the option of waiting if no
MESSAZES ATE PIESEIL. .ovviiirirricieres etk et 63

RECEIVESMESSAGE -- Allows the calling task to receive an object;
the task has the option of waiting if no objects are present.......ooveneecnncs 66

SEND$DATA -- Sends a data message of up to 80H characters to a

10T V1 Lo VRO OO SRS PO O PSP 70
SENDS$MESSAGE -- Sends an object to a mabboX.....oooi 73
CALLS FOR SEMAPHORES ...t sn e e PAGE
CREATES$SEMAPHORE -- Creates a semaphore and returns a token

100 o 1 SO OO OO OO 77
DELETESSEMAPHORE -- Deletes a semaphore ..., 80
RECEIVESUNITS -- Asks for a specific number of units from a

SEIMAPIOTE. c..r sttt e bbb 83
SENDS$UNITS -- Adds a specific number of units to a semaphore........c...cocoovivenne 86
CALLS FOR SEGMENTS AND MEMORY POOLSccccvinine PAGE

CREATESSEGMENT -- Creates a segment and returns a token
(0] L OO OO OO PSPPSR OOOO 89

DELETESSEGMENT -- Returns a segment to the memory pool from
which it was allocated; can also delete a descriptor from the Global
Descriptor Table (GIDT). ..o 91

GETIPOOLSATTRIBUTES -- Returns the following memory pool
attributes of the caller’s job: pool minimum and pool maximum
(both limited to 1M byte of memory), initial size, number of
allocated 16-byte paragraphs, number of available 16-byte
PATAZTAPRIS. 1eoveerericiiie e et s e st 94

RQESGET$POOLSATTRIB -- Returns the same information as
GET$POOLSATTRIBUTES for any job, plus the amount of
memory borrowed and the token of the parent job; returns pool mi
nimum and maximum values for pools greater than IM byte ... 97

4 Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

CALLS FOR SEGMENTS AND MEMORY POOLS (continued)coceeeusunenne PAGE
GETSSIZE -- returns the size, in bytes, of a segmentcooovoneriesrecreerreenee 101
SET$POOLSMIN -- Changes the minimum attribute of the memory

pool of the caller’s Job..........ccveiie et 104
CALLS FOR BUFFER POOLS PAGE
CREATESBUFFER$POOL -- creates a buffer pool objectoeeeervenrivrnerenne, 106
DELETESBUFFER$POOL -- deletes a buffer pool objectovveeervvrerreennninne, 108
RELEASESBUFFER -- Returns previously allocated buffer space to

the specified buffec pOOL......c.co.. oo, 109
REQUESTSBUFFER -- gets a buffer from a buffer pool........ccccccooevecveviccvenirnnne. 111
CALLS FOR DESCRIPTORS.........cooooiiii et eneisss st PAGE

RQESCHANGES$DESCRIPTOR -- Changes the physical address or
size of a segment by modifying its descriptor in the GDT ..co.ovvvvevrrersriniranc. 113

ROESCREATESDESCRIPTOR -- Creates a descriptor in the GDT
describing a segment, and returns a token for that descriptor... ...cc.cccevrennec. 116

RQESDELETE$DESCRIPTOR -- Removes a descriptor entry from

Ehe GDT ...t s e 119
CALLS FORALL OBJECTS ... e PAGE
CATALOGSOBIECT -- Places an object in an object directory.cco........... 121

RQE$SCHANGE$OBJECT$ACCESS -- Changes the access of an

GETSTYPE -- Accepts a token for an object and returns its type
COAR ...ttt e b b et bbbt eba bttt s s e e en st eens et s e s n e 135

LOOKUPSOBIECT -- Accepts a cataloged name of an object and
TELUITIS A LOKEI O 18 oviiviiteee ettt ettt e e e st e eeeee e e aseasransansesnsessasemsssans 138

Nucleus System Calls 5

NUCLEUS SYSTEM CALL DICTIONARY

UNCATALOGSOBIJECT -- Removes an object from an object
QIFECEOTY ettt rr s s ses et s enee 141

CALLS FOR EXCEPTION HANDLERS ... vaisinsersnins PAGE

GETSEXCEPTIONSHANDLER -- Returns the current values of the
caller’s exception handler and exception mode attributesccocoeverevraene 145

SETSEXCEPTIONSHANDLER -- Sets the exception handler and
exception mode attributes of the caller ..o 147

CALLS FOR INTERRUPT HANDLERS, TASKS, AND LEVELScccceeseene PAGE
(* indicates the system calls that an interrupt handler can make)

*DISABLE -- Disables an interrupt level ... 151
ENABLE -- Enables an interrupt level ... 154

ENDSINIT$TASK -- Informs root task that a synchronous
initialization process has completedccoooooiiiioieceecce s 157

*ENTERSINTERRUPT -- Sets up a previously designated data
segment base address for the calling interrupt handler.........cc.ccooeeieieienneee, 158

*EXITSINTERRUPT -- Used by interrupt handlers to send an end-of-
interrupt signal to hardware ... e 162

*GETSLEVEL -- Returns the interrupt level of highest priority for
which an interrupt handler has started but has not yet finished
PIOCESSITIE ... ovniiiiits sttt re e s s e bbb bbb s as bbb 165

RESETS$INTERRUPT -- Cancels the assignment of an interrupt
handler to a level and, if applicable, deletes the interrupt task for
TRAL IEVEL......oiiioct et 167

SETSINTERRUPT -- Assigns an interrupt handler and, if desired, an
interrupt task to an interrupt level ..., 171

*SIGNALSINTERRUPT -- Used by interrupt handlers to invoke
INEETTUPE TASKS w..ovonestiitcceeee e st en e 176

RQESTIMEDSINTERRUPT -- Puts the calling interrupt task to sleep
until either it is called into service by an interrupt handler or a
specified time period elapses ...t 180

6 Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

WAITSINTERRUPT -- Puts the calling interrupt task to sleep until it

is called into service by an interrupt handler......cooieceeiecceeeeeecees s, 184
CALLS FOR COMPOSITE OBJECTS.......ccccoovimvrmmrnnnssnsnsrsresrsessse s PAGE
ALTER$COMPOSITE -- Replaces components of composite

ODJECES couv vt seb ettt st bbb 188
CREATE$COMPOSITE -- Creates a composite object and returns a

EOKEN O T ...t et 190
DELETESCOMPOSITE -- Deletes a composite 0bjectcvvvivcreercerieinneiennnn. 193
INSPECT3COMPOSITE -- Returns a list of the component tokens

contained in a COMPOSILE OBJEC........cooiiiiiiieiinrre s, 195
CALLS FOR EXTENSION OBJECTSc..ccovvivencnnrierisienesesseesess s s PAGE

CREATESEXTENSION -- Creates a new object type and returns a
LOKEN FOT 0ttt 197

DELETESEXTENSION -- Deletes an extension object and all
COmMPOSItES Of that TYPE ..ot 200

CALLS FOR DELETION CONTROL........cccoovirercrrsereeseesessssssssesses s PAGE

DISABLESDELETION -- Makes an object immune to ordinary
AELELION ...t s 203

ENABLESDELETION -- Makes an object susceptible to ordinary
deletion. Required only if the object has had its deletion

dISABlEd........oiicrr bttt et sner e 206
FORCESDELETE -- Deletes objects whose disabling depths are zero

OF OB ..crrttiritnietir s bbb bbb bbb e st st ase et e r st s et s nene s en 209
CALLS FOR OPERATING SYSTEM EXTENSIONS ..o, PAGE

RQESSETSOSSEXTENSION -- Attaches the entry-point address of a
user-written OS extension to a call gate or deletes such an entry..................... 212

SIGNALSEXCEPTION -- Used by OS extensions to signal the
OCCUITENCE Of AM EXCEPLION ..ovivniriiiircecec ettt 215

Nucleus System Calls 7

NUCLEUS SYSTEM CALL DICTIONARY

CALLS FOR REGIONS ...t sneienns PAGE

ACCEPT$CONTROL -- Causes the calling task to accept control from

the region only if control is immediately available. If control is not

available, the calling task does not wait at the region..........conninn, 218
CREATESREGION -- Creates a region and returns a token for it.........ccccooeevinee 221
DELETE$REGION -- DEletes a r€ 0N . ..cocvevrrcoriieeriereresasseerasesesscessseseseesesaceens 223

RECEIVE$CONTROL -- Causes the calling task to wait at the region
until the task receives CONrol..... 226

SEND$CONTROL -- Relinquishes control to the next task waiting at
THE FERIOM ..ot bbb bt 229

NUCLEUS COMMUNICATION SERVICE CALLS............cooviniincnnen, PAGE

ATTACH$BUFFER$POOL -- Associates a buffer pool with one or
TTLOTE POITS. 0. verireeiieerinrintsarsert s ssresseasaseseseasesnessane e sssaessenasensessassseresresmensanasassensesearaseas 232

ATTACHS$PORT -- Forwards all messages sent to the port that issued
the call to another port known as a sink port ..., 234

BROADCAST -- Sends a control message to every agent on the iPSB

DUS Lottt s st 236
CANCEL -- Performs synchronous cancellation of RSVP message

ELATSINISSION cvuvvoceicass et st ettt s st st st s rasanstns 238
CONNECT -- Locally connects a port and assigns a default remote

SOCKEL .ottt st etk s st 240
CREATESPORT -- Creates a port object that can be used to send and

receive MULTIBUS II messages between bus agents..........cooovviriinininennne. 242
DELETESPORT -« Deletes @ POt ..o eiesseesceesessts st essesssessassasesssones 247
DETACH3$BUFFER$POOL -- Ends the association between a buffer

POOL AN 8 POTE ..ottt bt e sa s e 248
DETACHSPORT -- Ends message forwarding from the source port to

the SINK POTT. ...t st sa s 250

8 Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

NUCLEUS COMMUNICATION SERVICE CALLS (continued) PAGE

GET$HOSTSID -- Returns the host ID of the board (agent) that
the task is FUNNING ONcvvueviieiie et e 252

GET$PORTSATTRIBUTES -- Returns information about how the

SPECIfiEd POIT IS SEE UP covvvvvvrricieineie et ressss et st esseesseeeeersees e se e s 253
RECEIVE -- Accepts @ MESSAZE At @ POTLuuuvuurrvurrurereeeesessesssissenseseeereressesseseseeee 256
RECEIVESFRAGMENT -- Accepts a part (fragment) of a request

(RSVP) data MESSAZEooeeererrircrcaneess s esieseseseeeeeeesse s s senen 260
RECEIVESREPLY -- Accepts a message that is a reply to an earlier

TEQUEST .ottt et e b et s bbb a et emeaneees 262
RECEIVEJSIGNAL -- Receives a signal from a remote host at a

SPECIIEU POIT. ittt 266
SEND -- Sends a data message from a port to a port on another board2

68
SEND$RSVP -- Initiates a request/response message interchange...................... 271
SENDSREPLY -- Sent in response to the RQ$SSEND$RSVP system

CAIl oot bttt 274
SENDSSIGNAL -- Sends a MULTIBUS 11 signal {dataless message)

to a remote agent (board) through the specified portccoocoovveevrrnerieennen, 277
MULTIBUS IT INTERCONNECT CALLS ..o

GETSINTERCONNECT -- Retrieves the contents of the specified
INTEFCONNECE TEBISTER w..uvrvvremerreranrerreeiesieesectos s eoeeseesessseeeesresseseseeseseees s seeeeesres e 278

SETSINTERCONNECT -- Alters the contents of an interconnect
register to a value specified in the call ..o 280

Nucleus System Calls 9

The CREATES$JOB system call creates a job with a single task. The memory pool
assigned with this system call is limited in size to 1M byte.

job = RQSCREATESJOB (directory$size, param$obj, poolSmin, pool$max,
max$objects, maxStasks, maxSpriority, except$handler,
job$flags, taskS$priority, start$address, data$seg, stack$ptr,
stack$size, task$flags, exceptSptr);

Input Parameters

directory$size

param$obj

pool$min

pool¥max

maxSobjects

10

A WORD specifying the maximum allowable number of entries a
job can have in its object directory. The value zero indicates that
no object directory is desired. The maximum value for this
parameter is 0FFOH.

A TOKEN indicating the presence or absence of a parameter
object. See the Extended iRMX II Nucleus User’s Guide for an
explanation of parameter objects.

o If a valid selector, it must contain a token for the new job’s
parameter object.

¢ Ifset to SELECTORJOF(NIL), it indicates that the new job
has no parameter object.

A WORD that specifies the minimum allowable size of the new
job’s pool, in 16-byte paragraphs. The pool$min parameter is also
the initial size of the new job’s pool. Pool$min should be at least
two paragraphs (20H). If the stack$ptr parameter has a base value
of SELECTORSOF(NIL), pool$min should be at least two
paragraphs plus the value of stack$size in 16-byte paragraphs.

A WORD that indicates the maximum allowable size of the new
job’s memory in 16-byte paragraphs. If pool$max is smaller than
pool$min, an ESPARAM error is returned.

A WORD that specifies the maximum number of objects that the
created job can own.

s If not OFFFFH, contains the maximum number of objects,
created by tasks in the new job, that can exist at one time.

o [fOFFFFH, indicates that there is no limit to the number of
objects that tasks in the new job can create.

Nucleus System Calls

max$tasks

max$priority

except$handler

Nucleus System Calls

CREATES$JOB

A WORD that specifies the maximum number of tasks that can
exist simultaneously in the new job.

» If not OFFFFH, it contains the maximum number of tasks that
can exist simultaneously in the new job.

+ If OFFFFH, it indicates that there is no limit to the number of
tasks that tasks in the new job can create.

¢ It cannot be zero. A value of 0H will produce the ESLIMIT
exception.

A BYTE that sets an upper limit on the priority of the tasks
created in the new job.

¢ If not zero, it contains the maximum allowable priority of tasks
in the new job. If max$priority exceeds the maximum priority
of the parent job, an ESLIMIT error is returned.

¢ If zero, it indicates that the new job is to inherit the maximum
priority attribute of its parent job,

A POINTER to a structure of the following form:

STRUCTURE(
EXCEPTIONSHANDLERSPTR POINTER,
EXCEPTIONSMGDE BYTE);

If exception$handler$ptr is not NIL, then it is a POINTER to the
first instruction of the new job’s own exception handler. If
exception$handler$ptr is NIL, the new job’s exception handler is
the system default exception handler. In both cases, the exception
handler for the new task becomes the default exception handler for
the job.

The exception$mode indicates when control is to be passed to the
exception handler. It is encoded as follows:

When Control Passes
Value To Exception Handler

0 Never

1 On programmer errors only

2 On environmental conditions only
3 On all exceptional conditions

11

CREATES$JOB

job$flags

task$priority

start§address

data$seg

stack$ptr

12

A WORD containing information that the Nucleus needs to create
and maintain the job. The bits (where bit 15 is the high-order bit)
have the following meanings:

Bits Meaning

15-2 Reserved bits that should be set to zero.

1 If 0, then whenever a task in the new job or any of its
descendant jobs makes a Nucleus system call, the Nucleus will
check the parameters for validity.

If 1, the Nucleus will not check the parameters of Nucleus
system calls made by tasks in the new job. However, if any
ancestor of the new job has been created with this bit set to 0,
there will be parameter checking for the new job.

0 Reserved bit that should be set to zero.
A BYTE that controls task priority as follows:

« If not zero, it contains the priority of the new job’s initial task.
If the task$priority parameter is greater (numerically smaller)
than the new job’s maximum priority attribute, an ESPARAM
error is returned.

o Ifzero, it indicates that the new job’s initial task is to have a
priority equal to the new job’s maximum priority attribute.

A POINTER to the first instruction of the new job’s initial task
(the task created with the job).

A TOKEN that specifies which data segment the new job's initial
task is to use.

» Ifavalid selector, it is the base selector of the data segment of
the new job’s initial task.

» It SELECTORSOF(NIL), it indicates that the new job’s initial
task assigns its own data segment. Refer to the Guide to the
Extended iRMX II Interactive Configuration Utility and the
Extended iIRMX II Interactive Configuration Utility Reference
manual for more information about data segment allocation.

A POINTER that specifies the location of the stack for the new
job’s initial task.

» If the pointer is valid, it points to the base of the user-provided
stack of the new job’s initial task.

Nucleus System Calls

CREATES$JOB

o If the pointer is set to NIL, it indicates that the Nucleus should
allocate a stack for the new job’s initial task. The length of the
allocated segment is equal to the value of the stack$size
parameter.

stack$size A WORD containing the size, in bytes, of the stack of the new job’s
initial task. The stack size must be at least 16 bytes and should
be at least 300 (decimal) bytes if the new task is going to make
Nucleus system calls. Refer to the Extended iRMX II Programming
Techniques manual for further information on estimating stack
sizes.

task$flags A WORD containing information that the Nucleus needs to create
and maintain the job's initial task. The bits (where bit 15 is the
high order bit) have the following meanings:

Bits Meaning
15-1 Reserved bits which should be set to zero.
0 If one, the initial task contains floating-point

instructions. These instructions require the Numeric
Processor Extension (NPX) component for execution.

If zero, the initial task does not contain floating-point
instructions.

Output Parameters

job A TOKEN to which the Operating System will return a token for
the new job.
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The CREATES$JOB system call creates a job with an initial task and returns a token for
the job. The new job’s parent is the calling task’s job. The new job counts as one against
the parent job’s object limit. The new task counts as one against the new job’s object and
task limits. The new job’s resources come from the parent job, as described in the
Extended iRMX IT Nucleus User’s Guide. In particular, the max$task and max$objects
values are deducted from the creating job’s maximum task and maximum objects
attributes, respectively.

Nucleus System Calls 13

CREATES$JOB

This system call is included for compatibility with iRMX I systems. When you use it, your

memory pools are limited to 1M byte in size. To allocate larger memory pools, use the
RQE$CREATESJOB system call.

Example

14

/‘k**

* This example illustrates how the CREATE$JOB system call can be *

* used. *
ok ok kR ok kR kR R Ak Rk Rk ke bR Rk kb ok ook /

DECLARE TOKEN LITERALLY 'SELECTOR';
/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS , EXT)

INITIALTASK: PROCEDURE EXTERNAL;

END INITIALTASK;

DECLARE job$token TOKEN;
DECLARE directory$size WORD;
DECLARE paramS$obj TOKEN;
DECLARE pool$min WORD;
DECLARE poolSmax WORD;
DECLARE max$objects WORD;
DECLARE max$tasks WORD;
DECLARE max$priority BYTE;
DECLARE except$handler POINTER:
DECLARE job$flags WORD;
DECLARE task$priority BYTE;
DECLARE start$address POINTER;
DECLARE data$seg TOKEN;
DECLARE stack$pointer POINTER;
DECLARE stack$size WORD ;
DECLARE task$flags WORD;
DECLARE status WORD;

SAMPLEPROCEDURE ;

PROCEDURE;

directory$size = 10; /* max 10 entries in object directory

param$obj = SELECTORSOF(NIL); /* new job has no parameter object

poolémin = QlFFH; /* min OlFFH, max OFFFFH 16-byte */
pool$max = OFFFFH; /* paragraphs in job pool */
maxSobjects = OFFFFH; /* no limit to number of objects */
max$tasks = 10; /* 10 tasks can exist simultaneously */
max$priority = 0, /* inherit max priority of parent */
except$handler = NIL; /* use system default except handler */
jobSflags = 0; /* parameter validation is on */
task$priority =~ 0; /* set initial task to max priority +*/

start$address = @INITIALTASK;
/* points to first instruction of
initial task */

*/
*/

Nucleus System Calls

CREATES$JOB

data$seg = SELECTOR$OF(NIL); /* initial task sets up own data

segment */
stack$pointer = NIL; /* Nucleus allocates stack */
stack$size = 512; /* 512 bytes in stack of initial task %/
task$flags = 0; /* no floating-point instructions */

¢ Typical PL/M-286 Statements
L]

/*******************':'c'k*‘k***********‘k‘k*******************7\’**********

* The calling task creates a job with an initial task labeled *
* INITIALTASK. *
AR AR A E A KR AR AT KIKTIKHTEETRIIIKIAKFERFFA KKK/

jobStoken = RQSCREATESJOB (directory$size,
param$obj,
pooldmin,
pool$max,
max$objects,
max$tasks,
max$priority,
except$handler,
jobSflags,
task$priority,
start$address,
data$seg,
stack$pointer,
stack$size,
task$flags,
{dstatus);

L]
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$OK 0000H No exceptional conditions.

E$SBADSADDR 800FH At least one of the except$handler, data$seg, or
stack$ptr parameters is invalid. Either a
selector does not refer to a valid segment, or an
offset is outside the segment boundaries.

E$CONTEXT 0005H The job containing the calling task is in the
process of being deleted.

Nucleus System Calls 15

CREATES$JOB

ESEXIST

ESLIMIT

ESMEM

E$PARAM

16

0006H

0004H

0002H

8004H

The param$obj parameter is not
SELECTORSOF(NIL) and is not a token for
an existing object.

At least one of the following is true:

max$objects is larger than the unused portion of
the object allotment in the calling task’s job.

max$tasks is larger than the unused portion of
the task allotment in the calling task’s job.

max$priority is greater (numerically smaller)
than the maximum allowable task priority in the
calling task’s job.

directory$size is larger than OFFOH.

The initial task would exceed the object limit in
the new job. That is, the max$objects
parameter is set to zero.

The initial task would exceed the task limit in
the new job. The max$tasks parameter is set to
Zero.

At least one of the following is true:

The memory available to the new job is not
sufficient to create a job descriptor (an internal
data structure) and the object directory.

The memory available to the new job is not
sufficient to satisfy the pool$min parameter.

The memory available to the new job is not
sufficient to create the task as specified.
At least one of the following is true:

pool$min is less than 16 + (number of
paragraphs needed for the initial task and a
system-allocated stack) + 5 (if the task uses the
NPX component).

pool$min is greater than pool$max.

task$priority is unequal to zero and greater
(numerically smaller) than max$priority.

stack$size is less than 16.

the exception handler mode is not valid.

Nucleus System Calls

CREATE$JOB

E$SLOT 000CH There isn’t enough room in the GDT for the
new job and task descriptors.

Nucleus System Calls 17

The RQESCREATES$JOB system call creates a job with a single task. It provides the
same services and has the same syntax as the CREATE$JOB system call, except that it
can allocate memory pools of up to 16M bytes in size.

job = RQESCREATESJOB (directory$size, param$obj, poolSmin,
poolmax, maxobjects, max$tasks, maxSpriority,
except$handler, job$flags, task$priority, start$address,
data$seg, stack$ptr, stack$size, task$flags, exceptSptr);

Input Parameters

directory$size

param$obj

pool$min

pool$max

max$objects

18

A WORD specifying the maximum allowable number of entries a
job can have in its object directory. The value zero is permitted,
for the case where no object directory is desired. The maximum
value for this parameter is 0FFOH.

A TOKEN indicating the presence or absence of a parameter
object. See the Extended iRMX Il Nucleus User’s Guide for an
explanation of parameter objects.

» If a valid selector, it must contain a token for the new job’s
parameter object.

o If set to SELECTORSOF(NIL), it indicates that the new job
has no parameter object.

A DWORD that specifies the minimum allowable size of the new
Jjob’s pool, in 16-byte paragraphs. The pool$min parameter is also
the initial size of the new job’s pool. Pool$min should be at least
two paragraphs (20H bytes) and no more than OFFFFFH. If the
stack$ptr parameter has a base value of SELECTORS$OF(NIL),
pool¥min should be at least two paragraphs plus the value of
stack$size in 16 byte paragraphs.

A DWORD that indicates the maximum allowable size of the new
job’s memory in 16-byte paragraphs. If pool$max is smaller than
pool$min, an ESPARAM error is returned.

A WORD that specifies the maximum number of objects that the
created job can own.

e If not OFFFFH, contains the maximum number of objects,
created by tasks in the new job, that can exist at one time.

Nucleus System Calls

RQESCREATESJOB

¢ [f OFFFFH, indicates that there is no limit to the number of
objects that tasks in the new job can create.

max$tasks A WORD that specifies the maximum number of tasks that can
exist simultaneously in the new job.

s If not OFFFFH, it contains the maximum number of tasks that
can exist simultaneously in the new job.

« [f OFFFFH, it indicates that there is no limit to the number of
tasks that tasks in the new job can create.

¢ It cannot be zero. A value of 0H will produce the ESLIMIT
exception.

max$priority A BYTE that sets an upper limit on the priority of the tasks
created in the new job.

» If not zero, it contains the maximum allowable priority of tasks
in the new job. If max$priority exceeds the maximum priority
of the parent job, an ESLIMIT error is returned.

o If zero, it indicates that the new job is to inherit the maximum
priority attribute of its parent job.

except$handler A POINTER to a structure of the following form:
STRUCTURE(
EXCEPTIONSHANDLERSPTR POINTER,
EXCEPTIONSMODE BYTE) ;

If exception$handler$ptr is not NIL, then it is a POINTER to the first instruction of the
new job’s own exception handler. If exception$handler$ptr is NIL, the new job’s exception
handler is the system default exception handler. In both cases, the exception handler for
the new task becomes the default exception handler for the job.

The exception$mode indicates when control is to be passed to the exception handler. It is
encoded as follows:

When Control Passes

Value To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

Nucleus System Calls 19

RQESCREATE$JOB

job$flags A WORD containing information that the Nucleus needs to create
and maintain the job. The bits (where bit 15 is the high-order bit)
have the following meanings:

Bits Meaning
15-2 Reserved bits that should be set to zero.
1 If 0, then whenever a task in the new job or any of its

descendant jobs makes a Nucleus system call, the
Nucleus will check the parameters for validity.

If 1, the Nucleus will not check the parameters of
Nucleus system calls made by tasks in the new job.
However, if any ancestor of the new job has been
created with this bit set to 0, there will be parameter
checking for the new job.

0 Reserved bit that should be set to zero.
task§priority A BYTE that controls task priority as follows:

» If not zero, it contains the priority of the new job’s initial task.
If the task$priority parameter is greater (numerically smaller)
than the new job’s maximum priority attribute, an ESPARAM
error is returned.

o If zero, it indicates that the new job’s initial task is to have a
priority equal to the new job’s maximum priority attribute.

start$address A POINTER to the first instruction of the new job’s initial task
(the task created with the job).

data$seg A TOKEN that specifies which data segment the new job’s initial
task is to use.

« Ifavalid selector, it is the base selector of the data segment of
the new job’s initial task.

» If SELECTORSOF(NIL), it indicates that the new job’s initial
task assigns its own data segment. Refer to the Guide to the
Extended iIRMX II Interactive Configuration Utility and the
Extended iRMX II Interactive Configuration Ultility Reference
manual for more information about data segment allocation.

stack$ptr A POINTER that specifies the location of the stack for the new
job’s initial task.

e If the pointer is valid, it points to the base of the user-provided
stack of the new job’s initial task.

20 Nucleus System Calls

RQE$SCREATE$JOB

« If the pointer is set to NIL, it indicates that the Nucleus should
allocate a stack for the new job’s initial task. The length of the

allocated segment is equal to the value of the stack$size
parameter.

stack$size A WORD containing the size, in bytes, of the stack of the new job’s
initial task. This size must be at least 16 (decimal) bytes. The
Nucleus increases specified values that are not multiples of 16 up
to the next higher multiple of 16.

The stack size should be at least 300 (decimal) bytes if the new task
is going to make Nucleus system calls. Refer to the Extended iRMX

Il Programming Techniques manual for further information on
estimating stack sizes.

task$flags A WORD contaming information that the Nucleus needs to create
and maintain the job’s initial task. The bits (where bit 15 is the
high order bit) have the following meanings:

Bits Meaning
15-1 Reserved bits which should be set to zero.
0 If one, the initial task contains floating-point

instructions. These instructions require the Numeric
Processor Extension (NPX) component for execution.

If zero, the initial task does not contain floating-point

instructions.
Output Parameters
job A TOKEN to which the Operating System will return a token for
the new job.
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The RQESCREATES$JOB system call creates a job with an initial task and returns a
token for the job. The new job’s parent is the calling task’s job. The new job counts as
one against the parent job’s object limit. The new task counts as one against the new job’s
object and task limits. The new job’s resources come from the parent job, as described in
the Extended iRMX II Nucleus User’s Guide. In particular, the max$task and max$objects
values are deducted from the creating job’s maximum task and maximum objects
attributes, respectively.

Nucleus System Calls 21

RQE$CREATE$JOB

This system call is an extension of the CREATES$JOB system that supports the full
memory-addressing capabilities of the IRMX II Operating System. When you use it, you
can assign memory pools of up to 16M bytes in size.

Example

22

R S L s e
This example illustrates how the RQESCREATESJOB system call *

*
*

can be used.

*

**/

DECLARE TOKEN

LITERALLY 'SELECTCR';

/% NUCLUS .EXT declares all system calls */

SINCLUDE(/rmx286/inc/NUCLUS .EXT)
INITIALTASK: PROCEDURE EXTERNAL;

END TINITIALTASK;

DECLARE job$token
DECLARE directory$size
DECLARE param$obj
DECLARE poolSmin
DECLARE pool$max
DECLARE max$objects
DECLARE max$tasks
DECLARE max$priority
DECLARE except$handler
DECIARE job$flags
DECLARE task$priority
DECLARE start$address
DECLARE dataSseg
DECILARE stack$pointer
DECLARE stack$size
DECLARE task$flags
DECLARE status

SAMPLEPROCEDURE:
PROCEDURE;

directorySsize = 10;
param$obj = SELECTORSOF(NIL);
poolSmin = OlFFH;

poolSmax = OFFFFFH;
max$objects = OFFFFH;
max$tasks = 10;
max$prierity = 0;
except$handler =
job$flags = O;
task$priority = 0;

NIL;

TOKEN;
WORD;
TOKEN;
DWORD;
DWORD;
WORD;
WORD;
BYTE;
POINTER;
WORD;
BYTE;
POINTER;
TOKEN;
POINTER;
WORD;
WORD;
WORD;

/* max 10 entries in object directory */
/* new job has no parameter object */
/* min OLFFH, max OFFFFFH l6-byte */

/* paragraphs in job pool */
/* mno limit to number of objects */

/* 10 tasks can exist simultaneocusly */
/* inherit max priority of parent */
/* use system default except handler */
/* parameter validation is on */
/* set initial task to max priority */

Nucleus System Calls

RQESCREATESJOB

start§address = @INITIALTASK:
/* points to first instruction of

initial task */
data$seg = SELECTORSQF(NIL); /* initial task sets up own data

segment */
stack$pointer = NIL; /* Nucleus allocates stack */
stack$size = 512: /* 512 bytes in stack of initial task */
task$flags = 0; /* no floating-point instructions */

. Typical PL/M-286 Statements

/e e ok ok ok sk ook ek sk s oo s ke s ke ok o s s e e ok ok o s e ek ok
* The calling task creates a job with an initial task labeled =
* INITIALTASK. *

**/

jobStoken = RQESCREATESJOR (directory$size,
param$obj,
poolSmin,
pool$max,
max$objects,
maxStasks,
max$priority,
except$handler,
jobSflags,
task$priority,
start$address,
data$seg,
stack$pointer,
stack$size,
task$flags,
@status);

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Nucleus System Calls 23

RQE$SCREATES$JOB

Condition Codes
ESOK

ESBADSADDR

E$CONTEXT

ESEXIST

ESLIMIT

ESMEM

24

0000H

800FH

0005H

0006H

0004H

0002H

No exceptional conditions.

At least one of the following parameters is
invalid: except$handler, data$seg, or stack$ptr.
Either a selector does not refer to a valid
segment, or an offset is outside the segment
boundaries.

The job containing the calling task is in the
process of being deleted.

The param$obj parameter is not
SELECTORSOF(NIL) and is not a token for
an existing object.

At least one of the following is true:

max$objects is larger than the unused portion of
the object allotment in the calling task’s job.

max$tasks is larger than the unused portion of
the task allotment in the calling task’s job.

max$priority is greater (numerically smaller)
than the maximum allowable task priority in the
calling task’s job.

directory$size is larger than OFFOH.

The initial task would exceed the object limit in
the new job. That is, the max$objects
parameter is set to zero.

The initial task would exceed the task limit in
the new job. The max$tasks parameter is set to
Zero.

At least one of the following is true:

The memory available to the new job is not
sufficient to create a job descriptor (an internal
data structure) and the object directory.

The memory available to the new job is not
sufficient to satisfy the pool$min parameter.

The memory available to the new job is not
sufficient to create the task as specified.

Nucleus System Calls

E$PARAM

E$SLOT

Nucleus System Calls

8004H

000CH

RQE$CREATESJOB

At least one of the following is true:

pool$min is less than 16 + (number of
paragraphs needed for the initial task and a
system-allocated stack) + 5 (if the task uses the
NPX component).

pool$min is greater than pool$max.

task$priority is unequal to zero and greater
(numerically smaller) than max3priority.

stack$size is less than 16.

the exception handler mode is not valid.

There isn’t enough room in the GDT for the
new job and task descriptors.

25

The DELETE$JOB system call deletes a job.

CALL RQS$DELETESJOB (job, exceptéptr);

Input Parameter

job A TOKEN for the job to be deleted. A value of
SELECTORSOF(NIL) specifies the calling task’s job.

Output Parameter

exceptiptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The DELETES$JOB system call deletes the specified job, all of the job’s tasks, and all
objects created by the tasks. Exceptions are that jobs and extension objects (see the
Extended iRMX Il Nucleus User’s Guide) created by tasks in the target job must be deleted
prior to the call to DELETESJOB. Information concerning the descendants of a job can
be obtained by invoking the OFFSPRING system call.

During the deletion of any interrupt tasks owned by the job, the interrupt levels associated
with those tasks are reset. The levels that do not have interrupt tasks associated with
them will not be reset during an RQ$DELETE$JOB call.

During deletion, all resources that the target job had borrowed from its parent are
returned.

Deleting a job causes a credit of one toward the object total of the parent job. Also, the
maximum tasks and maximum objects attributes of the deleted job are credited to the
current tasks and current objects attributes, respectively, of the parent job.

Example
e e b R S R e ko ok s sk kst sk s o e sk
* This example illustrates how the DELETE$JOB system call can be %

* used to delete the calling task’s job. *
R N e T

DECLARE TOKEN LITERALLY 'SELECTOR’;

26 Nucleus System Calls

DELETE$JOB

/* NUCLUS.EXT declares all system calls */
$INCLUDE (/rmx286/inc/NUCLUS . EXT)

DECLARE calling$tasks$job TOKEN ;

DECLARE status WORD;
SAMPLEPROCEDURE;

FROCEDURE;

calling§task$job = SELECTOR$OF(NIL); /* Set job to task's job. */

Typical PL/M-286 Statements

/‘k*‘k*‘k****‘k********)‘c****'k******'k*****'k***‘k**‘k**************'k****'k****

* If you set the job parameter to SELECTOR$OF(NIL), the DELETES$JOB *
* system call will delete the calling task’s job. *
e T S

CALL RQSDELETESJOB (calling$tasks$job, @status);

END SAMPLEPROCEDURE;

Condition Codes
E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H At least one of the following is true:

¢ There are undeleted jobs or extension objects
(see the Extended iRMX I Nucleus User’s
Guide) which have been created by tasks in the
target job.

o The deleting task has access to data guarded by
a region contained in the job to be deleted.
(Refer to the Extended iRMX I Nucleus User's

Guide for information concerning regions.)

ESEXIST 0006H The job parameter is not a token for an existing
object.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

ESTYPE 8002H The job parameter is a token for an object that
1s not a job.

Nucleus System Calls 27

The OFFSPRING system call returns a token for each child (job) of a job.

token$list = RQSOFFSPRING (job, except$ptr);

Input Parameter

job A TOKEN for the job whose offspring are desired. A valtue of
SELECTORS$OF(NIL) specifies the calling task’s job.

Output Parameter
token$list A TOKEN that indicates the children of the specified job.

¢ If a valid selector, the TOKEN contains a token for a segment.
The first word in the segment contains the number of words in
the remainder of the segment. Subsequent words contain the
tokens for jobs that are the immediate children of the specified

job.
« If SELECTORSOF(NIL), the specified job has no children.
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The OFFSPRING system call returns the token for a segment. The segment contains a
token for each child of the specified job. By repeated use of this call, tokens can be
obtained for all descendants of a job; this information is needed by a task which is
attempting to delete a job that has child jobs.

Example

/***-k***‘k'k'a'c*';hk"k**7\’**'k*******7&7‘:*7‘:'A"k'k'A".hhl:'k')'c‘k'k)\'********‘k*************)\'**'k***

* This example illustrates how the OFFSPRING system call can be used *
* to return a token for each child of a job. *
R e T e S

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS .EXT)

28 Nucleus System Calls

OFFSPRING

DECLARE token$list TOKEN;
DECLARE calling$tasks$job TOKEN;
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE
L]
. Typical PL/M-286 Statements
L]

/R ok Ak o R R R R AR AR R ko Rk sk ek sk ek ok e ke kA R AR AR AR Ak
*¥ In this example, the calling task invokes the system call OFFSPRING =
* to obtain a token for a segment. This segment contains the tokens *

* for jobs that are immediate children of the calling task’'s job. *
ok koo R R AR KA A A A AR R F T KA E A A HEA KKK/

calling$tasks$job = SELECTORSOF(NIL);

token$list = RQSOFFSPRING (callingStasks$job,
@status);
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes

ESOK 0000H No exceptional conditions.

ESEXIST 0006H The job parameter is not a token for an existing
object.

ESLIMIT 0004H The calling task’s job has already reached its

object limit.

ESMEM 0002H The memory available to the specified job is not
sufficient to complete this call.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

Nucleus System Calls 29

OFFSPRING

E$SLOT

ESTYPE

000CH

8002H

There isn’t enough room in the GDT for
another descriptor.

The job parameter contains a token for an
object that is not a job.

Nucleus System Calls

The RQESOFFSPRING system call performs the same function as the RQ$OFFSPRING
system call. However, RQESOFFSPRING returns the list of child job tokens in a
structure that you supply, rather than in a segment.

CALL RQESOFFSPRING (job, list$ptr, exceptS$ptr);

Input Parameter

job A TOKEN for the job whose offspring are desired. A value of
SELECTORS$OF(NIL) specifies the calling task’s job.

Output Parameters

listptr A POINTER to a STRUCTURE in which the system call returns
tokens for the children of the specified job. The format of this data

structure is as follows:

DECLARE offspring STRUCTURE (

max$num WORD,
actual WORD,
children(*) TOKEN):

The fields of this structure are as follows:

max$num

actual

children(*}

Nucleus System Calls

This is actually an input field. Before
invoking the system call, you must set this
field to indicate the maximum number of
child job tokens the system call can return in
this structure. That is, this field must
specify the number of slots for children
tokens in this structure. The value in this
field must be greater than zero.

The system call fills in this field to indicate
the number of tokens it returned in this
structure. This number will never be larger
than the max$num value,

The system call fills in these fields with the
tokens for the immediate children of the
specified job. The number of tokens in this
list is indicated in the actual field.

i1

RQESOFFSPRING

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The RQE$OFFSPRING system call returns a structure that contains a token for each
child of the specified job. By repeated use of this call, tokens can be obtained for all
descendants of a job. This information is needed by a task that is attempting to delete a
job that has child jobs.

This system call returns exactly the same information as RQ$OFFSPRING. The only
difference between the two system calls is that RQSOFFSPRING creates an iRMX 11
segment to contain the information about the offspring tokens; ROE$OFFSPRING
returns the token information in a structure that you supply. Using structures instead of
iIRMX 11 segments minimizes the number of iRMX II objects (and thus the number of
GDT entries). It also means that the memory for the list is allocated when the task starts
running, not dynamically when needed. This minimizes the chance of the system call
failing because of a lack of memory.

The offspring structure that you supply has two fields in addition to the slots in which the
system call returns the tokens. The first, max$num, is an input parameter that you fill in
to indicate the amount of room in the structure for offspring tokens. The second field,
actual, is filled in by the system call when it returns the tokens. The actual field is set to
indicate the number of tokens actually returned. If there are more tokens to be returned

than slots in the structure, the system call returns only enough to fill up the structure (that
is, max$num).

Example

/****************************-k*-:l:**7!:**':l'******'k**'k**********‘k**************

* This example illustrates how the RQESOFFSPRING system call can be =
* used to return a token for each child of a job. *
ko kbR ek kb sk kot sk ko ko ok ok sk ks b e R ek /

DECLARE TOKEN LITERALLY 'SELECTOR’;

/% NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS , EXT)

DECLARE token$list STRUCTURE (
max$num WORD,
actual WORD,
children(20) TOKEN) :

DECLARE callingS$tasks$job TOKEN;

DECLARE status WORD;

32 Nucleus System Calls

RQESOFFSPRING

SAMPLEPROCEDURE:
PROCEDURE;

Typical PL/M-286 Statements

/**#*******

* In this example, the calling task invokes the system call *
* RQE$OFFSPRING to obtain a list of up to 20 tokens for the jobs that =*
* are the immediate children of the calling task’'s job. *

**/

calling$tasks$job = SELECTORS$OF(NIL);:
token$list . max$num = 20;

CALL RQESOFFSPRING (calling$tasksSjob, @token$list
@status);
. Typical PL/M-286 Statements
L]

END SAMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.
ESEXIST 0006H The job parameter is not a token for an existing
object.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

ESTYPE 8002H The job parameter contains a token for an
object that is not a job.

Nucleus System Calls 33

The CREATES$TASK system call creates a task.

task = RQSCREATESTASK (priority, start$address, dataSseg, stack$ptr,
stack$size, task$flags, exceptSptr);

Input Parameters
priority A BYTE that specifies the priority of the new task.

» If not zero, it contains the priority of the new task. The priority
parameter must not exceed the maximum allowable priority of
the calling task’s job. If it does, an ESPARAM error is

returned.

+ If zero, it indicates that the new task’s priority is to equal the
maximum allowable priority of the calling task’s job.

start$address A POINTER to the first instruction of the new task.
data$seg A TOKEN that specifies the new task’s data segment.

o If avalid selector, the TOKEN contains the base address of the
new task’s data segment.

o If set to SELECTORSOF(NIL), the TOKEN indicates that the
new task assigns its own data segment. Refer to Guide To The
Extended iRMX II Interactive Configuration Utility and Extended
IRMX II Interactive Configuration Utility Reference Manual for
further information on data segruent allocation.

stack$ptr A POINTER that specifies the location of the stack for the new
task.

o If this is a valid pointer, the Nucleus uses the sum of the offset
portion and the stack$size parameter (declared during the call
to CREATE$TASK) as the value of the SP register (the stack
pointer).

» If the pointer is set to NIL, the Nucleus allocates a stack to the
new task. The length of the stack is equal to the value of the
stack$size parameter.

14 Nucleus System Calls

stack$size

task$flags

Output Parameters

task

except$ptr

Description

CREATESTASK

A WORD containing the size, in bytes, of the new task’s stack
segment.

The stack size must be at least 16 bytes and should be at least 300
bytes if the new task is going to make Nucleus system calls. Refer
to the Extended iRMX II Programming Techniques manual for
further information on assigning stack sizes.

A WORD containing information that the Nucleus needs to create
and maintain the task. The bits (where bit 15 is the high-order bit)
have the following meanings:

Bits Meaning
15-1 Reserved bits which should be set to zero
0 If one, the task contains floating-point instructions.
These instructions require the NPX component for
execution

If zero, the task does not contain floating-point
instructions

A TOKEN to which the Operating System will return a token for
the new task.

A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

The CREATESTASK system call creates a task and returns a token for it. The new task
counts as one against the object and task limits of the calling task’s job. Attributes of the
new task are initialized upon creation as follows:

« priority: as specified in the call.

¢ execution state: ready.

e suspension depth: 0.

» containing job: the job that contains the calling task.

s exception handler: the exception handler of the containing job.

» exception mode: the exception made of the containing job.

Nucleus System Calls

35

CREATESTASK

Example
/K ke Rk Aok kR ok ekok kb o kot ok koo ok ok ok ko ok kot kb ok okt kb kot
* This example illustrates how the CREATE$TASK system call can be *
* used. *

36

**/

DECLARE TCKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls */
S$INCLUDE(/rmx286/inc/NUCLUS ., EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECLARE task$token TOKEN;
DECLARE prioritySlevel$210 LITERALLY ‘210
DECLARE start$address POINTER;
DECLARE data$seg TOKEN;
DECLARE stack$pointer POINTER;
DECLARE stackS$size$512 LITERALLY '512';
/* new task's stack size is 512 bytes */
DECLARE task$flags WORD;
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE ;
startSaddress = @TASKCODE; /* first instruction of the new task */
data$seg = SELECTORSOF(NIL); /* task sets up own data segment */
stack$pointer = NIL; /* automatic stack allocation */
task$flags = 0; /* designates no floating-peint instructions */

Typical PL/M-286 Statements

/**

* The task (whose code is labeled TASKCODE) is created when the *
* calling task invokes the CREATESTASK system call. *

**/

task$token = RQSCREATESTASK (priority$level$66,
start$Saddress,
data$seg,
stack$pointer,
stack$size$512,
task$flags,
@status);

Nucleus System Calls

CREATESTASK

Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$OK

E$BADSADDR

ESLIMIT

ESMEM

ESNOTSCONFIGURED

E$PARAM

ES$SLOT

Nucleus System Calls

0000H

800FH

(0004H

0002H

0008H

8004H

000CH

No exceptional conditions.

The data$seg, or stack3ptr is invalid. Either a
selector does not refer to a valid segment, or an
offset is outside the segment boundaries.

The calling task’s job has already reached its
object limit or task limit.

The memory available to the calling task’s job is
not sufficient to create a task as specified (task
descriptor, stack, and possibly NPX area).

This system call is not part of the present
configuration.

At least one of the following is true:

The stack$size parameter is less than 16.

The priority parameter is nonzero and greater
(numerically smaller) than the maximum
allowable priority for tasks in the calling task’s
job.

There isn’t enough room in the GDT for
another descriptor.

37

The DELETE$TASK system call deletes a task.

CALL RQSDELETESTASK (task, except$ptr);

Input Parameter
task A TOKEN that identifies the task to be deleted.

s If a valid selector, the TOKEN must contain a token for the
task to be deleted.

+ [f SELECTORS$OF(NIL), this parameter indicates that the
calling task should be deleted.

Output Parameter

exceptSptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The DELETESTASK system call deletes the specified task from the system and from any
queues in which the task was waiting. DELETE$TASK allows any task currently within a
region to exit the region before being deleted. Deleting the task counts as a credit of one
toward the object total of the containing job. Tt also counts as a credit of one toward the
containing job’s task total.

You cannot successfully delete an interrupt task by invoking this system call. Any attempt
to do so results in an ESCONTEXT exceptional condition. To delete an interrupt task,
invoke the RESETSINTERRUPT system call.

Example

FRF AR XA AR A AR R T AR AR A R ko A o R R R AL AR AR A A AR A KA AR AR AR R

* This example illustrates how the DELETESTASK system call can be *
* used. *
* *
I e

DECLARE TOKEN LITERALLY 'SELECTOR';

38 Nucleus System Calls

DELETES$TASK

/* NUCLUS.EXT declares all system calls */

$INCLUDE (/rmx?2

TASKCODE: PROC
END TASKCODE;

DECLARE tas
DECLARE pri
DECLARE sta
DECLARE dat
DECLARE sta
DECLARE sta

DECLARE ta
DECLARE st

SAMPLEPROCEDUR
start$addr
data$seg =

stackS$Spoin
taskSflags

86/inc/NUCLUS .EXT)

EDURE EXTERNAL;

kStoken TOKEN ;

ority$level$210 LITERALLY '210";

rtSaddress POINTER;

a$seg TOKEN;

ck$pointer POINTER;

ck$size$512 LITERALLY *512'; /* new task's stack

size is 512 bytes */

sk$flags WORD ;

atus WORD;

E: PROCEDURE;

ess = @TASKCODE; /* points to first instruction of

the new task */

SELECTORSOF(NIL); /* task sets up own data segment */

automatic stack allocation =/
indicates no floating-point
instructions */

ter = NIL; VA
= O, /*
Typical PL/M-286 Statements

/T ok g sk s s T S ok R R e sk e g ok sk ok kA kR AR R e o bk sk sk b sk
* In order to delete a task, a task must know the token for that *
* task, In this example, the needed token is known because the *
* calling task creates the new task (The task’s code is labeled *

*

* TASKCODE) .

**************)‘c*k********7\-****)‘c':ir*‘k*******‘A‘***************************/

taskStoken

Nucleus System Calls

= RQSCREATESTASK (priority$level$210,
startSaddress,
data$seg,
stack$pointer,
stack$size$512,
task$flags,
@status);

Typical PL/M-286 Statements

39

DELETESTASK

/s&-*******************************‘k**********-Jr************************

* The calling task has created a task (whose code is labeled *
* TASKCODE) which is not an interrupt task. When this task is no *
* longer needed, it may be deleted by any task that knows its *
* token. *

********************:»‘c-k-k**-k*"k*"k****‘k*‘*'Jr*'-k*‘k‘k************3‘:***********/

CALL RQSDELETESTASK (taskStoken, (@status);
[]
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes

ESOK 0000H No exceptional conditions.

E$CONTEXT 000SH The task parameter is a token for an interrupt
task.

ESEXIST 0006H One of the following conditions has occurred:

o The task parameter is not a token for an
existing object.

» The task parameter represents a task whose job
is being deleted.

» More than one task is trying to delete a task
which is in a region.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESTYPE 8002H The task parameter is a token for an object
which is not a task.

40 Nucleus System Calls

The GETSPRIORITY system call returns the priority of a task.

priority = RQGETPRIORITY (task, except$ptr);

Input Parameter
task A TOKEN that specifies the task whose priority is being requested.

o If avalid selector, the TOKEN must contain a token for the
task whose priority is being requested.

+ I SELECTORSOF(NIL), the calling task is asking for its own

priority.
Output Parameters
priority A BYTE in which the system call returns the priority of the task
indicated by the task parameter.
except§ptr A POINTER to a WORD to which the iIRMX I Operating System

will return the condition code generated by this system call.

Description

The GETSPRIORITY system call returns the iIRMX 11 priority of the specitied task.

Example

/**#k

* This example illustrates how the GET$PRICRITY system call can be
* used.

R R R

DECLARE TOKEN LITERALLY 'SELECTOR';

/% NUCLUS.EXT declares all system callg */
S$INCLUDE(/rmx286/inc/NUCLUS .EXT)

DECLARE priority BYTE;
DECLARE callingStask TOKEN ;
DECLARE status WORD;

Nucleus System Calls 41

GET$PRIORITY

SAMPLEPROCEDURE:
PROCEDURE;

. Typical PL/M-286 Statements

/*v‘c**-k7‘:**:‘c***v‘:-k-ak'**3&'**********‘k**‘k**';'c**‘k*******-k**-k*******-k**************:’c

* The GET$PRIORITY system call returns the priority of the calling *
* task. *
ek el st bt de ok ke kR kR s ok sk oAk ko e e

calling$task = SELECTORSOF(NIL); /* Select calling task. */

priority = RQSGETPRIORITY (callingStask,

@status) ;
L)
. Typical PL/M-286 Statements
L
END SAMPLEPRCCEDURE;
Condition Codes
E$OK 0000H No exceptional conditions.
ESEXIST 0006H The task parameter is not a token for an

existing object.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration,

ESTYPE 8002H The task parameter is a token for an object that
is not a task.

42 Nucleus System Calls

The GET$TASKSTOKENS system call returns the token requested by the calling task.

object = RQ$SGET$TASKSTOKENS (selection, except$ptr);

Input Parameter

selection A BYTE that tells the iRMX Il Operating System what

information is desired. It is encoded as follows:

Value Object for which a Token is Requested
0 The calling task.
1 The calling task’s job.
2 The parameter object of the calling task’s job.
3 The root job.

Output Parameters

object A TOKEN to which the iRMX 11 Operating System will return the

requested token.

except$ptr A POINTER to a WORD to which the iRMX 1l Operating System

will return the condition code generated by this system call.
Description

The GETSTASKSTOKENS system call returns a token for either the calling task, the

calling task’s job, the parameter object of the calling task’s job, or the root job, depending
on the encoded request.

Example

/********************-k-k****‘k****'ﬂr************************************'k* *

* This example illustrates how the GET$TASKSTOKENS system call can be
* used to return the TOKEN requested by the calling task.
ook kR A A AR A T AT S T T A S RSt o S S S s o s e e e e

DECLARE TOKEN LITERALLY 'SELECTOR’;

Nucleus System Calls

v ¥

GETSTASKSTOKENS

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE taskS$Stoken TOKEN ;
DECLARE callingStask LITERALLY ‘0';
DECLARE status WORD;
SAMPLEPROCEDURE ;
PROCEDURE;
o Typical PL/M-286 Statements
L]

/***v\"k*'.-\"k**‘;'c*‘k***‘k*-k*-k-k*******7‘:**7‘:****)‘c**'k**************************‘k**)‘c*

* If you set the selection parameter to zero, the GET$TASK$TOKENS *
* system call will return a token for the calling task. *
B e Y

taskStoken = RQSGETSTASKSTOKENS (calling$task,

[@status):
L]
. Typical PL/M-286 Statements
END SAMPLEPROCEDURE;
Condition Codes
E3OK 0000H No exceptional conditions.
E$SPARAM 8004H The selection parameter is greater than 3.

44 Nucleus System Calls

The RESUMESTASK system call decreases by one the suspension depth of a task.

CALL RQS$SRESUMESTASK {task, except$ptr);

Input Parameter

task A TOKEN for the task whose suspension depth is to be
decremented.

Output Parameter

exceptiptr A POINTER toa WORD to which the IRMX II Operating System
will return the condition code generated by this system call.

Description

The RESUMESTASK system call decreases by one the suspension depth of the specified
non-interrupt task. The task should be in either the suspended or asleep-suspended state,
s0 its suspension depth should be at least one. If the suspension depth is still positive
after being decremented, the state of the task is not changed. If the depth becomes zero,
and the task is in the suspended state, then it is placed in the ready state. If the depth
becomes zero, and the task is in the asleep-suspended state, then it is placed in the asleep

state.

Example
R UL T L R R
* This example illustrates how the RESUMESTASK system call can be %
* used to decrease by one the suspension depth of a task, *

**********'k'k*‘;\"k**‘k***‘k**-kv\—-.»\-********3‘:**':i’*‘k******k***'A";'c**'k':’f:********-k****v‘n‘r:‘:/

DECLARE TOKEN LITERALLY ‘SELECTOR’;

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS .EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECLARE taskStoken TOKEN;
DECLARE priority$level$200 LITERALLY '200";
DECLARE start$address POINTER;

Nucleus System Calls 45

RESUMESTASK

DECLARE data$seg TOKEN;;

DECLARE stack$pointer POINTER;

DECLARE stack$size$512 LITERALLY '512'; /* new task’'s stack

size is 512 bytes */
DECLARE task$flags WORD;
DECLARE status WORD;
SAMPLEPRCCEDURE :

PROCEDURE;

start$address = @TASKCODE; /* first instruction of the new task */

data$seg = SELECTORSOF(NIL); /* task sets up own data seg */

stack$pointer = NIL; /* automatic stack allocation */

task$flags = O; /* indicates no floating-point
instructions */

L}
Typical PL/M-286 Statements

/**

* In this example the calling task creates a non-interrupt task and %

* suspends that task before inveking the RESUMESTASK system call. *
ok sk sk R SRk ok R Sk sk st kR Rt sk sk R e Rk sk etk R ook ok ok ok /

taskStoken = RQSCREATESTASK (priority$level$200,

start$address,
data$seg,
stack$pointer,
stackS$size$512,
task$flags,
@status);
.
. Typical PL/M-286 Statements
L}
S R R R P T
* After creating the task, the calling task invokes SUSPENDSTASK. *
* This system call increases by one the suspension depth of the new %
* task (whose code is labeled TASKCODE)}. *

**/

CALL RQ$SUSPENDSTASK (task$token,
@status);
L]
) Typical PL/M-286 Statements

46 Nucleus System Calls

RESUMES$TASK

[k skt ol dok ek o ok ok s ok Sk b sk sk sk sk sk sk o e stk o b s A R ok ek ek
* Using the token for the suspended task (whose code is labeled *
* TASKCODE), the calling task invokes RESUMESTASK to decrease by the *

* one the suspension depth of the suspended task. *
e e T S

CALL RQ$RESUMESTASK (task$token,
@status);
L
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

ESCONTEXT 0005SH The task indicated by the task parameter is an
interrupt task.

ES$EXIST 0006H The task parameter is not a token for an
existing object,

ESSTATE 0007H The task indicated by the task parameter was
not suspended when the call was made.

ESTYPE 8002ZH The task parameter is a token for an object that
is not a task.

Nucleus System Calls 47

The SETSPRIORITY system call changes the priority of a task.

CAUTION

Tasks can become blocked for long periods of time, and real-time
performance of the iRMX II Operating System can be degraded when a
task uses this system call to lower its own priority.

CALL RQSSETSPRIORITY (task, priority, except$ptr);

Input Parameters

task A TOKEN for the task whose priority is to be changed. Setting
this parameter to SELECTOR$OF(NIL) selects the invoking task.

priority A BYTE containing the task’s new priority. A zero value specifies
the maximum priority of the specified task’s containing job.

Output Parameter

exceptSptr A POINTER to a WORD to which the iRMX i Operating System
will return the condition code generated by this system call.

Description

The SET$PRIORITY system call allows the priority of a non-interrupt task to be altered
dynamically. If the priority parameter is set to zero, the task’s new priority is its
containing job’s maximum priority. Otherwise, the priority parameter contains the new
priority of the specified task. The new priority, if explicitly specified, must not exceed its
containing job’s maximum priority.

Example

/‘k7‘:****'k*k"r\‘**‘k****‘k‘k‘k*******',\b'c*}l—**)hh!r*-k'k*-k*~.~l—-k*************************'A"k*'k

* This example illustrates how the SETSPRIORITY system call can be *
* used to change the priority of a task. *
B B L L e T L

DECLARE TOKEN LITERALLY 'SELECTOR';

48 Nucleus System Calls

SET$PRIORITY

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc /NUCLUS . EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECLARE task$token TOKEN ;

DECLARE priority$level$66 LITERALLY '66';

DECLARE priority$level$210 LITERALLY '210‘;

DECLARE start$address POINTER;

DECLARE dataSseg TOKEN;

DECLARE stackSpointer POINTER;

DECLARE stack$size$512 LITERALLY '512'; /* new task's
stack size isg
512 bytes */

DECLARE task$flags WORD;

DECLARE status WORD;

DECLARE job$token TOKEN ;

SAMPLEPROCEDURE ;
PROCEDURE;
start$Saddress = @TASKCODE: /* pointer to first instruction of
interrupt task */

data$seg = SELECTOR$QOF(NIL); /* task sets up own data segment */

stack$pointer = NIL; /* automatic stack allocation */

taskSflags = 0; /* designates no floating-point

instructions */

. Typical PL/M-286 Statements

/**

* In this example, the calling task creates a task whose priority is *
* to be changed. The new task initially has a priority level 66. *
FAHFAH AR R A FAA R A K b Kbk kob sk R Rk ok R R ek b Rk ek

task$token = RQSCREATESTASK (priority$level$é6,
startSaddress,
datalseg,
stack$pointer,
stack$size$512,
task$flags,
{dstatus) ;

/**

* The calling task in this example does not need to invoke the *
* CATALOGSOBJECT system call to ensure the successful use of the *
* SETSPRIORITY system call. To allow other tasks access to the new *
* task, however, requires that the task's object token be cataloged. *
Kok sk ok ok ok Sk ok R o R R R S S R R R R R ek

Nucleus System Calls 49

SET$PRIORITY

CALL ROSCATALOGSOBJECT {jobStoken,
taskStoken,
@(9, 'TASKCODE'),
@status);
L]
. Typical PL/M-286 Statements
L

L R R L B e B R e S e
* The new task (whose code is labeled TASKCODE) is not an interrupt *

* task, so its priority may be changed dynamically by invoking the *
* SETSPRIORITY system call. *
R e e
CALL RQS$SETS$PRIORITY (taskStoken,
priority$level$210,
@status) ;
[]
. Typical PL/M-286 Statements

/'k**7\'***b‘nl:'k':hl'**7\'**)h\:)‘:*************‘k***k********‘k**************************

* Once the need for the higher priority is no longer present, the *
* priority of the new task can be changed back to its original *
* priority by invoking SETSPRIORITY a second time. *
F Ak Rk ok ko ko kdeks ok sk kb otk ek ke Rk ek Rk ek ok /
CALL RQ$SETSPRIORITY (task$token,
priority$level$6s,
@status);

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.

ESCONTEXT 0005H The specified task is an interrupt task. You
cannot set the priority of an interrupt task
dynamically.

ESEXIST 0006H The task parameter is not a token for an

existing object.

50 Nucleus System Calls

ESLIMIT

ESNOT$CONFIGURED

ESTYPE

Nucleus System Calls

0004H

0008H

8002H

SET$PRIORITY

The priority parameter contains a priority value
that is higher than the maximum priority of the
specified task’s containing job.

This system call is not part of the present
configuration.

The task parameter is a token for an object that
is not a task.

51

The SLEEP system call puts the calling task to sleep.

CALL RQSSLEEP (time$limit, except§ptr);

Input Parameter

time$limit A WORD indicating the conditions in which the calling task is to
be put to sleep.

e If not zero and not OFFFFH, causes the calling task to go to
sleep for that many clock intervals, after which it will be
awakened. The length of a clock interval is configurable.
Refer to the Fxtended iRMX Il Interactive Configuration Utility
Reference Manual for further information.

o If zero, causes the calling task to be placed on the list of ready
tasks, immediately behind all tasks of the same priority. If
there are no such tasks, there is no effect and the calling task
continues to run,

« If OFFFFH, an error is returned.

Output Parameter

except$ptr A POINTER to a WORD to which the iIRMX II Operating System
will return the condition code generated by this system call.

Description

The SLEEP system call has two uses. One use places the calling task in the asleep state
for a specific amount of time. The other use allows the calling task to defer to the other
ready tasks with the same priority. When a task defers in this way it is placed on the list
of ready tasks, immediately behind those other tasks of equal priority.

52 Nucleus System Calls

SLEEP

Example

e e S S e R e S R T B R B T P e P P R R
* This example illustrates how the SLEEP system call can be used. *

k***/

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS.EXT declares all system calls */
SINCLUDE (/rmx286/inc/NUCLUS . EXT)

DECLARE time$limit WORD;
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;
time$limitc = 100:; /* sleep for 100 clock ticks */
L
. Typical PL/M-286 Statements

/**

* The calling task puts itself in the asleep state for 100 clock *
* ticks by invoking the SLEEP system call. *
B e e S e
CALL RQSSLEEP (time$limit, /* 10ms is the default %/
@status); /* 100 = 1 second */
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes

ESOK 0000H No exceptional conditions.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H The time$limit parameter contains the invalid
value OFFFFH.

Nucleus System Calls 53

The SUSPENDS$TASK system call increases by one the suspension depth of a task.

CALL RQ$SUSPENDSTASK (task, except$ptr);

Input Parameter

task A TOKEN specifying the task whose suspension depth is to be
incremented.

» if a valid selector, contains a token for the task whose
suspension depth is to be incremented.

» if SELECTORSOF(NIL), indicates that the calling task is
suspending itself.

Output Parameter

exceptiptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The SUSPEND$TASK system call increases by one the suspension depth of the specified
task. If the task is already in either the suspended or asleep-suspended state, its state is
not changed. If the task is in the ready or running state, it enters the suspended state. If
the task is in the asleep state, it enters the asleep-suspended state.

SUSPENDS$TASK cannot be used to suspend interrupt tasks.

Example

et e
* This example illustrates how the SUSPEND$TASK system call can be *

* used to increase the suspension depth of a non-interrupt task. *
R R e e e S ST

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls */
SINCLUDE (/rmx286/inc/NUCLUS . EXT)

54 Nucleus System Calls

SUSPENDSTASK

TASKCODE: PROCEDURE EXTERNAL:
END TASKCODE;

DECLARE taskStoken TCKEN;
DECLARE priority$level$200 LITERALLY ‘200';
DECLARE start$address POINTER:
DECLARE dataSseg TOKEN;
DECLARE stack$pointer POINTER;
DECLARE stack$size$512 LITERALLY '512'; /* new task’s stack
size is 512 bytes */

DECLARE task$flags WORD;
DECIARE status WORD;

SAMPLEPROCEDURE
PROCEDURE;
start$address = @TASKCODE; /* first instruction of the new task %/
data$seg = SELECTOR$OF(NIL); /* task sets up own data seg */
stack$pointer = NIL;: /% automatic stack allocation */
taskS$flags = 0; /% designates no floating-point

instructions */

Typical PL/M-286 Statements

I T S R Rt b E R T T T SUTUEE PSR g
*¥ In order to suspend a task, a task must know the token for that *

* task. In this example, the needed token is known because the *

* calling task creates the new task (whose code is labeled TASKCODE) . =
kSt ok Sk ke ok ek ok s ke ek R o R R

task$token = RQSCREATESTASK (priority$level$200,
start$address,
dataSseg,
stack$pointer,
stack$size$512,
task$flags,
{@status);

. Typical PL/M-286 Statements
[]

/**

* After creating the task, the calling task invokes SUSPENDS$TASK. *
* This system call increases by one the suspension depth of the new =%
* task (whose code is labeled TASKCODE). *

***/

CALL RQ$SUSPENDSTASK (taskStoken, @status):

Nucleus System Calls 55

SUSPENDSTASK

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes

ESOK 0000H
ESCONTEXT 0005H
ESEXIST 0006H
ESLIMIT 0004H
ESTYPE 8002H

56

No exceptional conditions.

The specified task is an interrupt task. You
cannot suspend interrupt tasks.

The task parameter is not a token for an
existing object.

The suspension depth for the specified task is
already at the maximum of 255.

The task parameter is a token for an object that
1s not a task.

Nucleus System Calls

The CREATESMAILBOX system call creates a mailbox.

mailbox = RQ$CREATESMAILBOX (mailbox$flags, except$ptr);

Input Parameters

mailbox$flags A WORD containing information about the new mailbox. The bits
(where bit 15 is the high-order bit) have the following meanings:

Bits Meaning
15-6 Reserved bits which should be set to zero.
5 A bit that determines the type of messages that this

mailbox can handle, as follows:
Value Message Scheme

0 This mailbox passes iIRMX 11 objects. The
SENDSMESSAGE and RECEIVE$SMESSAGE system
calls can be used to send and receive objects.

1 This mailbox passes up to 128 bytes of data. The
SENDSDATA and RECEIVESDATA system calls can
be used to send and receive the data.

Bits Meaning
4-1 A value that, when multiplied by four, specifies the

number of messages that can be queued on the high
performance object queue. Eight is the minimum size
tor the high performance queue; that is, specifying a
value less than eight in these bits results in a high
performance queue that holds eight objects.

These four bits have meaning only when the mailbox is
set up to pass object tokens (not data). When the
mailbox is set up to pass data, the Operating System
ignores these bits and automatically sets up a queue
that is three messages long, each message is 128 bytes
in length.

Nucleus System Calls 57

CREATESMAILBOX

0 A bit that determines the queuing scheme for the task
queue of the new mailbox, as follows:

Value Queuning Scheme
0 First-in/first-out

1 Priority based

Output Parameters

mailbox A TOKEN to which the Operating System will return a token for
the new mailbox.
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

58

This system call creates a mailbox, an exchange that tasks can use to exchange messages.
There are two kinds of mailboxes that you can create, depending on the kind of messages
your tasks wish to exchange. Bit 5 in the mailbox$flags parameter specifies the kind of
mailbox to create.

If you set bit 5 to 0, the mailbox is set up to pass IRMX II objects between tasks. That is,
if your message is a block of data, you must set it up as an iRMX 1l segment first. You
can pass other kinds of IRMX II objects as messages too. To send the message, use the
token for that object as input to the SEND$MESSAGE system call. The
RECEIVESMESSAGE system call can be used to receive object tokens from a mailbox.

It you set bit 5 to 1, the mailbox is set up to pass data. Instead of creating an iRMX 11
object for your message, you can use the SENDSDATA system call to pass up to 80H
bytes of data from a user-supplied buffer. RECEIVE$SDATA can be used to receive a
message from a mailbox and place it into another user-supplied buffer. Passing data
instead of objects can be important to systems whose Global Descriptor Table (GDT) is
almost full, because each object you create requires an entry in the GDT. Of course, you
can pass only 80H bytes of data per message. But the data can be in the form of a pointer
which can point to an area larger than 128 bytes.

¥

Each mailbox you create can be used in only one way. That is, a mailbox set up to pass
objects can pass only objects, not data. A mailbox set up to pass data cannot pass objects.

Nucleus System Calls

CREATES$SMAILBOX

When you set up a mailbox to pass objects, you can also specify the size of a high-
performance queue that is associated with the mailbox. This queue is a block of memaory
that stores objects waiting to be sent or received. It is permanently assigned to the
mailbox, even if no objects are queued there. If the queue overflows, the Nucleus
temporarily allocates another 200-object queue.

Setting the size of the high-performance queue involves a tradeoff between memory and
performance. Setting a size that is too large wastes memory, because the unused portion
of the queue is unavailable for other uses. But setting a size that is too small forces the
Nucleus to create a temporary queue (and creating and deleting objects are relatively slow
operations). You should set up a high-performance queue large enough to contain all the
objects queued during normal operations, and let the overflow queue handle large
overflows or unusual circumstances.

If you create a mailbox that passes data, you don’t specify the size of the message queue.
The Operating System automatically sets up the queue to an appropriate size of 400
decimal bytes.

Example
e L L T T T
* This example illustrates how the CREATESMAILBOX system call *

* can be used. *
TRk kR R Rk kb ko

DECLARE TOKEN LITERALLY ‘SELECTOR’;
/* NUCLUS .EXT declares all system calls */

$INCLUDE (/rmx286/inc/NUCLUS . EXT)

DECLARE mbxStoken TOKEN;
DECLARE mbx$flags WORD;
DECLARE status WORD ;
SAMPLEPROCEDURE:
PROCEDURE ;
mbx$flags = 0, /* designates a high performance

object queue of eight objects;
designates a first-in/first-out
task queue. */

. Typical PL/M-286 Statements

/******************************‘***-k*'k*'k***)‘c************************

* The token mbx$token is returned when the calling task invokes *
* the CREATESMAILBOX system call, *
B e L T s 2 S

Nucleus System Calls 59

CREATESMAILBOX

60

mbx$token = RQSCREATESMAILBOX (mbx$flags,

{dstatus);

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE,

Condition Codes
E$OK

E$LIMIT

ESMEM

ESNOT$CONFIGURED

ESSLOT

0000H

0004H

0002H

0008H

000CH

No exceptional conditions.

The calling task’s job has already reached its
object limit.

The memory available to the calling task’s job is
not sufficient to create a mailbox.

This system call is not part of the present
configuration.

There isn’t enough room in the GDT for the
new job and task descriptors

Nucleus System Calls

The DELETE$MAILBOX system call deletes a mailbox.

CALL RQSDELETESMAILBOX (mailbox, except$ptr);

Input Parameter
mailbox A TOKEN for the mailbox to be deleted.

Output Parameters

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The DELETESMAILBOX system call deletes the specified mailbox. If any tasks are
queued at the mailbox at the moment of deletion, they are awakened with an ESEXIST
exceptional condition. If there is a queue of object tokens data messages at the moment
of deletion, the queue is discarded. Deleting the mailbox counts as a credit of one toward
the object total of the containing job.

Example

/****7\'7‘(*7\-**7\—*******7\:******u‘c*******************************‘k**********

* This example illustrates how the DELETESMAILBOX system call can *
* be used. *

KA IR Rk sk Sk s ok ks ks e Sk
DECILARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls %/
SINCLUDE(/rmx286/inc/NUCLUS .EXT)

DECLARE mbx$token TOKEN;

DECLARE mbx$flags WORD;

DECLARE status WORD;
SAMPLEPROCEDURE:

PROCEDURE;

Nucleus System Calls 61

DELETESMAILBOX

mbx$flags = 0; /* designates eight objects to be queued
on the high performance object
queue; designates a first-in/
first-out task queue; designates a
mailbox that passes tokens. */

L]
¢ Typical PL/M-286 Statements
]

/**

* Tn order to delete a mailbox, a task must know the token for *
* that mailbox. In this example, the needed token is known *
* because the calling task creates the mailbox. *

**/

mbx$token = RQSCREATESMATLBOX (mbx$flags, @status);

]
e Typical PL/M-286 Statements
[]

/**

* When the mailbox is no longer needed, it may be deleted by *
* any task that knows the token for the mailbox. *

**/

CALL RQSDELETESMAILBOX (mbx$token, @status):
.
¢ Typical PL/M-286 Statements
[]

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

ESEXIST 0006H Either the mailbox parameter is not a token for
an existing object or it represents a mailbox
whose job is in the process of being deleted.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESTYPE 8002H The mailbox parameter is a token for an object
which is not a mailbox.

62 Nucleus System Calls

The RECEIVESDATA system call delivers the calling task to a mailbox, where it can wait
for a message to be returned.

actual = RQSRECETVE$DATA (mailbox, messageSptr, time$limit,
exceptSptr);

Input Parameters

mailbox A TOKEN for the mailbox from which the calling task expects to
receive a message.

time$limit A WORD that indicates how long the calling task is willing to wait.
o+ [Ifzero, indicates that the calling task is not willing to wait.

¢ IfOFFFFH, indicates that the task will wait as long as is
necessary.

e Ifbetween 0 and OFFFFH, indicates the number of clock
intervals that the task is willing to wait. The length of a clock
interval is configurable. Refer to the Extended iRMX II
Interactive Configuration Utility Reference Manual for further
information.

Output Parameters

actual A WORD in which the Operating System returns the number of
bytes actually received.

message$ptr A POINTER to the start of a user-supplied buffer. The system call
places the message into this buffer. The maximum message length
is 128 bytes, so this buffer should be large enough to contain
messages of that length.

exceptSptr A POINTER to a WORD to which the iRMX TI Operating System
will return the condition code generated by this system call.

Nucleus System Calls 63

RECEIVESDATA

Description

The RECEIVE$DATA system call receives messages from mailboxes that have been set
up to pass data (rather than tokens). It causes the calling task either to receive the data
message or to wait for the data in the task queue of the specified mailbox. If the message
queue at the mailbox is not empty, then the calling task immediately receives the message
at the head of the queue and remains ready. Otherwise, the calling task goes into the task
queue of the mailbox and goes to sleep, unless the task is not willing to wait. In the latter
case, or if the task’s waiting period elapses without a data message arriving, the task is
awakened with an E3TIME exceptional condition.

When you create a mailbox with CREATESMAILBOX, you can specify whether the
mailbox will be used to pass object tokens or data. RECEIVE$DATA functions only with
those mailboxes that have been set up to pass data. RECEIVE$DATA returns the
message data (up to a maximum of 128 bytes) in a user-specified memory buffer. The
system call also returns the length of the actual message received.

Example
R R R e L
* This example illustrates how the RECEIVE$DATA system call can be *
* used to receive a message segment. *

**/

DECLARE TOKEN LITERALLY 'SELECTOR’,

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS.EXT)

DECLARE mbxS$token TOKEN;
DECLARE calling$tasks$job TOKEN;;
DECLARE waitSforever LITERALLY 'OFFFFH’;
DECLARE message{80H) BYTE;
DECLARE status WORD;
DECLARE actual WORD ;
SAMPLEPROCEDURE:
PROCEDURE;
L]
. Typical PL/M-286 Statements

/**

* In this example, the calling task looks up the token for the mailbox®
* prior to invoking the RECEIVESDATA system call. *
B R S e e T

calling$tasks$job = SELECTORSOF(NIL);

64 Nucleus System Calls

RECEIVESDATA

mbx$token = RQSLOOKUPSOBJECT (calling$tasks$job,
@(3,'MBX"),
wait$forever,
(@status):

L]
. Typical PL/M-286 Statements
[]

R ek R e ko ok o ke ok o st o ek ok ek ok sk o sk sl ok s ok ok Sk ok ok
* Knowing the token for the mailbox, the calling task can wait for a =

* message from this mailbox by invoking the RECEIVE$SDATA system *
* call, *
B e e e e
actual = RQSRECEIVESDATA {mbx$token,
dmessage,
waitSforever,
{dstatus);
L
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

ESEXIST 0006H The mailbox parameter is not a token for an
existing object.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.
ESTIME 0001TH One of the following is true:

« The calling task was not willing to wait and
there was no message available.

o The task waited in the task queue and its
designated waiting period elapsed before the
task got the desired message.

ESTYPE 8002H One of the following is true:

* The mailbox parameter contains a token for an
object that is not a mailbox.

* The mailbox has been set up to pass tokens, not
data.

Nucleus System Calls 65

The RECEIVESMESSAGE system call delivers the calling task to a mailbox, where it can
wait for an object token to be returned.

object = RQSRECEIVESMESSAGE (mailbox, time$limit, response$ptr,
except$ptr);

Input Parameters

mailbox A TOKEN for the mailbox at which the calling task expects to
receive an object token.

time$limit A WORD that indicates how long the calling task is willing to wait.
¢ If zero, indicates that the calling task is not willing to wait.

« If OFFFFH, indicates that the task will wait as long as is
necessary.

s If between 0 and OFFFFH, indicates the number of clock
intervals that the task is willing to wait. The length of a clock
interval is configurable. Refer to the Extended iRMX 11
Interactive Configuration Utility Reference Manual for further

information.
Output Parameters
abject A TOKEN for the object being received.
responsedptr A POINTER to a TOKEN in which the system returns a value.

The returned pointer:

» if a valid pointer, points to a token for the exchange to which
the receiving task is to send a response.

» if NIL, indicates that no response is expected by the sending
task.

except$ptr A POINTER to a WORD to which the IRMX II Operating System
will return the condition code generated by this system call.

66 Nucleus System Calls

RECEIVESMESSAGE

Description

The RECEIVESMESSAGE system call causes the calling task either to get the token for
an object or to wait for the token in the task queue of the specified mailbox. This mailbox
must be set up to pass objects. If the object queue at the mailbox is not empty, then the
calling task immediately gets the token at the head of the queue and remains ready.
Otherwise, the calling task goes into the task queue of the mailbox and goes to sleep,
unless the task is not willing to wait. In the latter case, or if the task’s waiting period
elapses without a token arriving, the task is awakened with an ESTIME exceptional
condition.

When you create a mailbox with CREATESMAILBOX, you can specify whether the
mailbox will be used to pass object tokens or data. RECEIVESMESSAGE functions only
with those mailboxes that have been set up to pass objects.

It is possible that the token returned by RECEIVESMESSAGE is a token for an object
that has already been deleted. To verify that the token is valid, the receiving task can
invoke the GETSTYPE system call. However, tasks can avoid this situation by adhering
to proper programming practices.

One such practice is for the sending task to request a response from the receiving task
and not delete the object until it gets a response. When the receiving task finishes with
the object, it sends a response, the nature of which must be determined by the writers of
the two tasks, to the response mailbox. When the sending task gets this response, it can
then delete the original object, if it so desires.

Example

/******************-k*-k*'k*-k'k**‘:‘c******-k********'a‘:********'k***************i’*'k

* This example illustrates how the RECEIVESMESSAGE system call can be %
* used to receive a message segment, *
Bl e e e e e T e e

DECLARE TOKEN LITERALLY ‘SELECTCR';

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS .EXT)

DECLARE mbxStoken TOKEN;

DECLARE callingStasks$job TOKEN;

DECLARE waitSforever LITERALLY ‘OFFFFH'
DECLARE seg$token TOKEN;

DECLARE response TOKEN;

DECLARE status WORD;

SAMPLEPROCEDURE;
PROCEDURE ;

Nucleus System Calls 67

RECEIVESMESSAGE

L]
. Typical PL/M-286 Statements

/**

* 1In this example the calling task looks up the token for the mailbox *

* prior to invoking the RECEIVESMESSAGE system call. *
e s S

callingStasks$job = SELECTORSOF({NIL);

mbx$token = RQ$SLOOKUESOBJECT (calling$tasks$Sjob,
@(3, 'MBX'),
wvait$forever,
@status);

Typical PL/M-286 Statements

/**

* Knowing the token for the mailbox, the calling task can wait for a =
* message from this mailbox by invoking the RECEIVESMESSAGE system *

* call. *
KA ARk ek ek ko Tk kR R R SRk R R R/

seg$token = RQSRECEIVESMESSAGE (mbxStoken,
wait$forever,
@response,
@status)

Typical PL/M-286 Statements

END SAMPLEPRCCEDURE;

Condition Codes
E$OK 0000H No exceptional conditions.

ESEXIST 0006H The mailbox parameter is not a token for an
existing object.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

68 Nucleus System Calls

ESTIME

ESTYPE

Nucleus System Calls

0001H

8002H

RECEIVESMESSAGE

One of the following is true:

The calling task was not willing to wait and
there was not a token available.

The task waited in the task queue and its
designated waiting period elapsed before the
task got the desired token.

One of the following is true:

The mailbox parameter contains a token for an
object that is not a mailbox.

The mailbox was set up to pass data messages,
not objects.

69

The SEND$DATA system call sends a message of up to 80H bytes to a mailbox.

CALL RQSSENDSDATA (mailbox, message$ptr, actual$length, except$ptr);

Input Parameters

mailbox A TOKEN for the mailbox to which the message 1s to be sent. This
mailbox must be one that was created to pass data, not objects.

message$ptr A POINTER to a memory buffer containing the message.

actual$length A WORD specifying the length of the message. Any value between

0 and OFFFFH can be specified. However, because messages are
limited to 80H bytes, any value over 80H causes only 80H bytes to
be sent.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX 1l Operating System
will return the condition code generated by this system call.

Description

The SENDSDATA system call sends messages to mailboxes that have been set up to pass
data. It sends to a specified mailbox a maximum of 80H bytes from a user-specified
buffer. The number of bytes actually sent is also specified in the SENDSDATA call. If
there are tasks in the task queue at that mailbox, the task at the head of the queue is

awakened and is given the data. Otherwise, the message data is placed at the tail of the
mailbox’s message queue.

When you create a mailbox with CREATESMAILBOX, you can specify whether the
mailbox will be used to pass object tokens or data. SEND$DATA functions only with
those mailboxes that have been set up to pass data.

Example
kU N S L S R S S IS S N IN PO
* This example illustrates how the SEND$DATA system call can be *
* used to send data to a mailbox. *

*******)‘c***v\'*****‘k**-k*****3\'*',\l"k'k*'k***k***‘k‘k‘k******************************/

DECLARE TOKEN LITERALLY ’'SELECTOR';

70 Nucleus System Calls

SEND$SDATA

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE msglptr POINTER;
DECLARE size WORD ;
DECLARE mbxS$token TOKEN;
DECLARE mbx$flags WORD;
DECLARE status WORD;
DECLARE job$token TOKEN;
SAMPLEPROCEDURE:
PROCEDURE ;
mbx$flags = 20H; /* designates a data mailbox #*/
jobStoken = SELECTORSOF(NIL); /* indicates objects to be cataloged

into the object directory of the
calling task’'s job */

. Typical PL/M-286 Statements

/**

* The calling task creates a mailbox and catalogs the mailbox token. =

* The calling task then sends message data to the mailbox. *
e e L S S S S

mbx$token = RQSCREATESMAILBOX (mbx$flags,
{dstatus) ;

[/ e e ededk s g sk b ok ok s A R s kb sk s e R R A b s S R e b ek
* It is not mandatory for the calling task to catalog the mailbox *
* token in order to send a message. It is necessary, however, to *
* catalog (or in someway communicate) the mailbox token if another

* task is to receive the message. =
e

A

CALL RQS$SCATALOGSOBJECT (jobStoken,
mbx$token,
@(3, "MBX'"),
{dstatus) ;
[]
. Typical PL/M-286 Statements

/**

* The calling task invokes the SEND$DATA system call to send a *

* message to the specified mailbox. *
e R T R

Nucleus System Calls 71

SENDS$SDATA

CALL RQS$SENDSDATA (mbx$token,
@(’'this is a message '},
18,
@@status);
|]
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$OK

E$BADSADDR

ESEXIST

E$SMEM

ESNOT$CONFIGURED

ESTYPE

72

0000H

S800FH

0006H

0002H

0008H

8002H

No exceptional conditions.

The pointer to the message 1s invalid. Either
the selector does not refer to a valid segment, or
the offset i1s outside the segment boundaries.

The mailbox token is not a token for an existing
object.

The data message queue is full and the system
does not have enough memory to create
another.

This system call is not part of the present
configuration.
Either one of the following is true:

The mailbox parameter is a token for an object
that is not a mailbox.

The specified mailbox was set up to pass tokens,
not data.

Nucleus System Calls

The SENDSMESSAGE system call sends an object token to a mailbox.

CALL RQ$SENDS$MESSAGE (mailbox, object, response, except$ptr);

Input Parameters

mailbox A TOKEN for the mailbox to which an object token is to be sent.
This mailbox must be one that was set up to pass objects, not
pointers,

object A TOKEN containing an object token which is to be sent.

response A TOKEN for a mailbox or semaphore at which the sending task

will wait for a response.

« If a valid selector, contains a token for the desired response
mailbox or semaphore.

o It SELECTORSOF(NIL), indicates that no response is
requested.

Output Parameter

exceptiptr A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

The SENDSMESSAGE system call sends messages to mailboxes that have been set up to
pass object tokens. It sends a token for an iRMX 11 object to the specified mailbox. If
there are tasks in the task queue at that mailbox, the task at the head of the queue is
awakened and is given the token. Otherwise, the object token is placed at the tail of the
object queue of the mailbox. The sending task has the option of specifying a mailbox or
semaphore at which it will wait for a response from the task that receives the object. The
nature of the response must be agreed upon by the writers of the two tasks.

When you create a mailbox with CREATESMAILBOX, you can specify whether the
mailbox will be used to pass object tokens or pointers. SENDSMESSAGE functions only
with those mailboxes that have been set up to pass object tokens.

Nucleus System Calls 73

SENDSMESSAGE

Example

/*******************wk**vhl":i'***

* This example illustrates how the SEND$MESSAGE system call can be *
* used to send a segment token to a mailbox, *
Ak Ak ko sk s ok o bk A ok e e sk s ek ek kb kR kb ko ok /

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE seg$token TOKEN;
DECLARE size WORD;
DECLARE mbxS$token TOKEN;
DECLARE mbx$flags WORD;
DECLARE noSresponse LITERALLY ‘0’ ;
DECLARE status WORD;
DECLARE job$token TOKEN;
SAMPLEPROCEDURE:
PROCEDURE;
size = 64; /% designates new segment to contain 64
bytes */
mbx$flags = 0; /* designates four objects to he queued

on the high performance object
queue; designates a first-in/
first-out task queue %/
job$token = SELECTORSOF(NIL); /* indicates objects to be cataloged
into the object directory of the
calling task’s job */

. Typical PL/M-286 Statements

R e g R L B e e
* The calling task creates a segment and a mailbox and catalogs the *
* mailbox token. The calling task then uses the tokens for both *

* objects to send a message. *
kA H AT AR FR AR A A ARk Tk ok ok otk ot ok ot kot ok sk kb o/

segStoken = RQ$CREATESSEGMENT (size,
@status);

mbx$token = RQSCREATESMAILBOX (mbx$flags,
{@status) ;

74 Nucleus System Calls

SENDSMESSAGE

/**

* It is not mandatory for the calling task to catalog the mailbox
* token in order to send a message. It is necessary, however, to
* catalog (or in someway communicate) the mailbox token if another

* task is to receive the message.
R e e e e e L S ey

CALL RQSCATALOGSOBJECT (jobStoken,
mbx$token,
@(3, 'MBX'"),
@status) ;
.
. Typical PL/M-286 Statements

*
%
*

AL
W

/***k**

* The calling task invokes the SENDSMESSAGE system call to send the

* token for the segment to the specified mailbox.
koot sk sk ok ke b Sk bk kR R R kR

CALL RQSSENDSMESSAGE (mbxStoken,
segStoken,
no$response,
{@status) ;

L
. Typical PL/M-286 Statements
[]

END SAMPLEPROCEDURE;

Condition Codes
E$OK

ESEXIST

ESMEM

ESNOTSCONFIGURED

Nucleus System Calls

O000H

0006H

0002H

0008H

No exceptional conditions.

One or more of the input parameters is not a
token for an existing object.

The high performance queue is full and the
calling task’s job does not contain sufficient
memory to complete the call.

This system call is not part of the present
configuration.

75

k3

ot
rh

SENDSMESSAGE

76

ESTYPE

8002H

At least one of the following is true:

The mailbox parameter is a token for an object
that is not a mailbox.

The response parameter is a token for an object
that is neither a mailbox nor a semaphore.

The specified mailbox was set up to pass data,
not tokens.

Nucleus System Calls

The CREATESSEMAPHORE system call creates a semaphore.

semaphore = RQSCREATESSEMAPHORE {(initialSvalue, max$value,
semaphore$flags, except$ptr);

Input Parameters

initial$value A WORD containing the initial number of units to be in the
custody of the new semaphore.

max$value A WORD containing the maximum number of units over which the
new semaphore is to have custody at any given time. If max$value
1s zero, an ESPARAM error is returned.

semaphore$flags A WORD containing information about the new semaphore. The
low-order bit determines the queuing scheme for the new
semaphore’s task queue:

Yalue Queuing Scheme

0 First-in/first-out
1 Priority based

The remaining bits in semaphoreS$flags are reserved for future use
and should be set to zero.

Output Parameters

semaphore A TOKEN to which the Operating System will return a token for
the new semaphore.
exceptiptr A POINTER to a WORD to which the IRMX IT Operating System

will return the condition code generated by this system call.

Description

The CREATESSEMAPHORE system call creates a semaphore and returns a token for it.
The created semaphore counts as one against the object limit of the calling task’s job.

Nucleus System Calls 77

CREATE$SSEMAPHORE

Example

/**

* This example illustrates how the CREATESSEMAPHORE system call can #*

* be used, *
B L e T e e

DECLARE TOKEN LITERALLY 'SELECTOR’;

/% NUCLUS .EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS.EXT)

DECLARE semStoken TOKEN;
DECLARE initS$value WORD;
DECLARE maxS$value WORD;
DECLARE sem$flags WORD;
DECLARE status WORD;
SAMPLEPROCEDURE :
PROCEDURE;
init$value = 1; /* the new semaphore has one initial
unit */
max$value = 10H; /* the new semaphore can have a maximum
of 16 units */
sem$flags = 0; /% designates a first-in/

first-out task queue */
L

* Typical PL/M-286 Statements
*

/**

* The token sem$token is returned when the calling task invokes the *
* CREATESSEMAPHORE system call. *
ek eSS A SR A Rk ks Sk ko

sem$token = RQSCREATESSEMAPHORE (initSvalue,
maxS$value,
semSflags,
[dstatus):

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

78 Nucleus System Calls

Condition Codes
ESOK

ESLIMIT

E$SMEM

ESNOT$CONFIGURED

ESPARAM

ESSLOT

Nucleus System Calls

(0000H

0004H

0002H

0008H

8004H

000CH

CREATESSEMAPHOR

No exceptional conditions.

The calling task’s job has already reached its
object limit.

E

The memory available to the calling task’s job is

not sufficient to create a semaphore.

This system call is not part of the present
configuration.
At least one of the following is true:

The 1nitial$value parameter is larger than the
max$value parameter.

The max$value parameter is 0.

There isn’t enough room in the GDT for
another descriptor.

79

The DELETE$SEMAPHORE system call deletes a semaphore.

CALL RQSDELETESSEMAPHORE (semaphore, except$ptr);

Input Parameter
semaphore A TOKEN for the semaphore to be deleted.

Output Parameter

exceptdptr A POINTER to a WORD to which the iRMX 11 Operating System
will return the condition code generated by this system call.

Description

The DELETESSEMAPHORE system call deletes the specified semaphore. If there are
tasks in the semaphore’s queue at the moment of deletion, they are awakened with an
ESEXIST exceptional condition. The deleted semaphore counts as a credit of one toward
the object total of the containing job.

Example

/*3\‘*‘ak‘**‘k*‘;’(**)\'*‘k****7\'***‘k**‘k*7\'******************************'k****'k*‘k*'k

* This example illustrates how the DELETESSEMAPHORE system call *

* can be used. *
* *
R e ST e e

DECLARE TOKEN LITERALLY 'SELECTOR’ ;

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286 /inc /NUCLUS . EXT)

DECLARE sem$token TOKEN;
DECLARE init$value WORD;
DECLARE max$value WORD;
DECLARE sem$flags WORD;
DECLARE status WORD;

80 Nucieus System Calls

DELETE$SSEMAPHORE

SAMPLEPROCEDURE :
PROCEDURE :

init$value = 1; /* the new semaphore has one initial unit */
max$value = 10H; /* the new semaphore can have a maximum
of 16 units */
sem$flags = 0, /% designates a first-in
first-out task queue */

o Typical PL/M-286 Statements

[/ RE ke kR AR AR AR AR kR AR AR ok bk ok ok Aok kg o ke ok
* In order to delete a semaphore, a task must know the token for *

* that semaphore. In this example, the needed token is known *
* because the calling task creates the semaphore. *
* 5

**/

sem$token = RQSCREATESSEMAPHORE (init$value, max$value,
sem§flags, @status);

. Typical PL/M-286 Statements

/***#******

* When the semaphore is no longer needed, it may be deleted by *
* any task that knows the token for the semaphore. *
* *

**/

CALL RQS$DELETE$SEMAPHORE (sem$token, {@status);
*

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$OK 0000H No exceptional conditions.

ESEXIST 0006H One of the following is true:

s The semaphore parameter is not a token for an
existing object

» The semaphore parameter represents a
semaphore whose job is being deleted.

Nucleus System Calls 31

DELETE$SEMAPHORE

ESNOTSCONFIGURED

ESTYPE

82

0008H

8002H

This system call is not part of the present
configuration.

The semaphore parameter is a token for an
object that is not a semaphore.

Nucleus System Calls

The RECEIVESUNITS system call delivers the calling task to a semaphore, where it
waits for units.

value = RQS$RECEIVESUNITS (semaphore, units, time$limit, except$ptr):

Input Parameters

semaphore A TOKEN for the semaphore from which the calling task wants to
receive units.

units A WORD containing the number of units that the calling task is
requesting.

time$limit A WORD that indicates how long the calling task is willing to wait.

+ Ifzero, the WORD indicates that the calling task is not willing
to wait.

+ [If OFFFFH, the WORD indicates that the task will wait as long
as is necessary.

o Ifbetween 0 and OFFFFH, the WORD indicates the number of
clock intervals that the task is willing to wait. The length of a
clock interval is configurable. Refer to the Extended iRMX IT
Interactive Configuration Utility Reference Manual for further

information.
Output Parameters
value A WORD containing the number of units remaining in the
semaphore after the calling task’s request is satisfied.
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Nucleus System Calls 33

RECEIVESUNITS

Description

The RECEIVESUNITS system call causes the calling task either to get the units that it is
requesting or to wait for them in the semaphore’s task queue. If the units are available
and the task is at the front of the queue, the task receives the units and remains ready.
Otherwise, the task is placed in the semaphore’s task queue and goes to sleep, unless the
task 1s not willing to wait. In the latter case, or if the task’s waiting period elapses before
the requested units are available, the task is awakened with an E$TIME exceptional
condition.

Example

/**

* This example illustrates how the RECEIVESUNITS system call can be *

* used to receive a unit. *
ek sk ek ook b ok s ok ok ook ook ok sk 3ok S ook S S s St e k k R Reek /

DECLARE TOKEN LITERALLY 'SELECTCR’;

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE semStoken TOKEN:;
DECLARE calling$tasks$job TOKEN;
DECLARE waitS$forever LITERALLY 'OFFFFH’;
DECLARE segStoken TOKEN;
DECLARE units$remaining WORD;
DECLARE units$requested WORD;
DECLARE status WORD ;
SAMPLEPROCEDURE :

PROCEDURE;

[]

. Typical PL/M-286 Statements

/**

* 1In this example, the calling task looks up the token for the *
* semaphore prior to invoking the RECEIVESUNITS system call. *
B e e R e S I

calling$tasks$job = SELECTCRSOF(NIL);

sem$token = RQSLOOKUPSOBJECT (calling$tasks$job,
@(5, 'SEMALG’),
wait$forever,
@status)
L]
. Typical PL/M-286 Statements

84 Nucleus System Calls

RECEIVESUNITS

/**'k'i‘*******************k»'n':‘

x
* Knowing the token for the semaphore, the calling task can wait for =

* units at this semaphore by invoking the RECEIVESUNITS system call.
FH K AR AT XA kA E A AT HE T A AT T A RF AT A/

%

unitsSrequested = 4;

units$remaining = RQSRECEIVESUNITS (sem$token,

units$requested,
waitSforever,
@status):
[]
. Typical PL/M-286 Statements
[]
END SAMPLEPROCEDURE;
Condition Codes
E$OK 0000H No exceptional conditions.
ESEXIST 0006H The semaphore parameter is not a token for an

existing object.

ESLIMIT 0004H The units parameter is greater than the
maximum value specified for the semaphore
when it was created.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.
ESTIME 0001H One of the following is true:

» The calling task was not willing to wait and the
requested units were not available.

o The task waited in the task queue and its
designated waiting period elapsed before the
requested units were available.

ESTYPE 8002H The semaphore parameter is a token for an
object that is not a semaphore.

Nucleus System Calls 85

The SENDSUNITS system call sends units to a semaphore.

CALL RQSSENDSUNITS (semaphore, units, except$ptr);

Input Parameters
semaphore A TOKEN for the semaphore to which the units are to be sent.

units A WORD containing the number of units to be sent.

Output Parameter

exceptdptr A POINTER to a WORD to which the iRMX Il Operating System
will return the condition code generated by this system call.

Description

The SENDSUNITS system call sends the specified number of units to the specified
semaphore. If the transmission would cause the semaphore to exceed its maximum
allowable supply, then an EJLIMIT exceptional condition occurs. Otherwise, the
transmission is successful and the Nucleus attempts to satisfy the requests of the tasks in
the semaphore’s task queue, beginning at the head of the queue.

Example

/7\'*1’.’******'k*v\'***‘k*‘i’*‘k*'k'***)\‘**1\:**)\'3&'***‘k**********‘k**k*************-k********

* This example illustrates how the SENDSUNITS system call can be used *

* to send units to a semaphore. *
HoHEEE A H A ke stk bk b3kt ook sk ssokob ook sk sk ok sk ok s/

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS .EXT declares all system calls */
$TNCLUDE(/rmx286 /inc/NUCLUS . EXT)

DECLARE semStoken TOKEN ;
DECLARE initS$Svalue WORD;
DECLARE maxS$value WORD;
DECLARE sem$flags WORD;
DECLARE threeSunits$sent LITERALLY *3';
DECLARE status WORD;
DECLARE jobS$token TOKEN;

86 Nucleus System Calls

SENDSUNITS

SAMPLEPRGCEDURE:
PROCEDURE;
init$value = 1; /* the new semaphore has one initial
unit */
max$value = 10H; /* the new semaphere can have a maximum
of 16 units */
sem$flags = 0: /* designates a first-in/first-ocut
task queue */
jobStoken = SELECTORSOF(NIL); /* indicates objects to be cataloged
into the object directory of the
calling task’s job */
L]
. Typical PL/M-286 Statements
[]
P L T R L R b b R T R R TP A PR SR e 4
* The calling task creates a semaphore and catalogs the semaphore *
* token. The calling task then uses the token to send a unit. %

**/

sem$token = RQ$CREATESSEMAPHORE (init$value,
max$value,
sem$flags,
@dstatus);

LJ
. Typical PL/M-286 Statements

e e s S e T P S PP P DRy
* It is not mandatory to catalog the semaphore token in order to send *

* units. It is necessary, however, to catalog (or in someway *
* communicate) the semaphore token if another task is to receive the *
* units. *

**/

CALL RQSCATALOGSOBJECT {jobStoken,
sem$token,
@(5, SEMA4'),
{dstatus);
L]
. Typical PL/M-286 Statements

/**

* The calling task invokes the SENDSUNITS system call to send the *

* units to the semaphore just created (sem$token.) *
R e R e S e T

CALL RQS$SENDSUNITS (semStoken,

threeSunitsSsent,
@status);

Nucleus System Calls 87

SENDSUNITS

) Typical PL/M-286 Statements

ERD SAMPLEPROCEDURE;

Condition Codes
E$OK

ESEXIST

ESLIMIT

ESNOTSCONFIGURED

ESTYPE

88

0000H

0006H

0004H

0008H

8002H

No exceptional conditions.

The semaphore parameter is not a token for an
existing object.

The number of units that the calling task is
trying to send would cause the semaphore’s
supply of units to exceed its maximum allowable

supply.

This system call is not part of the present
configuration.

The semaphore parameter is a token for an
object that is not a semaphore.

Nucleus System Calls

The CREATESSEGMENT system call creates a segment.

segment = RQ$CREATESSEGMENT (size, except$ptr);

Input Parameter

size A WORD that specifies the size of the requested segment.
» If not zero, it contains the size, in bytes, of the requested
segment.
o Ifzero Or OFFFFH, It indicates that the size of the request is
65536 (64K) bytes.
Output Parameters
segment A TOKEN to which the Operating System will return a token for
the new segment.
exceptiptr A POINTER to a WORD to which the iRMX 1I Operating System

will return the condition code generated by this system call.

Description

The CREATE$SEGMENT system call creates a segment and returns the token for it.
The memory for the segment is taken from the free portion of the memory pool of the
calling task’s job, unless borrowing from the parent job is both necessary and possible,
The new segment counts as one against the object limit of the calling task’s job.

To gain access into the segment, you should base an array or structure on the
SELECTOR that is returned as the token for the segment.

When setting up the descriptor for the new segment, the Nucleus assigns the segment as a
data segment, with read/write access, at privilege level 0.

Nucleus System Calls 89

CREATESSEGMENT

Example

MAINPROC: DO;
R B R R P R e
* This example illustrates how the CREATE$SEGMENT system call can be *

* used. *
R e e e L L Tt s e

DECLARE TOKEN LITERALLY ‘SELECTOR';

/* NUCLUS.EXT declares all system calls %/
SINCLUDE(/rmx286/inc /NUCLUS , EXT)

DECLARE seg$token TOKEN;;
DECLARE seg$size WORD;
DECLARE status WORD;
SAMPLEPROCEDURE :
PROCEDURE;
seg$size = 100H; /* the size of the requested segment

is 256 bytes */
Typical PL/M-286 Statements

/*****1\—**********-.-\')‘c-:k--.-\-'k':i'*'A":i"kv'o:'k***'k*****‘k‘k**k‘;'r*****7‘:*********************7\—**

* The token seg$token is returned when the calling task invokes the *

* CREATE$SEGMENT system call. *
B S P T E s F e

segStoken = RQ$CREATESSEGMENT (seg$size, @status);
Typical PL/M-286 Statements

END SAMPLEPROCEDURE;
END MAINPROC;

Condition Codes

90

ESOK 0000H No exceptional conditions.

ESLIMIT 0004H The calling task’s job has already reached its
object limit.

ESMEM 0002H The memory available to the calling task’s job is
not sufficient to create a segment of the
specified size.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

ESSLOT 000CH There 1sn’t enough room in the GDT for
another descriptor.

Nucleus System Calls

The DELETESSEGMENT system call deletes a segment or a descriptor.

CALL RQSDELETE$SEGMENT (segment, except$ptr);

Input Parameter

segment A TOKEN for the segment or descriptor to be deleted.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX 1 Operating System
will return the condition code generated by this system call.

Description

The DELETESSEGMENT system call deletes IRMX 1I segments created via
CREATESSEGMENT and descriptors created via RQESCREATESDESCRIPTOR.
When deleting iRMX 1I segments, this system call returns the specified segment to the
memory pool from which it was allocated. The deleted segment counts as a credit of one
toward the object total of the containing job.

When deleting descriptors, this system call does not return any memory to the memory
pool. Tt simply clears the descriptor slot in the Global Descriptor Table (GDT) and
returns that slot to the memory manager for reassignment.

Example
e P S R R)
* This example illustrates how the DELETE$SEGMENT system call *
* can be used. *

*'k*****‘*‘k***k**********************‘k***********‘k*************)\'*******/

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS .EXT declares all system calls #*/
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE segStoken TOKEN;

DECLARE size WORD;
DECLARE status WORD:;

Nucleus System Calls 91

DELETESSEGMENT

SAMPLEPROCEDURE :
PROCEDURE;
size = 64; /* designates new segment to contain
64 bytes */
[]
. Typical PL/M-286 Statements

/**#******k**********

* In order to delete a segment, a task must know the token for *
* that segment. In this example, the needed token is known *
* because the calling task creates the segment. *

******************#***/

segStoken = RQSCREATESSEGMENT (size, {@status);

. Typical PL/M-286 Statements

/**

* When the segment is no longer needed, it may be deleted by any *
* task that knows the tcken for the segment. *
* *
e S T S S S

CALL RQSDELETESSEGMENT {segStoken, @status);
[]
. Typical PL/M-286 Statements
L]

END SAMPLEPROCEDURE;

Condition Codes
E$OK 0000H No exceptional conditions.

ESEXIST 0006H At least one of the following is true:

» The segment parameter is not a token for an
existing object.

o The segment parameter represents a segment
or descriptor whose job is being deleted.

92 Nucleus System Calls

ESNOT$CONFIGURED

ESTYPE

Nucleus System Calls

(0008H

8002H

DELETE$SEGMENT

This system call is not part of the present
configuration.

The segment parameter is a token for an object
that is not a segment or a descriptor,

93

The GETSPOOLSATTRIB system call returns information about the memory pool of the
calling task’s job. For compatibility with IRMX I systems, this system call can report pool
sizes no larger than 1M byte.

CALL RQSGETSPOOLSATTRIB (attrib$ptr, except{ptr);

Output Parameters

attrib$ptr A POINTER to a data structure of the following form:
STRUCTURE(
POOLSMAX WORD,
POOLSMIN WORD,
INITIALSSIZE WORD,
ALLOCATED WORD,
AVAILABLE WORD) :

The system call fills in the fields of this structure so that after the
call:

¢ POOLS$MAX contains the maximum allowable size (in 16-byte
paragraphs) of the memory pool of the calling task’s job.

» POOLSMIN contains the minimum allowable size (in 16-byte
paragraphs) of the memory pool of the calling task’s job.

¢ INITIALSSIZE contains the original value of the pool$min
attribute.

+ ALLOCATED contains the number of 16-byte paragraphs
currently allocated from the memory pool of the calling task’s
job.

¢+ AVAILABLE contains the number of 16-byte paragraphs
currently available in the memory pool of the calling task’s job.
It does not include memory that could be borrowed from the

parent job. The memory indicated in AVAILABLE may be
fragmented and thus not allocatable as a single segment.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

94 Nucleus System Calls

GET$SPOOLSATTRIB

Description

The GETSPOOLSATTRIB system call returns information regarding the memory pool of
the calling task’s job. The data returned comprises the allocated and available portions of
the pool, as well as its initial, minimum, and maximum sizes.

This system call is available for compatibility with iRMX I systems. Because the elements
of the attrib§ptr structure are all WORD values, this system call cannot return accurate
size information about memory pools that are larger than 1M byte. If the memory pool is
larger than 1M byte, this system call reports the size as 1M byte. To get accurate
information concerning large (over 1M byte) memory pools, use the
RQESGETSPOOLSATTRIB system call.

Example

/******%***

* This example illustrates how the GET$SPOOLSATTRIB system call can ¥
* be used to return information about the memory pool of the *
* calling task’s job. *
e e T R T

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS .EXT declares all system calls */
$INCLUDE (/rmx 286 /inc/NUCLUS . EXT)

DECLARE mem$pool STRUCTURE (

memSpoolSmax WORD,
mem$poolSmin WORD,
mem$SinitialSsize WORD,
mem$allocated WORD,
memSavailable WORD) ;
DECLARE status WORD ;
SAMPLEPROCEDURE :
PROCEDURE;
L]
. Typical PL/M-286 Statements

/R SRR ke s ok st S S e e e sk s ok o S ek s o kst A ok ok ko e e s e
* The maximum and minimum size of the memory pool, the original value *

* of the minimum pool size, and the allocated and available number of *
* 16-byte paragraphs in the memory pool of the calling task's job are *
* all returned when the calling task invokes the GET$POOLSATTRIB *
* system call. *

**/

Nucleus System Calls 95

GET$SPOOLSATTRIB

CALL RQSGETSPOOLSATTRIB

{@memSpool,

@status) ;

Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$SOK

ESBADSADDR

ESNOT$CONFIGURED

96

0000H

800FH

0008H

No exceptional conditions.

The attrib$ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

This system call is not part of the present
configuration.

Nucleus System Calls

The RQESGET$POOLSATTRIB system call returns information about any job’s memory
pool. It is similar to the GETSPOOLSATTRIB system call, except that it can report pool
sizes larger than IM byte, and it returns information about the parent job and the amount

of memory borrowed.

CALL RQESGETSPOOLSATTRIB (attribSptr, exceptSptr);

Input/Output Parameter
attrib$ptr A POINTER to a data structure of the following form:

STRUCTURE(
TARGET$JOB TOKEN,
PARENTSJOB TOKEN,
POOLSMAX DWORD,
POOLSMIN DWORD,
INITIAL$SIZE DWORD,
ALLOCATED DWORD,
AVAILABLE DWORD,
BORROWED DWORD) ;

This structure holds both input and output fields. You fill in the
TARGETS$JOB field to identify the job whose memory-pool
information you want. The system call fills in the remaining fields
to provide that information. The fields of this structure contain the
following information:

Nucleus System Calls

TARGETSJOB is a field that you fill in to specify the token for
the job whose memory pool you want to examine. A value of
SELECTORS$OF(NIL) indicates the calling task’s job.

PARENTS$JOB is a field in which the system call returns a
token for the parent job of the target job you specified.

POOLSMAX is a DWORD that the system call fills in to
specify the maximum allowable size (in 16-byte paragraphs) of
the target job’s memory pool.

POOLSMIN is a DWORD that the system call fills in to specify
the minimum allowable size (in 16-byte paragraphs) of the
target job’s memory pool.

INITIALSSIZE is a DWORD that the system call fills in to
specify the original value of the pool$min attribute.

97

RQESGETSPOOLSATTRIB

98

s ALLOCATED is a DWORD that the system call fills in to

specify the number of 16-byte paragraphs currently allocated
from the target job’s memory pool.

e AVAILABLE is a DWORD that the system call fills in to
specify the number of 16-byte paragraphs currently available in
the target job’s memory pool. It does not include memory that
could be borrowed from the parent job. The memory indicated
in AVAILABLE might be fragmented and thus not allocatable
as a single segment.

+ BORROWED is a DWORD that the system call fills in to
specify the amount of memory (in 16-byte paragraphs) that the
target job has borrowed.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The RQESGETSPOOLSATTRIB system call returns information regarding the memory
pool of any job you specify. The data returned comprises the allocated and available
portions of the pool; the initial, minimum, and maximum pool sizes; the amount of
memory that the job has borrowed; and the identity of the job’s parent job.

This system call is similar to the GETSPOOLSATTRIB system call, but it offers several
enhancements. Unlike that system call, RQESGETSPOOLSATTRIB can return
information about memory pools that are larger than 1M byte. It is not restricted to
returning information about the calling task’s job; it can return information about any job.

And, it returns the amount of memory the job borrowed along with a token for the job’s
parent job.

Example

ks e e e s e e s e s S e

* This example illustrates how the RQESGETSPOOLSATTRIB system call *
* can be used to return information about the memory pool of the *
* calling task’'s job. *
e e e T e e T

DECLARE TOKEN LITERALLY 'SELECTOR’;

/% NUCLUS .EXT declares all system calls */
$INCLUDE(/rmx286/inc /NUCLUS . EXT)

Nucleus System Calls

RQESGET$SPOOLSATTRIB

DECLARE mem$pool STRUCTURE (

targ$job TOKEN,
parent$job TOKEN,
mem$poolSmax DWORD,
mem$poolSmin DWORD,
mem$initial$size DWORD,
memSallocated DWORD,
mem$available DWORD,
mem$borrowed DWORD) ;

DECLARE status WORD;

SAMPLEPROCEDURE :
PROCEDURE;

mem$pool.targ$job = SELECTORSOF(NIL); /* Set the calling task’s job
as the calling job. */

Typical PL/M-286 Statements

P R B R R R R bt B R LR T T
* The parent job’s token, the maximum and minimum size of the memory *
pool, the original value of memS$pcol$min, and the amount *
of allocated, available, and borrowed memory in the memory pool of *
the calling task’'s job are all returned when the task invokes the *

RQE$SGETSPOOLSATTRIB system call. *
i e L e e

% ok % %

CALL RQSRQESGETPCOLSATTRIB (@mem$pool,

@status) ;

L]

. Typical PL/M-286 Statements

*
END SAMPLEPROCEDURE;

Condition Codes

ESOK 0000H No exceptional conditions.
ESBADSADDR 800FH The attrib$ptr pointer is invalid. Either the

selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

Nucleus System Calls 99

RQESGET$POOLSATTRIB

ESEXIST 0006H The token for the target job is not a valid iIRMX
token.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESTYPE 8002H The token for the target job is not a job token.

100 Nucleus System Calls

The GET3ISIZE system call returns the size, in bytes, of a segment.

size = RQGETSIZE (segment, except$ptr);

Input Parameter
segment A TOKEN for a segment whose size is desired.

Output Parameters

size A WORD in which the system call returns the size of the segment,
as follows.

« If not zero, it contains the size, in bytes, of the segment
indicated by the segment parameter.

» Ifzero, the WORD indicates that the size of the segment is
65536 (64K) bytes.

except$ptr A POINTER to a WORD to which the iIRMX I Operating System
will return the condition code generated by this system call.

Description

The GETS$SIZE system call returns the size, in bytes, of an iIRMX II segment.

Example
/-k**-:\-71-*':l'**-:t-**-A-*********':hhk*****':lr*‘k*************'.hhl-*********************7‘:*

* This example illustrates how the GET$SIZE system call can be used. *
B S S e e S T

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE mbx$token TOKEN;
DECLARE calling$task$job TOKEN;
DECLARE waitS$Sforever LITERALLY 'OFFFFH’;

Nucleus System Calls 101

GETSSIZE

DECLARE seg$token TOKEN;
DECLARE response TOKEN;
DECLARE size WORD;
DECLARE status WORD;

SAMPLEPROCEDURE :
PROCEDURE ;

. Typical PL/M-286 Statements
L]

B T 2 R S R
* 1In order to invoke the GETS$SIZE system call, the calling task must
know the token for the segment. In this example, the calling task
invokes the LOOKUPSOBJECT and RECEIVESMESSAGE system calls to
receive the token for a segment (segStoken). The calling task
invoked LOOKUPSOBJECT to receive the token for the mailbox named
'MBX'. 'MBX' had been designated as the mailbox another task

would use to send an object. *
e e

B A N % %
®* % % % ¥ %

callingStaskSjob = SELECTORS$OF(NIL);

mbx$token = RQ$LOOKUPSOBJECT (calling$task$job,
@(3, "MBX"),
wait$forever,
@@status);

Typical PL/M-786 Statements

/**

* The RECEIVESMESSAGE system call returns seg$token to the calling *
* task. *
FRAHHH KA H A A F A ook ook ook sk sk ok kot ok ok s skdeok ook e e sk o/

segStoken = RQSRECEIVESMESSAGE (mbx$token,
wait$forever,
{dresponse,
@status);
L
. Typical PL/M-286 Statements

L]
/**

* The GET$SIZE system call returns the size of the segment pointed *
* to by segStoken. *
A E A F A A A ok ek sk st Sk Sk Rk ek ok ok

102 Nucleus System Calls

size = RQ$GETS$SIZE

GETS$SIZE

{segStoken, @status);

L]
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$OK

ESEXIST

ENOTCONFIGURED

ESTYPE

Nucleus System Calls

0000H

0006H

0008H

8002H

No exceptional conditions.

The segment parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The segment parameter is a token for an object
that is not a segment.

103

The SET$POOLSMIN system call sets a job’s pool$min attribute.

CALL RQSSETSPOOLSMIN (newSmin, except$ptr);

Input Parameter

new$min A WORD indicating the pool$min attribute of the calling task’s
job.
» If OFFFFH, indicates that the pool$min attribute of the calling
task’s job is to be set equal to that job’s pool$max attribute.

e Ifless than OFFFFH, contains the new value of the pool$min
attribute of the calling task’s job. This new value must not
exceed that job’s pool$max attribute.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX Il Operating System
will return the condition code generated by this system call.

Description

The SETSPOOLSMIN system call sets the pool$min attribute of the calling task’s job.
The new value must not exceed that job’s pool$max attribute. When the pool$min
attribute is made larger than the current pool size, the pool is not enlarged until the
additional memory is needed.

Example
R S R & Rk R R B B
* This example illustrates how the SETSPOOLSMIN system call can be *

* used. *
Fk kR kb s ks sk ok ok kb ek ek ke ke ok bk ko A kb ok kkoek /

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE newSmin WORD;
DECLARE status WORD;

104 Nucleus System Calls

SET$POOLS$MIN

SAMPLEPROCEDURE:
PROCEDURE ;
newSmin = OFFFFH; /* sets pool$min attribute of calling
task’s job equal to job's pool$max
attribute */
L}
. Typical PL/M-286 Statements

/************‘k****-k-k****‘:\'*****‘k**********‘k******'p‘c************************

* 1In this example the pool$min attribute of the calling task’'s job *

* 1is to be set equal to that job’s pool$max attribute. *
R T S e Ty

CALL RQSETPOOLSMIN (new$min,
dstatus);
L J
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$OK 0000H No exceptional conditions.

ESLIMIT 0004H The new$min parameter is not OFFFFH, but it
is greater than the pool$max attribute of the
calling task’s job.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

Nucleus System Calls 105

The RQ$JCREATE$BUFFERSPOOL system call establishes a buffer pool and returns a

token for it.

buffer$pool = RQ$CREATESBUFFERSPOOL (maximum$buffs, flags, except§ptr);

Input Parameters

maximum$buffs

flags

Output Parameters

buffer$pool

except$ptr

Description

A WORD that indicates the maximum number of buffers that can
exist in the buffer pool at one time. The maximum size of the
buffer pool is controlled by this parameter.

A WORD that defines the attributes of the buffer pool as follows:

Bit Meaning

0 Reserved, should be set to zero.

1 Indicates if data chaining is supported. If set (1), then
data chains are supported. If not set (0), then only
contiguous buffers will be used.

2-15 Reserved, should be set to zero.

A TOKEN in which the system call returns a token for the newly-
created buffer pool.

A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

This system call sets up a buffer pool that will be associated with one or more ports.
These buffer pools can be used without any ports associated with them. In such cases,
they are general-purpose buffer managers. Once a buffer pool has been set up, tasks can
request segments of memory from the buffer pool (via ROSREQUEST$BUFFER)
instead of creating the segments directly (via CREATE$SEGMENT) each time memory
space is needed. When a task finishes with a buffer, it can release the buffer back to the
buffer pool (via RQSRELEASE$BUFFER) for later use by other tasks.

106

Nucleus System Calls

CREATESBUFFER$POOL

When a buffer pool is created, it contains no memory segments. Therefore, you must use
RQSCREATESSEGMENT to create the segments to be managed by the buffer pool.
Once you create the segments, you can use RQSRELEASE$BUFFER to add the
segments to the buffer pool. Each buffer pool can manage as many as 8192 (8K)
segments which can be of eight different sizes.

Condition Codes
ESOK 0000H No exceptional conditions.

ESMEM 0002H There isn't enough memory to create the
requested buffer pool.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration,

E$PARAM 8004H The max$bufs parameter has a value greater
that 8192.
E$SLOT 000CH There is no room in the GDT for the buffer

pool’s descriptor.

Nucleus System Calls 107

The RO$DELETE$BUFFERSPOOL system call deletes a butfer pool.

CALL RQSDELETESBUFFERSPOOL (buffer$pool, except$ptr);

Input Parameter

buffer$pool A TOKEN for the buffer pool to be deleted. This buffer pool must
have been created with the RQ$CREATESBUFFER$POOL
system call.
Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

Description

This system call deletes a buffer pool originally created with
RQSCREATESBUFFERSPOOL. All buffers in the buffer pool and any information in

them 1s also deleted.

A butfer pool cannot be deleted as long as a port is attached to it.

Condition Codes
ESOK 0000H

ESEXIST 0006H

ESNOTSCONFIGURED 0008H

E$TYPE 8002H

108

No exceptional conditions.

The buffer$pool parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The buffer$pool parameter is the token for an
object that is not a buffer pool.

Nucleus System Calls

The RQSRELEASE$BUFFER system call returns previously allocated buffer space to
the specified buffer pool.

CALL RQSRELEASESBUFFER(bufferSpool, buffer$tkn, flags, except$ptr);

Input Parameters

buffer§pool A TOKEN for the buffer pool that is to receive the released buffer.
buffer$tkn A TOKEN to the buffer that is to be released.
flags A WORD that is defined as follows:
Bits Meaning
0 If 0, then the buffer$tkn parameter

refers to a contiguous buffer. If 1, then
the buffer$tkn parameter refers to a
data chain.

1-15 Reserved should be set to zero.

Output Parameter

exceptdptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description

The RO$RELEASESBUFFER system call returns a buffer to a specified buffer pool. If
the buffer pool is full, you will get an ESLIMIT exception and the buffer is still valid.

Nucleus System Calls 109

RELEASESBUFFER

Condition Codes

110

ESOK

ESEXIST

ESLIMIT

ESNOTSCONFIGURED

ESTYPE

0000H

0006H

0004H

0008H

8002H

No exceptional conditions.

Either the buffer$tkn or buffer$pool parameter,
or both, does not refer to an existing object.

The calling task’s job has already reached its’
object limit.

This system call is not part of the present
configuration.

Either the buffer§pool parameter does not refer
to a buffer§pool; or, the buffer$tkn parameter
does not refer to a segment.

Nucleus System Calls

The RQ$REQUESTSBUFFER system call is used to get a buffer from an existing buffer
pool.

buffer$token = RQSREQUESTSBUFFER (buffer$pool, size, except$ptr);

Input Parameters
buffer$pool A TOKEN for an existing buffer pool.

size A DWORD specitying the desired size of the requested buffer.
This value must be in the range of 1H through OFFFFFEH.

Output Parameters

butfer$token A TOKEN to a buffer that fills the request. This buffer is either a
single segment, or a data chain block.
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

Description

The RQ§REQUEST$BUFFER system call gets a buffer from an existing buffer pool.
Ideally the data fits into an existing buffer. If a buffer large enough to hold the data is not
available and the buffer pool supports data chains, a data chain will be created. A data
chain is a series of buffers that contain parts of the entire message. The location of each
individual block is contained in the data chain block. When creating data chains, the
largest available buffer will be used for the first portion of the data chain, then the next
buffer and so on. These available buffers may be larger than the data structures and data
actually stored in them. Therefore, a data chain may use more physical space than the
data would actually require.

The minimum buffer size for data chains is 1K in length and at least one buffer must be
requested to permit the system to build the data chain block. The minimum data chain
block size can be computed as:

(max_elements*8)+2 BYTES

where max_elements is an [CU parameter with a default value of 79H (127
decimal).

Nucleus System Calls 111

REQUESTSBUFFER

Condition Codes

112

E$OK

E$SDATASCHAIN

ESEXIST

E$MEM

ESNOTSCONFIGURED

ESPARAM

E$SLOT

ESTYPE

0000H

000DH

0006H

0002H

0008H

8004H

000CH

8002H

No exceptional conditions.

A data chain has been returned. The TOKEN
points to the beginning of the data chain block.

The buffer$pool parameter does not refer to an
existing object.

The system could not locate enough memory to
create the requested buffer from the buffer
pool, as a data chain, or from free space.

This system call is not part of the present
configuration.

The size parameter is equal to zero, or is larger
than OFFFFFFH.

The Global Descriptor table is full.

The buffer§pool parameter refers to an object
that is not a buffer pool.

Nucleus System Calls

The RQE$CHANGESDESCRIPTOR system call changes the physical address or size of
a descriptor that was established with the RQESCREATE$DESCRIPTOR system call.

CAUTION

This system call can change a descriptor’s address to refer to any area of
physical memory, even if other descriptors already refer to that memory.
Although you might want to have multiple descriptors refer to the same
area of memory for aliasing purposes, take care not to overlap memory
accidentally.

CALL RQE$CHANGE$DESCRIPTOR (descriptor, abs$addr, size, except$ptr);

Input Parameters
descriptor A TOKEN for the descriptor to be changed.

abs$addr A DWORD containing a full, 24-bit address. This is the address
where you want the segment represented by this descriptor to start.

If you supply a 0 for this parameter, the segment retains its current
starting address.

size A WORD indicating the size of the segment in bytes. If you supply
a 0 for this parameter, the segment size is set to 64K bytes.

Output Parameters

except$ptr A POINTER to a WORD to which the iRMX [l Operating System
will return the condition code generated by this system call.

Description

The ROQESCHANGESDESCRIPTOR system call allows you to adjust certain entries in
the Global Descriptor Table (GDT). You can change the base physical address and size
of descriptors that were created with the RQE$CREATESDESCRIPTOR system

call. These descriptors represent 80286 segments of memory. You cannot change
descriptors that represent other kinds of iRMX II objects (such as segments, tasks, or

mailboxes), nor can you adjust descriptors for other 80286 constructs (such as call or task
gates).

Nucleus System Calls 113

RQE$SCHANGESDESCRIPTOR

This system call is intended for system programs that need to access areas of memory in
special ways. For example, an overlay loader could use this system call to transfer
different-sized code blocks to memory. Other system programs can use this system call to
alias reserved or system segments, giving them the ability to modify segments that are
normally read-only or code segments. With RQESCHANGESDESCRIPTOR, a system
program can minimize the number of descriptor slots it uses. Because the address and
size of a descriptor is adjustable, one descriptor can access many different areas of
memory.

This system call can change the address and size of a segment descriptor so that it refers
to any area of memory. Therefore, when used improperly, it can corrupt system and user
data and allow overwriting of program code. Use it with care.

Example

/*b‘r******‘k******‘k**'k*7\':»‘c-k**-k****************************)‘c**********)‘c

* This example illustrates the use of RQESCHANGESDESCRIPTOR by *
* creating a descriptor for a previously undefined area of *
* memory and then changing it. *
e sk sk ok s et ook Sk b sk ok kb Sk st stk R sk sk ok sk ek sk ok ook bk ook bk /

/% NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)
DECLARE TOKEN LITERALLY 'SELECTOR';
DECLARE descStoken TOKEN;
DECLARE absS$addr DWORD;
DECLARE size WORD;
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE ;
abs$addr = 200000H; /* The absolute address of the
memory area being given an
address is ZM bytes. */
size = 256; /* The size of the block is
256 bytes. */
L R 2 32 T L E T ey
* The token desc$token is returned when the calling task invokes *
* the CREATESDESCRIPTOR system call. *
R e S P

descStoken = RQESCREATESDESCRIPTOR (abs$addr, size, @status);

Typical PL/M-286 Statements

114 Nucleus System Calls

RQESCHANGESDESCRIPTOR

/***‘k*********1\-****************‘k********************************':’c**

* The descriptor is changed to access a new area of memory whose *
* base address is specified by abs$addr. *
B e e e e I

absSaddr = AQO0O0O0H;

/* The absolute address of the memory

area is changed to 10M bytes. */
size = 0512; /* The size of the requested descriptor

is 512 bytes. */

CALL RQESCHANGESDESCRIPTOR

) Typical PL/M-286 Statements
L]

END SAMPLEPROCEDURE;

Condition Codes
E$OK

ESEXIST

E$NOTSCONFIGURED

ESPARAM

ESTYPE

Nucleus System Calls

0000H

0006H

0008H

8004H

8002H

{descStoken, abs$addr, size, (@status);

No exceptional conditions.

The descriptor parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The absolute address is larger than 16M bytes.

The descriptor parameter is a token for an
object that is not an iIRMX II descriptor.

115

The RQE$CREATESDESCRIPTOR system call builds a descriptor for an 80286 memory
segment, places the descriptor in the 80286 Global Descriptor Table (GDT), and returns a
token for the descriptor.

CAUTION

This system call can set up a segment descriptor to refer to any area of
physical memory, even if other descriptors already refer to that memory.
Although you might want to have multiple descriptors refer to the same
area of memory for aliasing purposes, take care not to overlap memory
accidentally.

descriptor = RQESCREATESDESCRIPTOR (absS$addr, size, except$ptr);

Input Parameters

abs$addr A DWORD containing a full, 24-bit physical address. This is the address
where you want the segment represented by this descriptor to start.

size A WORD indicating the size of the segment in bytes. If you supply a 0 for
this parameter, the segment size is set to 64K bytes.

Output Parameters

descriptor A TOKEN to which the Operating System will return a token for
the new descriptor.
except$ptr A POINTER to a WORD to which the iRMX Il Operating System

will return the condition code generated by this system call.

Description

Before the 80286 processor can access an area of memory (in protected mode), a
descriptor for the memory segment must exist in one of the descriptor tables (the Global
Descriptor Table or the Local Descriptor Table). For iIRMX II objects (jobs, tasks,
segments, mailboxes, etc.), the Operating System automatically creates the necessary
descriptors when it creates the objects. The RQE$SCREATESDESCRIPTOR system call
gives you the additional capability of adding your own memory-segment descriptors to the
GDT.

116 Nucleus System Calls

RQE$CREATESDESCRIPTOR

When you set up a descriptor, you can specify the base physical address and size of the
memory segment. The segment can lie anywhere in available memory, even outside the
range managed by the Operating System. The memory can overlap that contained in
other segments, if desired. The Operating System automatically sets up the new segment
as a data segment with read/write access at privilege level 0.

This system call is intended for system programs that need to access areas of memory in
special ways. For example, an overlay loader could use this system call to set up a data
segment so that it could load a program into what would normally be a code segment.
Other system programs can use this system call to alias reserved segments, giving them
the ability to modify read-only segments or segments outside the range managed by the
Operating System (and thus not accessible via CREATE$SEGMENT). Device drivers
can use this system call to gain access to dual-port memory resident on controller boards.

A segment created with this system call can be deleted by calling either the
ROESDELETESDESCRIPTOR or DELETESSEGMENT system call. However,
segments created with RQESCREATESDESCRIPTOR are marked as descriptors, not
iRMX II segments. Unlike ordinary iRMX Il segments (set up with
CREATESSEGMENT), the memory associated with these segments does not return to
the iIRMX II memory pool for reallocation when the segments are deleted.

This system call can set up a segment descriptor to refer to any area of memory.
Therefore, when used improperly, it can corrupt system and user data and allow
overwriting of program code. Use it with care.

Example

/*****7\'*)‘:)‘c*)\"k')i".\\"k')i')\"**3\’********

* This example illustrates the use of RQE$CREATESDESCRIPTOR. *
*******************************‘k*********************************‘k/

/% NUCLUS .EXT declares all system calls #/

$INCLUDE(/rmx286/inc/NUCLUS . EXT)
DECLARE TOKEN LITERALLY 'SELECTOR';
DECLARE descStoken TOKEN:
DECLARE abs$addr DWORD;
DECLARE size WORD ;
DECLARE status WORD;
SAMPLEPROCEDURE;
PROCEDURE;
abs$addr = 200000H; /* The absclute base address of the
block of memory is 2?M bytes. x/
size = 256; /* The size of the block is 256
bytes. */

Nucleus System Calls 117

RQE$CREATESDESCRIPTOR

/7&'******)‘c***11—*******1‘:***********'k*******‘k*************‘k************

* The token desc$token is returned when the calling task invokes %

* the RQESCREATESDESCRIPTOR system call, *
B Rt Rt R et T R R S e T S e

desc$token = RQESCREATESDESCRIPTOR (absSaddr, size, @status);

[]
o Typical PL/M-286 Statements
[]

END SAMPLEPROCEDURE;

Condition Codes

118

ESOK

ESLIMIT

ESMEM

ESNOTSCONFIGURED

E$PARAM

ESSLOT

0000H

0004H

QoO2H

0008H

8004H

000CH

No exceptional conditions.

Creating the requested descriptor would exceed
the job’s object limit.

The memory available to the calling task’s job is
insufficient to create the descriptor.

This system call is not part of the present
configuration.

The absolute address specified is larger than
16M bytes.

There is no room in the GDT for the new
descriptor.

Nucleus System Calis

The RQESDELETESDESCRIPTOR system call removes a descriptor, originally defined
with ROESCREATESDESCRIPTOR, from the Global Descriptor Table (GDT).

CALL RQESDELETESDESCRIPTCR (descriptor, except$ptr);

Input Parameter
descriptor A TOKEN for the descriptor to be deleted.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

This system call removes an entry in the GDT that was originally established with the
RQESCREATESDESCRIPTOR system call. Once the descriptor is deleted, the GDT
slot is returned to the memory manager, which can reassign it when another object is
created. However, the memory that was addressed by the descriptor is not returned to
the free space manager for reassignment.

Example

/*‘k**)‘c***********v’r*************i’*‘k*********)‘c****)\'*****}k‘k**‘k***)‘c‘k**‘k**

* This example illustrates the use of RQESDELETESDESCRIPTOR. First *
* the example creates a descriptor. Then, when the descriptor is no *

* longer needed, RQESDELETESDESCRIPTOR is used to delete it. *
kKRR Sk Sk Rk Sk sk ke ot ok ok ok RS R R SR SRR R R R SRR

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS .EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE desc$token TOKEN;
DECLARE absS$addr DWORD:
DECLARE size WORD:;
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;

Nucleus System Calls 119

RQESDELETE$SDESCRIPTOR

absSaddr = 2000000H; /* The absolute address of the
undefined memory area is 2M bytes. */
size = 256; /* The size of the block is

256 bytes. */

A e s ok e oo oo A ook ok e o ok ok e ek R ok Ak e o ko ok oo e ok
* The token descStoken is returned when the calling task invokes the *

* RQESCREATESDESCRIPTOR system call, *
e

descStoken = RQESCREATESDESCRIPTOR (abs$Saddr, size, @status);

) Typical PL/M-286 Statements

/**

* When the descriptor is no longer needed, it may be deleted by a *

* task that knows the descriptor token. *
* *

**/

CALL RQESDELETESDESCRIPTOR (descStoken, (@status):

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.
ESEXIST 0006H Either the descriptor parameter is not a token
for an existing object, or it represents a

descriptor whose job is now being deleted.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESTYPE 8002H You are attempting to delete an object that isn’t
a descriptor.

120 Nucleus System Calls

The CATALOGSOBIECT system call places an entry for an object in an object directory.

CALL RQSCATALOGSOBJECT (job, object, name, except$Sptr);

Input Parameters
job A TOKEN that indicates where the object is to be cataloged.

¢ If SELECTORS$OF(NIL), it indicates that the object is to be
cataloged in the object directory of the job to which the calling
task belongs.

o Ifavalid selector, it specifies the TOKEN for the job in whose
object directory the object is to be cataloged.

object A TOKEN for the object to be cataloged. A value of
SELECTORSOF(NIL) for this parameter indicates that a null
token is being cataloged.

name A POINTER to a STRING containing the name under which the
object is to be cataloged. The name must not be over 12 characters
long. Each character can be a byte consisting of any value from 0
to OFFH.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The CATALOGSOBIECT system call places an entry for an object in the object directory
of a specific job. The entry consists of both a name and a token for the object. There may
be several such entries for a single object in a directory, because the object may have
several names. (However, in a given object directory, only one object may be cataloged
under a given name.) If another task is waiting, via the LOOKUPSOBIECT system call,
for the object to be cataloged, that task is awakened when the entry is cataloged.

Nucleus System Calls 121

CATALOGSOBJECT

Example

/**

* This example jllustrates how the CATALOG$SOBJECT system call *

* can be used to place an entry in an object directory. *
Sk s stk sk sk sk sl kst kR ek stk ko sk kR sk stk ek ok sk sk kosk ek bk ek ok ok ok /

DECLARE TOKEN LITERALLY ’SELECTOR';
/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE mbx$token TOKEN ;
DECLARE mbx$flags WORD;
DECLARE jobStoken TOKEN ;
DECLARE status WORD;
SAMPLEPROCEDURE :
PROCEDURE;
mbx$flags = 8; /* designates four objects to be queued

ont the high performance object
queue; designates a first-in/
first-out task queue */

job$token = SELECTOR$OF(NIL); /* indicates objects to be
cataloged into the object
directory of the calling
task’'s job */
L]
. Typical PL/M-286 Statements

L]
/**

* The calling task creates an object, in this example a mailbox, *

* before cataloging the object’'s token. *
R S e S e T s

mbx$token = RGSCREATESMAILBOX (mbx$flags,

dstatus);
L]
. Typical PL/M-286 Statements
L]
kT B Bt B = R S S BT SO B e o
* After creating the mailbox, the calling task catalogs the *
* mailbox token in the object directory of its own iob, *

**/

CALL RQS$SCATALOGSOBJECT {jobStoken,
mbxStoken,
@(3, 'MBX'),
(dstatus);
L]
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

122 Nucleus System Calls

Condition Codes
ESOK

E$BADSADDR

ESCONTEXT

ESEXIST

ESLIMIT

ESNOT$CONFIGURED

E$PARAM

ESTYPE

Nucleus System Calls

0000H

800FH

0005H

0006H

0004H

0008H

8004H

8002H

CATALOGSOBJECT

No exceptional conditions.

The pointer to the name is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

At least one of the following is true:

The name being cataloged is already in the
designated object directory.

The directory’s maximum allowable size is 0.
Either the job parameter, which is not

SELECTORSOF(NIL), or the object parameter
is not a token for an existing object.

The designated object directory is full.

This system call is not part of the present
Operating System configuration.

The first BYTE of the STRING pointed to by
the name parameter contains a zero or a value
greater than 12.

The job parameter is a token for an object

which is not a job or is not
SELECTORS$OF(NIL).

123

The RQE$SCHANGESOBIECTSACCESS system call changes the access rights of iIRMX
[1 segments or composite objects.

CALL RQE$CHANGE$OBJECTSACCESS (object, access, reserved, except$ptr);

Input Parameters

object A TOKEN for an object whose access rights are being changed.
This token must represent a segment or composite object.
access A BYTE specifying the new access rights for the object. The
following values are valid for IRMX II objects: Data Segments Bi
nary Value Hex Value
Read-only 10010000 90H
Read/write 10010010 92H
Code Segments Binary Value Hex Value
Execute-only 10011000 98H
Execute/read 10011010 9AH
Execute only
(conforming) 10011100 9CH
Execute/read
{conforming) 10011110 9EH
Other values are not appropriate for IRMX I1 applications.
reserved A BYTE reserved for future enhancements. Always set this byte to
0.

Output Parameters

except$ptr A POINTER to a WORD to which the iRMX Il Operating System
will return the condition code generated by this system call.

Description

Associated with each 80286 descriptor is an access field that specifies a variety of
information about the object described by the descriptor. The
RQESCHANGESOBIECTSACCESS system call lets you modify this field for descriptors
that represent segments and composite objects. Not all of the fields can be modified, but
the fields that describe the segment type and access rights can be changed.

124 Nucleus System Calls

RQE$SCHANGESOBJECTSACCESS

The access byte has the following general format. Bits that must be set a certain way for
iRMX IT applications are indicated as such.

Access Byte for Code Segments

7 6 A 3 2 1 0

P DPL 1 1 C R A

P Present bit (1=yes). This bit must be 1 for iIRMX 11 applications.
DPL Descriptor privilege level. These two bits must be 0 for iRMX 11 applications.

The next two bits must be set to 1 for code segments. Bit 4 indicates a segment descriptor.
Bit 3 indicates an executable segment.

C Conforming segment (1 =yes, O=no).
R Readable segment (1=yes, (=no).
A This bit must be set to zero.

Access Byte for Code Segments

7 6 4 3 2 1 0

P DPL 1 0 ED Wl a

p Present bit (1=yes). This bit must be 1 for iRMX II applications.

DPL Descriptor privilege level. These two bits must be 0 for iIRMX II applications.
Bits 4 and 3 must be set as shown for data segments. Bit 4 indicates a segment descriptor.
Bit 3 indicates a non-executable segment.

ED Expand down bit (1=expand down). This bit must be 0 for iRMX II applications.
w Writeable segment (1=yes, 0=no).

A This bit must be set to zero.

The description of the "access” input parameter lists the binary and hexadecimal values
that are appropriate for iIRMX Il segments.

Nucleus System Calls 125

RQE$SCHANGES$SOBJECTSACCESS

Example

126

/***

* This example illustrates the use of RQESCHANGE$SCBJECTSACCESS *

by creating a segment and changing its access rights *
Sk ok ot ek ok sk ok sk ks etk ok okt kb ol kot ok kb ok ks ok otk ok ook /

/% NUCLUS .EXT declares all system calls */

STNCLUDE(/rmx286/inc/NUCLUS .EXT)
DECLARE TOKEN LITERALLY ‘SELECTOR’;
DECLARE 0bj$t0ken TOKEN ;
DECLARE segSsize WORD;
DECLARE status WORD:
DECLARE access BYTE;
DECILARE reserved BYTE;
SAMPLEPROCEDURE :
PROCEDURE;
seg$size = 0256; /* The size of the requested segment
is 256 bytes. */

Typical PL/M-286 Statements

/**

* The token obj$token is returned when the calling task invokes *
* the CREATESSEGMENT system call. *
FAEFAKEFHRAAFAFA AR AR E AR AR IR KA ok Aok ok Aok sk KA F K AR A KT HAK [

job$token = RQSCREATESSEGMENT (seg$size, @status);

) Typical PL/M-286 Statements

L]
/3 e RO R R R R R kR ke SR A R b ek kot
* The access rights are changed to make a writeable data segment, *

* present in memory, and not accessed. *
kAR A R E ARk etk it ket /

access = (092H; /% The bit configuration for a writeable
data segment, present in memory and
not accessed, */

reserved = 0; /* Reserved parameters are always set
to 0. */
CALL RQESCHANGESOBJECT$SACCESS (obj$token, access, reserved, @status);

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Nucleus System Calls

Condition Codes
E$OK

ESEXIST

ESNOTSCONFIGURED

ESTYPE

Nucleus System Calis

0000H

0006H

0008H

8002H

RQESCHANGE$OBJECT$ACCESS

No exceptional conditions.

The object whose access is to be changed does
not exist or is not a valid iRMX II object.

This system call is not part of the present
configuration.

The obj$token parameter refers to an object

that is neither a segment nor a composite
object.

127

The RQESGETSADDRESS system call returns the 24-bit physical address of a logical

pointer.

phys$addr = RQESGETSADDRESS (log$Saddr, exceptS$ptr);

Input Parameter

log$addr A POINTER containing the segmented address for which the
physical address is desired. The segmented address must be in the
form: selector:offset.

Output Parameters

phys$addr A DWORD in which the system call returns the 24-bit physical
address of the log$addr parameter.
exceptptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call.

Description

In protected virtual address mode, the base portion of an address (a selector) does not
specify the physical location of the address. Rather, it points to a descriptor table, where
that 24-bit physical address is found. This system call retrieves the 24-bit physical address
for the selector portion of a pointer, adds the offset part of the pointer to that value, and
returns the resulting physical address of the complete pointer.

Example
i B e e
* This example illustrates the use of RQESGETSADDRESS by creating ¥
* a segment, converting the segment’s selector to a pointer, and *
* returning the physical address of the segment. *

Bl b e
DECLARE TOKEN LITERALLY 'SELECTOR’;

/% NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS . EXT)

128 Nucleus System Calls

RQESGETSADDRESS

DECLARE objStoken TOKEN;
DECLARE seg$size WORD;
DECLARE status WORD;
DECLARE logS$addr POINTER;
DECLARE phys$addr DWORD;
SAMPLEPROCEDURE :
PROCEDURE;
segldsize = 256; /* The size of the requested segment is

256 bytes. */
L 4
» Typical PL/M-286 Statements
L

/**

* The token obj$token is returned when the calling task invokes the
* CREATE$SEGMENT system call. *
ke sk e sk sk ok ek sk skl sk okt e S R R R R Rk sk sk

objStoken = RQSCREATE$SEGMENT (seg$size, @status);

/********************************%**%************************************

X,

* The segment selector is converted to a pointer. *
R T ey

log$addr = BUILDS$PTR(objStoken, 0);
e 2 T R S & 2 3 S R S R R S
* The pointer with the logical address is used to get the physical *

* address. w
AR AR A F A AR AT FERFRRR AT KA AKX KKk

phys$Saddr = RQESGET$ADDRESS (log$addr, @@status);

. Typical PL/M-286 Statements
L

END SAMPLEPROCEDURE;

Nucleus System Calls 129

RQE$SGETSADDRESS

Condition Codes

E$OK

ESBADSADDR

ESNOT$CONFIGURED

130

0000H

800FH

0008H

No exceptional conditions.

The segmented address is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

This system call is not part of the present
configuration.

Nucleus System Calls

The ROESGETSOBJECTSACCESS system call returns the access type of an object
whose token is specified.

CALL RQESGETSOBJECTSACCESS (object, access$ptr, except$ptr);

Input Parameter

object A TOKEN for an object whose access rights you want to see.

Output Parameters

access$ptr A POINTER to a data structure with the following format:
STRUCTURE(
ACCESS BYTE,
RESERVED BYTE) :

When control returns from this system call, the fields of this
structure have the following values:

» ACCESS is a BYTE in which the system call returns the access
rights for the object. The following values are typical for iRMX

IT objects:
Data Segments Binary Value Hex Value
Read-only 10010000 90H
Read/write 10010010 92H
Code Segments Binary Value Hex Value
Execute-only 10011000 98H
Execute/read 10011010 9AH
Execute only

{conforming) 10011100 9CH
Execute/read

(conforming) 10011110 9EH

» RESERVED is a reserved BYTE that must be set to 0.
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call.

Nucleus System Calls 131

RQESGET$OBJECTSACCESS

Description

132

Associated with each 80286 descriptor is an access field that specifies a variety of
information about the object described by the descriptor. The
RQESGETSOBJECTSACCESS system call lets you view this field for descriptors that
represent iRMX II objects. The RQESCHANGESOBJECTSACCESS system call can be
used to change some of this access information for segment and composite objects.

The access byte has the following general format. Bits that are normally set a certain way
for IRMX II applications are indicated as such.

Access Bvte for Code Segments

7 6 4 3 2 1 0

p DPL 1 1 C R | A

P Present bit (1=yes). This bit is 1 for IRMX 1T applications.
DPL Descriptor privilege level. These two bits are 0 for IRMX IT applications.

The next two bits are set to 1 for code segments. Bit 4 indicates a segment
descriptor. Bit 3 indicates an executable segment.

C Conforming segment (1=yes, 0 =no).
Readable segment (1=yes, 0=no)
A This bit must be set to 0.

Access Byte for Code Segments

7 6 4 3 2 1 0

P DPL 1 0 ED W A

p Present bit (1=yes). This bit is 1 for IRMX II applications.
DPL Descriptor privilege level. These two bits are 0 for iRMX IT applications.

Bits 4 and 3 are set as shown for data segments. Bit 4 indicates a segment
descriptor. Bit 3 indicates a non-executable segment.

ED Expand down bit (1=expand down). This bit is 0 for iIRMX II applications.
W Writeable segment (1=yes, 0=no).
A This bit must be set to 0.

The description of the "access” input parameter lists the binary and hexadecimal values
that are appropriate for iIRMX II objects.

Nucleus System Calls

RQESGETSOBJECTSACCESS

Example
/e dedededed e e sk e sk ke sk et s b ok sk ok e o s s ke sk ok e sk b sk ok sk s kb ek b ek
* This example illustrates the use of RQE$GETSOBJECT$ACCESS by *
* creating a segment and then requesting the object’'s access rights, *

***/

/* NUCLUS.EXT declares all system calls %/
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE TOKEN LITERALLY 'SELECTOR';
DECLARE obj$token TOKEN;

DECLARE seg$size WORD;

DECILARE status WORD;

DECLARE access$struc STRUCTURE(

ACCESS BYTE,
RESERVED BYTE);

SAMPLEPROCEDURE :
PROCEDURE;
segSsize = 512; /* The size of the requested segment
is 512 bytes. */
LJ
. Typical PL/M-286 Statements
L]

/**

* The token objS$token is returned when the calling task invokes the *
* CREATESSEGMENT system call, *
B R R R e e e T

obj$token = CREATE$SEGMENT {segSsize, @status);

L]
. Typical PL/M-286 Statements
L]

/**

* The access rights of the segment object are requested. The value *
* returned should be 92H or 90H for a read/write object. *
R B B B R B R R S S e T e S

CALL RQESGETSOBJECTSACCESS (obj$token, @accessSstruc, @status);

L]
. Typical PL/M-286 Statements
L]

END SAMPLEPROCEDURE;

Nucleus System Calls 133

RQESGET$OBJECTSACCESS

Condition Codes

E$OK

E$BADSADDR

E$EXIST

ESNOTSCONFIGURED

(0000H

800FH

0006H

0008H

No exceptional conditions.

The access3ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

The object whose access is requested does not
exist or is not a valid iRMX II object.

This system call is not part of the present
configuration.

Nucleus System Calls

The GETSTYPE system call returns the encoded type of an object.

type$code = RQ$GETS$TYPE (object, exceptSptr);

Input Parameter

object A TOKEN for an object whose type 1s desired.

Output Parameters

type$code A WORD which contains the encoded type of the specified object.

The types for IRMX 11 objects are encoded as follows:
Value Type

1 job

2 task

3 mailbox

4 semaphore

5 region

6 segment

7 extension

100H composite (user)

101H composite (connection)
300H composite (I/O job)
J01H composite (logical device)

8000H - OFFFFH

user-created composites

User and connection composites are described in the Extended
IRMX I1 Basic 1/0 System User’s Guide. 1/0 jobs and logical device
composites are described in the Extended iRMX II Extended /0

System User’s Guide.

except$ptr A POINTER to a WORD to which the Operating System will
p p g
return the condition code generated by this system call.

Description

The GETSTYPE system call returns the type code for an object. For a composite,
typeScode contains the composite extension type, not the encoded object type.

Nucleus System Calls

135

GETSTYPE

Example

/**

* This example illustrates how the GETS$TYPE system call can be used =*
* to return the encoded type of an object. *
B R S T e e

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS .EXT)

DECLARE typeScode WCRD;
DECLARE mbxS$Stoken TOKEN:
DECLARE callingStasks$job TOKEN;
DECLARE wait$forever LITERALLY 'OFFFFH’;
DECLARE object$Stoken TOKEN;
DECLARE response TOKEN;
DECLARE status WORD;
SAMPLEPROCEDURE:

PROCEDURE;

L}

. Typical PL/M-286 Statements

/e e e e e AR s R s R o S Rk sk Rk ek s s ek ek ok
* In order to invoke the GET$TYPE system call, the calling task must *
have the token for an object. In this example, the calling task *
invokes the LOOKUPSOBJECT system call and then the RECEIVESMESSAGE
system call to receive the token for an object of unknown type *
(objectStoken). *
e sk e s sk ook sk sk e ok s ek s sk Sk ok Rk ok st ek ks s ek /

% ok ok

callingStasks$job = SELECTORSOF(NIL);

mbx$token = RQ$LOOKUPSOBJECT (calling$tasks$job,
@(3, 'MBEX"),
wait$forever,
@status);
[
. Typical PL/M-286 Statements

ST ek v e i Rk e s s o s S ok ok sk e s s sk sk sk ook sk ok ok
* The RECEIVESMESSAGE system call returns object$token to the calling *

* task after the calling task invoked LOOKUPSOBJECT to receive the *
* token for the mailbox named 'MBX’. 'MBX' had been designated *
* as the mailbox another task would use to send an object. *

**/

136 Nucleus System Calls

GETSTYPE

object$token = RQSRECEIVESMESSAGE (mbx$token,
waitSforever,
{dresponse,
@status);

. Typical PL/M-286 Statements

Sk ek ok A S S ok sk o s ek Sl s e s o ok S o sl s R R sk ek sk ek ko
* Using the type code returned by the GETSTYPE system call, the
* calling task can find out if the object is a job, task,

* mailbox, region, segment, semaphore, extension, or composite. *
‘k*‘k*‘k*‘k**'k*‘.\\‘*’**‘k**'k*******1‘:*******)\'****'.\'c**)'c-k**‘A—*************'k**‘kv‘c‘k/

* %

typeScode = RQ$GETSTYPE {objectStoken,
@status)
L]

¢ Typical PL/M Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

ESEXIST 0006H The object parameter is not a token for an
existing object.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

Nucleus System Calls 137

The LOOKUPSOBIJECT system call returns a token for a cataloged object.

object = RQSLOCKUPSOBJECT (job, nameSptr, time$limit, exceptSptr);

Input Parameters
job A TOKEN indicating the object directory to be searched.

e [favalid selector, the TOKEN must contain a token for the job
whose object directory is to be searched.

+ If SELECTORSOF(NIL), the object directory to be searched is
that of the calling task’s job.

name$ptr A POINTER to a STRING which contains the name under which
the object is cataloged. During the lookup operation, upper and
lower case letters are treated as being different.

time$limit A WORD indicating the task’s willingness to wait.

» Ifzero, the WORD indicates that the calling task is not willing
to wait.

¢ If OFFFFH, the WORD indicates that the task will wait as long
as Is necessary.

o Ifbetween 0 and OFFFFH, the WORD indicates the number of
clock intervals that the task is willing to wait. The length of a
clock interval is a configuration option. Refer to the Extended
IRMX II Interactive Configuration Utility Reference Manual for
further information.

Output Parameters
object A TOKEN containing the requested object token.

except$ptr A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

The LOOKUPSOBIECT system call returns the token for an object after searching for its
name in the specified object directory. Because it is possible that the object is not
cataloged at the time of the call, the calling task has the option of waiting, either
indefinitely or for a specific period of time, for another task to catalog the object.

138 Nucleus System Calls

LOOKUP$OBJECT

Example

/**

* This example illustrates how the LOOKUPSOBJECT system call can be *
* used to return a token for a cataloged object. *
T

DECLARE TOKEN LITERALLY 'SELECTOR';

/% NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS .EXT)

DECLARE mbxS$token TOKEN;;
DECLARE calling$tasks$job TOKEN ;
DECLARE waitS$forever LITERALLY ‘OFFFFH';
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;
[
. Typical PL/M-286 Statements

/**k*****************

* In this example, the calling task invokes LOOKUP$SOBJECT in order to *
* search the object directory of the calling task’s job for an object *
* with the name 'MBX’, *
R B R e e e

callingStasks$Sjob = SELECTOR$OF(NIL);

mbx$token = RQSLOOKUPSOBIECT (callingS$tasks$job,
@(3, "'MBX’},
wait$forever,
@@status);
2
. Typical PL/M-286 Statements
[]

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

ESBADSADDR 800FH The pointer to the name string is invalid. Either
the selector does not refer to a valid segment, or
the offset is outside the segment boundaries.

ESCONTEXT 0005H The specified job has an object directory of size
0.

Nucleus System Calls 139

LOOKUPS$OBJECT

ESEXIST 0006H At least one of the following is true:

¢ The job parameter (which is not
SELECTOR$OF(NIL)) is not a token for an
existing object.

+ The name was found, but the cataloged object
has a null (NIL) token.

ESLIMIT 0004H The specified object directory is full and the
object being looked up has not yet been
cataloged. This code (rather than ESTIME) is
returned when a full object directory does not
contain the requested object and the calling task
is not willing to wait.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$SPARAM 8004H The first byte of the string pointed to by the
name parameter contains a value greater than
12 or equal to 0.

ESTIME 0001H One of the following is true:

+ The calling task indicated its willingness to wait
a certain amount of time, but the waiting period
elapsed before the object became available.

o The task was not willing to wait, the entry
indicated by the name parameter is not in the
specified object directory, and the object
directory is not full.

ESTYPE 8002H The job parameter contains a token for an
object that is not a job.

140 Nucleus System Calls

The UNCATALOGS$OBJECT system call removes an entry for an object from an object
directory.

CALL RQSUNCATALOG$OBJECT (job, name, except$ptr);

input Parameters

job A TOKEN indicating the job of the object directory from which an
entry is to be deleted.

o If avalid selector, the TOKEN contains a token for the job
from whose object directory the specified entry is to be deleted.

» I SELECTORSOF(NIL), the entry is to be deleted from the
object directory of the calling task’s job.

name A POINTER to a STRING containing the name of the object
whose entry is to be deleted.

Output Parameter

exceptSptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The UNCATALOGSOBJECT system call deletes an entry from the object directory of
the specified job.
Example

TR e ke e ek ol b S A R R R R A A o s ot s R R S R
* This example illustrates how the UNCATALOGSOBJECT system call can *

* be used. *
ok ek s sk ok Rk kst kbt etk ke ok kR e/

DECLARE TOKEN LITERALLY ‘SELECTOR';

/* NUCLUS EXT declares all system calls */
$INCLUDE (/rmx286/inc/NUCLUS . EXT)

Nucleus System Calls 141

UNCATALOGS$SOBJECT

DECLARE segStoken TOKEN;

DECLARE size WORD;

DECLARE mbx$token TOKEN ;
DECLARE mbx$flags WORD;

DECLARE noS$response LITERALLY '0';
DECLARE status WORD;

DECLARE job$token TOKEN;

SAMPLEPROCEDURE:
PROCEDURE;
size = 64; /% designates new segment to contain
64 bytes */
mbx$flags = 0; /* designates four objects to be
gqueued on the high performance
cbject queue; designates a /
first-in first-out task queue */
jobStoken = SELECTORSOF(NIL); /*indicates objects to be cataloged
into the object directory of the
calling task’s job */
[]
. Typical PL/M-286 Statements
[]

e e T
* The calling task creates a segment and a mailbox and catalogs the
* mailbox TOKEN. The calling task then uses the TOKENs for both *

* objects to send a message. *
Serdedeode s Sk sk e o e sk stk ok ko sk ot ok o sk kS st s S S s S R R e/

seg$token = RQSCREATESSEGMENT (size,
(dstatus);

mbx$token = RQSCREATESMAILBOX (mbx$flags,
{@status)

/**

* It is not mandatory for the calling task to catalog the mailbox *
* token in order to send a message. It is necessary, however, to *
* catalog the mailbox token If a task in another job is to receive *
* the message, *

**/

CALL RQSCATALOGSOBJECT (jobStoken,
mbxStoken,
@¢3, 'MBX'),
@status);
[]
. Typical PL/M-286 Statements

142 Nucleus System Calls

UNCATALOGS$OBJECT

/-k'k'k********‘k*******-k:\h‘n\'**********)‘c******)‘c*****************************:’r:‘r

1.

* The calling task invokes the SENDSMESSAGE system call to send the =

* token for the segment to the specified mailbox. *
e e e e S S

CALL RQS$SENDSMESSAGE (mbx$token,
segStoken,
noSresponse,
{dstatus);

L]
. Typical PL/M-286 Statements

/R e ek s st e sk bl sk bl sk sk s sk s sk sl sk e sk b sk ok ok s ke sk bk sk ok sk o sk sk s R R R R R
* When the mailbox 1s no longer needed and there is no need to keep
* its token cataloged, it may be deleted by any task that knows its =

* token, %
****w**&*w**/

3

CALL RQSUNCATALOGSOBJECT {jobStoken,
@(3, "'MBX"),
@status):
CALL RQS$SDELETESMATLBOX (mbx$token,
@dstatus):
L
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.
E$BADSADDR 800FH The pointer to the string is invalid. Either the

selector doesn’t refer to a valid segment, or the
offset is outside the segment boundaries.

ESCONTEXT 0005H The specified object directory does not contain
an entry with the designated name.

ESEXIST 0006H The job parameter is neither zero nor a token
for an existing object.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

Nucleus System Calls 143

UNCATALOGSOBJECT

144

ESPARAM

ESTYPE

8004H

8002H

The first byte of the STRING pointed to by the
name parameter contains a value greater than
12 or equal to 0.

The job parameter is a token for an object that
is not a job.

Nucleus System Calls

The GETSEXCEPTSHANDLER system call returns information about the calling task’s
exception handler.

CALL RQ$SGETSEXCEPTIONSHANDLER (exception$info$ptr, exceptS$ptr);

Output Parameters
exception§info§ptr A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTIONSHANDLERSPTR POTNTER,
EXCEPTIONSMODE BYTE) ;

where, after the call,

¢« EXCEPTIONSHANDLER$POINTER points to the first
instruction of the exception handler. If this pointer is NIL, the
calling task’s exception handler is the system default exception
handler.

+ EXCEPTIONSMODE contains an encoded indication of the
calling task’s current exception mode. The value is interpreted

as follows:
When to Pass Control
Value to Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call.

Description

The GETSEXCEPTIONSHANDLER system call returns both the address of the calling
task’s exception handler and the current value of the task’s exception mode.

Nucleus System Calls 145

GETSEXCEPTIONSHANDLER

Example

/-k7\—*7\'****-k***'k***‘k'k*;‘r******v‘r**7’:*)\'*ﬂr**‘k)‘c*******-:l-**********************v‘c****

* This example illustrates how the GETSEXCEPTIONSHANDLER system call %
* can be used to return information about the calling task'’s *

* exception handler. *
B R e E B S R e e e

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS ., EXT)

DECLARE xS$handler STRUCTURE (x$handler$pointer POINTER,

xS$Smode BYTE);
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE
L]
. Typical PL/M-286 Statements

/RS e Sk e e s o ol ok ko ek o o ok s sk sk e s b ek ok ke o s b ok o
* The address of the calling task's exception handler and the value %
of the task’'s exception mode (which specifies when to pass control *
to the exception handler) are both returned when the calling task *

* invokes the GETSEXCEPTIONSHANDLER system call. *
et de ek e e S S R R AR S SRR R R ROk R/

%

CALL RGQSGETSEXCEPTIONSHANDLER (@xS$handler, @status);
L]

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

ESBADSADDR 800FH The pointer is invalid. Either the selector does
not refer to a valid segment, or the offset is
outside the segment boundaries.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

146 Nucleus System Calls

The SETSEXCEPTIONSHANDLER system call assigns an exception handler to the
calling task.

CALL RQSSETSEXCEPTIONSHANDLER (exception$info$ptr, exceptéptr):

Input Parameter
exception$info$ptr A POINTER to a structure of the following form:

STRUCTURE(
EXCEPTIONSHANDLERSPTR POINTER,
EXCEPTIONSMODE BYTE) ;

where:

» exception$handler$ptr points to the first instruction of the
exception handler,

» exceptionSmode contains an encoded indication of the calling
task’s intended exception mode. The value is interpreted as
follows:

When to Pass Control
Value to Exception Handler

Never

On programmer errors only

On environmental conditions only
3 On all exceptional conditions

If EXCEPTIONSHANDLERS$PTR equals NIL, the exception
handler of the calling task’s parent job is assigned.

F —

Output Parameter

exceptiptr A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Nucleus System Calls 147

SETSEXCEPTION$SHANDLER

Description

The SETSEXCEPTIONSHANDLER system call enables a task to set its exception
handler and exception mode attributes. If you want to designate the Debugger as the
exception handler to interactively examine system objects and lists, the following code sets
up the needed structure in PL./M-286:

DECLARE except$ptr STRUCTURE (ptr POINTER,
mode BYTE); /* establish a
structure for
exception handlers */

DECLARE exception WORD;

except$ptr.ptr = @my_excep_handler /*"@my_excep_handler is your own
procedure, here it designates the
debugger as the exception handler¥,

x.mode = ZEROSONES$TWOSORSTHREE; /% the mode is a value 0-3 */
CALL RQSSET$EXCEPTIONSHANDLER (@x, @exception);

Example

/*s‘c‘k*':5:'k)'c':!r*****'ﬂr**********‘k**"k**k"k**k****‘k*7\—7\’***-k-k*****************)‘c*'k)‘c**3‘:7\—*

* This example illustrates how the SET$EXCEPTIONSHANDLER system call *
* can be used to assign an exception handler to the calling task. *
ek s ok Sk sk ot sk sk ok SR SRR R SR SR S S R o ek o/

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

EXCEPTIONHANDLER: PROCEDURE EXTERNAL,
END EXCEPTIONHANDLER;
DECLARE X$HANDLER$STRUCTURE LITERALLY 'STRUCTURE(ptr POINTER,
mode BYTE) ' ;
/* establishes a structure for
exception handlers */
DECLARE xShandler X$HANDLERSSTRUCTURE;
/* using the exception handler
structure, the pointer fo the
0ld exception handler is
defined */
DECLARE newxShandler XSHANDLERSSTRUCTURE;
/* using the exception handler

structure, the new exception
handler is defined =*/

148 Nucleus System Calls

SETSEXCEPTION$SHANDLER

DECLARE allS$exceptions LITERALLY '3*;

/* control is passed to the exception
handler on all exceptional
conditions */

DECLARE PTRSOVERLAY LITERALLY 'STRUCTURE(offset WORD,
base TOKEN) " ;
/* establishes a structure for
overlays */
DECLARE seg$pointer POINTER:
DECLARE seg$pointer$ovly PTRSOVERLAY AT (@segSpointer);

/* using the overlay structure, the
first instruction of the
exception handler is identified */

DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;
segSpointer — @EXCEPTIONHANDLER: /* pointer to exception handler */

newxhandler offset = seg$pointerSovly.offset;

/* offset of the first instruction
of the exception handler */

segSpointerSovly.base;

/* base address of the exception
handler CPU segment containing
the first instruction of the
exception handler */

all$exceptions; /* pass control on all conditions */

new3xShandler .base

new$xShandler . mode

i

Typical PL/M-286 Statements

/*)hl’*‘**‘:\’*‘k***‘***‘k*‘k***'k**':l'*********'*******'Jr*'k**************************:’c*

* The address of the calling task's exception handler and the value *
* of the task's exception mode (when to pass control to the exception *

* handler) are both returned when the calling task invokes the *®
* GETSEXCEPTIONSHANDLER system call. *
FHHFAFKAF AR KR F AT hkk skt ekt kb ek ool bbbk sk s b bbb bk it /
CALL RQGETSEXCEPTIONSHANDLER (@x$handler,
@status);

. Typical PL/M-286 Statements

Nucleus System Calls 149

SET$SEXCEPTION$SHANDLER

/**)&'**‘****3\'***********)\'****‘k)\‘**"k***‘k**‘k****7\'**'k)hi‘************************

* The calling task may invoke the SET$EXCEPTIONSHANDLER system call %
* to first set a new exception handler and then to later reset the *

* old exception handler. *
3357 3 3 ko o ek ko o S ko Sk o e ok s sk R ko s e kR Rk ok ok kR ok /

CALL RQSSETSEXCEPTIONSHANDLER (@new$xShandler,
@status);

[]
. Typical PL/M-286 Statements
[]

/*k'k*k****v‘(***‘k****‘k**‘**k**************‘k*********':i'*************************‘;‘c

2

* No longer needing the new exception handler, the calling task uses *
* the address and mode of the old exception handler to return *

* exception handling to its original exception handler. *
ool ok st bt o ks ok ok Sk ks A o ek R RS s e e e ek ok /

CALL RQS$SSETSEXCEPTIONSHANDLER (@x$handler,
{dstatus);

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK O000H No exceptional conditions.

ESBADSADDR 800FH The exception$info$ptr is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The exception$mode parameter is greater than
3.

150 Nucleus System Calls

The DISABLE system call disables an interrupt level.

CALL RQ$DISABLE (level, except$ptr);

input Parameter

level A WORD that specifies an interrupt level encoded as follows (bit
15 is the high-order bit):
Bits Value
15-7 Reserved bits that should be set to zero
6-4 First digit of the interrupt level (0-7)
3 If one, the level is a master level and bits 6-4 specify the
entire level number
[f zero, the level is a slave level and bits 2-0 specify the
second digit
2-0 Second digit of the interrupt level (0-7), if bit 3 is zero
Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call. All
exceptional conditions must be processed in-line. Control does not
pass to an exception handler.

Description

The DISABLE system call disables the specified interrupt level. It has no effect on other
levels. To be disabled, a level must have an interrupt handler assigned to it. Otherwise,
the Nucleus returns an ESCONTEXT Exception code.

You must not disable the level reserved for the system clock. You determine this level
during system configuration (refer to the Extended iRMX I Interactive Configuration Utility

Reference Manual).

Nucleus System Calls

151

DISABLE

Example

152

ke ok ook ok s e sk st sk ok ok ok ek ok ok s ket ok ok ok sk ook sk sk sk sk ok ok sk
* This example illustrates how the DISABLE system call can be *

* wused to disable an interrupt level.
B R R L S L e

*

DECLARE TOKEN LITERALLY 'SELECTCR';

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS , EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT EXTERNAL;
END INTERRUPTHANDLER;

DECLARE interrupt$level$? LITERALLY *78H';
/* specifies master interrupt level 7 */

DECLARE interruptStask$flag BYTE;

DECLARE interrupt$handler POINTER;

DECLARE data$segment TOKEN;

DECLARE status WORD;

DECLARE job$token TOKEN ;
SAMPLEPROCEDURE:

PROCEDURE ;

interrupt$task$flag = 0; /* indicates no interrupt task on level
7%/

data$segment = SELECTORSOF(NIL); /* indicates that interrupt
handler will load its own
data segment */

Typical PL/M-286 Statements

/**

* An interrvupt level must have an interrupt handler or an interrupt =
* task assigned to it. Invoking the SETSINTERRUPT system call, the %

* calling task assigns INTERRUPTHANDLER to interrupt level 7. *
F AR AR R R TR kR okt e ok kol ok /

CALL RQSSETSINTERRUPT (interrupt$level$?,
interruptS$taskS$flag,
(@INTERRUPTHANDLER,
data$segment,
{dstatus) ;

Nucleus System Calls

DISABLE

. Typical PL/M-286 Statements
.

/**v’n‘c************'k*‘:l'*'k'*‘k**k‘k*'k‘k****7\'****************k*******************‘k%‘r

* The SETSINTERRUPT system call enabled interrupt level 7. 1In order =
* to disable level 7, the calling task invokes the DISABLE system *
* call. *
AR AR AR TR EEE Ao bbb b koot s bk ok kb ket /

CALL RQSDISABLE (interrupt$level$’,
(dstatus);

END SAMPLEPROCEDURE;

Condition Codes
EJOK 0000H No exceptional conditions.

ESCONTEXT 0005H The level indicated by the level parameter is
already disabled or has no interrupt handler
assigned to it.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The level parameter is invalid.

Nucleus System Calls 153

The ENABLE system call enables an interrupt level.

CALL RQSENABLE (level, except$ptr);

Input Parameter

level A WORD that specifies an interrupt level that is encoded as
follows (bit 15 is the high-order bit):

Bits Value
15-7 Reserved bits that should be set to zero.
6-4 First digit of the interrupt level (0-7)
3 If one, the level is a master level and bits 6-4 specify the

entire level number

If zero, the level is a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter

exceptdptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The ENABLE system call enables the specitied interrupt level. The level must have an
interrupt handler assigned to it. A task must not enable the level associated with the
system clock.

Example

/>‘c************************'k**3‘:***************************)‘c***********‘k***

* This example illustrates how the ENABLE system call can be used to *
* enable an interrupt level. *
A ok o R R S S R R S R ARk R R R R sk ok /

154 Nucleus System Calls

ENABLE

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls %/
$INCLUDE (/rmx286/inc/NUCLUS . EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT EXTERNAL;
END INTERRUPTHANDLER;

DECLARE interrupt$level$? LITERALLY '78H’;
/* specifies master interrupt level J¥/
DECLARE interruptStaskSflag BYTE;

DECLARE interrupt$handler POINTER;
DECLARE data$segment TOKEN;
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;
interrupt$task$flag = 0; /* indicates no interrupt task on level
7%/

data$segment = SELECTORSOF(NIL); /* indicates that interrupt handler
will load its own data segment */

L]
. Typical PL/M-286 Statements

/TSI H AR E A E A F AR F A F A EA KA KA F KA AR A AR KT KK
* An interrupt level must have an interrupt handler or an interrupt *
* task assigned to it. Invoking the SET$INTERRUPT system call, the *

* calling task assigns INTERRUPTHANDLER to interrupt level 7. *
R

CALL RQSSETSINTERRUPT (interrupt$level$?,
interrupt$task$flag,
@INTERRUPTHANDLER,
data$segment,
@status};

. Typical PL/M-286 Statements

/‘k************************7\'***‘k**‘k*****‘k*'k*******************************k

* The SETSINTERRUPT system call enabled interrupt level 7. In order *
* to illustrate the use of the ENABLE system call, interrupt level 7 *
* must first be digabled. The calling task invokes the DISABLE *

* system call to disable interrupt level 7. *
ek Tk o Aok sk sk oSk R sk S s sk bk e kR R R R R R R R R/

Nucleus System Calls 155

ENABLE

CALL ROSDISARLE (interruptSlevelS7,
@status);

/A SR ok SRR kR sk kR Sk Sk s s e e ek
* When an interrupt level needs to be enabled, a task must invoke the *

* ENABLE system call, *
B e

CALL RQSENABLE (interrupt$level$?,
{dstatus);
[]
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK (000H No exceptional conditions.

ESCONTEXT 0005H At least one of the following is true:

¢ A non-interrupt task tried to enable a level that
was already enabled.

» There is not an interrupt handler assigned to
the specified level.

o There has been an interrupt overflow on the
specified level.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H The level parameter is invalid.

156 Nucleuns System Calls

The ENDSINITSTASK system call is used by an initialization task of a first-level job to
inform the root task that it has completed its synchronous initialization process.

CALL RQSENDSINITSTASK;

Description

When the initialization task finishes its synchronous initialization, it must inform the root
task that it is finished, so that the root task can resume execution and create another first-
level job. When you call ENDSINIT$TASK, the root task resumes execution, allowing it
to create the next first-level job. You must include this system call in the initialization
task of each first-level job, even if the jobs require no synchronous initialization. Refer to
the Extended iRMX II Interactive Configuration Utility Reference Manual for more
information on first-level jobs and the initialization process.

Nucleus System Calls 157

The ENTER$INTERRUPT system call is used by interrupt handlers to load a previously-
specified segment base address into the DS register.

CALL RQ$ENTERSINTERRUPT(level, exceptSptr);

Input Parameter

level A WORD specifying an interrupt level that is encoded as follows
{bit 15 is the high-order bit):

15-7 Reserved bits that should be set to zero.
6-4 First digit of the interrupt level (0-7)
3 If one, the level is a master level and bits 6-4 specify the

entire level number

If zero, the level is a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter

exceptiptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call. For this
system call, all exceptional conditions must be processed in-line.
Control does not pass to an exception handler.

Description

158

ENTERSINTERRUPT, on behalf of the calling interrupt handler, loads a base address
value into the DS register. The value is what was specified when the interrupt handler was
set up by an earlier calf to SETSINTERRUPT.

If the handler is going to call an interrupt task, ENTERSINTERRUPT allows the handler

to place data in the CPU data segment that will be used by the interrupt task. This
provides a mechanism for the interrupt handler to pass data to the interrupt task.

Nucleus System Calls

ENTERSINTERRUPT

Example

/****‘i‘***************-k***'**‘k**‘k:\-*

* This example illustrates how the ENTER$INTERRUPT system call can be *

* used to load a segment base address into the data segment register. *
B e e e e S P T S S

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls */
$INCLUDE (/rmx286/inc/NUCLUS . EXT)

DECLARE theSfirst$word WORD;
DECLARE ESOK LITERALLY *‘0OO0H':
DECLARE interrupt$level$? LITERALLY '78H';
/* specifies master interrupt level 7 */

DECLARE interruptS$task$flag BYTE:

DECLARE interrupt$handler POINTER;

DECLARE data$segment TOKEN;

DECLARE status WORD ;

DECLARE interruptS$status WORD;

DECLARE ds$pointer POINTER;

DECLARE PTRSOVERLAY LITERALLY ‘STRUCTURE (offset WORD,

base TOKEN) ' :

/* establishes a structure for
overlays */

DECLARE ds$pointer$ovly PTRSOVERLAY AT (@dsS$pointer):

/* using the overlay structure, the
base address of the interrupt
handlexr's data segment is
identified */

INTERRUPTHANDLER; PROCEDURE INTERRUPT PUBLIC: /* ENTERSINTERRUPT
establishes the
actual level. */

. Typical PL/M-286 Statements

e L E St S S T S A B PR
* The calling interrupt handler invokes the ENTER$INTERRUPT system *
* call which loads a base address value (defined by *

* ds$pointer$ovly.base) into the data segment register. *
R e T T T

CALL RQS$SENTERSINTERRUPT (interrupt$level$7,
@interrupt$status);
CALL INLINEERRORPROCESS (interrupt$status);

Nuclens System Calls 159

ENTERSINTERRUPT

]
. Typical PL/M-286 Statements
]

/**

* TInterrupt handlers that do not invoke interrupt tasks need to *
* invoke the EXITSINTERRUPT system call to send an end-of-interrupt *
* signal to the hardware. *

**/

CALL RQSEXITSINTERRUPT (interrupt$level$§7,
@interruptS$status);
CALL INLINEERRORPROCESS {interruptSstatus};

END INTERRUPTHANDLER;

INLINEERRORPROCESS: PROCEDURE (int$status);
DECLARE int$status WORD;

IF int$status <> ESOK THEN
DO;

» Typical PL/M-286 Statements
L

END;
END INLINEERRORPROCESS;

SAMPLEPROCEDURE:
PROCEDURE;

ds$pointer = @the$first$word; /* a dummy identifier used to point to
interrupt handler’s data segment %/
dataSsegment = ds$pointer$ovly.base;
/* identifies the base address of the
interrupt handler’s data segment */

interrupt$task§flag = 0; /* indicates no interrupt task on level
7 */

. Typical PL/M-286 Statements

/**

* By first invoking the SETSINTERRUPT system call, the calling task *
* sets up an interrupt level. *
R Ly

160 Nucleus System Calls

CALL RQSSETINTERRUPT

ENTERSINTERRUPT

(interrupt$level$7,
interrupt$taskSflag,
@INTERRUPTHANDLER,,
data$segment,
@status);

. Typical PL/M-286 Statements
L]

END SAMPLEPROCEDURE;

Condition Codes
ESOK

E$CONTEXT

ESNOTSCONFIGURED

ESPARAM

Nucleus System Calls

(000H

0005H

0008H

8004H

No exceptional conditions.

No segment base value has previously been
specified in the call to SETSINTERRUPT.

This system call is not included in the present
configuration.

The level parameter is invalid.

161

The EXITSINTERRUPT system call is used by interrupt handlers when they don’t invoke
interrupt tasks; this call sends an end-of-interrupt signal to the hardware.

CALL RQS$EXITSINTERRUPT (level, except$ptr);

Input Parameter

fevel A WORD specifying an interrupt level that is encoded as follows
(bit 15 is the high-order bit):
Bits Value
15-7 Reserved bits that should be set to zero
6-4 First digit of the interrupt level (0-7)
3 If one, the level 1s a master level and bits 6-4 specify the
entire level number
If zero, the level is a slave level and bits 2-0 specify the
second digit of the interrupt level
2-0 Second digit of the interrupt level (0-7), if bit 3 1s zero
Output Parameter
except§ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call. All
exceptional conditions must be processed in-line, as control does
not pass to an exception handler.

Description

The EXITSINTERRUPT system call sends an end-of-interrupt signal to the hardware.

This sets the stage for re-enabling interrupts. The re-enabling actually occurs when
control passes from the interrupt handler to an application task.

162

Nucleus System Calls

EXITSINTERRUPT

Example

S FRFEFFRR AR E AR AT TR RF AT ATHRFHAFHFFAFddFhob R kord bt sk bbbk bt sk ok
* This example illustrates how the EXIT$INTERRUPT system call can be *

* used to send an end-of-interrupt signal to the hardware. *
FFF A A ATk A KAk ok bk ook Rk kR ke /

DECLARE TOKEN LITERALLY ’'SELECTOR';

/* NUCLUS.EXT declares all system calls */
$INCLUDE (/rmx286/inc /NUCLUS . EXT)

DECLARE interrupt$level$7 LITERALLY '78H;
/* specifies master interrupt level 7 %/

DECLARE ES$CK LITERALLY ‘Q0h’;

DECLARE interrupt$task$flag BYTE:

DECLARE interruptS$Shandler POINTER:

DECLARE dataSsegment TOKEN;

DECILARE status WORD;

DECLARE interrupt$status WORD;

INTERRUPTHANDLER: PROCEDURE INTERRUPT PUBLIC: /* ENTERS$INTERRUPT
establishes actual
level */

L]
. Typical PL/M-286 Statements

/***************************************#********************************

* Interrupt handlers that do not invoke interrupt tasks need to *
* invoke the EXITSINTERRUPT system call to send an end-of-interrupt *
* signal to the hardware. *

**/

CALL RQSEXITSINTERRUPT (interrupt$level$7,
{dinterruptSstatus);
IF interrupt$status <> ESOK THEN
DO:
[J
. Typical PL/M-286 Statements
[}
END;

END INTERRUPTHANDLER;

SAMPLEPROCEDURE :
PROCEDURE;

Nucleus System Calls 163

EXITSINTERRUPT

interruptStask§flag = 0; /% indicates no interrupt task on
level 7 */
data$segment = SELECTORSOF(NIL); /% indicates that the interrupt
handler will load its own data
segment */

L]
. Typical PL/M-286 Statements

/*************************‘k*‘k**

* By first invoking the SET$INTERRUPT system call, the calling task *

* gets up an interrupt level, *
R B T e e e E e

CALL RQSSETSINTERRUPT (interrupt$level$7,
interruptStask$flag,
(@INTERRUPTHANDLER,
data$segment,
fdstatus);

L J
. Typical PL/M-286 Statements
L]

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

ESCONTEXT 0005H The SETSINTERRUPT system call has not
been invoked for the specified level.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H The level parameter is invalid.

164 Nucleus System Calls

The GETSLEVEL system call returns the number of the level of the highest priority
interrupt being serviced.

level = RQSGETSLEVEL (exceptSptr);

Output Parameters

level A WORD whose value is interpreted as follows (bit 15 is the high-
order bit):

Bits Value
15-8 Reserved bits that are set to zero

7 If zero, some level is being serviced and bits 6-0 are
significant

If one, no level is being serviced and bits 6-0 are not
significant

6-4 First digit of the interrupt level (0-7)

3 If one, the level 1s a master level and bits 6-4 specify the
entire level number

If zero, the level 1s a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The GETSLEVEL system call returns to the calling task the highest (numerically lowest)
level which an interrupt handler has started servicing but has not yet finished.

Nucleus System Calls 165

GETSLEVEL

Example
/S sk ok ot st sk ol ok sk kst sk s st sk s o Rk Rk Sk sk
* This example illustrates how the GETSLEVEL system call can be used. *
4

DECLARE TOKEN LITERALLY 'SELECTOR';

/% NUCLUS .EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS ., EXT)

DECLARE interrupt$level WORD;

DECLARE status WORD
SAMPLEPROCEDURE ;
PROCEDURE;
L]
. Typical PL/M-286 Statements
L]

R L R s T X3
* The GETS$LEVEL system call returns to the interrupt handler the number *

.

* of the highest interrupt level being serviced. *
B b N P S P T T

interruptSlevel = RQ$SGETSLEVEL (@status);
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes

ESOK 0000H No exceptional conditions.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

166 Nucleus System Calls

The RESETSINTERRUPT system call cancels the assignment of an interrupt handler to

a level,

CALL RQSRESETSINTERRUPT (level, exceptSptr);

Input Parameter

level A WORD specifying an interrupt level. This word must be
encoded as follows (bit 15 is the high-order bit):
Bits Value
15-7 Reserved bits that should be set to zero.
0-4 First digit of the interrupt level (0-7).
3 If one, the level is a master level and bits 6-4 specify the
entire {evel number,
If zero, the level 1s a slave level and bits 2-0 specify the
second digit.
2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.
Output Parameter
exceptiptr A POINTER to a WORD to which the iRMX 11 Operating System

will return the condition code generated by this system call.

Description

The RESETSINTERRUPT system call cancels the assignment of the current interrupt
handler to the specified interrupt level. If an interrupt task has also been assigned to the
level, the interrupt task is deleted. RESETSINTERRUPT also disables the level,

The level reserved for the system clock should not be reset and is considered invalid. This
level is a configuration option (refer to the Extended iRMX 1 Interactive Configuration
Utility Reference Manual for further information).

Nucleus System Calls

167

RESETSINTERRUPT

Example

e S
* This example illustrates how the RESETSINTERRUPT system call can he *
* used to cancel the assignment of an interrupt handler to an *

* interrupt level.
B B R e e e e T

DECLARE TOKEN

*

LITERALLY ‘SELECTOR';

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS,EXT)

INTERRUPTHANDLER:

END INTERRUPTHANDLER;

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

DECLARE
DECLARE

/*
DECLARE
DECLARE
DECLARE

task$token
priority$level$210
start$address
data$segment
stackS$pointer
stack$size$512

taskSflags
interrupt$level§?
specifies master interrupt
interruptStask$flag
interrupt$status

status

INTERRUPTTASK: PROCEDURE PUBLIC;

interrupt$task§flag = 001H;

data$segment = SELECTORSOF(NIL);

PROCEDURE INTERRUPT EXTERNAL;

TOKEN;
LITERALLY ‘210';
POINTER;
TOKEN;;
POINTER;
LITERALLY '512'; /#new task's stack
size is 512 bytes®/
WORD;
LITERALLY '78H’;
level 7 %/
BYTE;
WORD;
WORD;

/* indicates that calling task is
to be the interrupt task */

/* use own data segment */

/**

* The first system call in this example, SETSINTERRUPT, makes the *
* calling task (INTERRUPTTASK) the interrupt task for the interrupt *

* Jevel.

*

**/

CALL RQS$SETSINTERRUPT

(interrupt$level$?,

interrupt$task$flag,
@INTERRUPTHANDLER,
dataSsegment,

@interrupt$status);
/33333 ek e sk sl okl sk ok ok o e et s s o o sk sk s ek sk sk sk sk sk ek s ok sk ook ok sk ke sk sk

* The second system call, WAITSINTERRUPT, is used by the interrupt *

* task to signal its readiness to service an interrupt. *
A A E A A AR A I AT F A H A A TSk ek sk s sk sk s s o ok ook /

168

Nucleus System Calls

RESETSINTERRUPT

CALL RQSWAITSINTERRUPT {interruptSlevel$7,
@interruptSstatus);
L]
. Typical PL/M-286 Statements

/*****‘A‘************k***'-.5:***-k***1\—7‘:-k*-.»\:*****7\-*****************************7‘:7‘:‘-k

* When the interrupt task invokes the RESETSINTERRUPT system call, *
* the assignment of the current interrupt handler to interrupt level *
* 7 is canceled and, because an interrupt task has also been assigned *

.

* to the level, the interrupt task is deleted. *
L

CALL RQSRESETSINTERRUPT {interrupt$levels7,
@interrupt$status);
END INTERRUPTTASK;

SAMPLEPROCEDURE.:
PROCEDURE;
start$address = @INTERRUPTTASK;
/* lst instruction of interrupt task */
stackSpointer = NIL; /* automatic stack allocation */
task§flags = 0; /% indicates no fleating-point

instructions #*/
data$segment = SELECTOR$OF(NIL); /% use own data segment %/
[]

. Typical PL/M-286 Statements

L]
/e st e sk s ko sk sl s s st ot s kst s s o ot e e sl e sk e sk stk s ke e
* In this example, the SAMPLEPROCEDURE is needed to create the task =

* labeled INTERRUPTTASK. *
)\"k'k******)\’*******'A"k'}\'*‘k'k*****‘k**‘i‘**‘:’C*********‘k**************************/

taskStoken = RQSCREATESTASK {priority$level$6b,
start$Saddress,
data$segment,
stackSpointer,
stack$sizes512,
task$flags,
{dstatus)

END SAMPLEPROCEDURE,

Nucleus System Calls 169

RESETSINTERRUPT

Condition Codes
ESOK

ESCONTEXT

ESNOTSCONFIGURED

ESPARAM

170

0000H

0005H

0008H

8004H

No exceptional conditions.

There is not an interrupt handler assigned to
the specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

Nucleus System Calls

The SETSINTERRUPT system call assigns an interrupt handler to an interrupt fevel and,
optionally, makes the calling task the interrupt task for the level.

CALL RQSSETSINTERRUPT (level, interrupt$taskS$flag,
interrupt$handler, interrupt$handlerSds,
exceptSptr);

Input Parameters

level A WORD containing an interrupt level that is encoded as foliows
(bit 15 is the high-order bit):

Bits Value
15-7 Reserved bits that should be set to zero
6-4 First digit of the interrupt level (0-7)
3 If one, the level is a master level and bits 6-4 specify the

entire level number

If zero, the level is a slave level and bits 2-0 specity the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

interrupttask$flag A BYTE indicating the interrupt task that services the interrupt
level. The value of this parameter indicates the number of
outstanding SIGNALSINTERRUPT requests that can exist. When
this limit is reached, the associated interrupt level is disabled. The
maximum value for this parameter is 255 decimal. The Extended
IRMX 11 Nucleus User’s Guide describes this feature in more detail.

o Ifzero, indicates that no interrupt task is to be associated with
the special level and that the new interrupt handler will not call
SIGNALSINTERRUPT.

Nucleus System Calls 171

SETSINTERRUPT

CAUTION

If a task sets the interrupt$task$flag to zero, the designated interrupt
handler should not be part of a Human Interface application that is
loaded into dynamic memory. If such an application is stopped (via a
CONTROL-C entered at a terminal), subsequent interrupts to the vector
table entry set by this system call could cause unpredictable results.

» If unequal to zero, indicates that the calling task is to be the
interrupt task that will be invoked by the interrupt handler
being set. The priority of the calling task is adjusted by the
Nucleus according to the interrupt level being serviced. Be
certain that priorities set in this manner do not violate the
max3priority attribute of the containing job.

interrupt$handler A POINTER to the first instruction of the interrupt handler.
interrupt$handler§ds A TOKEN that specifies the interrupt handler’s data segment.

» If avalid selector, it contains the base address of the interrupt
handler’s data segment. See the description of
ENTERSINTERRUPT in this manual for information
concerning the significance of this parameter.

+ if SELECTORSOF(NIL), the parameter indicates that the
interrupt handler will load its own data segment and may not
invoke ENTERJINTERRUPT.

It is often desirable for an interrupt handler to pass
information to the interrupt task that it calls. The following
PL/M-286 statements, when included in the interrupt task’s
code (with the first statement listed here being the first
statement in the task’s code), will extract the DS register value
used by the interrupt task and make it available to the interrupt
handler, which in turn can access it by calling

ENTERSINTERRUPT:
DECLARE begin WORD; /% A DUMMY VARIABLE #*/
DECLARE data$ptr POINTER:

DECIARE dataSaddress STRUCTURE (offset WORD,
base TOKEN) AT (@DATASPTR):
/* this makes accessible
the two halves of the
pointer DATASPTR */

data$ptr = @begin; /* puts the whole address of
the data segment into
data$ptr and
dataSaddress */

172 Nucleus System Calls

SETSINTERRUPT

ds$base = data$address.base;

CALL RQSSETSINTERRUPT (...,ds$base,...):

Output Parameter

exceptiptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The SETSINTERRUPT system call is used to inform the Nucleus that the specified
interrupt handler is to service interrupts which come in at the specified level. In a call to
SET$INTERRUPT, a task must indicate whether the interrupt handler will invoke an
interrupt task and whether the interrupt handler has its own data segment. If the handler
is to invoke an interrupt task, the call to SETSINTERRUPT also specifies the number of
outstanding SIGNALSINTERRUPT requests that the handler can make before the
associated interrupt level is disabled. This number generally corresponds to the number
of buffers used by the handler and interrupt task. Refer to the Extended iRMX IT Nucleus
User’s Guide for further information.

If there is to be an interrupt task, the calling task is that interrupt task. If there is no
interrupt task, SETSINTERRUPT also enables the specified level, which must be disabled
at the time of the call.

Example

i L S S 2 S L R R e R m s
* This example illustrates how the SET$INTERRUPT system call can be
* used. *

B R T S

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS . EXT)
INTERRUPTHANDLER: PROCEDURE INTERRUPT EXTERNAL;
END INTERRUPTHANDLER;

DECLARE interrupt$level$7 LITERALLY ‘78H';
/* specifies master interrupt level 7 */
DECLARE interrupt$task$flag BYTE;
DECLARE data$segment TOKEN;
DECLARE status WORD;

Nucleus System Calls 173

SETSINTERRUPT

SAMPLEPROCEDURE:
PROCEDURE ;
interrupt$task$flag = 0; /* indicates no interrupt task on level 7 */
data$segment = SELECTORSOF(NIL); /* indicates that the interrupt
handler will load its own data
segment */
L]
. Typical PL/M-286 Statements
L]
s
* An interrupt level must have an interrupt handler or an interrupt *
* task assigned to it. Invoking the SET$INTERRUPT system call, the *
* calling task assigns INTERRUPTHANDLER to interrupt level 7. *
sk ek sk sk s ok s ek o ek ok Sk kR SR ek SRR Rk

CALL RQSSETS$INTERRUPT (interruptSlevel$?,

Interrupt$task$flag,
@INTERRUPTHANDLER,
data$segment,
dstatus);
L]
. Typical PL/M-286 Statements
L]
END SAMPLEPROCEDURE;
Condition Codes
ESOK 0000H No exceptional conditions.
ESBADSADDR 800FH Either the pointer to the interrupt handler or

the selector for the data segment is invalid.
Either one of the selectors does not refer to a
valid segment, or the offset is outside the
segment boundaries.

ESCONTEXT 0005SH One of the following is true:

» The task is already an interrupt task.

» The specified level already has an interrupt
handler assigned to it.

» The job containing the calling task or the calling
task itself is in the process of being deleted.

174 Nucleus System Calls

ESNOT$CONFIGURED

ESPARAM

Nucleus System Calls

0008H

8004H

SETSINTERRUPT

This system call is not part of the present
configuration
One of the following is true:

The level parameter is invalid or would cause
the task to have a priority not allowed by its job.

The programmable interrupt controller (PIC)
corresponding to the specified level is not part
of the hardware configuration.

175

The SIGNALSINTERRUPT system call is used by an interrupt handler to activate an
interrupt task.

CALL RQS$SSIGNALSINTERRUPT (level, exceptSptr)};

Input Parameter

level A WORD containing an interrupt level that is encoded as follows
(bit 15 is the high-order bit):

15-7 Reserved bits that should be set to zero.
6-4 First digit of the interrupt level (0-7)
3 If one, the level is a master level and bits 6-4 specify the

entire level number

If zero, the level is a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter

exceptdptr A POINTER to a WORD to which the iRMX TI Operating System
will return the condition code generated by this system call. All
exceptional conditions must be processed in-line, as control does
not pass to an exceptional handler.

Description

An interrupt handler uses SIGNALSINTERRUPT to start up its associated interrupt
tusk. The interrupt task runs in its own environment with higher (and possibly the same)
level interrupts enabled, whereas the interrupt handler runs in the environment of the
interrupted task with all interrupts disabled. The interrupt task can also make use of
exception handlers, whereas the interrupt handler always receives exceptions in-line.

176 Nucleus System Calls

SIGNALSINTERRUPT

Example

/‘k********************‘k‘:‘r***‘*‘k*********'k'k*************************'k*******

* This example illustrates how the SIGNAL$INTERRUPT system call can ¥

* be used to activate an interrupt task. *
e e e e S e T P e

$include (/RMX286/INC/error.lit)
DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS .EXT declares all system calls */
$INCLUDE(/rmx286 /inc/NUCLUS . EXT)

DECLARE interrupt$level$? LITERALLY ‘78H':
/* specifles master interrupt level 7%/
DECLARE theS$firstSword WORD;
DECLARE interrupt$task$flag BYTE;
DECLARE interrupt$handler POINTER;
DECLARE dataSsegment TOKEN;
DECLARE status WORD
DECLARE interrupt$status WORD;
DECLARE dsSpointer POINTER:
DECLARE PTRSOVERLAY LITERALLY 'STRUCTURE (offset WORD,

base TOKEN) ' ;

/* establishes a structure for
overlays */

DECLARE ds$pointer$ovly PTRSOVERIAY AT (@ds$pointer);

/* using the overlay structure, the
base address of the interrupt
handler’s data segment is
identified */

INTERRUPTHANDLER: PROCEDURE INTERRUPT PUBLIC;

L]
. Typical PL/M-286 Statements
*

R R R R R Lttt sttt s T Ty
* The calling interrupt handler invokes the ENTER$SINTERRUPT system *
call which loads a base address value (defined by *
ds$pointer$ovly.base) into the data segment register. This *
register provides a mechanism for the interrupt handler to pass
data to the interrupt task to be started up by the SIGNALSINTERRUPT

system call, *
FHHEHE KR H A A KRS ok ok 3ok T bk sk ek sk sk ok St ks Rk Rk ko /

B %

% % A % %

CALL RQSENTERSINTERRUPT {interruptSlevel$7,
@interruptéstatus);
CALL INLINEERRORFPROCESS (interrupt$status);

Nucleus System Calls 177

SIGNALSINTERRUPT

» Typical PL/M-286 Statements

/-k-k*)‘c*-k-k)\—-k*)Hc‘k***'k':i"k'k':i"*)‘c‘k*':'s"k**'k****‘k****‘k********************************

* The interrupt handler uses SIGNALSINTERRUPT to start up its *
* associated interrupt task. *
R T e T e
CALL RQSSIGNALSINTERRUPT (interrupt$level§7,
@interrupt$status);
CALL INLINEERRORPROCESS (interruptSstatus);

END INTERRUPTHANDLER;

INLINEERRORPROCESS: PROCEDURE(intS$status});
DECLARE int$status WORD;

IF int$status <> ESOK THEN
DO:

. Typical PL/M-286 Statements

END;

?

END INLINEERRORPROCESS;

SAMPLEPROCEDURE:

PROCEDURE;

ds$pointer = @the$firstSword; /* a dummy identifier used to point to
interrupt handler’s data segment */

data$segment = ds$pointer$Sovly.base;

/* identifies the base address of the

interrupt handler’s data segment */

interrupt$task$flag = 01H; /* indicates that calling task is to be
interrupt task */

Typical PL/M-286 Statements

/R A TSR A R R A R R R R AR AR AR R R A R R R R R A R R R R R
* By first invoking the SET$INTERRUPT system call, the calling task =*

* sets up an interrupt level and becomes the interrupted task for *
* level 7. *
kb b R R b ks R R R ek /
CALL RQS$SSETSINTERRUPT (interrupt$level$7,

interruptStask$flag,

@INTERRUPTHANDLER,

dataS$segment,

{dstatus):

178 Nucleus System Calls

SIGNALSINTERRUPT

. Typical PL/M-286 Statements
o

END SAMPLEPROCEDURE;

Condition Codes

ESOK 0000H No exceptional conditions.
ESCONTEXT 000SH No interrupt task is assigned to the specified
level.

ESINTERRUPTSOVERFLOW 000AH The interrupt task has accumulated more
than the maximum allowable number of
SIGNALSINTERRUPT requests. It had
reached its saturation point and then called
ENABLE to allow the handler to receive
further interrupt signals. It subsequently
received an additional
SIGNALSINTERRUPT request before
calling WAITSINTERRUPT or
RQESTIMEDSINTERRUPT.

ESINTERRUPTSSATURATION 0009H The interrupt task has accumulated the
maximum allowable number of
SIGNALSINTERRUPT requests. This is
an informative message only. It does not
indicate an error.

ESLIMIT 0004H An overflow has occurred because the
interrupt task has received more than 255
SIGNALSINTERRUPT requests.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H The level parameter is invalid.

Nucleus System Calls 179

The RQESTIMEDSINTERRUPT system call is used by an interrupt task to signal its
readiness to service an interrupt for a certain period of time.

CALL RQESTIMEDSINTERRUPT (level, time, except$ptr);

Input Parameters

level A WORD specifying an interrupt level that the task will service.
This word is encoded as follows (bit 15 is the high-order bit):

Bits Value
15-7 Reserved bits that should be set to zero
6-4 First digit of the interrupt level (0-7)
3 If one, the level is a master level and bits 6-4 specify the

entire level number

If zero, the level is a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 1s zero

time A WORD specifying the number of clock intervals the interrupt
task is willing to wait for the interrupt to occur. A value of
OFFFFH means that the task is willing to wait forever.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

180 Nucleus System Calls

RQESTIMEDSINTERRUPT

Description

The ROESTIMEDSINTERRUPT system call is similar to the WAITSINTERRUPT
system call. Interrupt tasks can invoke it immediately after initializing and immediately
after servicing interrupts. Such a call suspends an interrupt task until the interrupt
handler for the same level resumes it by invoking SIGNALSINTERRUPT. Unlike
WAITSINTERRUPT, RQESTIMEDSINTERRUPT permits the interrupt task to limit
the time that it wil} wait. If the time limit expires before an interrupt occurs, the interrupt
task is resumed without an interrupt occurring,

While the interrupt task is processing, all lower level interrupts are disabled. The
associated interrupt level is either disabled or enabled, depending on the option originally
specified with the SETSINTERRUPT system call. If the associated interrupt level is
enabled, all SIGNALSINTERRUPT calls that the handler makes (up to the limit specified
with SETSINTERRUPT) are logged. If this count of SIGNALSINTERRUPT calls is
greater than zero when the interrupt task calls RQESTIMEDSINTERRUPT, the task is
not suspended. Instead it continues processing the next SIGNALSINTERRUPT request.

If the associated interrupt level is disabled while the interrupt task is running and the
number of outstanding SIGNALSINTERRUPT requests is less than the user-specified
limit, the call to RQESTIMEDSINTERRUPT enables that level.

Example

/**

* This example illustrates how the RQESTIMEDSINTERRUPT system call can *
* be used to signal a task's readiness to service an interrupt, *

**/

DECLARE TOKEN LITERALLY ‘SELECTOR';

/* NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT EXTERNAL;
END INTERRUPTHANDLER;

DECLARE task$token TOKEN,;

DECLARE priorityS$level$l150 LITERALLY '150';

DECLARE time WORD;

DECLARE start$address POINTER;

DECLARE data$segment TOKEN,

DECLARE stackSpointer POINTER;

DECLARE stack$size$512 LITERALLY '512'; /* new task's stack
size is 512 bytes #/

DECLARE taskS$flags WORD;

DECLARE interrupt$level$? LITERALLY '78H';

/* specifies master interrupt level 7 #*/

Nucleus System Calls 181

RQESTIMEDSINTERRUPT

DECLARE interruptStask$flag BYTE;
DECLARE interruptS$handler POINTER;
DECLARE interrupt$status WORD;
DECLARE status WORD;

INTERRUPTTASK: PROCEDURE PUBLIC;
interruptS$task$flag = 01H; /* indicates that calling task is to
be an interrupt task */

data$segment = SELECTORSOF(NIL); /* use own data segment */

/**

* The first system call in this example, SETSINTERRUPT, makes the *
* calling task (INTERRUPTTASK) the interrupt task for interrupt *
* level seven. *

**/

CALL RQSSETSINTERRUPT (interruptS$level$?,
interrupt$tasks$flag,
@INTERRUPTHANDLER,
dataSsegment,
@interrupt$status);

. Typical PL/M-286 Statements

/**

* The calling interrupt task invokes RQES$TIMED$INTERRUPT to suspend *
* itself until the interrupt handler for the same level resumes the *
* task by invoking the SIGNALSINTERRUPT system call, *
FRFEFFAR TR A H AR FHFF T A FR AL FA R F TRk ko ek ko kbl etk st keok sk ok /

time = 100; /* Interrupt task will wait 100 clock
intervals */

CALL RQESTIMEDSINTERRUPTS (interrupt$level$?,
time,

@interrupt$status);

. Typical PL/M-286 Statements

/**

* When the interrupt task invokes the RESET$INTERRUPT system call, *
* the assignment of the current interrupt handler to interrupt level *
* 7 is canceled and, because an interrupt task has also been *®
* assigned to the line, the interrupt task is deleted. *

**/

182 Nucleus System Calls

RQESTIMEDSINTERRUPT

CALL RQSRESETSINTERRUPT (interrupt$level$?,
@interrupt$status);
END INTERRUPTTASK; SAMPLEPROCEDURE:
PROCEDURE;

start$address = @INTERRUPTTASK; /* lst instruction of interrupt

task */
stackSpointer = NIL; /* automatic stack allocation */
taskSflags = 0; /* designates no floating-point

instructions */
data$segment = SELECTORSOF(NIL); /* use own data segment */

. Typical PL/M-286 Statements
L]

/*****************':l‘*************************k*************************‘k*k-,‘r-f’c

* In this example, the calling task invokes the system call *

* CREATESTASK to create a task labeled INTERRUPTTASK. *
w*********************/

task$token = RQSCREATESTASK {priority$level$150,
start$address,
data$segment,
stack$pointer,
stackS$size5512,
task$flags,
@status) ;

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$OK 0000H No exceptional conditions.

E$SCONTEXT 0005SH The calling task is not the interrupt task for the
given level.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H The level parameter is invalid.

ESTIME 0001H The time limit specified by the interrupt task
expired before an interrupt occurred.

Nucleus System Calls 183

The WAITSINTERRUPT system call is used by an interrupt task to signal its readiness to

service an interrupt.

CALL RQS$WAITSINTERRUPT (level, exceptSptr);

Input Parameter

level A WORD specifying an interrupt level which is encoded as follows
(bit 15 is the high-order bit):

Bits Value
15-7 Reserved bits that should be set to zero
6-4 First digit of the interrupt level (0-7)
3 If one, the level is a master level and bits 6-4 specify the
entire level number
If zero, the level is a slave level and bits 2-0 specify the
second digit
2-0 Second digit of the interrupt level (0-7), if bit 3 is zero
Output Parameter
exceptdptr A POINTER to a WORD to which the iRMX 1l Operating System

will return the condition code generated by this system call.

Description

The WAITSINTERRUPT system call is used by interrupt tasks immediately after
initializing and immediately after servicing interrupts. Such a call suspends an interrupt
task until the interrupt handler for the same level resumes it by invoking

SIGNALSINTERRUPT.

184

Nucleus System Calls

WAITSINTERRUPT

While the interrupt task is processing, all lower level interrupts are disabled. The
associated interrupt level is either disabled or enabled, depending on the option originally
specified with the SETSINTERRUPT system call. If the associated interrupt level is
enabled, all SIGNALSINTERRUPT calls that the handler makes (up to the limit specified
with SETSINTERRUPT) are logged. If this count of SIGNALSINTERRUPT calls is
greater than zero when the interrupt task calls WAITSINTERRUPT, the task is not
suspended. Instead it continues processing the next SIGNALSINTERRUPT request.

If the associated interrupt level is disabled while the interrupt task is running and the
number of outstanding SIGNALSINTERRUPT requests is less than the user-specified
limit, the call to WAITSINTERRUPT enables that level.

Example

/')5:‘k**‘k*‘k**************************‘k***********************************k‘k‘f'\“k

% This example illustrates how the WAITSINTERRUPT system call can be %
* used to signal a task's readiness to service an interrupt. *
L e

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS . EXT)
INTERRUPTHANDLER: PROCEDURE INTERRUPT EXTERNAL;
END INTERRUPTHANDLER;

DECLARE task$token TOKEN;
DECLARE priority$level$150 LITERALLY '150'";
DECLARE start$Saddress POINTER;
DECLARE data$segment TOKEN,
DECLARE stack§pointer POINTER:
DECLARE stackS$size$512 LITERALLY '512'; /* new task's stack
size is 512 bytes */
DECLARE task$flags WORD;
DECLARE interrupt$level$7/ LITERALLY '78H';
/% specifies master interrupt level 7 %/
DECLARE interruptStask$Sflag BYTE:
DECLARE interrupt$handler POINTER;
DECLARE interrupt$status WORD:
DECLARE status WORD;

INTERRUPTTASK: PROCEDURE PUBLIC;
interrupt$task$flag = 01H; /% indicates that calling task is to

be interrupt task */
data$segment = SELECTOR$OF(NIL); /* use own data segment */

Nucleus System Calls 185

WAITSINTERRUPT

/3\'5’(********)'r**-k******'k*****************‘k*******‘:’r*************************
* The first system call in this example, SETSINTERRUPT, makes the *
* calling task (INTERRUPTTASK) the interrupt task for interrupt *

* level seven.
ek Sk SR ek ek ek kot ok ket ok e kot ek ek bk Skt ok /

*

CALL RQSSETSINTERRUPT {interrupt$level$?,
interrupt$task$flag,
@INTERRUPTHANDLER,
dataS$segment,
@interrupt$status);
L]
. Typical PL/M-286 Statements
L]
R T T T
* The calling interrupt task invokes WAITSINTERRUPT to suspend itself *
% until the interrupt handler for the same level resumes the task by =*

* invoking the SIGNALSINTERRUPT system call. *
Rk R kR R Rk kot kbt b ok kst koo /

CALL RQSWAITSINTERRUPT {(interrupt$level§7,
@interrupt$status);
L]
. Typical PL/M-286 Statements

/***#****************************

* When the interrupt task invokes the RESET$INTERRUPT system call, *
* the assignment of the current interrupt handler to interrupt level *
* 7 is canceled and, because an interrupt task has also been *
* assigned to the line, the interrupt task is deleted. *

#***************/

CALL RQSRESETSINTERRUPT (interrupt$level$?7,
@interruptSstatus);
END INTERRUPTTASK;

SAMPLEPROCEDURE.:
PROCEDURE;
start§address = @INTERRUPTTASK; /* lst instruction of interrupt
task */
stack$pointer = NIL; /* automatic stack allocation */
task$flags = 0; /% designates no floating-point

instructions */
data$segment = SELECTORSOF(NIL); /* use own data segment */

. Typical PL/M-286 Statements

186 Nucleus System Calls

WAITSINTERRUPT

/*************************v\'***************'ai'*)‘c**}'n\'***5\'*****************3‘(:‘:‘k

* In this example the calling task invokes the system call *

* CREATESTASK to create a task labeled INTERRUPTTASK.
i 4

task$token = RQSCREATESTASK (priority$level$150,
startSaddress,
data$segment,
stack$pointer,
stackS$size§512,
taskSflags,
{dstatus);

[]
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
E$OK 0000H No exceptional conditions.

ESCONTEXT 0005H The calling task is not the interrupt task for the
given level.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H The level parameter is invalid.

Nucleus System Calls 187

The ALTER$COMPOSITE system call replaces components of composite objects.

CAUTION

Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal,)

CALL RQSALTERSCOMPOSITE (extension, composite, component$index,
replacingSobj, exceptéptr);

Input Parameters

extension A TOKEN for the extenston type object corresponding to the
composite object being altered.

composite A TOKEN for the composite object being altered.

component$index A WORD whose value specifies the location (starting at location 1)

in the component list of the component to be replaced.

replacing$obj A TOKEN for the replacement component object or zero, which
represents no object.

Output Parameter

exceptSptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description
The ALTERSCOMPOSITE system call changes a component of a composite object. Any
component in a composite object can be replaced either with a token for another object or

with a placeholding SELECTORSOF(NIL) that represents no object.

The component§index indicates the position of the target token in the list of components.

188 Nucleus System Calls

Example

ALTER$COMPOSITE

See the example in section "The GET BYTE Procedure” of the Extended iRMX II Nucleus

User’s Guide.

Condition Codes
E$OK

ESCONTEXT

ESEXIST

ESNOTSCONFIGURED

ESTYPE

E$PARAM

Nucleus System Calls

0000H

0005H

(0006H

(J008H

8002H

8004H

No exceptional conditions.

The composite parameter is not compatible
with the extension parameter.

The extension, composite, or object
parameter(s) is not a token for an existing
object.

This system call is not part of the present
configuration.

One or both of the extension or composite
parameters is a token for an object that is not of
the correct object type.

The component§index parameter refers to a

nonexistent position in the component object
list.

189

The CREATE$SCOMPOSITE system call creates a composite object.

CAUTION

Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal,)

composite=RG$CREATESCOMPOSITE (extension, token$list, exceptSptr);

Input Parameters

extension A TOKEN for an extension type representing a license to create a
composite object.
token$list A POINTER to a structure of the form:
DECLARE
tokenS$list STRUCTURE(
num$slots WORD,
numSused WORD,
tokens (*) TOKEN) ;
where:

num$slots Number of slots for component objects that the
composite object will contain. This number represents
the maximum number of component objects that the
composite object can handle. If num$slots is greater

than num$used, the values in the extra slots are set to
SELECTORSOF(NIL).

num$used Number of token elements to include in the composite.
If num$used is greater than num$slots, the extra
components are ignored.

token(*} Tokens that will actually constitute the composite
object.

190 Nucleus System Calls

CREATESCOMPOSITE

Output Parameters

composite A TOKEN to which the Operating System returns the new
composite token.
except$ptr A POINTER to a WORD to which the iRMX Il Operating System

will return the condition code generated by this system call.

Description

The CREATESCOMPOSITE system call creates a composite object of the specified
extension type. It accepts a list of tokens that specify the component objects and returns a
token for the new composite object. The token$list parameter points to a structure that
contains the list of tokens.

The first element in the token list (num$slots) indicates the number of slots available in
the composite object; that is the maximum number of component objects that can be part
of the composite. Because you might not fill all the slots when you create the composite
object, the second element (num$used) indicates the number of tokens that should be
included in the composite. These tokens follow num$used in the structure.

CREATESCOMPOSITE selects tokens to include beginning with the first token in the
token list.

If the number of token elements to include in the composite (num$used) is less than the
number of component slots (num$slots), CREATESCOMPOSITE fills the remaining
slots with the value SELECTOR$OF(NIL).

If, on the other hand, the number of component slots (num$slots) is less than the number

of token elements to include in the composite (num$used), CREATE$COMPOSITE
ignores the remaining tokens in the token list.

Example

See "CREATE_RING BUFFER Procedure” in the Extended iRMX II Nucleus User's
Guide.

Condition Codes
EJOK 0000H No exceptional conditions.

E$BADSADDR 800FH The token$list pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

Nucleus System Calls 191

CREATE$SCOMPOSITE

192

ESEXIST

ESLIMIT

ESMEM

ESNOTSCONFIGURED

ESPARAM

ESSLOT

ESTYPE

0006H

0004H

0002ZH

0008H

8004H

000CH

8002H

The extension parameter or one or more of the
non-zero token$list parameters 1s not a token
for an existing object.

The calling task’s job has already reached its
object limit.

The memory available to the calling task’s job is
insufficient to create a composite.

This system call is not part of the present
configuration.

The specified number of components is zero.

There is no room in the GDT for the composite
object’s descriptor.

The extension parameter is a token for an
object that is not an extension object.

Nucleus System Calls

The DELETESCOMPOSITE system call deletes a composite object.

CAUTION

Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. 1f a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal).

CALL RQSDELETESCOMPOSITE (extension, composite, except$ptr);

Input Parameters

extension A TOKEN for the extension type used as a license to create the
composite object to be deleted.

composite A TOKEN for the composite object to be deleted.

Output Parameter

exceptiptr A POINTER to a WORD to which the iRMX Il Operating System
will return the condition code generated by this system call.

Description

The DELETESCOMPOSITE system call deletes the specified composite object, but not
its component objects.

Example

See the example in section "The Initialization Part" of the Extended iRMX II Nucleus
User’s Guude.

Nucleus System Calls 193

DELETE$SCOMPOSITE

Condition Codes

194

ESOK

ESCONTEXT

ESEXIST

ESNOTSCONFIGURED

ESTYPE

(0000H

0005H

0006H

0008H

8002H

No exceptional conditions.

The extension type does not match the
composite parameter.

One or both of the extension or composite
parameters is not a token for an existing object.

This system call is not part of the present
configuration.

One or both of the extension or composite

parameters is a token for an object that is not of
the correct type.

Nucleus System Calls

The INSPECT$COMPOSITE system call returns a list of the component tokens
contained in 2 composite object.

CAUTION

Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal).

CALL RQ$INSPECTSCOMPOSITE (extension, composite, tokenSlistSptr,
except$ptr);

Input Parameters

extension A TOKEN for the extension object corresponding to the composite
object being inspected.

composite A TOKEN for the composite object being inspected.

Output Parameters
token$list A POINTER to a structure of the form:

DECLARE
token$listSptr STRUCTURE(
num$slots WORD,
num$used WORD,
tokens (*) TOKEN) ;

The system call returns information in the fields of this structure,
as follows:

num$slots Number of positions available for tokens in token$list
(an upper limit on the number of tokens to be
returned). You fill in this field to tell the system call
how many tokens to return.

num$used Number of component tokens making up the composite
object.

Nucleus System Calls 195

INSPECT$SCOMPOSITE

token(*) The tokens that actually constitute the composite
object.

exceptiptr A POINTER to a WORD to which the iIRMX Il Operating System
will return the condition code generated by this system call.
Description

The INSPECT$COMPOSITE system call accepts a token for a composite object and
returns a list of tokens for the components of the composite object.

The calling task must supply the num$slots value in the data structure pointed to by the
token$list parameter. The Nucleus fills in the remaining fields in that structure. If
num$slots is set to zero, the Nucleus will fill in only the num$used field.

If the num3slots value is smaller than the actual number of component tokens, only that
number {num$slots) of tokens will be returned.

Example

See the "DELETE _RING BUFFER Procedure” example in the Extended iRMX I1
Nucleus User’s Guide.

Condition Codes
E$OK 0000H No exceptional conditions.

E$BADSADDR 800FH The pointer to the token$list structure is invalid.
Either the selector does not refer to a valid
segment, or the offset is outside the segment
boundaries.

ESCONTEXT (005H The composite parameter is not compatible
with the extension parameter.

ESEXIST 0006H The composite and/or extension parameter(s)
is not a token for an existing object.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESTYPE 8002H One or hoth of the extension or composite
parameters is a token for an object that is not of
the correct type.

196 Nucleus System Calls

The CREATESEXTENSION system call creates a new object type.

CAUTION

Jobs that create extension objects cannot be deleted until the extension
object is deleted. Therefore, you should avoid creating extension objects
in Human Interface applications. If a Human Interface application
creates extension objects, the application cannot be deleted
asynchronously (via a CONTROL-C entered at a terminal.)

extension=RQSCREATESEXTENSION (type$code, deletion$mailbox,
exceptSptr);

Input Parameters

type§code A WORD containing the type code for the new type. The type
code for the new type can be any value from 8000H to OFFFFH
and must not be currently in use. {The type codes 0 through
7TFFFH are reserved for Intel products.)

deletion$mailbox A TOKEN for the mailbox where objects of the new type are sent
whenever the extension type or their containing job is deleted. A
SELECTORSOF(NIL) value indicates no deletion mailbox is
desired.

Output Parameters

extension A TOKEN to which the Operating System will return a token for
the new type.
exceptptr A POINTER to a WORD to which the iRMX Il Operating System

will return the condition code generated by this system call.

Description

The CREATESEXTENSION system call returns a token for the newly created extension
object type.

Nucleus System Calls 197

CREATESEXTENSION

You can specify a deletion mailbox when the extension type is created. If you do, a task in
your type manager for the new type must wait at the deletion mailbox for tokens of
objects of the new extension type that are to be deleted. Tokens of objects are sent to the
deletion mailbox for deletion either when their extension type is deleted or when their
containing job is deleted; they are not sent there when being deleted by
DELETE$COMPOSITE. The task servicing the deletion maifbox may do anything with
the composite objects sent to it, but it must delete them.

If you do not want to specify a deletion mailbox, set the token value for deletion$mailbox
to SELECTORSOF(NIL). If the extension type has no deletion mailbox, composite
objects of that type are deleted automatically, and the type manager is not informed. The
advantage of having a deletion mailbox is that the type manager has the opportunity to do
more than merely delete the composite objects.

A job containing a task that creates an extension object cannot be deleted until the
extension object is deleted.

Example

See the example in section "The Initialization Part" of the Extended iRMX I Nucleus
User’s Guide.

Condition Codes

ESOK 0000H No exceptional conditions.

ESCONTEXT 0005H The calling task’s job is being deleted.

ESEXIST 0006H The deletion$mailbox parameter is not a token
for an existing object.

ESLIMIT 0004H The calling task’s job has reached its object
limit.

ESMEM 0002H The memory available to the calling task’s job is

not sufficient to create an extension.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

ESSLOT 000CH There is no room in the GDT for the
extension’s descriptor.

198 Nucleus System Calls

CREATESEXTENSION

ESPARAM 8004H The typeScode parameter is invalid.

ESTYPE 8002H The deletion$mailbox parameter is a token for
an object that is not a mailbox.

Nucleus System Calls 199

The DELETESEXTENSION system call deletes an extension object and all composites of
that type.

CAUTION

Jobs that create extension objects cannot be deleted until the extension
object is deleted. Therefore, you should avoid creating extension objects
in Human Interface applications. If a Human Interface application
creates extension objects, the application cannot be deleted
asynchronously (via a CONTROL-C entered at a terminal).

CALL RQSDELETESEXTENSION (extension, exceptSptr);

Input Parameter

extension A TOKEN for the extension object to be deleted.

Output Parameter

exceptSptr A POINTER to a WORD to which the iIRMX I Operating System
will return the condition code generated by this system call.

Description

200

The DELETESEXTENSION system call deletes the specified extension object and all
composite objects of that type, making the corresponding type code available for reuse.

If you specified a deletion mailbox when you created the extension, all the composite
objects created subsequently with that extension type are sent to the deletion mailbox.
You must delete all the composite objects sent to the deletion mailbox. The
DELETESEXTENSION system call is not completed until all of the composite objects
have been deleted.

If an extension has no deletion mailbox, composite objects created by the
CREATESEXTENSION system call are deleted without informing the type manager.

The job containing the task that created the extension object cannot be deleted until the
extension object is deleted.

Nucleus System Calls

DELETESEXTENSION

Example

/**

#* This example illustrates how the DELETESEXTENSION system call *
* can be used. *

ek ek dd o e ok o e R S SR R Sk Sk sk ek sk ks bk b e ek o/
DECLARE TOKEN LITERALLY 'SELECTOR’,

/* NUCLUS.EXT declares all system calls %/
SINCLUDE(/rmx286/inc/NUCLUS .EXT)

DECLARE ext$token TOKEN;
DECLARE typeScode WORD;
DECLARE deleteSmbx$token TOKEN:
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;
type$code = 08000h; /* this is a valid value for a

new type ¥/

delete$Smbx$token = SELECTORSOF(NIL); /* No deletion mailbox is
desired for this new type */

/***************************k**#*****k*******************************

% In order to delete an extension, a task must know the token for *
% that extension. In this example, the needed token is known *
* because the calling task creates the extension. *

**/

extStoken — RQ$CREATESEXTENSION (type$code,
deleteSmbxS$token,
{dstatus) ;
. Typical PL/M-286 Statements

/**

* When the extension is no longer needed, it may be deleted by *
* any task that knows the token for the extension. *

**/

CALL RQSDELETESEXTENSION (ext$token, @status);

END SAMPLEPROCEDURE;

Nucleus System Calls 201

DELETESEXTENSION

Condition Codes

202

EJOK

ES$EXIST

ESMEM

E§NOT$CONFIGURED

ESTYPE

0000H

0006H

0002H

0008H

8002H

No exceptional conditions.

The extension parameter is not a token for an
existing object.

The memory available to the calling task’s job is
not sufficient to complete this operation.

This system call is not part of the present
configuration.

The extension parameter is a token for an
object that is not an extension object.

Nucleus System Calls

The DISABLESDELETION system call makes an object immune to ordinary deletion.

CAUTION

DISABLESDELETION makes an object immune to ordinary deletion by
increasing the disabling depth of an object. If a Human Interface
application contains objects whose disabling depths are greater than one,
the application cannot be deleted asynchronously (via a CONTROL-C
entered at a terminal). Therefore you should not use
DISABLESDELETION (and have no need to use ENABLESDELETION or
FORCES$DELETE) in Human Interface applications.

CALL RQ$DISABLESDELETION {object, except$ptr);

Input Parameter
object A TOKEN for the object whose deletion is to be disabled.

Output Parameter

exceptSptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The DISABLESDELETION system calf increases by one the disabling depth of an object,
making it immune to ordinary deletion. If an object’s disabling depth is two or greater, it
is also immune to forced deletion. If a task attempts to delete the object while it is
immune, the task sleeps until the immunity is removed. At that time, the object is deleted
and the task is awakened.

The ENABLESDELETION system call is used to decrease the disabling depth of an
object, making it susceptible to ordinary deletion.

Nucleus System Calls 203

DISABLE$DELETION

NOTES

If an object within a job has had its deletion disabled, then the containing
job cannot be deleted until that object has had its deletion re-enabled.

Disabling deletion of a suspended task causes the calling task to hang until
the suspended task is resumed.

An attempt to raise an object’s disabling depth above 255 causes an
ESLIMIT exceptional condition.

Example

/**

* This example illustrates how the DISABLESDELETICN system call can *
* be used to make an object immune to ordinary deletien. *
Fesie s e e s ok R T AR R R R R A KR Ak

DECLARE TOKEN LITERALLY 'SELECTOR';

/% NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE taskStoken TOKEN;

DECLARE calling$task LITERALLY '0';

DECLARE status WORD;
SAMPLEPROCEDURE ;

PROCEDURE;

*

. Typical PL/M-286 Statements

/**

* In this example the calling task will be the object to become *
* immune to ordinary deletion. GETS$TASKSTOKEN is invoked by the *
* calling task to obtain its own token. *

*k****************#***/

task$token = RQ$SGETSTASKSTOKENS (calling$task,
@status):

. Typical PL/M-286 Statements

204 Nucleus System Calls

DISABLESDELETION

/**********************ﬂc****7‘(‘**1\—**7\—*****'k********)‘c***‘k)‘c*******‘k*****k***kb'\'7'{

* Using its own token, the calling task invokes the DISABLESDELETION *
* system call to increase its own disabling depth by one. This makes ¥

#* the calling task immune to ordinary deletion. w
e S S Ry

CALL RQSDISABLESDELETION (taskStoken, @status);
L]

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

ESEXIST 0006H The object parameter is not a token for an
existing object.

ESLIMIT 0004H The object’s disabling depth is already 255.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

Nucleus System Calls 205

The ENABLESDELETION system call enables the deletion of objects that have had
deletion disabled.

CAUTION

DISABLESDELETION makes an object immune to ordinary deletion by
increasing the disabling depth of an object. If a Human Interface
application contains objects whose disabling depths are greater than one,
the application cannot be deleted asynchronously (via a CONTROL-C
entered at a terminal). Therefore you should not use
DISABLESDELETION {and have no need to use ENABLESDELETION or
FORCESDELETE) in Human Interface applications.

CALL RQSENABLESDELETION (object, except$ptr);

Input Parameter
object A TOKEN for the object whose deletion is to be enabled.

Output Parameter

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The ENABLESDELETION system call decreases by one the disabling depth of an object.
If there is a pending deletion request against the object, and the ENABLESDELETION
call makes the object eligible for deletion, the object is deleted and the task which made
the deletion request is awakened.

Example

/'k}k'**k****‘k‘k**7\:-k***7\—*1\—7&-**v\'**i—'k*‘k'k'k‘ﬁ:)‘r'k)‘:'k)‘c'k*‘k***************‘k***************

* This example illustrates how the ENABLESDELETION system call can be *
* used to enable the deletion of a task that had been deletion *
* disabled. *
A AT SR ek kb kbbb ks kR R RO R R R Sk o /

DECLARE TOKEN LITERALLY 'SELECTOR';

206 Nucleus System Calls

ENABLESDELETION

/* NUCLUS.EXT declares all system calls %/
$INCLUDE(/rmx286/inc/NUCLUS .EXT)

DECLARE taskS$token TOKEN;
DECLARE callingStask LITERALLY 'SELECTORSOF{NIL)’;
DECLARE status WORD;
SAMPLEPRCCEDURE :
PROCEDURE;
. Typical PL/M-286 Statements
L]

/**

% In this example the calling task will be the object to hecome *
* immune to deletion. The GETSTASKSTOKEN is invoked by the calling «
* task to obtain its own token. *

**/

taskStoken = ROSGETSTASKSTOKENS {(calling$task, @status);

. Typical PL/M-286 Statements

B L
*# Using its own token, the calling task invokes the DISABLESDELETION =
* system call to increase its own disabling depth by one. This makes *

* the calling task immune to ordinary deletion. *
e Ak SRR R o Rk kS kot SRR AR AR AR

CALL RQSDISABLESDELETION {task$token, @status);

. Typical PL/M-286 Statements

JRFEFF KK KR d R koo ok ks o oo s ok skl sk e ok ok o Sk S S S s ook ke s sk ok s s e e
* In order to allow itself to be deleted, the calling task invokes

* the ENABLESDELETION system call. This system call decreases by one
* the disabling depth of an object. In this example, the object is %

* the calling task. *
el e S e S S SR T S

E- S

CALL RQSENABLESDELETION (taskS$token, @status);

. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Nucleus System Calls 207

ENABLESDELETION

Condition Codes

208

ESOK
ESCONTEXT

ESEXIST

ESNOTSCONFIGURED

0000H

0005H

0006H

0008H

No exceptional conditions.
The object’s deletion is not disabled.

The object parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

Nucleus System Calls

The FORCESDELETE system call deletes objects whose disabling depths are zero or
one.

CAUTION

DISABLESDELETION makes an object immune to ordinary deletion by
increasing the disabling depth of an object. If a Human Interface
application contains objects whose disabling depths are greater than one,
the application cannot be deleted asynchronously (via a CONTROL-C
entered at a terminal). Therefore you should not use
DISABLESDELETION (and have no need to use ENABLE$SDELETION or
FORCE$DELETE) in Human Interface applications.

CALL RQSFORCESDELETE (extension, object, except$ptr);

Input Parameters

extension If the object to be deleted is a composite object, this parameter is a
TOKEN for the extension type associated with the composite
object to be deleted. Otherwise, the extension parameter is
ignored.

object A TOKEN for the object that is to be deleted.

Output Parameter

exceptdptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The FORCESDELETE system call deletes objects whose disabling depths are zero or
one. If an object has a deletion depth of two or more, the calling task is put to sleep until
the deletion depth is decreased to one. At that time, the object is deleted and the task is
awakened. If the wrong extension parameter is specified when deleting a composite,
FORCESDELETE issues an ESCONTEXT error and returns without deleting the
composite. If the object to be force deleted is not a composite, the extension parameter is
ignored.

Nucleus System Calls 209

FORCES$DELETE

Example

/AR R R AR ARk ok kb kR Rk R Rk ko
* This example illustrates how the FORCESDELETE system call can be *
* used to force the deletion of a task that has had deletion *

* disabled. *
kAR R AR AR AR R AR R KRR KKK RKKRR KA R AR T HR R R A FA A bk kbbb kb /

DECLARE TOKEN LITERALLY 'SELECTOR',

/% NUCLUS.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS.EXT)

DECLARE sem$token TOKEN;
DECLARE ext$token TOKEN;
DECLARE initSvalue WORD;
DECLARE max$value WORD ;
DECLARE sem$flags WORD;
DECLARE status WORD;
SAMPLEPROCEDURE;
PROCEDURE;
init$value = 1, /* the new semaphore has one initial unit */
maxSvalue = 10h; /* the new semaphore can have a maximum of

16 units =/

sem$flags = 0; /* designates a first-in/first-out task queue ¥/
/e ettt ek o ok s b e o sk ek o sl o ko R Rk ek e sk ek skt
* In this example, the calling task creates the object to become *
* 1immune to deletion., The CREATESSEMAPHORE is invoked by the calling *
* task to create a semaphore *

**/

sem$token = RQSCREATESSEMAPHORE (initSvalue,
max$Svalue,
sem$flags,
@status);

Typical PL/M-286 Statements

/**

* Using the semaphore token, the calling task invokes the *
* DISABLESDELETION system call to increase the disabling depth by one.®
* This makes the semaphore immune to ordinary deletion. *

**/

CALL RQSDISABLESDELETION (semStoken, @status):

210 Nucleus System Calls

FORCESDELETE

/**

* In order to delete the semaphore, the calling task invokes *
* the FORCESDELETE system call. This system call deletes the semaphore*
* even though the disabling depth of the semaphore is one. *

%*/

ext$token = SELECTOR$OF(NIL); /* there is no extension object, so
set the extension parameter to 0 %/

CALL RQSFORCESDELETE {(ext$token,
sem$token,
{dstatus);
[]
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.

ESCONTEXT 000SH The wrong extension type was used in the
extension parameter of the FORCESDELETE
system call.

ESEXIST 0006H One or both of the object or extension

parameters is not a token for an existing object.

ESNOTSCONFIGURED 0008H This system call 1s not part of the present
configuration.

ESTYPE 8002H The extension parameter is a token for an
object that 1s not an extension object.

Nucleus System Calls 211

The RQESSETSOSSEXTENSION system call dynamically associates an entry point of a
user-written OS extension with a call gate. It can also clear that association.

CALL RQE$SETSOSSEXTENSION (gateSnumber, start$address, exceptSptr);

Input Parameters

gate$number A WORD specifying the number of the call gate to be associated
with the OS extension. This number lists the entry number of that
call gate in the GDT. For example, if the designated call gate is the
third descriptor listed in the GDT, use a value of 3 for this
parameter. The call gate you indicate must have been reserved for
this purpose during system configuration. This system call cannot
establish new call gates.

start§address A POINTER to the first instruction of the OS extension. Setting
this parameter to NIL disables the OS extension previously
associated with the call gate.

Output Parameter

exceptiptr A POINTER to a WORD to which the iIRMX Il Operating System
will return the condition code generated by this system call.

Description

This function request is used to set up OS extensions so that tasks can invoke them just as
they would any other system call. This process involves forming an association between
the OS extension and a call gate.

To form this association, a call gate must already be created specifically for use with your
OS extensions. You must set up this call gate during system configuration by using the
ICU. You can also form the association between call gate and OS extension during
configuration. If you do that, you do not need to invoke this system call. Refer to the
Extended i(RMX I Interactive Configuration Utility Reference Manual for more information
about configuring OS extensions.

212 Nucleus System Calls

RQES$SSET$OSSEXTENSION

The RQESSETSEXTENSION system call can also be used to terminate the association
between the call gate and a particular OS extension. If you plan to use the same call gate
for multiple OS extensions, you must terminate the association with one OS extension
before establishing an association with another. If a task attempts to invoke an OS
extension that has been disabled in this manner, a null operation occurs.

Example

o
/*****************************‘k***************************‘k********'k***#*

* This example illustrates how the RQES$SETSOSSEXTENSION system call *
* sets the call gate used by an 0S extension. The example assumes *

* the gate number was reserved during configuration. *
el b e e S S T N T T e

DECLARE TOKEN LITERALLY 'SELECTOR';

/* NUCLUS.EXT declares all system calls */
$INCLUDE (/rmx286/inc/NUCLUS . EXT)

DECLARE gateS$440 LITERALLY '440°':
DECLARE status WORD;

ENTRY$440: PROCEDURE EXTERNAL;
END ENTRY$440;

SAMPLEPROCEDURE
FROCEDURE;

L]

. Typical PL/M-286 Statements

R T L L R T o S
* The calling task invokes the RQESSET$OSSEXTENSION system call to *
* set the call gate at entry 440 in the GDT. The entry point address *
* is also specified. *
R A T

CALL RQESSET$OSSEXTENSION (gate$440, @ENTRYS440, @status);
L}

» Typical PL/M-286 Statements
L]

END SAMPLEPROCEDURE;

Nucleus System Calis 213

RQESSETSOSSEXTENSION

Condition Codes

214

E$OK

E$SBADSADDR

ESCONTEXT

ESNOTICONFIGURED

E$PARAM

E$TYPE

0000H

800FH

0005H

O008H

8004H

8002H

No exceptional conditions.

The pointer to the start address is invalid.
Either the selector doesn’t refer to a valid
segment, or the offset is outside the segment
boundaries.

The specified call gate is already associated with
an OS extension. Before you can set the call
gate again, you must first reset it (call
RQESSET$OSSEXTENSION and specify NIL
for the start$address parameter).

This system call is not part of the present
configuration,

The gate$number parameter does not specify a
valid call gate.

The specified call gate is already in use.

Nucleus System Calls

The SIGNALSEXCEPTION system call is normally used with OS extensions to signal the
occurrence of an exceptional condition.

CALL RQ$SIGNALSEXCEPTION (exception$code, param$num, stackS$ptr,
firstSreservedSword, second$reserved$word
exceptSptr);

Input Parameters

exception$code A WORD containing the code (see list in the Extended iRMX 11
Nucleus User’s Guide) for the exceptional condition detected.

param$num A BYTE containing the number of the parameter that caused the
exceptional condition. If no parameter is at fault, param$num
equals zero.

stack$ptr A WORD that, if not zero, must contain the value of the stack
pointer saved on entry to the operating system extension (see the
entry procedure in the Extended iRMX IT Nucleus User’s Guide for
an example). The top five words in the stack (where BP is at the
top of the stack) must be as follows:

FLAGS Saved by software interrupt
Cs to OS extension

IP

DS Saved by OS extension

BP on entry

Upon completion of SIGNALSEXCEPTION, control is returned
to either of two instructions. If stack$pointer contains NIL, control
returns to the instruction following the call to
SIGNALSEXCEPTION. Otherwise, control returns to the
instruction identified in CS and IP.

firstdreserved$word A WORD reserved for Intel use. Set this parameter to zero.

seconddreserved§word A WORD reserved for Intel use. Set this parameter to zero.

Output Parameter

exceptdptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Nucleus System Calls 215

SIGNALSEXCEPTION

Description

Operating system extensions use the SIGNALSEXCEPTION system call to signal the
occurrence of exceptional conditions. Depending on the exceptional condition and the

calling task’s exception mode, control may or may not pass directly to the task’s exception
handler.

If the exception handler does not get control, the exceptional condition code is returned to
the calling task. The task can then access the code by checking the contents of the word
pointed to by the except$ptr parameter for its call (not for the call to
SIGNALSEXCEPTION).

Example

A A R A T R e R A A A A R A AR A A A A AT A AR A A A A A A A A A A AR AL F LA LA AN

* *
* This example illustrates how the SIGNAL$SEXCEPTION system call can %
* be used to signal the occurrence of the exceptional condition *
* ESCONTEXT.
FHFRE R ARF AT A A FFHEAEAFAE A F A F AR AR T ATk ook ok vt /

/

%

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS.EXT declares all system calls */
$INCLUDE(/rmx286/inc/NUCLUS . EXT)

DECLARE eScontext LITERALLY '5H’;
DECLARE paramS$Snum BYTE;
DECLARE stack$pointer WORD;
DECLARE reservedS$word LITERALLY '0*:
DECILARE status WORD;
SAMPLEPROCEDURE :
PROCEDURE;
param$num = Q; /* no parameter at fault */
stack$pointer = NIL; /* return control to instruction

following call */

Typical PL/M-286 Statements

/**

* In this example the SIGNALSEXCEPTION system call is invoked by *
* extensions of the Operating System to signal the occurrence of an *
* ESCONTEXT exceptional condition. *

**/

216 Nucleus System Calls

SIGNALSEXCEPTION

CALL RQSSIGNALSEXCEPTION (eScontext,
param$num,
stack$pointer,
reservedS$word,
reserved$word,
@dstatus);

Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Condition Codes
ESOK 0000H No exceptional conditions.

Nucleus System Calls 217

The ACCEPT$CONTROL system call requests immediate access to data protected by a
region.

CAUTION

Tasks that use regions cannot be deleted while they access data protected
by the region. Therefore, you should avoid using regions in Human
Interface applications. If a task in a Human Interface application uses
regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

CALL RQSACCEPT$CONTROL (region, except$ptr);

Input Parameter

region A TOKEN for the target region.

Output Parameter

exceptiptr A POINTER to a WORD to which the IRMX II Operating System
will return the condition code generated by this system call.

Description

The ACCEPTSCONTROL. system call provides access to data protected by a region if
access is immediately available. If access is not immediately available, the E$BUSY
condition code is returned and the calling task remains ready.

Once a task has gained control of a region, it should not suspend or delete itself while in
control of the region. Doing so will lock the region and prevent other tasks from gaining
access.

Example

218

/**#***%**********

* This example illustrates how the ACCEPT$CONTROL system call *

* can be wused to access data protected by a region. *
R T S e P T

Nucleus System Calls

ACCEPT$SCONTROL

DECLARE TOKEN LITERALLY 'SELECTOR';
/* NUCLUS .EXT declares all system calls */
$INCLUDE (/rmx286/inc/NUCLUS . EXT)

DECLARE regionStoken TOKEN:
DECLARE prioritySqueue LITERALLY '1'; /* tasks wait in
priority order */
DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;

[]
. Typical PL/M-286 Statements
*
/3 kb oot o ks A ok kot sk ot ook ok ok sk ok ok sk sk sk oot o S o o ke s s sk e el ok s s o

* In order to access the data within a region, a task must know the *
* token for that region. In this example, the needed token is known *
* Dbecause the calling task creates the region. *

R S S L L E s)
regionStoken = RQSCREATESREGION {priority$queue,
{dstatus) ;
[]
¢ Typical PL/M-286 Statements
[]
e L R e PR S

* At some point in the task, access is needed to the data *
* protected by the region. The calling task then invokes the *
* ACCEPTSCONTROL system call and obtains access to the data *

* 1f access is immediately available. *
kA E AT AR A A A A AT A KT A FF X AR HR AT E XA K FRR AR KT AR /
CALL RQSACCEPTSCONTROL (region$token,
@status);

» Typical PL/M-286 Statements

/***k*‘k*****?‘c***************'a'c'k*vl-********'k*k*********7\'****************

* When the task is ready to relinquish access to the data *
* protected by the region, it invokes the SENDSCONTROL *
* system call, *
FAFER IR FFRFH R R R ARk kot ek o etk ek sk ks ko /
CALL RQS$SENDSCONTROL (@status);
L
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Nucleus System Calls 219

ACCEPTSCONTROL

Condition Codes
ESOK 0000H No exceptional conditions.

E$BUSY 0003H Another task currently has access to the
protected data.

ESCONTEXT 0005H The calling task currently has access to the
region in question.

ESEXIST 0006H The region parameter is not a token for an
existing object.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESTYPE 8002H The region parameter is a token for an object
that is not a region.

220 Nucleus System Calls

The CREATESREGION system call creates a region.

CAUTION

Tasks that use regions cannot be deleted while they are in control of the
region. Using regions in a Human Interface application task can cause
situations where the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region,
Therefore, you should avoid using regions in Human Interface
applications.

region = RQ$CREATESREGION (region$flags, except$ptr);

Input Parameters

region$flags A WORD that specifies the queuing protocol of the new region. If
the low-order bit equals zero, tasks await access in FIFO order. If
the low-order bit equals one, tasks await access in priority order.
The other bits in the WORD are reserved and should be set to
zero.

Output Parameters

region A TOKEN to which the Operating System will return a token for
the new region.
exceptptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The CREATESREGION system call creates a region and returns a token for the region,

Example
R LR L T T T
* This example illustrates how the CREATESREGION system call *
* can be wused. *

'k‘k***********-A'-k'}.-7\—**7\—*7\-*':hl'*****‘k)\"ab‘:'kvi"k**************************‘k******/

Nucleus System Calls 221

CREATESREGION

DECLARE TOKEN LITERALLY 'SELECTCR';

/% NUCLUS .EXT declares all system calls */
$INCLUDE (/rmx286/inc/NUCLUS . EXT)

DECLARE region$token TOKEN;
DECLARE priority$queue LITERALLY ‘1°‘;
/* tasks wait in priority order */

DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;
.
. Typical PL/M-286 Statements

/*7‘:7‘:*7\—****7\'**********'k'k')i"k'k':ir'k'a‘c'k"*'k'k'k'k}k"k'k*'k**************************

* The token region$token is returned when the calling task *

* 1invokes the CREATESREGION system call. *
S T e e e

region$token = RQSCREATESREGION (priority$queue,

@status);
[]
. Typical PL/M-286 Statements
[}
END SAMPLEPROCEDURE;
Condition Codes
ESOK 0000H No exceptional conditions.
ESLIMIT 0004H The calling task’s job has reached its object
limit.
E$SMEM 0002H The memory pool of the calling task’s job does

not contain a sufficiently large block to satisfy
the request.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

E$SLOT 000CH There isn't enough room in the GDT for
another descriptor.

222 Nucleus System Calls

The DELETESREGION system call deletes a region.

CAUTION

Tasks which use regions cannot be deleted while they access data
protected by the region. Therefore, you should avoid using regions in
Human Interface applications. If a task in a Human Interface application
uses regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region,

CALL RQS$SDELETESREGION (region, exceptSptr);

Input Parameter
region A TOKEN for the region to be deleted.

Output Parameter

exceptiptr A POINTER to a WORD to which the iRMX 1l Operating System
will return the condition code generated by this system call.

Description

The DELETESREGION system call deletes a region. If a task that has access to data
protected by the region requests that the region be deleted, the task receives an
ESCONTEXT exceptional condition. If a task requests deletion while another task has
access, deletion is delayed until access is surrendered. [f two more more tasks request
deletion of a region that another task has access to, a deadlock results. A deadiock also
results when a task attempts to delete another task that is in the process of trying to delete
an occupied region. When the region is deleted, any waiting tasks awaken with an
ESEXIST exceptional condition.

Example
/Ao o sk e S S S S S st ek s ok sk et s sk o s s ko sk sk sk sk s skttt
*# This example illustrates how the DELETESREGION system call can =

* be used. *

)&'*********-ﬁc****************************‘k**-k************7\-************/

Nucleus System Calls 223

DELETESREGION

DECLARE TOKEN LITERALLY 'SELECTOR’;

/%* NUCLUS.EXT declares all system calls %/
SINCLUDE(/rmx286/inc/NUCLUS.EXT)

DECLARE regionStoken TOKEN;
DECLARE priority$queue LITERALLY '1l'; /* tasks wait in
priority order */

DECLARE status WORD;
SAMPLEPROCEDURE:
PROCEDURE;
L
. Typical PL/M-286 Statements

/**

* In order to delete a region, a task must know the token for *
* that region. In this example, the needed token is known *
* because the calling task creates the region. *

**/

regionStoken = RQ$CREATESREGION {prioritySqueue, @status);

L]
. Typical PL/M-286 Statements

/**

* When the region is no longer needed, it may be deleted by *
* any task that knows the token for the region. *

**/

CALL RQ$SDELETESREGION (region$token, (@status);
. Typical PL/M-286 Statements
L]

END SAMPLEPROCEDURE;

224 Nucleus System Calls

Condition Codes

ESOK

ESCONTEXT

ESEXIST

ESNOT$CONFIGURED

ESTYPE

Nucleus System Calls

0000H

0005H

(0006H

0008H

8002H

DELETE$REGION

No exceptional conditions.

The deletion is being requested by a task that
currently holds access to data protected by the
region.

The region parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The region parameter is a token for an object
that is not a region.

225

The RECEIVE$CONTROL system call allows the calling task to gain access to data
protected by a region.

CAUTION

Tasks which use regions cannot be deleted while they access data
protected by the region. Therefore, you should avoid using regions in
Human Interface applications. If a task in a Human Interface application
uses regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

CALL RGSRECEIVE$CONTROL (region, except$ptr):

Input Parameter

region A TOKEN for the region protecting the data to which the calling
task wants access.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The RECEIVESCONTROL system call requests access to data protected by a region. If
no task currently has access, entry is immediate. If another task currently has access, the
calling task is placed in the region’s task queue and goes to sleep. The task remains
asleep until it gains access to the data.

[f the region has a priority-based task queue, the priority of the task currently having

access 1s temporarily boosted, if necessary, to match that of the task at the head of the
queue.

Example

/‘k***k‘k)‘c***'k*)\'*)‘c**‘a‘c*'k*'k'k*'k************************)‘c****v‘c**)\'****‘k******‘k*‘k*k

* This example illustrates how the RECEIVESCONTROL system call can be *
* used to gain access to data protected by a region. *
AR A TRk sk Tk sk sk sk sk s sk sk sk sk s ek e ek o/

226 Nucleus System Calls

RECEIVESCONTROL

DECLARE TOKEN LITERALLY 'SELECTOR’;

/% NUCLUS.EXT declares all system calls %/
SINCLUDE(/rmx286/inc/NUCLUS.EXT)

DECLARE region$token TOKEN;
DECLARE priorityS$queue LITERALLY *1'; /* tasks wait in
priority order */
DECLARE status WORD;
SAMPLEPROCEDURE;
PROCEDURE;

Typical PL/M-286 Statements

e R R Rt T T B R T T Ty
* In order to access the data within a region, a task must know the *
* token for that region. 1In this example, the needed token is known
* because the calling task creates the region.

B R L S S SRS S TS TP Ry

Fid
regionStoken = RQSCREATESREGION (priority$queue,

@status);

. Typical PL/M-286 Statements

/**

* When access to the data protected by a region is needed, the *

* calling task may invoke the RECEIVESCONTROL system call. *
B L L .74

CALL RQSRECEIVESCONTROL (region§token,
@status);

L
. Typical PL/M-286 Statements

END SAMPLEPROCEDURE;

Nucleus System Calls 227

RECEIVESCONTROL

Condition Codes

228

E$OK

ESCONTEXT

ESEXIST

ESNOTSCONFIGURED

ESTYPE

0000H

0005H

G006H

0008H

8002H

No exceptional conditions.

The region parameter refers to a region already
accessed by the calling task.

The region parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The region parameter contains a token for an
object that is not a region,

Nucleus System Calls

The SENDSCONTROL system call allows a task to surrender access to data protected by
a region.

CAUTION

Tasks that use regions cannot be deleted while they access data protected
by the region. Therefore, you should aveid using regions in Human
Interface applications. If a task in a Human Interface application uses
regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

CALL RQ$SENDSCONTROL (except$ptr):

Output Parameter

except§ptr A POINTER to a WORD to which the iRMX 1I Operating System
will return the condition code generated by this system call.

Description

When a task finishes with data protected by a region, the task invokes the
SEND$CONTROL system call to surrender access. If the task is using more than one set
of data, each of which is protected by a region, the SENDSCONTROL system call
surrenders the most recently obtained access. When access is surrendered, the system
allows the next task in line to gain access.

It a task calling SEND$CONTROL has had its priority boosted while it had access
through a region, its priority is restored when it relinquishes the access.
Example

/************‘*‘***‘****‘k**************'k**********'****‘k***‘k‘k********k**‘k***-k*

* This example illustrates how the SENDSCONTROL system call can be *

* used to surrender access to data protected by a regiomn. *
e L

DECLARE TOKEN LITERALLY 'SELECTOR’;

/* NUCLUS_.EXT declares all system calls */
SINCLUDE(/rmx286/inc/NUCLUS . EXT)

Nucleus System Calls 229

SEND$CONTROL

DECLARE region$token TOKEN:
DECLARE priority$queue LITERALLY ‘1*; /* tasks walt in
priority order*/
DECLARE status WORD:
[]
. Typical PL/M-286 Statements
.
SAMPLEPROCEDURE:
PROCEDURE;

/**

* In order to access the data within a region, a task must know the *
* token for that region. In this example, the needed token is known +*

* because the calling task creates the region. *
Fk kR kk ke bk kst etk ok e sk bk b bk Rk kb sk Rk ke ok /

regionStoken = RQSCREATESREGION {priority$queue,
{@status) :

| Typical PL/M-286 Statements

/**

* When access to the data protected by a region is needed, the *
* calling task may invoke the RECEIVESCONTROL system call, *
kA e oSS st ok S e S R R R SRR R S S SRR R RS SR ok
CALL RQSRECEIVESCONTROL {regionStoken,
{@status) ;
L]
. Typical PL/M-286 Statements

J ARk gk e de e ook sk kel ok ek kR ke R ek o kR R R sk o o R e ek
* When a task finishes using data protected by a region, the task *

* inveokes the SENDSCONTROL system call to surrender access, *
AT AR F A HHFF AR TR AR AR AR TR A AR AFHFAFKAHEHEHIATHAXT KK/
CALL RQS$SSENDSCONTROL ((@status)

. Typical PL/M-286 Statements
L

END SAMPLEPROCEDURE;

230 Nucleus System Calls

SEND$CONTROL

Condition Codes
E$OK 0000H No exceptional conditions.

ESCONTEXT 0005H The calling task does not have access to data
protected by any region.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration,

Nucleus System Calls 231

The ATTACH$BUFFER$POOL system call associates a buffer pool with one or more
ports.

RQSATTACHS$BUFFERSPOOL(bufferSpoolétkn, port$tkn, except$ptr);

Input Parameters

buffer$pooi$tkn A TOKEN identifying the buffer pool to be attached to the port.
port$tkn A TOKEN identifying the port that is to gain the use of the buffer
pool.

Output Parameters

except¥ptr A POINTER to a WORD in which the Operating System will
return the condition code generated for this system call.

Description

The RQSATTACH$BUFFER$POOL system call makes a buffer pool’s memory
resources available to a port. A single buffer pool can have several ports attached to it,
but a port may have only one buffer pool attached. Both the port and the attached buffer
pool must belong to the same job.

The Nucleus Communication Service will allocate buffers from this buffer pool to satisfy
receive operations of associated ports. The applications, however, are responsible for
returning these buffers to the buffer pool when they are no longer needed.

Condition Codes
E$OK 0000H No exceptional conditions.

ESCONTEXT 0005H The port and the buffer pool tokens refer to
objects that are not in the same job.

ESEXIST 0006H Either the port$tkn or the buffer$pool$tkn
parameter does not refer to an existing object.

ESNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

232 Nucleus System Calls

E$STATE

E$TYPE

ESPROTOCOL

Nucleus System Calls

0007H

8002H

80EOH

ATTACH$BUFFER$SPOOL

The specified port already has a buffer pool
attached.

Either buffer§pool$tkn or the port$tkn
parameter refers to an object that is not the
correct type.

The port specified in the port$tkn parameter is
of the signal type, not the data communication
type.

233

The ROSATTACHSPORT system call forwards all messages sent to the port that issued
the call to another port known as a sink port.

CALL RQSATTACHSPORT(port$tkn, sink$port, except$ptr);

Input Parameters
port$tkn A TOKEN for the port that will forward its messages.
sink$port A TOKEN for the port that will receive the forwarded messages.

Output Parameters

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description

The ROFATTACHSPORT system call is used to forward messages from one port to
another. The port that issues the RQSATTACHS$PORT system call is referred to as the
source port, that s its messages will be sent to the attached port. The port that is attached
by the call is referred to as the sink port, that is, the messages sent to the source port are
forwarded to it.

More that one source port can be attached to a single sink port. Using a sink port allows
a single task to receive messages from several connected source ports. The source ports
can be on a remote agent, that is, another board in the system.

Messages that are already queued at the source port are not forwarded, only messages
that are sent after the ROSATTACHS$PORT system call is issued. Only one level of
forwarding is supported. A sink port may not issue an ROSATTACH$PORT and forward
messages from its source port on to another port.

If a source port issues an RQ$SENDSRSVP system call with the "use

RECEIVESREPLY" option, the response message is not forwarded to the sink port, it
will be sent to the source port that issued the call.

234 Nucleus System Calls

Condition Codes
ESOK

ESEXIST

ESNOT$CONFIGURED

ESPROTOCOL

ESSTATE

ESTYPE

Nucleus System Calls

0000H

(0006H

0008H

80EOH

0007H

8002H

ATTACHSPORT

No exceptional conditions.

Either the port parameter or the sink§port
parameter refers to an object that is not a port.

This system call is not part of the present
configuration.

The port specified in the port$tkn is of the
signal type, not the data communication type.

The forwarding port is already attached to a
sink port, or the sink port is attached to another
source port.

Either the port parameter or the parameter
sink§port parameter is not an existing object.

235

The RO$BROADCAST system call sends a control message to every agent on the iPSB
hus.

CALL RQSBROADCAST(portStkn, socket, control$ptr, except$ptr);

Input Parameters

port$tkn A TOKEN that indicates the port that is sending the broadcast
message.
socket A DWORD (host$id:port$id) that is the remote port that is to

receive the broadcast message.

control$ptr A POINTER to a control message.

Output Parameters

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description

This system call sends a control message to each board on a message-passing bus. The
host$id portion of the socket is ignored. This call can broadcast a message to one port on
each board.

Condition Codes
ESOK 0000H No exceptional conditions.

ESEXIST 0006H The port$tkn parameter does not refer to an
existing object.

ESNOTSCONFIGURED O0008BH This system call is not part of the present
configuration.

ESNUCSBADSBUF 80E2H One or more of the following is true:
» control$ptr is not a valid pointer to a buffer

» The buffer pointed to by controi$ptr or data$ptr
is not large enough to hold the message.

236 Nuclens System Calls

E$PROTOCOL

ESTRANSMISSION

ESTYPE

Nucleus System Calls

80EOH

000BH

8002H

BROADCAST

The specified destination port is a signal service
port.

A NACK (negative acknowledgment), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the message.

The port$tkn parameter refers to an object that
is not a port.

237

The RQSCANCEL system call performs synchronous cancellation of RSVP message

transmission.

CALL RQSCANCEL (port$tkn, trans$id, except$ptr);

Input Parameters

port$tkn A TOKEN indicating the port that was the source of a previous
send RSVP operation.

trans$id A WORD that is the transaction 1D of the message transmission to
be canceled.

Output Parameters

except$ptr A POINTER to a WORD in which the Operating System will
return the condition code generated for this system call.

Description

The RQSCANCEL system call performs a synchronous termination of an RSVP message
transmission. In the case of canceling an RQ$SENDSRSVP system call, the RSVP buffer,
if any, is disassociated from the port. The transaction 1D of an RQ$SENDSRSVP system
call can be canceled by the Nucleus Communication Service after the initial request is
made, but before a response is received. That is, the transaction is canceled whether or
not the receiving task has done a receive via the RQ§RECEIVE or the
RQIRECEIVESREPLY system call.

Condition Codes
ESOK 0000H No exceptional conditions.

ESEXIST 0006H The port$tkn parameter does not refer to an
existing object.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

E$SPROTOCOL 80EOH The specified destination port is of the signal
service only type.

238 Nucleus System Calls

CANCEL

ESTRANSSID 00EBH Either the trans$id parameter is invalid, or the
entire transaction is already complete. The
transaction is considered to be complete if the
Nucleus Communication Service has received a
response.

ES$TYPE 8002H The port$Stkn parameter refers to an object that
is not a port.

Nucleus System Calls 239

The RQ$CONNECT system call locally connects a port and assigns a default remote
socket.

CALL RQSCONNECT (port$tkn, socket, except$ptr);

Input Parameters

port$tkn A TOKEN to a port object.

socket A DWORD that identifies the remote socket. Sockets are
identified by a host$id:port$id combination.

Output Parameter

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The RQ$CONNECT system call creates a connection between the sending task and a
remote port. A default remote socket is also assigned, if no socket is specified during a
send or receive operation the default socket is used. Issuing an RQ}CONNECT system
call using a zero (0) for the socket parameter disconnects the calling task’s port.

While a port is connected, all messages sent from it go to the remote port specified in the
socket parameter. Only messages sent by the remote port specified in the socket
parameter will be received. Any message that comes in from another port will not be
delivered to the connected port.

Exception Codes

240

ESOK 0000H No exceptional conditions.

E$EXIST 0006H The port parameter does not refer to an existing
object.

E$HOSTSID 00E2ZH The host$id portion of the socket does not

refer to an agent (board) that is currently in the
message space.

Nucleus System Calls

ESNOT$CONFIGURED

E$PROTOCOL

ES$STATE

ESTYPE

Nucleus System Calis

0008H

80EOH

0007H

8002H

CONNECT

This system call is not part of the present
configuration.

The port specified in the port$tkn parameter is
of the signal type, not the data communication

type.

The port specified in the port$tkn parameter
parameter is already the sink port of a
forwarded port and cannot be connected again.
Only one level of port forwarding is supported.

The port parameter refers to an object that is
not a port.

241

The CREATESPORT system call creates a port object that can be used to send and
receive MULTIBUS IT messages between bus agents. An agent is any board on the bus.

port$tkn = RQSCREATE$PORT (num$trans, infoSptr, except$ptr);

Input Parameters

num$trans A WORD that identifies the message-passing protocol associated
with this port. Supported values are: 2, which indicates data
transport service, and 3, which indicates the Message Interrupt
Controller signal service.

info$ptr A POINTER to an information segment that is protocol-

dependent. The segment contents are associated with the port
object.

The definition of the structure for the signal protocol is:

DECLARE portScreation$info LITERALLY STRUCTURE ¢

message$id BYTE,
reserved BYTE,
type BYTE,
reserved BYTE

flags WORD)Y ;

where:

message$id The slot ID of the remote agent. The message$id
must be in the range of 0 to 19 decimal.

reserved Reserved for future use. This value should be set to
zero.

242 Nucleus System Calls

CREATES$PORT

type The message protocol of the port as specified by:
Value Meaning

0-1 Reserved for the Nucleus
Communications Service

2 Data Transport Service

3 Signal Service

4-0FFH Intel Reserved, should be set to 0H.

flags A WORD whose bit encoding defines the port’s
task queuing discipline as:

Bit Meaning

0 Reserved, should be set to zero.

1 Task queue discipline. If set (1), then tasks
are queued according to priority. If not set
(0), then tasks are queued in FIFO order.

2-15 Reserved, should be set to zero.

The definition of the structure for the signal protocol is:

DECLARE portScreationfinfo LITERALLY STRUCTURE (

port$id WORD,
type BYTE,
reserved BYTE,
flags WORD) :
where:
portSid A WORD value that identifies the port. Port 1D
values are:
ID Range Explanation
0 The Nucleus Communication
Service will assign the port ID.
1-7FFH Reserved values.
S800H-0FFFH Available to users.
1000H-0FFFFH Reserved for
CREATESPORT.

Nucleus System Calls 243

CREATESPORT

type The message protocol of the port as specified by:
Value Meaning
0-1 Reserved for the Nucleus

Communications Service
2 Data Transport Service
3 Signal Service

4-0FFH Intel Reserved, should be set to 0H.

flags A WORD whose bit encoding defines the port’s
task queuing discipline as:

Bit Meaning

0 Reserved, should be set to zero.

1 Task queue discipline. If set (1), then tasks
are queued according to priority. If not set
(0), then tasks are queued in FIFO order.

2 Defines whether or not the port will

perform message fragmentation if an
incoming message 1s too large for any
single buffer. OH is fragmentation enabled,
1H is fragmentation disabled.

3-15 Reserved, should be set to zero.

Output Parameters

port$tkn A TOKEN to which the Operating System will return a token for
the new port.
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

244 Nucleus System Calls

Description

CREATESPORT

The CREATEJPORT system call creates a port object and returns a token for the newly
created port. The new port counts as one debit against the total number of objects
permitted on a single iIRMX 1l board. Once the port is established, the task can send and
receive messages or signals through the port. Other tasks created within the same job can

also use the port.

For ports of the signal service type, only one connection can be established between any
two agents. Attempting to connect more than one port to the same agent results in an
ESCONTEXT exceptional condition.

NOTE

Ports of the signal service type receive messages before ports of the data
transport type. Therefore, if you create both types of ports on one board,
only the signal service ports will receive messages from the remote agent
associated with it. Ports of the data transport type will not receive
messages from the associated agent.

Condition Codes

ESOK

ESCONTEXT

ESLIMIT

E$MEM

ESNOT$CONFIGURED

ESNUCSBADSBUF

ESPARAM

Nucleus System Calls

0000H

0005H

0004H

0002H

(0008H

80E2H

8004H

No exceptional conditions.

The signal service protocol was specified and
the agent$id given already has a port associated
with it.

The calling task’s job has already reached its
object limit.

The memory available to the calling task’s job is
not sufficient to create a port.

This system call is not part of the present
configuration.

The info$ptr is invalid or points to a buffer that
is not large enough.

The protocol$type field does not specify the

signal service, or the agent$id was invalid (i.e.,
greater than 19 decimal).

245

CREATES$PORT

ESPORTSIDSUSED 80E7H The port$id specified for a data transaction port
1 in use.
E$SLOT 000CH There isn’t enough room in the GDT for

another descriptor.

246 Nucleus System Calls

The DELETE$PORT system call deletes a port.

CALL RQ$DELETESPORT (port$tkn, except$ptr);

Input Parameter

port$tkn A TOKEN for the port to be deleted.

Output Parameter

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description

The DELETESPORT system call deletes the specified port. If any tasks are in the port’s
receive task queue at the moment of deletion, they are awakened with an ESEXIST
exceptional condition. Deleting the port counts as a credit toward the object total of the
containing job. Any messages queued at the port are discarded and , if the port is
forwarded, forwarding is severed.

Condition Codes
E$OK

E$EXIST

ESNOT$CONFIGURED

ESTYPE

Nucleus System Calls

0000H

0006H

0008H

8002H

No exceptional conditions.
Either the port parameter is not a token for an
existing object or it represents a port whose job

is in the process of being deleted.

This system call is not part of the present
configuration.

The port parameter is a token for an object that
18 not a port

247

The RQ$DETACHSBUFFERS$POOL system call ends the association between a bufter

pool and a port.

buffer$poolitkn =

RQ$DETACHSBUFFERSFOOL(port$tkn, except$ptr);

Input Parameters

port$tkn A TOKEN identifying the port that 1s detaching the buffer pool.

Output Parameters

buffer$pool$tkn A TOKEN that is returned as a result of the call. The returned
TOKEN references the buffer pool that was detached.
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

Description

The RQ§DETACHSBUFFERSPOOL system call breaks the association between a port
and buffer pool. This call does not delete the buffer pool. The TOKEN received as a
result of this call can be used to attach the buffer pool to a different port, or to reattach it

to the same port.

Condition Codes
E$OK

ESEXIST

ES§NOT$CONFIGURED

E$PROTOCOL

248

0000H

0006H

0008H

S0EOH

No exceptional conditions.

The port$tkn parameter is not a TOKEN for an
existing object.

This system call is not part of the present
configuration.

The port specified in the port$tkn parameter is
of the signal type, not the data communication

type.

Nucleus System Calls

DETACH$BUFFER$SPOOL

ESSTATE 0007H No port is associated with the specified port.

ESTYPE 8002H The port$tkn parameter refers to an object that
is not a port.

Nucleus System Calls 249

The RQ$DETACHS$PORT system call ends message forwarding from the source port to

the sink port.

CALL RQSDETACHSPORT (portStkn, exceptSptr);

Input Parameter

port§tkn A TOKEN for the source port that is to be detached.

Output Parameter

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description

The ROSDETACHSPORT system call ends message forwarding from a source port to a
sink port. In message forwarding, messages originally sent to the source port are
forwarded to the sink port. 1If an RQSDETACHSPORT is issued and messages are
queued at the sink port, they remain at the sink port until removed with a receive

operation.

Condition Codes
ESOK

ESEXIST

ESNOTSCONFIGURED

ESPROTOCOL

250

0000H

0006H

0008H

80EOH

No exceptional conditions.

The port parameter does not refer to an existing
port.

This system call is not part of the present
configuration.

The port specified in the port$tkn parameter is
of the signal type, not the data communication

type.

Nucleus System Calls

ESSTATE

ESTYPE

Nucleus System Calls

0007H

8002H

DETACHS$SPORT

The port issuing the call does not have a sink
port attached.

The port parameter refers to an object that is
not a port.

251

The RQGETHOSTSID system call returns the host ID of the board (agent) that the
task is running on.

host$id = RQSGETSHOSTSID (exceptSptr);

Input Parameters

None

Output Parameters

except$ptr A POINTER to a WORD in which the Operating System will place
the condition code generated for this system call.

Description
The ROSGETSHOSTSID system call returns the host ID for the board on which the
issuing task is running. The host 1D is the first part of the host$id:port$id pair that makes

up a socket. A socket is a destination for (either return or remote) messages. This
system call is used to construct local sockets to be used as return addresses for messages.

Condition Codes
ESOK 0000H No exceptional conditions.

ESNOTS$CONFIGURED 0008H This system call is not part of the present
configuration.

252 Nucleus System Calls

The GETIPORTSATTRIBUTES system call returns information about how the specified
port is set up.

CALL RQSGETSPORTSATTRIBUTES (port$tkn, infoSptr, exceptSptr):

Input Parameters
port$tkn A TOKEN for the port about which you need information.

info$ptr A POINTER to a structure into which the Operating System will
write the information about the port.

DECLARE get$port$info LITERALLY ‘STRUCTURE

port$id WORD,
type BYTE,
reserved BYTE,
num$trans WORD,
reserved {(2) WORD,
sinkSport TOKEN,
defaultSremote$socket DWORD,
buffer$pool TOKEN,
flags WORD,
reserved BYTE) ' ;
where
port$id is the unique port id for the port
type a WORD that specifies the type of messages that can be sent to
and from this port, the types are:
Type Value Meaning
0-1 Reserved for the Nucleus Communications
Service
2 Send/Receive data messages
3 Send/Receive dataless (signal) messages.
4-0FFH Intel Reserved
reserved A WORD that is reserved and should be set to zero.

Nucleus System Calls 253

GETSPORTSATTRIBUTES

numé$trans

reserved
reserved

sink$port

default¥remote-
socket

buffer$pool

flags

exception$ptr

Description

254

The number of simultaneous transactions that can be outstanding
at this port.

A WORD that is reserved and should be set to zero.
A WORD that is reserved and should be set to zero.

A TOKEN for another port that receives forwarded messages from
the port you are examining. This parameter contains a zero if
there is no sink port, that is, the port being examined has not
issued an RQSATTACHSPORT system call.

A host$id:port$id combination that specifies a default
destination/source for all messages sent/received at this port. This
parameter contains a zero if there is no default remote socket, that
is the port being examined has not issued an RQ§SCONNECT
system call.

A TOKEN for the buffer pool, if any, that is attached to this port.
This parameter contains a zero if the port being examined does not
have a buffer pool attached, that is the port being examined has not
issued an RQSATTACHSBUFFER$POOL system call.

A WORD whose value is interpreted as follows:

Bit Meaning
0 Reserved
1 How messages are queued at the port.

If zero, the message queue is FIFO. If
one, the message queue is priority.

2 Defines if the port supports RSVP
request message fragmentation. If zero,
then fragmentation is supported. If one,
then fragmentation is not supported.

4-15 Reserved

A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

The RQSGET$PORTSATTRIBUTES system call returns information about the specified

port.

Nucleus System Calls

Condition Codes
E$OK

ESEXIST

ESNOTSCONFIGURED

ESNUC$BADSBUF

E$STYPE

Nucleus System Calls

0000H

0006H

(0008H

80E2H

8002H

GET$PORTSATTRIBUTES

No exceptional conditions.

The port$tkn parameter does not refer to an
existing object.

This system call is not part of the present
configuration.

The info$ptr parameter is invalid or points to a
buffer that is not large enough.

The port3tkn parameter refers to an object that
is not a port.

Input Parameters

256

The RQSRECEIVE system call accepts a message at a port.

data$ptr

RQSRECEIVE(port$tkn, time$limit, info$ptr, except$ptr);

port$tkn

time$limit

info$ptr

where:

A TOKEN for the port that is issuing the call.

A WORD that specifies the maximum time to wait for the message
to arrive at the port specified in the port$tkn parameter.
Acceptable values are:

Value Meaning

0 Do not wait
65535 Wait forever
1-65534 Wait the specified number of clock intervals

A POINTER to a STRUCTURE of the following type:

STRUCTURE(
flags WORD,
status WORD,
trans$id WORD,
dataSlength DWORD,
forwardingS$port TOKEN,
remoteSsocket SOCKET,
control$msg(20) BYTE,
reserved{4) BYTE) ;

flags is a WORD with the following encoded meaning:
Bit Name

0-3 dataStype

4-7 receiveStype

8-15 reserved

where:

data$type defines whether data$ptr points to a data chain (01B) or
a single buffer (00B.) Other values are reserved.

Nucleus System Calls

RECEIVE

receive$type is an indicator of the type of message received as

follows:

Value

0000B
0001B
0010B

0100B

Message Type

Transactionless message (RQ$SEND or similar call)
Transmission or system status message

Transaction request message (RQ$SENDSRSVP or
similar call)

Transaction response message (RQ$SENDSREPLY
or similar call)

status contains the send message status. The status codes are:

Status Meaning

ESOK A new message has been
successfully received

ESCANCELED A SENDS$RSVP transaction has

been remotely canceled.

ESNOSLOCAL$BUFFER This error applies to two cases:

If the receive$type parameter
indicates a request message, the
local port’s buffer pool does not
contain a buffer large enough to
hold the message so the
RQSRECEIVESFRAGMENT
systern call i1s required (message
fragmentation.}

If the receive$type parameter
indicates a response message, the
RSVP buffer supplied in the
RQS$SENDSRSVP system call is
not large enough to hold the
response.

E$NOSREMOTESBUFFER The remote port’s buffer pool does

not have a buffer large enough to
hold the message and message
fragmentation is disabled.

ESTRANSMISSION A NACK (Negative

Nucleus System Calils

Acknowledgment), MPC Failsafe
timeout, bus or agent error, or
retry expiration occurred during
the transmission of the message.

257

RECEIVE

trans$id

data$length

forwarding$Sport

remote$socket

control$msg

Output Parameters

A WORD that contains the transaction
1D for this message. If trans$id is zero,
a new transactionless message has been
received. If trans$id is not zero, it either
indicates a request or response message
has been received, or it indicates an
asynchronous transmission status
message has been received.

A DWORD that indicates the length of
the data message received.

If receive$type indicates a newly
received message, then data$length
contains the length of the successfully
received message,

If receive$type and status indicate
request message fragmentation, the
data$length contains the length of all the
message fragments that will be received
using the RQSRECEIVESFRAGMENT
system call.

A TOKEN indicates a port. The
indicated port is the source port for the
port that is actually receiving the
message.

A SOCKET (host$id:port$id) that
indicates the remote message source.

The 20-byte long control part of a data
message.

exceptiptr A POINTER to a WORD that will contain the condition code
generated by the Operating System for this system call.

dataS$ptr A POINTER that indicates the starting address of the data portion
(if any) of the message after it has been received.

258

Nucleus System Calls

Description

RECEIVE

The RQSRECEIVE system call accepts a message at a port. If the message contains a
data portion, a pointer to the buffer used to store the data portion is returned. When the
buffer is no longer required the application should return it to the buffer pool using the
RQSRELEASE$BUFFER system call. If enough buffer space is not attached, the

message is rejected by the receiving host.

Condition Codes
E$OK

ESEXIST

ESNOT$CONFIGURED

ESNUCSBADSBUF

ESPROTOCOL

ESTIME

ESTYPE

Nucleus System Calls

0000H

0006H

0008H

80E2H

80EOH

0001H

8002H

No exceptional conditions.

The port$tkn parameter does not refer to an
existing object.

This system call is not part of the current
configuration.

The info$ptr parameter points to a buffer that
either does not exist, or is not large enough.

The port specified in the port$tkn parameter is
of the signal type.

The time the task is willing to wait, specified in
the time$limit parameter, expired before a

message was received.

The port$tkn parameter is a token for an object
that is not a port

259

The RO$RECEIVESFRAGMENT system call accepts a part (fragment) of a request

(RSVP) data message.

CALL RQSRECEIVESFRAGMENT (port$tkn, socket, rsvp$trans$id,

fragment$ptr, fragment$Slength, flags,
except§ptr);

Input Parameters
port$tkn

socket

rsvp$trans$id

fragment$ptr

fragment$length

flags

Output Parameters

exceptiptr

260

A TOKEN to the port issuing the call.

A DWORD (host$id:port$id) that specifies the port from which
the original RSVP message was sent. If the port issuing the
RQSRECEIVESFRAGMENT system call is connected, the socket
parameter is ignored.

A WORD value that is used to identify this particular message
transaction. A transaction ID is generated each time an
RQISENDSRSVP system call is issued.

A POINTER to a buffer in which the message fragment will be
placed. If this POINTER is NIL, the receive of the message
fragments is terminated.

A DWORD that defines the length of the fragment. If this length
1s zero, fragmented transmission of a request message is
terminated.

A WORD that defines the type of message fragment. The encoded
values are:

Value Meaning

01B The data is in data chain form and
fragment$ptr points to a data chain
block.

00B The data is in a single buffer and

fragment$ptr points to the buffer.

A POINTER to a WORD in which the Operating System will place
the condition code generated for this system call.

Nucleus System Calls

Description

RECEIVESFRAGMENT

The RQSRECETVE$SFRAGMENT system call accepts a message fragment that is sent
from a remote host via an RQ$SEND$RSVP system call. The data that satisfied the
RQISEND$RSVP system call could not be placed into a single buffer, therefore the
message had to be broken into sections called fragments.

Condition Codes
E$OK

E$DISCONNECTED

ESEXIST

ESNOTSCONFIGURED

ESNUCSBADSBUF

E$PROTOCOL

ESTIME

E$TRANSSID

ESTYPE

Nucleus System Calls

0000H

00E9H

0006H

0008H

80E2H

S80EOH

0001H

00ESH

8002H

No exceptional conditions.

The socket parameter is equal to zero and the
port is not connected.

The port$tkn parameter does not refer to an
existing object.

This system call is not part of the current
configuration.

The fragment$ptr parameter points to a buffer
that either does not exist, or is not large enough.

The port specified in the port$tkn parameter is
of the signal type.

The system receive fragment failsafe timeout
expired before the fragment was received

The value is the rsvp$trans$id parameter does
not specify a currently valid transaction.

The port$tkn parameter is a token for an object
that is not a port.

261

The RQSRECEIVESREPLY system call accepts a message that is a reply to an earlier
request.

data$ptr=RQSRECEIVESREPLY (port$tkn, rsvpStran$id, time$limit,
info$ptr, exceptdptr);

Input Parameters

port$tkn A TOKEN to the port object issuing the call. This port must not be
a sink port.

rsvp$trans$id The transaction ID returned from the associated
RQSSENDSRSVP system call.

time$limit A WORD indicating the length of time the task is willing to wait
for the reply, supported values are:

Value Meaning

0 No wait
65535 Wait forever
1-65534 The number of clock cycles to wait

info$ptr A POINTER to a structure of the following form:
STRUCTURE (
flags WORD,
status WORD,
trans$id WORD,
data$length DWORD,

forwarding$port TOKEN,
remote$socket SOCKET,
contrelSmsg(20) BYTE,

reserved BYTE);

where:
flags is a WORD with the following encoded meaning:
Bit Name
0-3 data$type

4-7 receive$type
8-15 reserved

262 Nucleus System Calls

Nucleus System Calls

RECEIVE$SREPLY

where:
data$type defines the whether data$ptr points to a data chain
(01B) or a single buffer (00B.) Other values are reserved.

receive$type is an indicator of the type of message received as
follows:

Value Message Type
0001B Transmission or system status message
0100B Transaction response message

status contains the send message status. The status codes are:

Status Meaning

E$OK A new message has been
successfully received

ESCANCELED A SENDSRSVP transaction has

been remotely canceled.

ESNOSLOCAL$BUFFER If the receiveStype parameter
indicates a response message, the
RSVP buffer supplied in the
RQSSEND$RSVP system call is
not large enough to hold the
response.

ESNOSREMOTESBUFFER The remote port’s buffer pool was
not large enough to hold the
message and message
fragmentation is turned off.

E$TRANSMISSION A NACK (Negative
Acknowledgment, timeout, bus or
agent error, or retry expiration
occurred during the transmission of
the message.

trans$id A WORD that contains the
transaction ID for this message.
Trans$id indicates a response
message has been received, or it
indicates an erroneous
asynchronous transmission status
message has been received.

263

RECEIVESREPLY

data$length A DWORD that indicates the length
of the data message received.

If receive$type indicates a newly
received message, then data$length
contains the length of the
successfully received message.

forwarding$port A TOKEN indicating a port. The
indicated port is the source port for
the port that is actually receiving the
message. This field does not apply
to the RQ$RECEIVESREPLY
system call.

remote$socket A SOCKET (host$id:port$id) that
indicates the remote message
source.

control$msg The 20-byte long control part of a
data message.

reserved A reserved BYTE.

Output Parameters

except$ptr A POINTER to a WORD that will contain the condition code
generated by the Operating System for this system call.

data$ptr A POINTER that indicates the starting address of the data portion
(if any) of the message after it has been received.

Description

The ROQIRECEIVESREPLY system call is issued when a task wants to wait for a reply to
an RSVP message that it sent previously. This call cannot be issued by a sink port (a port
that accepts messages forwarded from another port.)

Condition Codes
ESOK 0000H No exceptional conditions.

ES$EXIST 0001H The port$tkn parameter does not refer to an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the current
configuration.

264 Nucleus System Calls

ESNUC$BADSBUF

E$PROTOCOL

ESTIME

ESTRANSSID

ESTYPE

Nucleus System Calls

80E2H

80EOH

0006H

00ESH

8002H

RECEIVE$SREPLY

The info$ptr parameter points to a buffer that
either does not exist, or is not large enough.

The port specified in the port$tkn parameter is
of the signal type.

The time the task is willing to wait, specified in
the time$limit parameter, expired before a
message was received.

Either an invalid transaction ID has been
supplied, or the transaction was canceled before
the response was received.

The port$tkn parameter is a token for an object
that is not a port.

265

The RECEIVE$SIGNAL system call receives a signal from a remote host at a specified
port.

CALL RQSRECEIVES$SIGNAL (port$tkn, waitStime, exceptdptr);

Input Parameters
port$tkn A TOKEN for the port where the signal is expected to arrive.
wait$time A WORD that specifies how long the calling task is willing to wait.
» Ifzero, the calling task is not willing to wait.
o If OFFFFH, the calling task will wait as long as necessary.

» It 1-OFFFEH, the calling task will wait that number of clock
intervals.

Output Parameters

exceptiptr A POINTER to a WORD to which the Operating Systern will
return the condition code generated by this system call.

Description

The RECEIVES$SIGNAL system call causes the calling task to either receive a signal or to
walt the specified number of clock intervals at the specified port.

If a signal is already queued at the port, the calling task receives the signal. Otherwise,
the task either goes to the end of the receive task queue to wait a specified amount of
time, or it is not willing to wait. In the latter case, or if the task’s waiting period elapses
without a signal arriving, the task receives an ESTIME exceptional condition.

When a signal arrives and there are tasks on the receive task queue, the task at the head
of the queue receives the signal. If no tasks are waiting in the queue, the signal is queued

at the port. The next task to invoke RECEIVESSIGNAL receives one of the queued
signals.

266 Nucleus System Calls

Condition Codes
ESOK

ESEXIST

ESNOT$CONFIGURED

ESPROTOCOL

ESTIME

ESTYPE

Nucleus System Calls

0000H

0006H

0008H

80EOH

0001H

&002H

RECEIVE$SIGNAL

No exceptional conditions.

The port$tkn parameter does not refer to an
existing object.

This system call is not part of the present
configuration.

The port specified in the port$tkn parameter is
of the signal type, not the data communication

type.
One of the following is true:

The calling task was not willing to wait and no
signal was queued at the port.

The task’s designated waiting period elapsed
before the desired signal arrived.

The port$tkn parameter refers to an object that
is not a port.

267

The RQS$SEND system call sends a data message from a port to a port on another board.

TRANSSID = RQSSEND (port$t, socket, control$ptr, dataSptr,

data$length, flags, except$ptr);

Input Parameters

port$tkn

socket

controlSptr

dataSptr

data$length
flags

where:

data$type

268

A TOKEN for the port to which a message is to be sent.

A DWORD (host$id:port3id) that specifies a unique board/port
combination that is the message destination. If the sending port
has issued an RQ§CONNECT then it has a default socket and this
parameter is ignored.

A POINTER to the control portion of a message. If data$ptr =
NULL or data$length = 0, then the control message is 20 bytes in
length. Otherwise, the control message is 16 bytes in length.

A POINTER to a data message. If this parameter is NULL, then
there is no optional data portion for this message. If this
parameter is not NULL then it points to either a contiguous buffer
or a data chain block. If the data$type field of the flags parameter
is set (1), then this pointer points to a data chain block; otherwise,
(0) it points to a contiguous buffer.

A DWORD that indicates the length of the data message.

A WORD whose value is interpreted as follows:

Bits Name

0-3 data¥type

4-7 mode

8-15 Reserved (set to zero)

Describes the format in which the data is to be sent. If set (0001B),
the data will be sent as a data$chain and data$ptr is a POINTER to
the data chain block. If not set (0000B), the data is a single logical
segment and data$ptr is a POINTER to a buffer.

Nucleus System Calls

SEND

mode Defines the transmission mode. If set (1), the transmission is
asynchronous. If not set (0), the transmission is synchronous.

If the transmission is asynchronous, the send status must be
received by an RQ$RECEIVE system call.

Output Parameters

trans$id A WORD that is used to identify this particular message
transmission. If no data is being sent, data$ptr = NULL, then the
value returned is zero.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call,

Description

The RQ$SEND system call sends a data message from a port to a port on another board.
If the remote port to which the message is sent does not have adequate buffer space to
receive the message an ESNOSREMOTE$BUFFER error will be returned. No message
fragmentation will be performed if this call is used.

Condition Codes

ESOK 0000H
ESDISCONNECTED 00ESH
ESEXIST 0006H
ESHOSTSID 00E2H

ESNOSREMOTE$BUFFER 00E3H

E$SNOT$CONFIGURED 0008H

ESNUCSBADSBUF 80E2H

Nucleus System Calls

No exceptional conditions.

The socket parameter is equal to zero and the
port is not connected.

The port$tkn parameter does not point to an
existing object.

The host$id portion of the socket parameter
does not refer to an agent (board) that is
currently in the message space.

The receiving agent could not allocate a buffer
to hold the message.

This system call is not part of the present
configuration.

Either the control$ptr or datadptr parameter is
invalid or points to a buffer that is not large
enough.

269

SEND

270

ESPROTOCOL

E$RESOURCESLIMIT

E$TRANSSLIMIT

ESTRANSMISSION

ESTYPE

80EOH

00E6H

00EAH

(000BH

8002H

The port specified in the port$tkn parameter is
of the signal type, not the data communication
type.

The number of simultaneous messages, has
been reached. This field is set during system
configuration.

A transmission resource limitation has been
encountered. An insufficient number of
transaction buffers was specified during system
configuration (The Max No. of Simultaneous
Transactions parameter in the Interactive
Configuration Utility’s Nucleus Communication
screen.)

A NACK (negative acknowledgment), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the message.

The port$tkn parameter refers to an object that
is not 4 port

Nucleus System Calls

The SENDSRSVP system call initiates a request/response message interchange.

trans$id = RQ$SENDSRSVP (port$tkn, socket, control$ptr, data$ptr,
data§length, rsvp$data$ptr, rsvpSdataSlength,
flags, except$ptr);

Input Parameters
port$tkn The TOKEN that identifies the port sending the RSVP message.

socket A DWORD (host$id:port$id) that identifies the remote
destination. If the sending port has a default socket, this
parameter is ignored.

control$ptr A POINTER to the control portion of a message. If data$ptr =
NULL or data$length = 0, then the control message is 20 bytes in
length. Otherwise, the control message is 16 bytes in length.

dataSptr A POINTER to a data message. If NULL, then a control message
is sent. If not NULL, then it is a POINTER to either a contiguous
buffer, or a data chain block.

data$length A DWORD that is the length of the data message.

rsvp3dataSptr A POINTER to a buffer into which the expected response is to be
placed. This buffer must be a contiguous block.

rsvpddata$length A DWORD that defines the length of the RSVP message buffer.

flags A WORD whose value is interpreted as follows:
Bits Name
0-3 data$type
4-7 mode
8 receive$reply
9-15 Reserved (set to zero)

Nucleus System Calls 27

SEND$RSVP

where:

data$type Describes the format in which the data is to be sent. 1f set (0001B),
the data will be sent as a data$chain and data$ptr is a POINTER to
the data chain block. If not set (0000B), the data is a single logical
segment and data$ptr is a POINTER to a buffer.

mode Defines the transmission mode. If set (1), the transmission is
asynchronous. If not set (0), the transmission is synchronous.

receive$reply Defines which system call, receive$reply or receive, will be used to

receive the response message. If set (1), then RECEIVE is being
used, if not set (0), then RECEIVESREPLY is being used.

Output Parameters

trans$id A WORD that is used to identify this particular message
transmission. If no data is being sent, data$ptr = NULL, then the
value returned is zero.

exceptiptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description

The RQSSENDSRSVP system call initiates a request with implied response interchange.
Typically RSVP interchanges are used to transfer data from one agent to another. The
parameter rsvp§data$ptr is used to supply a POINTER to a buffer that is the destination
of the response data.

Condition Codes
ESOK 0000H No exceptional conditions.

E$DISCONNECTED 00E9H The port has no default socket and a zero was
specified for the socket parameter.

ESEXIST 0006H Either the port$tkn, control$ptr, data$ptr
parameter does not point to an existing object.

E$HOSTSID 00E2ZH The host$id portion of the socket parameter
does not refer to an agent (board) that is
currently in the message space.

ESNOSREMOTESBUFFER 00E3H The receiving agent could not allocate a buffer
to hold the message.

272 Nucleus System Calls

ESNOTSCONFIGURED

ESNUCSBADSBUF

E$PROTOCOL

ESRESOURCESLIMIT

E$TRANSMISSION

ESTRANSSLIMIT

ESTYPE

Nucleus System Calls

0008H

80E2H

80EOH

00E6H

000BH

00EAH

8002H

SEND$RSVP

This system call is not part of the present
configuration.

The info$ptr is invalid or points to a buffer that
is not large enough.

The port specified in the port$tkn parameter is
of the signal type, not the data communication

type.

Either the number of simultaneous messages, or
simultaneous transactions, has been reached.
These fields are set during system configuration.

A NACK (negative acknowledgment), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the message.

A transmission resource limitation has been
encountered. An insufficient number of
transaction buffers was specified during system
configuration (The Max No. of Simultaneous
Transactions parameter in the Interactive
Configuration Utility’s Nucleus Communication
screen.).

The port$tkn parameter refers to an object that
is not a port.

273

The RQ$SENDSREPLY system call is sent in response to the RQSSENDS$SRSVP system

call.

trans$id = RQS$SENDSREFLY (port$tkn, socket, rsvpStrans$id,
control$ptr, data$ptr, data$length, flags,

exceptS$ptr)
Input Parameters
port$tkn The TOKEN that identifies the port sending the REPLY message.
socket A DWORD (host$id:port$id) that identifies the remote

destination. If the sending port has a default socket, this
parameter is ignored.

rsvp$trans$id This 1s the trans$id parameter from the SEND$RSVP call that is
being answered. This WORD is used at the destination to identify
the transaction that is being answered.

control$ptr A POINTER to the control portion of the message. If data$ptr =
NULL or data$length = 0, then the control message is 20 bytes in
length. Otherwise, the control message is 16 bytes in length.

dataSptr A POINTER to a data message. If NULL, then a control message
is sent. If not NULL, then it is a POINTER to either a contiguous
buffer, or a data chain block.

data$length A DWORD that is the length of the data message.
flags A WORD whose value is interpreted as follows:
Bits Name
0-3 data$type
4-7 mode
8 Reserved (Set to zero)
9 EOT
10-15 Reserved (Set to zero)

274 Nucleus System Calls

where:

data$type

mode

EOT

Output Parameters

trans$id

except$ptr

Description

SEND$REPLY

Describes the format in which the data is to be sent. If set (0001B),
the data will be sent as a data$chain and data$ptr is a POINTER to
the data chain block. If not set {0000B), the data is a single logical
segment and data$ptr is a POINTER to a buffer.

Defines the transmission mode. If set (1), the transmission is
asynchronous. If not set (0), the transmission is synchronous.

Defines a SEND$REPLY end-of-transaction option. If EOT is not
set, 000B, then this message is the last fragment of a response.
Otherwise, more fragments will be sent.

A WORD that is used to identify this particular message
transmission. If no data is being sent, data$ptr = NULL, then the
value returned is zero.

A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

The ROISENDSREPLY system call is an answer to a previous SEND$RSVP system call.
The reply message may be sent as a single message or as a series of message fragments, as
controlled by the EOT flag.

Condition Codes
E$OK

ESDISCONNECTED

ESEXIST

ESHOSTSID

0000H No exceptional conditions.

00E9H The port sending the message has previously
issued an RQSCONNECT to a remote port.
The board on which the remote port is located
has been reset.

0006H The port$tkn parameter does not point to an
existing object.

00E2H The hostS$id portion of the socket parameter
does not refer to an agent (board} that is
currently in the message space.

ESNOSREMOTESBUFFER 00E3H The receiving agent could not allocate a buffer

Nucleus System Calls

to hold the message.

275

SENDSREPLY

276

E$SNOTSCONFIGURED

ESNUC$BADS$BUF

E$PARAM

E$PROTOCOL

E$SRESOURCESLIMIT

E$TRANSMISSION

E$TRANSSLIMIT

ESTYPE

0008H

80E2H

8004H

80ECH

00E6H

000BH

00EAH

8002H

This system call is not part of the present
configuration.

The info$ptr is invalid or points to a buffer that
is not large enough.

The flags parameter is illegally specified.

The port specified in the port$tkn parameter is
of the signal type, not the data communication

type.

Either the number of simultaneous messages, or
simultaneous transactions, has been reached.
These fields are set during system configuration.

A NACK (negative acknowledgment), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the message.

A transmission resource limitation has been
encountered.

The port$tkn parameter refers to an object that
is not a port

Nucleus System Calls

The RQSSENDSSIGNAL system call sends a MULTIBUS II signal (dataless message) to
a remote agent (board) through the specified port.

CALL RQSSENDSSIGNAL (port$tkn, except$ptr):

Input Parameter
porttkn A TOKEN for the port through which the signal will be sent.

Output Parameter

exceptiptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description
The SENDSSIGNAL system call sends a signal (dataless message) to a remote agent

through the specified port. If a bus timeout or other bus error occurs, the calling task
receives an E$TRANSMISSION exceptional condition.

Condition Codes
ESOK 0000H No exceptional conditions.

ESEXIST 0006H The port parameter is not a token for an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

ESPROTOCOL 80EOH The port specified in the port$tkn parameter is
of the data communication type, not the signal
type.

E$TRANSMISSION 000BH A NACK (negative acknowledgement), timeout,

bus or agent error, or retry expiration occurred
during the transmission of the signal

ESTYPE 8002H The port parameter is a token for an object
that is not a port.

Nucleus System Calls 277

Input Parameters

Output Parameters

278

The GETSINTERCONNECT system call retrieves the contents of the specified

interconnect register.

value

RQSGETSINTERCONNECT (slot$number, regSnumber, except{ptr);

slot$number

regSnumber

value

exceptiptr

A BYTE that specifies the MULTIBUS II cardslot number of the
board on which the specified interconnect register is located.
Specify either the physical cardslot number or 31 decimal (the host
processor board). The following decimal values are valid:

e Ifin the range 0-19 decimal, this parameter specifies Parallel
System Bus (iPSB) slot numbers 0 to 19, respectively.

e Ifin the range 24-29 decimal, this parameter specifies iLBX Il
cardslot numbers 0 to 5 respectively on the host processor
board’s Local Bus Extension (1ILBX 1I).

e If 31 decimal, this parameter specifies that you wish to retrieve
the contents of an interconnect register from interconnect
space on the calling task’s processor board. In this case, do not
specify the actual cardslot number; incorrect values could be
returned.

Values 20-23, 30, and any decimal value greater than 31 are invalid.

A WORD that specifies the interconnect register to read. This
value must be in the range 0000H to 01FFH, the defined range of
interconnect space. Refer to the hardware manual for your
particular board to determine the proper register number.

A BYTE in which this system call returns the contents of the
interconnect register. [If the cardslot is empty or if the actual
cardslot number for the host processor board is specified (rather
than 31), 0 is returned for iPSB cardslots and OFFH for iILBX 11
cardslots,

A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Nucleus System Calls

GETSINTERCONNECT

Description

The GETSINTERCONNECT system call returns the contents of the interconnect register
specified by the slot$number and reg$number parameters.

CAUTION

The Nucleus checks the range validity of the cardslot and register
numbers specified in the call, but it does not verify the existence of a
board in any specific cardslot. Nor does it assign any meaning to the
register being accessed.

Condition Codes
ESOK 0000H No exceptional conditions.

E$SNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H One or more of the input parameters has an
illegal value.

Nucleus System Calls 279

The RQISETSINTERCONNECT system call alters the contents of an interconnect
register to a value specified in the call.

NOTE

The RQ$SETSINTERCONNECT system call alters the contents of the
specified interconnect register (if it is writeable). It is possible to corrupt
the values in interconnect registers by specifying incorrect values.

CALL RQSSETSINTERCONNECT (value, slot$number, reg$number,

exceptSptr);
Input Parameters
value A BYTE that contains the value to which the specified
interconnect register is to be changed.
slot¥number A BYTE that specifies the MULTIBUS 11 cardslot number of the

280

board on which the indicated interconnect register is located. The
following decimal values are valid:

e Ifin the range 0 to 19, this parameter specifies the indicated
iPSB cardslot number.

« If in the range 24 to 29, this parameter specifies an iLBX 11
cardsiot number from 0 to 5, on the host processor board’s
1ILBX I1 bus.

o If 31, this parameter indicates that you wish to program the
contents of an interconnect register on the calling task’s
processor board. In this case, do not specify the actual cardslot
number. Incorrect values could be returned.

» Values 20 to 23, 30, and any value greater than 31 are illegal.

reg$number A WORD that specifies the interconnect register to which a value
is to be written. This value must be in the range 0000H to 01FFH,
the defined range of interconnect space. Refer to the board’s
hardware reference manual to determine the proper register
number.

Nucleus System Calls

SETSINTERCONNECT

Output Parameter

exceptyptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description

The RQ$SETSINTERCONNECT system call allows the contents of a specified
interconnect register to be altered dynamically.

NOTE

The Nucleus checks the range validity of the cardslot and register numbers
specified in the call, but it does not verify the existence of a board in the
specified cardslot nor does it check the read/write permission of the
register before it attempts to access the register.

Condition Codes

ESOK 0000H No exceptional conditions.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H One or more of the input parameters has an
illegal value.

Nucleus System Calis 281

INDEX

A

ACCEPTSCONTROL 218
access byte for code segments 32
access byte for segments 125
access rights for objects 124
ALTERSCOMPOSITE 138
ATTACHSBUFFER$POOL 232

C

CATALOGSOBIECT 121
CREATESCOMPOSITE 190
CREATESEXTENSION 197
CREATESIOB 10
CREATESMAILBOX 57
CREATESPORT 242
CREATESREGION 221
CREATESSEGMENT &9
CREATES$SEMAPHORE 77
CREATESTASK 34

D

DELETESCOMPOSITE 193
DELETESEXTENSION 200
DELETES$JOB 26
DELETESMAILBOX 61
DELETESPORT 247
DELETESREGION 223
DELETESSEGMENT 91
DELETESSEMAPHORE &0
DELETESTASK 38
DISABLE 151
DISABLESDELETION 203

Nucleus System Calls Index-1

INDEX (continued)

E

ENABLE 154
ENABLESDELETION 206
encoded meanings for object types 135
encoding of interrupt levels 154
ENDSINIT$TASK 157
ENTERSINTERRUPT 158
examples
ACCEPTSCONTROL 218
CATALOGIOBIECT 122
CREATE$JOB 14
CREATESMAILBOX 59
CREATESREGION 221
CREATE$SEGMENT 90
CREATES$SEMAPHORE 78
CREATESTASK 36
DELETESEXTENSION 201
DELETES$JOB 26
DELETESMAILBOX 61
DELETESREGION 223
DELETESSEGMENT 91
DELETE$SEMAPHORE 80
DELETESTASK 38
DISABLE 152
DISABLESDELETION 204
ENABLE 154
ENABLEIDELETION 206
ENTERSINTERRUPT 159
EXITSINTERRUPT 163
FORCESDELETE 210
GETSEXCEPTIONSHANDLER 146
GETSLEVEL 166
GET$POOLSATTRIB 95
GET3$PRIORITY 41
GET$SIZE 101
GETSTASKSTOKENS 43
GETS$TYPE 136
LOOKUPSOBIECT 139
OFFSPRING 28
RECEIVE$CONTROL 226
RECEIVESDATA 64
RECEIVESMESSAGE 67
RECEIVESUNITS 84
RESETSINTERRUPT 168

Index-2 Nucleus System Calls

INDEX (continued)

examples (continued)
RESUMESTASK 45
RQESCHANGESDESCRIPTOR 114
RQESCHANGESOBJECTSACCESS 126
RQESCREATESDESCRIPTOR 117
RQE3SCREATES$JOB 22
RQESDELETE$DESCRIPTOR 119
RQESGETSADDRESS 128
RQESGETSOBJECTSACCESS 133
RQESGETSPOOLSATTRIBUTES 98
RQESOFFSPRING 32
RQESSETSOSSEXTENSION 213
RQESTIMEDINTERRUPT 181
SENDSCONTROL 229
SEND$DATA 70
SEND$MESSAGE 74
SENDSUNITS 86
SETSEXCEPTIONSHANDLER 148
SETS$INTERRUPT 173
SET$POOLSMIN 104
SETSPRIORITY 48
SIGNALSEXCEPTION 216
SIGNALSINTERRUPT 177
SLEEP 53
SUSPEND3TASK 54
UNCATALOGSOBIECT 141
WAITSINTERRUPT 185

E

EXITIINTERRUPT 162
F

FORCESDELETE 209
G

GETIEXCEPTIONSHANDLER 145
GETSINTERCONNECT 278
GETSLEVEL 165
GET$POOLSATTRIB 94
GETSPORTSATTRIBUTES 253
GETS$PRIORITY 41

GETSSIZE 101

Nucleus System Calls Index-3

INDEX (continued)

GETSTASK$TOKENS 43
GETSTYPE 135

INSPECT$COMPOSITE 195
L

LOOKUP$OBIJECT 138
M

mailbox$flags
specifying information when creating a mailbox 57
meaning of the encoded interrupt level WORD 165

o)
OFFSPRING 28
Q

queuing scheme of a semaphore 77

R

RECEIVESCONTROL 226
RECEIVESDATA 63
RECEIVESJMESSAGE 66
RECEIVESSIGNAL 266
RECEIVESUNITS 83

required tcp S words of stack for SIGNALSEXCEPTION 215
RESETSINTERRUPT 167
RESUMESTASK 45
RQSATTACHSPORT 234
RQIBROADCAST 236
RQSCANCEL 238

RQICONNECT 240
RQI$CREATESBUFFER$POOL 106
RQSDELETE$BUFFER$POOL 108
RQS$DETACH$BUFFERSPOOL 248
RQIDETACHSPORT 250
ROSGETSHOSTSID 252
RQSRECEIVE 256
RQSRECEIVESFRAGMENT 260

Index-4 Nucleus System Calls

RQSRECEIVESREPLY 262
ROIRELEASESBUFFER 109
ROSREQUEST$BUFFER 111
RQS$SEND 268
RQS$SENDSREPLY 274
RQS$SENDSSIGNAL 277
ROSSETSINTERCONNECT 280
RQE$CHANGESDESCRIPTOR 113
RQESCHANGESOBJECT$ACCESS 124
RQE$CREATESDESCRIPTOR 116
RQESCREATESIOB 18

task$flags meaning 21
RQESDELETESDESCRIPTOR 119
RQESGET$ADDRESS 128
RQESGETSOBIECTSACCESS 131
RQESGET$POOLSATTRIB 97
RQESOFFSPRING 31
RQESSETSOSSEXTENSION 212
RQESTIMEDSINTERRUPT 180

S

SEND3CONTROL 229
SEND$DATA 70
SENDIMESSAGE 73
SENDSRSVP 271
SENDSUNITS 86
SETSEXCEPTIONSHANDLER 147
SETSINTERRUPT 171
SETSPOOLSMIN 104
SET$PRIORITY 48
SIGNALSEXCEPTION 215
SIGNALSINTERRUPT 176
sink port 234

SLEEP 52

source port 234

structures

access type of object for RQESGETSOBIECTSACCESS 131

data port creation information 242

exception handler 11, 19

extracting the DS register used by an interrupt task 172
for accepting a MULTIBUS 11 reply message 262

for assigning as exception handler 147

information about the exception handler 143

pool attributes for GETSPOOLSATTRIBUTES 94

Nucleus System Calls

INDEX (continued)

Index-5

INDEX (continued)

structures (continued)

pool attributes for RQE$SGET$POOLATTRIBUTES 97

port information 253

receive a message at a port 256

signal port creation information 243

token$list for CREATESCOMPOSITE 190

token$list for INSPECTSCOMPOSITE 195

TOKENS for child jobs returned by OFFSPRING 31
SUSPENDSTASK 54

T

type encodings for MULTIBUS II message fragments 260
v

UNCATALOGSOBIECT 141
V'

values for GETSTASKSTOKENS selection parameter 43
w

WAITSINTERRUPT 184

Index-6 Nucleus System Calls

EXTENDED iRMX®II
BASICI/O SYSTEM CALLS
REFERENCE MANUAL

Intel Corporation
3065 Bowers Avenue
Santa Clara, Californta 95051

Copyright © 1988, Intel Corporation, All Rights Reserved

PREFACE

This manual documents the system calls of the Basic 1/O System, one of the subsystems of
the extended iRMX IT Operating System. The information provided in this manual is
intended as a reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the Extended iRMX II Nucleus User's Guide and with the PL/M-
286 programming language.

CONVENTIONS
System call names appear as headings on the outside upper corner of each page. The first
appcarance of each system call name is printed in ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
ASCREATESFILE instead of RQSASCREATESFILE). This convention is used to allow
easier alphabetic arrangement of the calls. The actual PL/M-286 external-procedure
names must be used in all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the

PL/M-286 calling sequences when doing so. For more information on these calling
sequences refer to the Extended iRMX II Programming Techniques Reference Manual.

BLOS System Calls iii

CONTENTS

iRMX® Il BASIC I/O SYSTEM CALLS PAGE
L1 IETOUUCTION (oot t e s se e st 1
1.2 System Call Command DICHONATY.......cciiieiieriei e ssn e 2
ASATTACHSEFTLE. ...t 6
ASCHANGESACCESS ..o 10
AFCLOSE ...ttt ettt e ettt 16
ASCREATESDIRECTORY ..ot 18
ASCREATESFILE ..ot 23
ASDELETESCONNECTIONcooiiiiiiniiiio sttt 29
ASDELETESFILE ...t ssbiss i 32
ASGETSCONNECTIONISTATUS ...ttt eeses s ssrssnnns 37
ASGETSDIRECTORYSENTRY ..corioniiiiiiiiininieiincecieisseeesesse st ssese e sseneanes 11
AJSGETIEXTENSIONSIIATA ..c.coiiiriemisb bbb essbsss b ssbs 44
ASGETIFILESSTATUS ... sr st cssss et ssresens 47
ASGETSPATHSCOMPONENT ..ottt ses st sss s 54
ASOPEN ..ot et 57
ASPHYSICALSATTACHSDEVICE 61
ASPHYSICALSDETACHSDEVICEcooiiiiet e 65
ASREAD L.t s st 68
AFRENAMESFILE ... ssies s e et s nesaees 72
AFSEEK ...ttt sttt b e s 77
ASSETSEXTENSIONSDATA ...ttt et ssasaes 80
AFSPECLAL. ..ottt s b s bbb bbb s b en e 83
AFTRUNCATE ...ttt ettt ettt st et et sns s s 106
ASUPDATE ...ttt et 109
ASWRITE ..ot s 112
CREATESUSER ..o 116
DELETESUSERcoiiiii sttt e 118
ENCRY P st e s 119
GETIDEFAULTIPREFLX ..ottt seice s resess s 121
GETIDEFAULTSUSERcoiiiiiiiircie st 123
GETSGLOBALITIME ...ttt s 125
GETITIME ..o oo et cnaenn 127
INSPECTIUSER ..o s s s ansas s asesenansons 128
SETSDEFAULTIPREFTX ..ot 130
SETSDEFAULTIUSER ..ottt 132
SETSGLOBALSTIME ..ot et 134
SETITIME ..ottt 136
WATTSIO .ottt ettt 137

BIOS System Calls

IRMX® I
BASIC I/O SYSTEM CALLS

1.1 INTRODUCTION

The Basic I/O System Calls manual provides a detailed description of each Basic /0
System call, listed alphabetically.

The manual describes the PL/M-286 calling sequences to the Basic 1/0 System calls.

Basic I/O operations are declared as typed or untyped external procedures for PL/M-286.
PL/M-286 programs perform [/O operations by making external procedure calls.

The information for each system call is organized in this order:

» A brief sketch of the effects of the call.

» The PL/M-286 calling sequence for the system call.

» Definitions of the input parameters, if any.

» Definitions of the output parameters, if any.

* A detailed description of the effects of the call.

» The condition codes that can result from using the call, with a description of the

possible causes of each condition.

Throughout this manual, PL/M-286 data types, such as BYTE, WORD, and SELECTOR
are used. In addition, the extended iIRMX [data type TOKEN (always capitalized) is
used. If your compiler supports the SELECTOR data type, a TOKEN can be declared
literally as SELECTOR or WORD. Because TOKEN is not a PL/M-286 data type, you
must declare it to be literally a SELECTOR or a WORD every place you use it. An
asterisk (*) is used as a STRUCTURE and ARRAY size indicator. You must substitute :
value for the asterisk in STRUCTURE and ARRAY declarations.

The Basic I/O System does not distinguish between upper and lowercase letters. For
example, file "xyz" is equal to file "XYZ".

The system call dictionary on these next few pages lists system calls by function rather

than alphabetically. This dictionary includes short descriptions and page numbers of the
complete descriptions that follow.

BIOS System Calls 1

iRMX® II BASIC /O SYSTEM CALLS

1.2 SYSTEM CALL COMMAND DICTIONARY

This dictionary summarizes the Basic 1/O System calls by function and, where applicable,
indicates the file types to which they apply:

PF Physical file

SF Stream file

NF Named data file

ND Named directory file

The page reference listed with each call points to the detailed description for the call.

JOB-LEVEL SYSTEM CALLS

System Call Function Page
ENCRYPT Encodes user password. ... 119
GET$DEFAULTS- Inspect default prefix.......eceeree e 121

PREFIX
GETSDEFAULTSUSER Inspect default USer. ...t 123
SET$SDEFAULTS- Set default prefix for Job. ..o 130
PREFIX
SETIDEFAULTSUSER Set default user for job.......ocooooooiiiie 132

DEVICE-LEVEL SYSTEM CALLS

A$PHYSICALS- Asynchronous attach device. ... 61
ATTACHSDEVICE
ASPHYSICALS- Asynchronous detach device. ..o, 65
DETACH$DEVICE
ASSPECIAL Asynchronous perform device-level
TUNCHOM. Lot ssanr e 83

2 BIOS System Calls

iRMX® IT BASIC I/O SYSTEM CALLS

FILE/CONNECTION-LEVEL SYSTEM CALLS

System Call

ASATTACHSFILE

A$CREATES-
DIRECTORY

ASCREATESFILE

ASDELETES$CON-
NECTION

ASDELETESFILE

Function

Asynchronous attachfile.

Asynchronous directory file creation.

Asynchronous data file creation.

Asynchronous delete file connection.

Asynchronous data or directory file
deletion.

FILE-MODIFICATION SYSTEM CALLS

ASCHANGESACCESS

ASRENAMESFILE

ASTRUNCATE

Asynchronous change access rights to file.

Asynchronous rename file.

Asynchronous truncate file.

FILE INPUT/OUTPUT SYSTEM CALLS

A$CLOSE
ASOPEN
AS$READ
AS$SEEK

ASUPDATE

BIOS System Calls

Asynchronous close file.
Asynchronous open file.
Asynchronous read file.
Asynchronous move file pointer.

Asynchronous finish writing to output
device.

PSNN
FFFD

1 =
>

T T
™

- Z
o Z

m Z
oz

18

23

29

32

10

72

106

16

57

68

77

109

iRMX® IT BASIC I/0 SYSTEM CALLS

WAITSIO Synchronous wait for status after [/O.

ASWRITE Asynchronous write file.

GET STATUS/ATTRIBUTE SYSTEM CALLS

ASGET$CON- Asynchronous get connection status.

NECTIONSSTATUS

ASGETSDIREC- Asynchronous inspect directory entry.
TORYSENTRY

ASGETSFILESSTATUS Asynchronous get file status.

ASGET$PATHS- Asynchronously obtains path name from
COMPONENT connection token.

USER OBJECT SYSTEM CALLS

CREATESUSER Create a user object.
DELETESUSER Delete a user object.
INSPECTSUSER Get IDs 1n a user object.

EXTENSION DATA SYSTEM CALLS

System Call Function

ASGETSEXTENSIONS- Asynchronous receive a file’s extension
DATA data.

ASSETSEXTENSIONS- Asynchronous store a file’s extension
DATA data.

¥ X % X 137
x *x * 112
PSNN
FFFD
* * ¥ % 37
4
* o+ 54
116
118
128
PSNN
FFFD
*x 44
b - 3 80

BIOS System Calls

iRMX® II BASIC I/O SYSTEM CALLS

TIME/DATE SYSTEM CALLS
GETSTIME Get date/time value in internally-stored
fOrMAL.. ..o 127
SETSTIME Set date/time value in internally-stored
FOTTIAL. oo et 136

CALLS FOR ACCESSING THE GLOBAL TIME-OF-DAY CLOCK

GET$GLOBALSTIME Obtains the time of day from the battery
backed-up hardware clocks. ... 125

SETSGLOBALSTIME Sets the battery backed-up hardware
clock to aspecified time. ... 134

BIOS System Calls 5

ASATTACHSFILE creates a connection to an existing file.

CALL RQSASATTACHSFILE(user, prefix, subpath$ptr, resp$mbox,

except$ptr);

Input Parameters

user

prefix

subpath$ptr

Output Parameters

respfmbox

exceptptr

A TOKEN for the user object to be tnspected in any access
checking that takes place. A SELECTORSOF(NIL) specifies the
default user for the calling task’s job. This parameter is ignored
when attaching physical or stream files. Access checking does
occur for named files.

A TOKEN for the connection object to be used as the path prefix.
A SELECTORSOF(NIL) specifies the default prefix for the calling
task’s job.

A POINTER to a STRING containing the subpath of the file to be
attached. A null string indicates that the new connection is to the
file designated by the prefix. The new connection will not be open,
regardless of the open mode of the prefix.

(This parameter is ignored for physical and stream files.)

A TOKEN for the mailbox into which the Basic 1/O System places
a token for the result object of the call. This result object is a new
file connection if the call succeeds or an /O result segment
otherwise (see the Extended iRMX 11 Basic 1/0 System User’s
Guide, Appendix C). To ascertain the type of object returned, use
the Nucleus system call GETSTYPE.

If the object received is an 1/0 result segment, the calling task
should call DELETE$SEGMENT to delete the segment after
examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

B10OS System Calls

ASATTACHSFILE

Description

ASATTACHSFILE creates a connection to an existing file. Once the connection is
established, it remains in effect until the connection object is deleted, or until the creating
job is deleted. Once attached, the file may be opened, closed, read, written, etc., as many
times as desired. ASATTACHSFILE has no effect on the owner ID or the access list for
the file.

Condition Codes

ASATTACHSFILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the Extended iRMX 11 Basic 1/0 System User’s Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes
The Basic 1/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

E$DEVSOFFLINE 002ZEH The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device associated with the connection:

» It has been physically attached but is now off-
line.

o It has never been physically attached. (See
Appendix E in the Extended iRMX 1 Basic /0
User’s Guide for a more detailed explanation.)

ESEXIST 0006H One of the following is true:

» One or more of the following parameters is not
a token for an existing object:

- The user parameter
- The prefix parameter
- The resp$mbox parameter

e The prefix connection is being deleted.

BIOS System Calls 7

ASATTACHSFILE

ESLIMIT

ESMEM

E$NOSPREFIX

ESNOSUSER

The connection for a remote driver is no longer
active.

0004H Processing this call would cause one or more of
these limits to be exceeded:

The object limit for this job.

The number of [/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

The number of 1/O operations that can be
outstanding at one time for the caller’s job (255
decimal).

The number of outstanding 1/O operations for a
remote connection has been exceeded.

0002H The memory available to the calling task’s job is not
sufficient to compiete the call.

8022H The calling task specified a default prefix (prefix
argument equals zero), but no default prefix can be
found because of one of the following reasons:

When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

The job’s directory can have entries but a
default prefix is not cataloged there.

8021H If the user parameter in this call is not
SELECTORSOF(NIL), the parameter is not a
token for a user object.If the user parameter is
SELECTORSOF(NIL), it specifies a default user.
But no default user can be found because of one of
the following reasons:

When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

The job’s directory can have entries but a
default user is not cataloged there.

The object that is cataloged with the name
R?TOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

BIOS System Calls

ESNOTSCONFIGURED

ESTYPE

8002H

Concurrent Condition Codes

ASATTACHSFILE

0008H This system call is not part of the
present configuration.

One or more of the following conditions caused this
exception:

o The prefix parameter is a token for an object
that is not of the correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended 1/0O System.)

e The respSmbox parameter in the call is a token
for an object that is not a mailbox.

The Basic 1/0 System can return the following condition codes in an 1/O result segment
at the mailbox specified by resp$mbox. After examining the segment, you should delete it
to return the memory to the memory pool.

E$OK
ESDEVSDETACHING

ESFNEXIST

ESFTYPE

ESINVALIDSFNODE

E$IO

E$IOSMEM

BIOS System Calls

0000H
0039H

0021H

0027H

003DH

002BH

0042H

No exceptional conditions.

The file specified is on a device that the system is
detaching.

A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

The string pointed to by the subpathS$ptr parameter
contains a filename that should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

An 1/0 error occurred, which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segment for more
information.

The memory available to the Basic [/O System job is
not sufficient to complete the call.

ASCHANGESACCESS changes the access rights to a named data or directory file.

CALL RQS$ASCHANGESACCESS (user, prefix, subpathS$ptr, id, access,
respSmbox, except$ptr);

Input Parameters

user A TOKEN for the user object to be inspected in access checking,
A value of SELECTORS$OF(NIL) specifies the default user for the
calling task’s job.

prefix A TOKEN for the connection object to be used as the path prefix.
A SELECTORSOF(NIL) specifies the default prefix for the calling
task’s job.

subpath$ptr A POINTER to a STRING giving the subpath of the file whose

access is to be changed. A null string indicates that the prefix itself
designates the desired file.

id A WORD containing the 1D number of the user whose access is to
be changed. If this ID does not already exist in the 1D-access mask
list, it is added. This list may contain a total of three ID-access
pairs.

access A BYTE mask giving the new access rights for the ID. For each
bit, a one grants access, and a zero denies it. (Bit 0 is the low-order
bit.) For a named data file, the possible bit settings are:

Bit Meaning

0 Delete

1 Read

2 Append

3 Update

4-7 Reserved (set to 0)

10 BIOS System Calls

A$SCHANGES$ACCESS

For a named directory file, the possible bit settings are:

Bit Meaning

0 Delete

1 List

2 Add Entry

3 Change Entry

4-7 Reserved (set to 0)

If zero is specified for the access parameter (that is, no access), the
ID specified in the id parameter is deleted from the file’s ID-access
list and the accessor count field is decremented.

Output Parameters

resp$mbox A TOKEN for the mailbox that receives an 1/O result segment
indicating the result of the call (see Extended iRMX II Basic I/0
System User’s Guide, Appendix C). A value of
SELECTORSOF(NIL) means that you do not want to receive an
1/0O result segment.

If it receives an 1/O result segment, the calling task should call
DELETESSEGMENT to delete the segment after examining it.

exceptyptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

ASCHANGESACCESS system call applies to named files only. This call has no effect on
existing connections to the file. [t is called to change the access rights to a named data or
directory file. Depending on the contents of the "id" and "access" parameters specified in
the system call, users may be added to or deleted from the file’s ID-access mask list, or the
access privileges granted to a particular user may be changed.

NOTE

The caller must be the owner of the file or must have change entry access
to the file’s parent directory. However, if the owner is "WORLD", that is,
OFFFFH, then any task may change the access mask of the file. If system
manager support is configured, user 0 may change the access rights of any
file regardless of which user is the owner.

BIOS System Calls I1

ASCHANGESACCESS

Condition Codes

ASCHANGESACCESS returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the Extended iRMX I Basic {/O System User’s Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

ESOK 0000H No exceptional conditions.

ESDEVSOFFLINE 002EH The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device that is associated with the connection:

+ Tt has been physically attached but is off-line.

e It has never been physically attached. (For
example, LOGICALSATTACHSDEVICE, an
EIOS call, was used. This call does not cause
the device to be physically attached until
another EIOS call references the logical device
object.)
ESEXIST 0006H At least one of the following is true:

¢ One or more of the following parameters is not
a token for an existing object:

- The user parameter
- The prefix parameter
- The response mailbox parameter

e The prefix connection is being deleted.

» The remote driver connection is no longer

active.

ESIFDR 002FH This system call applies only to named files, but the
prefix and subpath parameters specify some other
type of file.

ESLIMIT 0004H Processing this call would cause one or more of

these limits to be exceeded:

12 BIOS System Calls

ESMEM 0002H
ESNOSPREFIX 8022H
ESNOSUSER 8021H
ESNOTICONFIGURED

BIOS System Calls

ASCHANGESACCESS

« The object limit for this job.

¢ The maximum number of outstanding [/O
operations for the user object specified in the
call (255 decimal).

o The number of I/O operations that can be
outstanding at one time for the caller’s job (235
decimal).

¢ The number of outstanding 1/O operations for a
remote file has been exceeded.

The memory available to the calling task’s job is not
sufficient to complete this call.

The calling task specified a default prefix (prefix
parameter equals SELECTOR$OF(NIL)). But no
default prefix can be found because of one of the
following:

» When this job was created, a size of
SELECTORSOF(NIL) was specified for its
object directory, so the job cannot catalog a
default prefix.

» The job’s directory can have entries but no
default prefix is cataloged there.

If the user parameter in this call is not
SELECTORS$OF(NIL), then the parameter is not a
token for a user object.If the user parameter is
SELECTORSOF(NIL), it specifies a default user.
But no default user can be found because of one of
the following reasons:

¢ When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

e The job’s directory can have entries but no
default user is cataloged there.

o The object which is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

0008H This system call is not part of the
present configuration.

13

ASCHANGESACCESS

ESPATHNAMES-
SYNTAX

ESSUPPORT
ESTYPE

003EH

0023H
8002H

Concurrent Condition Codes

The specified pathname contains invalid
characters.

The connection was not created by this job.

One or more of the following conditions caused this
exception:

» The user token designates a connection of the
wrong type.

s The prefix parameter is a token for an object
that is not of the correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended 1/O System.)

¢ The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

The Basic I/O System can return the following condition codes in an I/O result segment
at the mailbox specified by resp¥mbox. After examining the segment, you should delete it.

ESOK
ESDEVSDETACHING

ESFACCESS

ESFNEXIST

ESFTYPE

ESINVALID$FNODE

ES$IO

i4

0000H
0039H

0026H

0021H

0027H

003DH

002BH

No exceptional conditions.

The file specified is on a device that the system is
detaching.

The user object in the parameter list is not the
owner of the specified file, nor does it have "change
entry” access to the parent directory.

A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

The string pointed to by the subpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

An [/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segment for more
information. For information on IORS structures,
see the Extended iRMX II Device Drivers User's
Guide.

BIOS System Calls

ESIOSMEM

ESSUPPORT

BIOS System Calls

ASCHANGESACCESS

0042H The memory available to the Basic [/O System job is
not sufficient to complete this call.

0023H The call attempted to add another access ID to the
list of access ID’s. The access list already contained
the limit of three such ID’s.

15

ASCLOSE closes an open file connection.

CALL RQ$SASCLOSE(connection, resp$mbox, exceptSptr);

Input Parameter

connection A TOKEN for the file connection to be closed.

Output Parameters

resp§mbox A TOKEN for the mailbox that receives an /O result segment
indicating the result of the call (see Appendix C in the Extended
iRMX II Basic I/0 User's Guide). A value of

SELECTORS$OF(NIL) means that you do not want to receive an
[/O result segment.

If it receives an I/O result segment, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

exceptSptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

The AJCLOSE system call closes an open file connection. It is called when the
application needs to change the open mode or shared status of the connection. The Basic
[/O System will not close the connection until all existing 1/O requests for the connection
have been satisfied. In addition, the Basic I/O System will not send a response to the
response mailbox until the file is closed.

Condition Codes

16

A$CLOSE returns condition codes at two different times. The code returned to the
calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the Extended iRMX II Basic 1/0 System User’s Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

BIOS System Calls

Sequential Condition Codes

ASCLOSE

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK
ESEXIST

ESLIMIT

ESMEM

E$NOTSCON-
FIGURED

ESSUPPORT
ESTYPE

00G0H
0006H

0004H

0002H

0008H

0023H
8002H

Concurrent Condition Codes

No exceptional conditions.
At least one of the following is true:

* One or more of the following parameters is not
a token for an existing object:

- The connection parameter
- The resp$mbox parameter
+ The connection is being deleted.

¢ The connection for a remote driver is no longer
active.

At least one of the following is true.

» The calling task’s job has already reached its
object limit.

¢ The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task’s job is not
sufficient to complete this call.

This system call is not part of the
present configuration.

The connection was not created by this job.
At least one of the following is true:

o The connection parameter is a token for an
object that is not a connection.

* The respSmbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System can return the following condition codes in an 1/O result segment
at the mailbox specified by resp$mbox. After examining the segment, you should delete it.

ESOK

0000H

ESCONNSNOTSOPEN 0034H

ESIO

BIOS System Calls

No exceptional conditions.

The specified connection is not open.

002BH An1/O error occurred, but the operation was

successful anyway.

17

ASCREATESDIRECTORY creates a directory file.

CALL RGSASCREATESDIRECTORY (user, prefix, subpath$ptr, access,

respSmbox, except$ptr);

Output Parameters

18

Input Parameters

user

prefix

subpath$ptr

access

respbmbox

A TOKEN for the user object of the new directory’s owner. The

user object is inspected to make sure the caller has proper access
to the new directory’s parent. A SELECTORSOF(NIL) specifies
the default user for the calling task’s job.

A TOKEN for the connection to be used as the path prefix. A
SELECTORSOF(NIL) specifies the default prefix for the calling
task’s job.

A POINTER to a STRING containing the subpath of the directory

to be created. The subpath string must not be null, and it must
point to an unused location in the directory tree.

A BYTE mask giving the owner’s initial access rights to the
directory. For each bit in the mask, a one grants access and a zero
denies it. The possible bit settings are:

=

it Meaning

Delete
List
Add Entry
Change Entry
-7 Reserved (set to 0)

ol b= O

A TOKEN for the mailbox that receives the result object of this
call. This result object is a directory file connection if the call
succeeded, or an [/O result segment otherwise (see Appendix C in
the Extended iRMX Il Basic 1/0 System User’s Guide). To
determine the type of object returned, use the Nucleus system call
GETSTYPE. If the object received is an /O result segment, the
calling task should call DELETESSEGMENT to delete the
segment after examining it.

BIOS System Calls

ASCREATESDIRECTORY

exceptptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

The ASCREATESDIRECTORY system call is applicable to named directory files only.
When called, it creates a new directory file and returns a token for the new file
connection. This system call cannot be used to create a connection to an existing
directory. To attach to an existing file you should use the ASATTACHSFILE system call.

NOTE

The caller must have add-entry access to the parent of the new directory.

Condition Codes

ASCREATESDIRECTORY returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a

concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the Extended iRMX II Basic 1/0 System User’s Guide.

The list on the following pages is divided into two parts--one for sequential codes, and onc
for concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

ESDEVSOFFSLINE 002EH The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device that 1s associated with the connection:

» It has been physically attached but is now off-
line.

e It has never been physically attached. (See
Extended iRMX I Basic 1/0 System User’s
Guide, Appendix E for a more detailed
explanation.)

ESEXIST 0006H At least one of the following is true:

BIOS System Calls 19

ASCREATESDIRECTORY

ESIFDR 002FH
ESLIMIT 0004H
ESMEM 0002H
ESNOSPREFIX 8022H
ESNOSUSER 8021H

20

One or more of the following parameters is not
a token for an existing object:

- The user parameter

- The prefix parameter

- The response mailbox parameter
The prefix connection is being deleted.

The connection for a remote driver is no longer
active.

This system call applies only to named directory
files, but the prefix and subpath parameters specify
some other type of file.

Processing this call would cause one or more of
these limits to be exceeded:

The object limit for this job.

The number of 1/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

The number of 1/O operations that can be
outstanding at one time for the caller’s job (255
decimal).

The number of outstanding 1/O operations for a
remote connection has been exceeded.

The memory available to the calling task’s job is not
sufficient to complete this call.

The task specified a default prefix (prefix parameter
equals SELECTORSOF(NIL)). But no default
prefix can be found because of one or more of the
following reasons:

When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

The job’s directory can have entries but no
default prefix is cataloged there.

If the user parameter in this call is not
SELECTORSOF(NIL), then the parameter is not a
user object. If the user parameter is
SELECTORS$OF(NIL), it specifies a default user.

BIOS System Calls

ESNOT$CON-
FIGURED

ESPATHNAMES-
SYNTAX

ESTYPE

0008H

003EH

8002H

Concurrent Condition Codes

ASCREATESDIRECTORY

But no defauit user can be found because of one of
the following reasons:

+ When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

o The job’s directory can have entries but no
default user is cataloged there.

+ The object that is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

This system call is not part of the
present configuration.

The specified path name contains invalid
characters.

At least one of the following is true:

¢ The prefix parameter 1s a token for an object
that is not of the correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended 1/O System.)

¢ The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

The Basic I/O System can return the following condition codes in an /O result segment
at the mailbox specified by respSmbox. After examining the segment, you should delete it.

E$OK
ESDEVSDETACHING

E$FACCESS

ESFEXIST
ESFNEXIST

ESFNODESLIMIT

BIOS System Calls

0000H
0039H

0026H

0020H
0021H

003FH

No exceptional conditions.

The file specified is on a device that the system is
detaching.

The user object in the parameter list is not qualified
for "add-entry" access to the parent directory.

A file with the specified path name already exists.

A file in the specified path does not exist or is
marked for deletion.

The volume already contains the maximum number
of files. No more fnodes are available for new files.

21

ASCREATESDIRECTORY

22

ESFTYPE

E$INVALIDIFNODE

ES$IO

ESIO$SMEM

E$SPACE
E3SUPPORT

0027H

003DH

002BH

0042H

0029H
0023H

The string pointed to by the subpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

The fnode for the specified file (or for a directory in
the file’s path) is invalid. The file with the invalid
fnode cannot be accessed; you should delete it.

An 1/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 1/O result segment for more
information.

The memory available to the Basic 1/O System job is
not sufficient to complete this call.

The volume 1is full.

The Basic [/O System is not configured to support
space allocation.

BIOS System Calls

ASCREATESFILE creates a physical, stream, or named file.

CALL RQSASCREATES$FILE(user, prefix, subpath$ptr, access,
granularity, size, must$create, respSmbox, except$ptr);

Input Parameters

user

prefix

subpath$ptr

dACCess

BIOS System Calls

A TOKEN for the user object of the owner of the new file. [t also
furnishes the user ID for any access checking that might occur. A
SELECTORSOF(NIL) specifies the default user for the calling
task’s job. This parameter does not apply to physical or stream
files.

A TOKEN for a device or file connection. The file created by this
call is of the type (physical, stream, or named) that is associated
with this parameter. A SELECTOR$OF(NIL) for this parameter
specifies the default prefix for the job.

For stream files, if the prefix is a device connection, a new stream
file is created. If the prefix is a file connection, a new file
connection to the same stream file is created.

For named files, the prefix acts as the starting point in a directory
tree scan.

A POINTER to a STRING containing the subpath for the named
file being created. This parameter does not apply to physical and
stream files.

Entering NIL for this parameter, when using a named file driver,
causes an unnamed file to be created. This file is automatically
deleted when the last connection to it is deleted.

A BYTE mask giving the owner’s 1nitial access rights to the new
file. For each bit, a one grants access and a zero denies it. (Bit 0 is
the low-order bit.)

o

Meaning

Delete

Read

Append

Update

Reserved (set to 0)

R B = O

L}
R |

23

ASCREATESFILE

granularity

size

must$create

Output Parameters

respfmbox

except$ptr

24

This parameter does not apply to physical or stream files.

A WORD giving the granularity of the file being created. This is
the size (in bytes) of each logical block of volume space to be
allocated to the file. The value specified in this parameter is
rounded up, if necessary, to a multiple of the volume granularity.
Note that a contiguous file can become noncontiguous when it is
extended.

The granularity parameter can have the following values:

0 Same as volume granularity
FFFFH The file must be contiguous
Other Number of bytes per allocation

When a contiguous file is extended, space is allocated in volume-
granularity units. If "Other" is specified, a multiple of 1024 bytes is

recommended. This parameter is ignored for physical and stream
files.

A DWORD giving the number of bytes initially reserved for the
file. For stream files, this value must equal zero. If you make this
value greater than zero, for stream files the reserved space may
contain unknown data. For physical files, this parameter is
ignored.

A BYTE with values of 1 for TRUE, or 0 for FALSE. Only the
least significant bit is checked. This BYTE determines the
handling of input paths designating an existing file (see following
Description). This parameter applies only to named files.

A TOKEN for the mailbox that receives the result object of this
call. This result object is a new file connection if the call
succeeded; otherwise, it is an /O result segment (see Appendix C
in the Extended iRMX IT Basic 1/0 System User’s Guide). To

determine the type of object returned, use the Nucleus system call
GETSTYPE.

If the object received is an /O result segment, the calling task
should call DELETE$SEGMENT to delete the segment after
examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls

ASCREATESFILE

Description

The ASCREATESFILE system call creates a physical, stream, or named data file and
returns a token for the new file connection. If a named file designated by the prefix and
subpath parameters already exists, one of the following occurs:

o Error: If the "must§create” parameter is TRUE (OFFH), an error condition code
(ESFEXIST) is returned.

» Truncate File: If the "mustScreate” parameter is FALSE (0) and the path designates
an existing data file, a new connection to that file is returned (that is,
ASCREATESFILE acts like ASATTACHSFILE). In this case, the file is truncated or
expanded according to the "size" parameter, so data in the file might be lost. As in the
case of ASATTACHSFILE, the file’s owner 1D and access list are unchanged.

o Temporary File Created: 1f the "must$create” parameter is FALSE (0), and the path
designates an existing directory file or device, an unnamed temporary file is created
on the corresponding device. This file is deleted automatically when the last
connection to it is deleted. Because this file is created without a path, it can be
accessed only through a connection.

Any task can create a temporary file by referring to any directory. This is true
because temporary files are not listed as ordinary entries in the directory, so no add-
entry access 1s required.

Many of the parameters specified in the ASCREATESFILE call do not apply to physical
and stream files. In these cases, the parameter is ignored.

NOTE

The caller must have add-entry access to the parent directory of the new
named file.

Condition Codes

ASCREATESFILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent

condition code. A complete explanation of sequential and concurrent parts of system calls
is in the Extended iRMX Il Basic 1/0O System User’s Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

BIOS System Calls 25

ASCREATESFILE

Sequential Condition Codes

The Basic 1/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

ESOK
E$DEVSOFFSLINE

ESEXIST

ESLIMIT

ESMEM

ESNOSPREFIX

26

(0000H
002EH

0006H

0004H

0002H

8022H

No exceptional conditions.

The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device associated with the connection:

It has been physically attached but is now off-
line.

It has never been physically attached. (See
Extended iRMX II Basic 1/0 System User's
Guide, Appendix E for a more detailed
explanation.)

At least one of the following is true:

One or more of the following parameters is not
a token for an existing object:

- The user parameter

- The prefix parameter

- The respSmbox parameter

The prefix connection is being deleted.

The connection for a remote driver is no longer
active.

The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task’s job is not
sufficient to complete this call.

The call specified a default prefix (prefix argument
equals SELECTORSOF(NIL)). But no default
prefix can be found because of one of the following
reasons:

When this job was created, a size of
SELECTORSOF(NIL) was specified for its
object directory, so the job cannot catalog a
default prefix.

The job’s directory can have entries but a
default prefix is not cataloged there.

BIOS System Calls

ESNOSUSER 8021H

ESNOTSCON- 0008H
FIGURED

ESPATHNAMES- 003EH
SYNTAX

ESTYPE 8002H

Concurrent Condition Codes

ASCREATESFILE

If the user parameter in this call is not
SELECTORS$OF(NIL), then the parameter is not a
token for a user object. If the user parameter is
SELECTORS$OF(NIL), it specifies a default user.
But no default user can be found because of one of
the following reasons:

» When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

¢ The job’s directory can have entries but a
default user is not cataloged there.

» The object that is cataloged with the name
R?IOUSER is not a user object. Another task
cataloged an object (not a user object) under
the name R7IOUSER.

This system call is not part of the
present configuration.

The specified path name contains invalid
characters.

At least one of the following is true:

+ The prefix parameter is a token for an object
that is not of the correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended 1/0O System.)

» The respSmbox parameter in the call is a token
for an object that is not a mailbox.

The Basic /O System can return the following condition codes in an /O result segment
at the mailbox specified by resp§mbox. After examining the segment, you should delete it.

E$OK 0000H
ESDEVSDETACHING 0039H

E$FACCESS 0026H

B1OS System Calls

No exceptional conditions.

The file specified is on a device that the system is
detaching.

One of the following is true:

e No file with the specified pathname exists, and
the specified user object does not have "add-
entry" access to the parent directory.

27

A$SCREATESFILE

ESFEXIST

ESFNEXIST
ESFNODESLIMIT

ESFTYPE

ESINVALIDSFNODE

ESIO

ESIOSMEM

ESSHARE

ESSPACE
ESSUPPORT

28

0020H

0021H

003FH

0027H

003DH

002BH

0042H

0028H

0029H
0023H

» A file with the specified pathname exists, but
the specified user object does not have "update"
access to the file.

The "must$create” parameter in the call is TRUE,
and the file already exists. (See the Description
section.)

A file in the specified path does not exist or is
marked for deletion.

The volume already contains the maximum number
of files. No more fnodes are available for new files.

The string pointed to by the subpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

The fnode for the specified file (or for a directory in
the file’s path) is invalid. The file with the invalid
fnode cannot be accessed; you should delete it.

An 1/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 1/O result segment for more
information.

The memory available to the Basic I/O System job is
not sufficient to complete this call.

The file this call is attempting to create already
exists and is open. It was opened with the
characteristic "no share with writers." (See the
ASOPEN call in this manual.)

The volume is full.
One of the following is true:

o ‘The file exists and the must$create parameter is
FALSE. When the Basic [/O System was
configured, an option was chosen that prevented
this combination, so that files could not be
automatically truncated to zero size. See the
Description section.

¢ The Basic I/O System is not configured to allow
space allocation on volumes.

BIOS System Calls

ASDELETESCONNECTION deletes a named file connection created by
ASCREATESFILE, ASCREATESDIRECTORY, or ASATTACHSFILE.

CALL RQSASDELETE$CONNECTION(connection, respS$mbox, except$ptr);

Input Parameter

connection A TOKEN for the file connection to be deleted.

Output Parameters

respimbox A TOKEN for the mailbox that receives an I/O result segment
indicating the result of the call (see Appendix C in the Extended
IRMX If Basic 1/0 System User’s Guide). A value of
SELECTORJOF(NIL) means that you do not want to receive an
1/O result segment.

If it receives an 1/O result segment, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

exceptdptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

The ASDELETESCONNECTION system call deletes a connection object. It also deletes
the associated file if both of the following are true:

¢ The file is already marked for deletion (by a previous ASDELETESFILE cali) or is an
unnamed file.

o The specified connection is the only connection to the file.

If a connection is open when ASDELETESCONNECTION is called, it is closed before
being deleted.

NOTE

Connections should be deleted when no longer needed.

BIOS System Calls 29

ASDELETESCONNECTION

Condition Codes

ASDELETESCONNECTION returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the Extended iRMX II Basic 1/0 System User’s Guide.

The following list is divided into two parts--one for sequential codes, and one for

concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the exceptdptr parameter of this system call.

ESEXIST

ESLIMIT

ESMEM

ESNOTSCON-
FIGURED

ESNOTSFILESCONN

ESSUPPORT
ESTYPE

30

ESOK
0006H

0004H

0002H

(0008H

0032H

0023H
8002H

0000H No exceptional conditions.
At least one of the following is true:

» One or more of the following parameters is not
a token for an existing object:

- The connection parameter
- The resp$mbox parameter
» The connection is being deleted.

¢ The connection for a remote driver is no longer
active.

The calling task’s job has already reached its object
limit.

The memory available to the calling task’s job is not
sufficient to complete this call.

This system call is not part of the
present configuration.

The connection parameter is a device connection,
not a file connection.

The specified connection was not created by this job.

One or more of the following is a token for an object
that is not of the correct type:

+ The connection parameter.

¢ The resp$mbox parameter.

BIOS System Calls

ASDELETESCONNECTION

Concurrent Condition Codes

The Basic I/O System can return the following condition codes in an /O result segment
at the mailbox specified by resp§mbox. After examining the segment, you should delete it.

ESOK 0000H No exceptional conditions.
E3$1O 002BH An [/O error occurred, however the connection was
deleted.

BIOS System Calls 31

fae
(3]

ASDELETESFILE marks a file for deletion.

CALL RQSASDELETESFILE(user, prefix, subpath$ptr, respSmbox,

except$ptr);

Input Parameters

user

prefix

subpath$ptr

Output Parameters

resp$mbox

exceptdptr

Description

A TOKEN for the user object to be inspected in access checking.
A SELECTORSOF(NIL) specifies the default user for the calling
task’s job. This parameter does not apply to stream files.

A TOKEN for the connection object to be used as the path prefix.
A SELECTORSOF(NIL) specifies the default prefix for the calling
task’s job.

A POINTER to a STRING giving the subpath for the file being
deleted. A null string indicates that the prefix itself designates the
desired file. In this instance, the user parameter is ignored, since

access checking was already performed when the file was attached.
This parameter does not apply to stream files.

A TOKEN for a mailbox that receives an 1/O result segment (see
Extended IRMX 11 Basic 1/0 System User’s Guide, Appendix C)
when the file is marked for deletion. The file will not actually be
deleted until all connections to the file are deleted, as explained
under the Description below. A value of SELECTORSOF(NIL)
means that you do not want to receive an [/O result segment.

If it receives an 1/O result segment, the calling task should call
DELETESSEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

The ASDELETESFILE system call applies to stream and named files only. When called,
it marks the designated file for deletion and removes the file’s entry from the parent
directory. The entry is removed immediately, but the file is not actually deleted unti} all
connections to the file have been severed (by ASDELETESCONNECTION calls).
Directory files cannot be deleted unless they are empty.

BIOS System Calls

ASDELETESFILE

NOTE

The caller must have delete access to the file.

Condition Codes

ASDELETESFILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the Extended iRMX II Basic 1/0 System User’s Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes
The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

ESDEV$OFFSLINE 002EH The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device that is associated with the connection:

o It has been physically attached but is now off-
line.

o It has never been physically attached. (See
Appendix E in the Fxtended iRMX Il Basic 1/0
System User’s Guide for a more detailed
explanation.)

ESEXIST 0006H At least one of the following is true:

¢ One or more of the following parameters is not
a token for an existing object:

- The user parameter
- The prefix parameter
- The response mailbox parameter
¢ The prefix connection is being deleted.

e The connection for a remote driver is no longer
active.

BI1OS System Calls 33

ASDELETESFILE

ESIFDR

E$LIMIT

ESMEM

ESNOSPREFIX

ESNOSUSER

34

002FH This system call applies only to named or stream
files, but the prefix and subpath parameters
specified a physical file.

0004H Processing this call would exceed one or more of the
following limits:

The object limit for this job.

The number of I/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

The number of 1/O operations that can be
outstanding at one time for the caller’s job (255
decimal).

The number of outstanding I/O operations for a
remote connection has been exceeded.

0002H The memory available to the calling task’s job is not
sufficient to complete this call.

8022H The call specified a default prefix (prefix argument
equals SELECTORSOF(NIL)). But no defauit
prefix can be found because of one of the following
reasons:

When this job was created, a size of
SELECTORS$OF(NIL) was specified for its
object directory, so the job cannot catalog a
default prefix.

The job’s directory can have entries but no
default prefix is cataloged there.

8021H If the user parameter in this call is not
SELECTORS$OF(NIL), then the problem is that
the parameter is not a token for a user object. If
the user parameter is SELECTORSOF(NIL), it
specifies a default user. But no default user can be
found because of one of the following reasons:

When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

The job’s directory can have entries but no
default user is cataloged there.

BIOS System Calls

ESNOT3CON-
FIGURED

ESPATHNAMES
SYNTAX

E$SUPPORT
E$TYPE

0008H

003EH

0023H
8002H

Concurrent Condition Codes

ASDELETESFILE

+ The object that is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

This system call is not part of
the present configuration.

The specified path name contains
invalid characters.

The specified connection was not created by this job.
At least one of the following is true:

» The prefix parameter is a token for an object
that is not of the correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended 1/O System.)

» The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

The Basic 1/O System can return the following condition codes in an I/O result segment
at the mailbox specified by respfmbox. After examining the segment, you should delete it.

ESOK

0000H

ESDEVSDETACHING 0039H

E$DIR§NOTSEMPTY

ESFACCESS

ESFNEXIST

ESFTYPE

BIOS System Calls

0031H

0026H

0021H

0027H

No exceptional conditions.

The file specified is on a device that the system is
detaching,

The call is attempting to delete a directory
containing entries.

At least one of the following is true:

» The user object does not have delete access to
the file.

» The call attempted to delete the root directory
or a bit map file.

A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

The string pointed to by the subpath$ptr parameter
contains a string that should be the name of a
directory, but is not. (Except for the last file, each
file in a pathname must be a named directory.)

35

ASDELETESFILE

E$IO 002BH An 1/0 error occurred which might have prevented

the operation from completing. Examine the
unit$status field of the I/O result segment for more
information.

ESIOSMEM 0042H The memory available to the Basic 1/O System is not
sufficient to complete the call.

36 BIOS System Calls

ASGETSCONNECTIONS$STATUS returns information about a file connection.

CALL RQSASGETSCONNECTIONSSTATUS(connection, respSmbox, exceptSptr);

Input Parameter

connection A TOKEN for the file connection whose status is desired.

Output Parameters

resp$mbox A TOKEN for the mailbox that is to receive a connection-status
segment. The calling task is responsible for deleting the
connection-status segment after examining it.

The information in this segment is structured as follows:

DECLARE connSstatus STRUCTURE(

status WORD,
fileSdriver BYTE,
flags BYTE,
open$mode BYTE,
shareSmode BYTE,
fileSptr DWORD,
access BYTE);

These fields are interpreted as follows:

status A condition code giving the outcome of the
status-fetch operation. If this code is not
E3$OK, the remaining fields must be
considered invalid.

file$driver Tells the type of file driver to which this
connection is attached. Possible values are:
Value Type
1 Physical
2 Stream
4 Named
5 Remote
flags Contains two flag bits. If bit 1 is set to one,

this connection is active and can be opened. If
bit 2 is set, this connection is a device
connection. (Bit 0 is the low-order bit.)

BIOS System Calls 37

ASGETSCONNECTIONSSTATUS

open$mode The mode established when this connection
was opened. Possible values are:
0 Connection is closed
1 Open for reading
2 Open for writing
3 Open for reading and writing
share$mode The sharing mode established when this
connection was opened. Possible values are:
0 Private use only
1 Share with readers only
2 Share with writers only
31 Share with all users
file$ptr The current byte location of the file pointer for
this connection.
access The access rights for this connection. For each
bit, a one grants access and a zero denies it.
(Bit 0 is the low-order bit.)
Bit Data File Directory
0 Delete Delete
1 Read List
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved
except$ptr A POINTER to a WORD where the sequential condition code will

be returned.

Description

The ASGET$CONNECTION$STATUS system call returns a segment containing status

information about a file connection.

Condition Codes

38

ASGET$CONNECTIONSSTATUS returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the Extended iRMX I Basic 1/0 System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for

concurrent codes.

BIOS System Calls

Sequential Condition Codes

ASGETSCONNECTIONSSTATUS

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK
ESEXIST

ESLIMIT

E$SMEM
ESNOT$CON-

FIGURED
E$SUPPORT

ESTYPE

0000H
0006H

0004H

0002H

0008H

0023H

8002H

Concurrent Condition Codes

No exceptional conditions.
At least one of the following is true:

* One or more of the following parameters is not
a token for an existing object:

- The connection parameter
- The resp$mbox parameter
* The connection is being deleted.

» The connection for a remote driver is no longer
active.

At least one of the following is true:

» The calling task’s job has already reached its
object limit.

« The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

At least one of the following is true:

» The connection parameter is a token for an
object that is not a connection.

e The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an I/O result
segment at the mailbox specified by resp$mbox. You are responsible for deleting this

segment.
E$CK

BIOS System Calls

0000H

No exceptional conditions.

39

ASGET$CONNECTIONSSTATUS

E31O 002BH An I/O error occurred, which might or might not
have prevented the operation from being
completed. Examine the unit$status field of the
1/O result segment for more information.

40 BIOS System Calls

ASGETSDIRECTORYSENTRY returns the file name associated with a named directory
file entry.

CALL RQSASGETS$DIRECTORY$SENTRY(connection, entryS$num, resp$mbox,

except$ptr);
Input Parameters
connection A TOKEN for the directory file with the desired entry.
entry$num A WORD giving the entry number of the desired file name.

Entries within a directory are numbered sequentially starting from
zero. The ESEMPTYSENTRY condition code will be returned if
there is no entry associated with this number.

Output Parameters

respfmbox A TOKEN for the mailbox that will receive a directory-entry
segment. The task making the ASGET$DIRECTORYSENTRY
call is responsible for deleting this segment after examining it.

Information in this segment is structured as follows:
DECLARE dir$entry$info STRUCTURE(

status WORD,
name (14) BYTE) ;

where

status Indicates how the operation was completed.
ESOK, ESEMPTY$ENTRY, and
ESDIRSEND condition codes all indicate
successful completion.

name File name contained in the specified entry,

padded with blanks. This field is valid only if
status = E3OK.

exceptiptr A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls 41

ASGETSDIRECTORYSENTRY

Description

The ASGET$DIRECTORYSENTRY system call applies to named files only. When
called, it returns the file name associated with a specified directory entry. This name is a
single subpath component for a file whose parent is the designated directory. As an
alternative to using this system call, an application task can open and read a directory file.

NOTE

The caller must have display access to the designated directory.

Condition Codes

ASGETIDIRECTORYSENTRY returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the Extended iRMX II Basic 1/0 System User’s Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

42

The Basic 1/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

ESOK 0000H No exceptional conditions.
ESEXIST 0006H At least one of the following is true:

e One or more of the following parameters is not
a token for an existing object:

- The connection parameter
- The resp$mbox parameter

» The connection is being deleted.

E$IFDR 002FH This system call applies only to named directories,
but the connection parameter specifies another type
of file.

ESLIMIT 0004H The calling task’s job has already reached its object
limit.

ESMEM 0002H The memory available to the calling task’s job is not

sufficient to complete this call.

BIOS System Calls

ESNOT$CON- 0008H
FIGURED

E$SUPPORT 0023H
ESTYPE 8002H

Concurrent Condition Codes

ASGETSDIRECTORYSENTRY

This system call is not part of
the present configuration.

The specified connection was not created by this job.
At least one of the following is true:

¢ The connection parameter is a token for an
object that is not a connection.

» The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System can return the following condition codes in an I/O result segment
at the mailbox specified by resp$mbox. After examining the segment, you should defete it.

E$OK 0000H
E$DIRSEND 0025H

ESEMPTYSENTRY 0024H

ESFACCESS 0026H
ESFTYPE 0027H
E$IO 002BH

BIOS System Calls

No exceptional conditions.

The entry$num parameter is greater than the
number of entries in the directory.

The file entry designated in the call is empty.

The specified connection is not qualified for
"display" access to the directory.

The specified connection does not refer to a
directory.

An 1/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segment for more
information.

43

The ASGETSEXTENSIONSDATA system call returns extension data stored with a Basic

[/O System file.

CALL RQSASGETSEXTENSIONSDATA(connection, respSmbox, except$ptr);

Input Parameters

connection

respfmbox

Output Parameter
except$ptr

44

A TOKEN of a connection to a file whose extension data is
desired.

A TOKEN for the mailbox that will receive a segment containing
the named file-status information. The calling task is responsible
for deleting this segment after examining it.

Structure of the named file-status information is as follows:

DECLARE ext$data$seg STRUCTURE (

status WORD,
count BYTE,
info(*) BYTE) :

These fields are interpreted as follows:

status A condition code indicating the outcome of the
status-fetch operation. If this code is not
E$OK, the remaining fields must be
considered invalid.

count A number (from 0 to 255 decimal) indicating
the number of bytes returned.

info The extension data.

A POINTER to a WORD where the sequential condition code will
be returned.

BI1OS System Calls

ASGETSEXTENSIONS$DATA

Description

Associated with each file created through the Basic I/O System is a file descriptor
containing information about the file. Some of that information is used by the Basic [/O
System and can be accessed by tasks through the ASGET$FILESSTATUS system call.
Up to 255 additional bytes of the file descriptor, known as extension data, are available

for use by Operating System extensions. OS extensions can write extension data by using
ASSETSEXTENSIONSDATA and they can read extension data by using
ASGETSEXTENSIONSDATA.

When a task calls ASGETSEXTENSIONSDATA, it specifies a response mailbox to which
the system returns a segment with the extension data. The information is located in the
low-memory portion of the segment. ASGETSEXTENSIONSDATA can only be applied
to connections created via the named file driver.

Condition Codes

ASGETSEXTENSIONSDATA can return condition codes at two different times. The
code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the Extended iRMX Il Basic 1/0 System User’s Guide.

The following list is divided into two parts--one for sequential codes and one for
concurrent codes.

Sequential Condition Codes
The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.
ESOK 0000H No exceptional conditions.
ESEXIST 0006H At least one of the following is true:

¢ One or more of the following parameters is not
a token for an existing object:

- The connection parameter
- The resp$mbox parameter
» The connection is being deleted.

» The connection for a remote driver is no longer
active.

ESIFDR 002FH This system call applies only to named files, but the
prefix and subpath parameters specify another type
of file.

BIOS System Calls 45

ASGETSEXTENSIONSDATA

ESLIMIT

ESMEM

ENOTCON-
FIGURED

E$SUPPORT
ESTYPE

0004H

0002H

0008H

0023H
8002H

Concurrent Condition Codes

At least one of the following is true:

o The calling task’s job has already reached its
object limit.

¢ The number of outstanding [/O operations for a
remote connection has been exceeded.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of
the present configuration.

The specified connection was not created by this job.
At least one of the following is true:

¢ The connection parameter is a token for an
object that is not a connection.

e The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System will return one of the following codes in an 1/O result segment at
the mailbox specified by resp$mbox. After examining the segment, you should delete it.

E$OK
E$IC

46

0000H

No exceptional conditions.

002BH An I/O error occurred which might have prevented

the operation from completing. Examine the
unit$status field of the I/O result segment for more
information.

BIOS System Calls

ASGETSFILESSTATUS returns status and attribute information about a file.

CALL RQSASGETSFILE$STATUS(connection, resp$mbox, except$ptr);

Input Parameter

connection

Output Parameters

resp$mbox

Output Parameters

BIOS System Calls

A TOKEN for a connection to the file whose status is sought.

A TOKEN for the mailbox that receives a segment containing a
data structure with the status information for the specified file.
The information in the first part of this structure--down to the
dev¥conn field--is returned for any file (physical, stream, or
named), but information from the file$id field down to the end of
the structure is provided only for named files. The contents of the
named3file field indicates whether the file is a named file.

DECLARE file$info STRUCTURE(
status
num$conn
num$reader
num$writer
share
namedS$Sfile

dev$name (14)
fileSdrivers

functs
flags
dev$gran
dev$size
dev$conn

WORD,
WORD,
WORD,
WORD,
BYTE,
BYTE,
BYTE,
WORD,
BYTE,
BYTE,
WORD,
DWORD,
WORD,

Information from this point on is returned only if the file is a

named file.

47

ASGETSFILESSTATUS

fileSid WORD,
file$type BYTE,
file$gran BYTE,
owner$id WORD,
createStime DWORD,
accessStime DWORD,
modifyStime DWORD,
file$size DWORD,
fileSblocks DWORD,
volSname(6) BYTE,
vol$gran WORD,
vol§size DWORD,
accessor$Scount WORD,
first$access BYTE,
first$ID WORD,
second$access BYTE,
second$1ID WORD,
thirdSaccess BYTE,
third$1D WORD,
volSflags BYTE);

These fields are interpreted as follows:

status

num$conn

num$reader

num$writer

share

named$file

48

A condition code indicating how the get file
status operation was completed. If this code is
not ESOK, the remaining fields must be
considered invalid.

The number of connections to the file.

The number of connections currently open for
reading.

The number of connections currently open for
writing.

The current shared status of the file; possible
values are: ASGETSFILESSTATUS:share
values;

0 Private use only

1 Share with readers only
2 Share with writers only
3 Share with all users

Tells whether this structure contains any
information beyond the devconn field. OFFH
means yes and 0 means no.

BIOS System Calls

BIOS System Calls

dev¥name

fileSdrivers

functs

flags

ASGETS$FILESSTATUS

The name of the physical device where this file
resides (same name as in the DUIB). This
name is padded with blanks.

A bit map that tells what kinds of files can
reside on this device. If bit n is on, then file
driver n+1 can be used. Bit 0 is the low-order

bit.
Bit Driver No. Driver

0 1 Physical file
1 2 Stream file
2 3 reserved

3 4 Named file

A bit map that describes the functions
supported by the device where this file resides.
A bit set to one indicates the corresponding

function is supported. Bit 0 is the low-order
bit.

@

Function

FSREAD
FSWRITE
F$SEEK
F$SPECIAL
FSATTACHSDEV
FSDETACHSDEV
FSOPEN
FSCLOSE

Meaningful only for diskette drives. This field
is interpreted as follows. (Bit 0 is the low-
order bit.)

~1 N B W = D

Bit Meaning

0 0 = bits 1-7 are not significant
1 = bits 1-7 are significant
1 0 = single density

1 = double density
2 0 = single sided
1 = double sided
3 0 = 8-inch diskette
1 = 5 1/4-inch diskette
4 0 = standard diskette,
meaning that track 0 is
single-density with 128-byte sectors

49

ASGETSFILESSTATUS

50

devigran

dev§size

dev$conn

1 = a non-standard diskette or
not a diskette
5-7 reserved

The device granularity, in bytes, of the device
where this file resides.

The storage capacity of the device, in bytes.

The number of connections to the device.

The information from here to the end of the structure
is returned only for named files, as indicated by a
value of OFFH in the named$file field.

file$id

file$type

file$gran

owner$id

create$time

access$time

modify$time

file$size

file$blocks

A number that distinguishes this file from all
other files on the same device. The Disk
Verification Utility refers to this number as an
FNODE. For information on the disk verify
utility, see Extended iRMX II Disk Verification
Utility Reference Manual.

Indicates the type of the file: 6 means
directory file; and 8 means data file.

The file granularity, as a multiple of vol$gran.
For example, if file$gran is 2 and vol$gran is
256, then the file’s granularity is 512.

The first ID in the user object that was
presented to the Basic 1/0 System when the
file was created.

The time and date when the file was created.

Whether the Basic I/O System maintains this
field is a configuration option.

The time and date when the file was last
accessed. Whether the Basic I/O System
maintains this field is a configuration option.

The time and date when the file was last
modified. Whether the Basic I/O System
maintains this field is a configuration option.

The total size of the file, in bytes.

The number of volume blocks allocated to this
file. A volume block is a contiguous area of
storage that contains vol$gran bytes of data.

BIOS System Calls

except$ptr

BIOS System Calls

vol$name

vol$gran

vol$size
accessor$count

first$access
secondfaccess

third$access

first$1D
second$ID
third$ID

vol$tlags

ASGETSFILESSTATUS

The left-adjusted, null-padded ASCII name for
the volume containing this file.

The volume granularity, in bytes.

The storage capacity, in bytes, of the volume
on which this file is stored.

The number of IDs in the file’s accessor list.
(This may have been added after file creation.)

Access masks for as many ID’s as are
indicated by accessor§count.

The bits of the access masks are defined in the
following table. An access right is granted if
the appropriate bit is set to 1; otherwise, that
right is denied. Bit 0 is the low-order bit.

Bit Data File Directory File

0 Delete Delete

| Read Display

2 Append Add Entry

3 Update Change Entry
4-7 Reserved Reserved

1D values for the accessors.

Contains flags for general volume information.
The following flags are defined:

Flag Bit Meaning

vilintegerity 0 0 = The Volume
has been properly
shut down.

1 = Indicates
possible disk
corruption {The
volume was attached
but was not
subsequently shut
down).

A POINTER to a WORD where the sequential condition code will

be returned.

31

ASGETSFILESSTATUS

Description

The ASGETSFILE$STATUS system call returns status and attribute information about
the designated file. Certain information is returned for all file driver types. Additional
information is returned for named files.

Note that this call returns device-dependent information.

Condition Codes

ASGETSFILESSTATUS returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a

concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the FExtended iIRMX IT Basic 1/0 System User’s Guide.

The following list 1s divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

52

The Basic 1/O System can return the following condition codes to the word specified by
the exceptdptr parameter of this system call.

ESOK 0000H No exceptional conditions.
ESEXIST 0006H At least one of the following is true:

¢ One or more of the following parameters is not
a token for an existing object:

- The respSmbox parameter
« The connection is being deleted.

¢ The connection for a remote driver is no longer
active.

ESLIMIT 0004H At least one of the following is true:
» The calling task’s job has already reached its
object limit.

¢ The number of ocutstanding I/O operations for a
remote connection has been exceeded.

ESMEM 0002H The memory available to the calling task’s job is not
sufficient to complete the call.
ESNOTSCON- 0008H This system call is not part of the
FIGURED present configuration.

BIOS System Calls

intel

EXTENDED IRMX*11
EXTENDED I/0 SYSTEM CALLS
REFERENCE MANUAL

Intel Carporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright © 1988, Intel Corporation, All Rights Reserved

PREFACE

This manual documents the system calls of the Extended 1 /O System, a subsystem of the
Extended iRMX IT Operating System. The information provided in this manual is
intended as a reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the Extended iRMX IT Nucleus User’s Guide and with the PL/M-
286 programming language.

CONVENTIONS
System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
S$CREATESFILE instead of RO$SSCREATESFILE). This convention is used to allow
¢asier alphabetic arrangement of the calls. The actual PL/M-286 external-procedure
names must be used in all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the

PL/M-286 calling sequences when doing so. For more information on these calling
sequences refer to the Extended iRMX 11 Programming Techniques Reference Manual.

EIOS System Calls iii

CONTENTS

iRMX® | EXTENDED 1/O SYSTEM CALLS PAGE
Ll IO EOUUCTION 11ttt ettt ettt et bbbt b et s en et r s 1
1.2 System Call DICTHONATY oottt ettt e et et |
CREATESIOSIOB ettt e 5
ROESCREATESIONIOB. ..ottt 12

E XIS IOSTOB ettt 19
GETSLOGICALIDEVICES ST AT S e, 21
Y BRIDSDE TACH S DEVICE e e 20
LOGICALSA T TACHS DEVICE e, 28
LOGICAL SDE TACHS D EVICE e 30
ST AR TS O OB e e e 32
S$CA'I‘AL()G$(‘ONNECT[ON... e 30
S%(l Ob[.. 44
SECREA TESDIRECT ORY oot 40

SS DL T ESCONNECTION e 00
S T SO ON N O T ION S S T A T U S e 62
ROSSSGE TS DI RECT OR Y S ENT R Y e e, 65

S G E TS I L ESSTATUS et e e r et e (7
SEGETIPATHICOMPONENT e e 75
STLOOKFUPSCONNECTION ettt 76

S P N e e, 78

S R E A D S M OV e e e, 82
SERENAMESFILE. oot 86

S S E K e e e 90

S S P L A L e e e e e e e et 04

S TRUNCATESFILE o oottt e amee et eaeenes 118
STUNCATALOGSCONNECTION Lot 121

S W R I T M OV e e e e et 123
VERIFY S USLE R o e e as st s ee st ea et e ies et 127

EIOS System Calls

IRMX® |l
EXTENDED I/O SYSTEM CALLS

1.1 INTRODUCTION

This manual describes the system calls provided by the Extended I/O System. The
manual contuins

¢ A brief explanation of condition codes.
¢ Asystem call dictionary listing the system calls by function.

o Complete descriptions of each system cail.

Throughout this manual, P1./M-286 data types, such as BYTE, WORD, and SELECTOR
are used. In addition, the extended iIRMX 1 data type TOKEN is used. These words are
always capitalized. If your compiler supports the SELECTOR data type, a TOKEN can
be declared literally us SELECTOR. Because TOKEN is not a PL/M-286 data type, you
must declare it to be literally a SELECTOR every place you use it. Definitions of both
PL/M-286 and extended iIRMX 11 data types are given in the Extended iRMX II Extended
1/0 System User's Guide. The word "token™ in lowercase refers to a value that the
extended IRMX [l Operating System returns to a TOKEN (the data type) when it creates
the object.

In each description of a system call, you will tind a list of possible condition codes:. This

list is intended to help vou debug your application system.

1.2 SYSTEM CALL DICTIONARY

The system call dictionary on the next few pages lists system calls by function rather than
alphabetically.

The following abbreviations identity types of files tor which a particular system cali can be
used:

PF means physical file

SF means stream file

NF means named file

ND means named directory

E10S System Calls 1

iRMX® [T EXTENDED 1/0 SYSTEM CALLS

(3]

SYSTEM CALLS FOR /0O JOBS

CREATESIOSJOB

ROESCREATESIOSIOB

EXITSIOSIOB

STARTSIO$JOB

Creates an 1/0 job with a memory pool

of up to IMbyte. .

Creates an [/O job with a memory pool

af up to ToMbytes. e,

Sends a message to a mailbox and deletes

the calling task. ..o

Starts (makes ready) the initial task in an
1/0 job; the task was not started when

the job was created. ..o

SYSTEM CALLS RELATING TO LOGICAL NAMES

HYBRIDSDETACHS-
DEVICE

LOGICALSATTACHS-
DEVICE

LOGICALIDETACHS-
DEVICE

SSCATALOGS-
CONNECTION

SSGETSDIRECTORYS-
ENTRY

SIGETSPATHS-
COMPONENT

SSLOOKSUPS-
CONNECTION

Temporarily removes the correspondence
between a logical name and a physical
device established via

LOGICALSATTACHIDEVICE. .

Creates and catalogs a logical name for a

VIO et e e e

Deletes a logical name created with

LOGICALSATTACHSDEVICE. ...,

Creates a logical name for a connection by
cataloging the connection in the object

directory of a specific job....

Returns a directory entry name to the

CallOT e

Returns the name of a named file as the

file 1s known it its parent directory ..o,

Searches through an 1/0 job's object
directories to find the connection

associated with a logical name.........cooooiin,

PAGE

..................... 5

................... 12

................... 32

................... 26

................... 30

EIOS System Calls

iRMX® [l EXTENDED 1/0 SYSTEM CALLS

SYSTEM CALLS RELATING TO LOGICAL NAMES (continued)

SSUNCATALOGS- Deletes a logical name from the object
CONNECTION directory of a specific job........ 121

SYSTEM CALLS FOR CREATING FILES AND CONNECTIONS

SSATTACHSFILE Creates @ connection to an existing file. PF SF
ND NF 33
S$CREATESDI- Creates a new directory file. ND 46
RECTORY
SSCREATESFILE Creates a new physical, stream, or named PF SF
data tile. 1t cannot create a named NF 50

directory file.

SYSTEM CALLS FOR CHANGING ACCESS AND RENAMING

SYCHANGESACCESS Changes the access list for named file, ND NF 38
SSRENAMESFILE Changes the path of a named file, ND NF 86

SYSTEM CALLS TO MANIPULATE DATA IN FILES

S$CLOSE Closes an open connection to afile. PF SF
ND NF 44
S$OPEN Opens a connection to a tile. PF SF
ND NF 78
SSREADSMOVE Reads a number of bytes froma filetoa PF SF
buffer. ND NF 82
SISEEK Moves the file pointer. PF
ND NF 990
SITRUNCATESFILE Removes information from the end of a NF 118
named data file.
SIWRITEFMOVE Writes a collection of bytes from a butfer PF SF
to « file. ND NF 123

EIOS System Calls 3

iRMX® IT EXTENDED I/0 SYSTEM CALLS

SYSTEM CALL RELATING DIRECTLY TO DEVICES

PAGE

S$SPECIAL Allows your task to perform functions PF SF 94

peculiar to a specific device.
SYSTEM CALLS FOR OBTAINING STATUS
GETSLOGICALS- Provides status information about logical
DEVICESSTATUS OVICES oo e e e oo e et e e 21
SGETCON- Provides status information about file and PF SF
NECTIONSSTATUS device connections. ND NF 62
S$GETSFILESSTATUS Allows a task to obtain information about PF SF

a file. ND NF 67
SYSTEM CALLS TO DELETE FILES AND CONNECTIONS
SSDELETESCON- Deletes a file connection. [t cannot PF SF
NECTION delete a device connection. ND NF 56
S$DELETESFILE Deletes a stream, physical, or named file. PF SF

ND NF 58

SYSTEM CALLS RELATING TO USERS

VERIFYSUSER Verifies a user's name and password. ..o innennnns 127
GETSUSERSIDS Returns the user 1D as defined in the
User Definition FUle. o e 23

4 EI10S System Calls

CREATESIO$JOB creates an 1/0 job containing one task.

io§job = RQSCREATESIO$JOB(pool$min, poolS$max, exceptShandler,
jobSflags, task$priority, start$address,
data$seg, stack$ptr, stack$size, taskS$flags,
msgSmbox, except$ptr);

Input Parameters

pool¥min A DWORD containing the minimum allowable size of the new
job’s pool, in 16-byte paragraphs. For example, a value of 35
indicates thirty-five 16-byte paragraphs. The Extended 1/O System
also uses this value as the initial size of the memory pool for the
new job.

You must not assign pool¥min a value less than 32. Furthermore,
if the base of the stack$ptr parameter is equal to zero, you should
ensure that pool$min is no less than 32 + (number of 16-byte
paragraphs required to contain the stack). If you set pool$min to a
value smaller than these minimums, the Extended 1/0O System will
return an ESPARAM exceptional condition.

The purpose of the pool$min parameter in this system call is
identical to the purpose of the pool$min parameter of the
CREATE$JOB system call provided by the Nucleus. For
information regarding memory pools, refer to the Extended iRMX
11 Nucleus User’s Guide.

pool¥max A DWORD containing the maximum allowable size of the new
job’s pool, in 16-byte paragraphs. For example, a value of 40
indicates forty 16-byte paragraphs.

You must set pool$max to a value no less than pool$min, or the
Extended 1/0 System will return an ESPARAM exceptional
condition.

The purpose of the poolSmax parameter in this system call is
identical to the purpose of the pool$max parameter of the
CREATES$JOB system call provided by the extended iRMX 11
Nucleus. For more information about memory pools, refer to the
Extended iIRMX I Nucleus Reference Manual.

EIOS System Calls 5

CREATES$I0$JOB

exceptShandler

job$tlags

task$priority

A POINTER to a structure of the following form:

DECLARE handler STRUCTURE(
exception$handler$Soffset WORD,
exception$handlerS$base SELECTOR,
exception$mode BYTE)

The Extended [/O System expects you to designate an exception
handler to be used as the new job’s default exception handler. If
you wish to designate the system default exception handler, you can
do so by setting exception$handler$base to SELECTORSOF(NIL).
If vou set the base to any other value, then the Extended 1/O
System assumes that the first two words of this structure point to
the first instruction of your exception handler.

Set the exception$mode to tell the Extended /O System when to
pass controf to the new task’s exception handler. Encode the mode
as follows:

When Control Passes
Value To Exception Handler

—
fa}

Control never passes to handler
On programmer errors only

On environmental conditions only
On all exceptional conditions

b —

For more information regarding exception handlers and exception
modes, refer to the Exrended iRMX H Nucleus Reference Manual.

A WORD that tells the Nucleus whether to check the validity of
objects used as parameters in system calls. If bit T (where bit 0 is
the low-order bit) is zero, the Nucleus will validate objects.

All bits other than bit 1 must be set to zero. This parameter serves
precisely the same purpose as the job$tlags parameter of the
CREATESJORB system call provided by the Nucleus. Refer to the
Extended iRMX IT Nuclews Reference Manual for more information,

A BYTE which establishes the priority of the initial task in the new
jab.

o Ifequal to zero, specifies that the new job’s initial task is to
have a priority equal to the the maximum priority of the initial
job of the Extended I/O System. For more information about
the initial job of the Extended 1/0O System, refer to the chapter
of the Extended iRMX IT Interactive Configuration Urility
Reference Manual relating to the Extended /O System.

EIOS System Calls

startfaddress

dataSseg

stack$ptr

stack$size

E10S System Calls

CREATESIO$JOB

» [f not equal to zero, contains the priority of the initial task of
the new job. If this priority is higher than (numerically less
than) the maximum priority of the initial job of the Extended
1/O System, an ESPARAM error occurs.

A POINTER to the first instruction of the code segment for the
new job's initial task. This code segment can be, but is not required
to be, an extended IRMX 1T segment.

A SELECTOR which,

« if SELECTORSOF(NIL), indicates one of two things. Either
the new job’s initial task uses no data segment, or it creates one
for itself. Tasks can create their own data segments only under
special circumstances. To find out more about these
circumstances, refer to the Extended /O System parameters
section of the Extended iRMX I Interactive Configuration Utility
Reference Manual.

+ it not SELECTORSOF(NIL), contains the base address of the
data segment of the new job’s initial task. This data segment
can be, but is not required to be, an extended iRMX 11
segment.

A POINTER which,

o if the stack pointer is NIL, specifies that the Nucleus should
allocate a stack for the new job's initial task. The length of the
allocated stack is determined by the stack$size parameter of
this system call. Be aware that this stack is not an extended
IRMX I segment.

» if the stack pointer is not equal to NIL, points to the base of
the stack for the new job’s initial task. Because the Nucleus
does not allocate this stack, you must allocate it during the
configuration process, or your application code must allocate it
while the system is running.

A WORD containing the size, in bytes, of the stack for the new
job's inttial task. If you specity less than 200, the Extended /O
System will increase the size to 200. For information regarding the
amount of stack to allocate, refer to the chapter of the Fxtended
IRMX I Programming Techniques Reference Manual that discusses
stack sizes.

CREATESIOSJOB

task$flags

msg$mbox

[f you are allocating the stack during configuration, or if the
application code is allocating the stack while the system is running,
the value of this parameter will be the precise amount of stack that
the system can use. However, if the Nucleus is allocating the stack
for you, it might allocate as many as 15 additional bytes in order to
make the stack occupy whole 16-byte paragraphs.

A WORD in which all bits except the two low-order bits must be
set to zero, The upper 14 bits are reserved for Intel’s use.

Bit Zero: Use the low-order bit (bit 0) to tell the operating system
whether the new job's initial task uses floating-point instructions.
A value of 1 indicates the presence of floating-point instructions,
while a zero indicates the absence of floating-point tnstructions.

Bit One: Bit 1 indicates whether the initial task in the job should
run immediately, or whether it should wait until a
STARTSIOSIOB system call is issued to start it. Set bit 1 to zero if
the task is to be made ready to run; set bit 1 to one if the task is to
wait until the STARTSIOSJOB call is issued.

A TOKEN for a mailbox. When a task exits (by invoking
EXITSIOSIOB), the Extended 1/0 System sends a message to this
mailbox. If you desire no such message, assign msg$mbox a value
of SELECTORSOF(NIL).

The format of the message is as follows:

DECLARE message STRUCTURE(

termination$code WORD,
user$faultScode WORD,
jobStoken TOKEN,
returnSdataSlen BYTE,
return$data(*) BYTE)

where

termination$code A WORD that indicates why an
[/O job terminated, as follows:

CODE MEANING

0 Some task within the job--the terminating task-
-invoked the EXITSIOJOB system call, and
indicated with this code that no problem
caused the termination. The job has not yet
been deleted, and some of its tasks might stili
be ready.

1 The job was deleted because some task
invoked the DELETESJOB system call.

E10S System Calls

any other code

user$fault$code

job$token

returnidata$len

return$data

Output Parameters

CREATES$IOSJOB

Some task within the new job invoked the
other EXITIOJOB system call and indicated
that the job was terminated because some
problem occurred. The job has not yet been
deleted and some of its tasks might still be
ready.

A WORD that contains an encoded reason for
termination of the new job. Whenever the
termination$code has a value other than 0 or
1, this parameter contains an error code that
the terminating task specified when invoking
the EXIT10JOB system call. The precise
meaning of this code is provided by the
terminating task, not by the operating system.

A TOKEN for the job that was terminated.

A BYTE that specities the length (in bytes) of
the return$data parameter described below.
The maximum length 1s 89 (decimal) bytes.

A sequence of BYTES that contain data
specified by the terminating task when it
invoked the EXITSIO$JOB system call.

10$job A TOKEN that represents the newly created job. The operating
system returns a valid token only if the Extended 1/0 System
returns an E3OK condition code.

exceptiptr A POINTER to 4 WORD where the Extended [/O System returns

the condition code.

Description

This system call creates a job whose tasks can invoke the system calls provided by the
Extended I/O System. Such jobs are called [/O jobs, and they differ from other jobs in

these ways:

EIOS System Calls

CREATESIOS$JOB

10

Job parameter detaults: Many of the parameters required by the Nucleus’s
CREATESJOB system call are not required by the CREATESIO$JOB system call.
These parameters include

directorySsize
param$object
max$Sobjects
max$tasks
max$priority

The Extended [/0 System allows you to specify values for some of these parameters
during the system configuration process. The precise instructions for defining these
values are provided in the Extended iRMX 1T Interactive Configuration Utility Reference
Manual.

Default job attributes: The CREATESIO$IOB system call provides default values for
the following /O job attributes:

global joh
default user
default prefix

The values for these attributes are passed from parent job to child job. For instance,
if Job A uses the CREATESIOJOB system call to spawn Job B, then the Extended
1/O System copies the values of the Job A attributes into the Job B attributes. Be
aware that if you change the Job A attributes after Job B has been created, the
changed values are not copied into Job B.

You can set the values for these attributes tor the "first parent” job during the process
of configuring your system.

Notification of job termination: The CREATESIO3JOB system call provides a
mechanism for notifying the parent job of the termination of the 1/O job. The
Extended /O System implements this mechanism by sending a termination message
to a mailbox of your choice whenever a task in the [/0 job terminates (calls

EXIT$IOSIOB). You spectfy the mailbox by using the msg§mbox parameter of this
system call.

The CREATESIOSIOB system call can be called only from another 1/O job. You can set
up one or more initial [/O jobs while configuring the operating system. For more

information about configuration, reter to Chapter 7 of the Extended iRMX Il Extended /0
System User’s Guide.

Do not delete a task in an [/O job if the task is using a connection (that is, if the
connection has not been deleted). [t vou do so, the connection will not be available to any
other task.

E10S System Calls

Condition Codes
ESOK
ESCONTEXT
ESEXIST

ESMEM

0000H
0005H
0006H

JoozH

ESNOTICONFIGURED (008H

ESNOUSER

ESPARAM

E$1O5IOB

E10S System Calls

8021H

BO04H

0047 H

CREATESIOS$JOB

No exceptional conditions.
The calling task’s job is not an [/O job.
At least one of the following is true:

* The token cataloged under the name
ROGLOBAL (the global job) is not a token for
an existing object. (See the Extended iRMX 1]
Basic /0 System User's Guide for information
on the global object directory.)

e The value assigned to the msgSmbox parameter
is not a token for an existing mailbox.

¢ The user TOKEN is not valid.
The memory available to the calling task’s job 1s not
sufficient to complete the call.
This system call is not part of the present
configuration.
The calling task’s job does not have a default user, or
the object cataloged under the logical name
R?IOUSER is not a user object. (See the Extended

IRMX IT Basic I/O Svstem User’s Guide for
information on R?IOUSER.)

At least one of the following is true:

¢ The value assigned to the pool$min parameter
is less than 32 decimal, or it is greater than the
value assigned to the pool$max parameter.

o The value assigned to task$priority is not zero
and is greater than (numerically less than) the
maximum priority of the calling I/O job.

s The value assigned to the exceptionfmode
parameter is outside the range 0-3, inclusive.

e Either the name or password contains invalid
characters.

The calling task’s job 1s not an 1/O job.

11

RQESCREATESIOSIOB creates an 1/0 job containing one task with a maximum of 16M

bytes of memory pool.

io$job = RQESCREATESIOS$JOB{poolsmin, pool$max, except$handler,

jobSflags, task§priority, start$address,
data$seg, stackS$ptr, stack$size, taskSflags,
msg$mbox, exceptSptr);

12

Input Parameters

peol$min

pool$max

A DWORD containing the minimum allowable size of the new
job’s pool, in 16-byte paragraphs. For example, a value of 35
indicates thirty-five 16-byte paragraphs. The Extended /O System
also uses this value as the initial size of the memory pool for the
new job. The memory initially allocated is always contiguous. If
additional memory 1s requested, it 1s not necessarily contiguous.

You must not assign pool$min a value less than 32. Furthermore,
if the base of the stack$ptr parameter is equal to zero, you should
ensure that pool§min is no less than 32 + (number of 16-byte
paragraphs required to contain the stack). If you set poolSmin to a
vitlue smaller than these minimums, the Extended 1/O System will
return an EJPARAM exceptional condition.

The purpose of the pool$min parameter in this system call is
identical to the purpose of the pool§min parameter of the
CREATESIJOB system call provided by the Nucleus. For
information regarding memory pools, refer to the Extended iRMX
11 Nucleus Reference Manual.

A DWORD containing the maximum allowable size of the new
joby's pool, in 16-byte paragraphs. For example, a value of 40
indicates forty 16-byte paragraphs.

You must set pool$max to a value no less than pool$min, or the
Extended 1/0 System will return an ESPARAM exceptional
condition.

The purpose of the pool$max parameter in this system call is
identical to the purpose of the pool$max parameter of the
CREATESJOB system call provided by the extended iRMX 11
Nucleus. For more information about memory pools, refer to the
Extended iRMX I Nucleus Reference Manual.

EIOS System Calls

except$handler

job$flags

taskSpriority

EIOS System Calls

RQE$CREATES$IOS$JOB

A POINTER to a structure of the following form:

DECLARE handler STRUCTURE(
exceptionShandlerS$offset WORD,
exception$handler$base SELECTOR,
exception$mode BYTE)

The Extended I/O System expects you to designate an exception
handler to be used as the new job’s default exception handler. If
you wish to designate the system default exception handler, you can
do so by setting exception$handler$base to SELECTOR$OF(NIL).
If you set the base to any other value, then the Extended 1/0
System assumes that the first two words of this structure point to
the first instruction of your exception handler.

Set the exception$mode to tell the Extended 1/0 System when to
pass control to the new task’s exception handler. Encode the mode
as tollows:

When Control Passes

Value To Exception Handler
0 Control never passes to handler
l On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers and exception
modes, refer to the Extended iRMX I Nucleus Reference Manual.

A WORD that tells the Nucleus whether to check the validity of
objects used as parameters in system calls. 1f bit 1 (where bit 0 is
the low-order bit) is zero, the Nucleus will validate objects.

All bits other than bit 1 must be set to zero. This parameter serves
precisely the same purpose as the job$flags parameter of the
CREATES$JOB system call provided by the Nucleus. Refer to the
Extended iRMX I Nucleus Reference Manual for more information.

A BYTE which cstablishes the priority of the initial task in the new
job.

o It equal to zero, specifies that the new job’s initial task is to
have a priority equal to the the maximum priority of the initial
job of the Extended 1/0 System. For more information about
the initiul job of the Extended 1/O System, refer to the chapter
of the Extended IRMX I Interactive Configuration Utility
Reference Manual relating to the Extended 1/0 System.

RQE$CREATES$IO$JOB

14

startSaddress

data$seg

stack$ptr

stack$size

+ If not equal to zero, contains the priority of the initial task of
the new job, If this priority is higher than (numerically less
than) the maximum priority of the initial job of the Extended
I/O System, an E3SPARAM error occurs.

A POINTER to the first instruction of the code segment for the
new job’s initial task. This code segment can be, but is not required
to be, an extended iRMX II segment.

A SELECTOR which,

« if SELECTOR$OF(NIL), indicates one of two things. Either
the new job’s initial task uses no data segment, or it creates one
for itself. Tasks can create their own data segments only under
special circumstances. To find out more about these
circumstances, refer to the Extended [/O System parameters
section of the Extended iRMX II Interactive Configuration Utility
Reference Manual.

o if not SELECTOR$OF(NIL), contains the base address of the
data segment of the new job’s initial task. This data segment
can be, but is not required to be, an extended iRMX 11
segment.

A POINTER which,

» if the stack pointer is NIL, specifies that the Nucleus should
allocate a stack for the new job’s initial task. The length of the
allocated stack is determined by the stack$size parameter of
this system call. Be aware that this stack is not an extended
iRMX II segment.

« if the stack pointer is not equal to NIL, points to the base of
the stack for the new job’s initial task. Because the Nucleus
does not allocate this stack, you must allocate it during the
configuration process, or your application code must allocate it
while the system is running.

A WORD containing the size, in bytes, of the stack for the new
job’s initial task. If you specify less than 200, the Extended I/O
System will increase the size to 200. For information regarding the
amount of stack to allocate, refer to the chapter of the Extended
IRMX II Programming Technigues manual that discusses stack sizes.

If you are allocating the stack during configuration, or if the
application code is allocating the stack while the system is running,
the value of this parameter will be the precise amount of stack that
the system can use. However, if the Nucleus is allocating the stack
for you, it might allocate as many as 15 additional bytes in order to
make the stack occupy whole 16-byte paragraphs.

EIOS System Calls

RQE$SCREATES$IO$JOB

task$tlags A WORD in which all bits except the two low-order bits are set to
ZEero.

Bit Zero: Use the low-order bit (bit 0) to tell the operating system
whether the new job’s initial task uses floating-point instructions.
A value of 1 indicates the presence of floating-point instructions,
while a zero indicates the absence of floating-point instructions.

Bit One: Bit 1 indicates whether the initial task in the job should
run immediately, or whether it should wait until a

STARTIOSJOB system call is issued to start it. Set bit 1 to zero if
the task is to be made ready to run; set bit 1 to one if the task is to
wait until the STARTIOJOB call is issued.

msg$mbox A TOKEN for a mailbox. When a task exits (by invoking
EXITSIO$IOB), the Extended 1/0 System sends a message to this
maitbox. 1f you desire no such message, assign msgSmbox a value
of zero.

The format ot the message is as follows:

DECLARE message STRUCTURE(
termination$code WORD,
userS$faultScode WORD,
jobStoken WORD,
return$data$len BYTE,
return$data(*) BYTE)

where

termination§code A WORD that indicates why an [/O job
terminated, as follows:

CODE MEANING

0 Some task within the job--the terminating task-
-invoked the EXITSIO$JOB system call, and
indicated with this code that no problem
caused the termination. The job has not yet
been deleted, and some of its tasks might still
be ready.

1 The job was deleted because some task
invoked the DELETES$JOB system call.

EIOS System Calls IS

RQE$CREATESIOSJOB

16

any other code

user$faultcode

job$token

return$data$len

Some task within the new job invoked the
EXITIOSIOB system call and indicated that
the job was terminated because some problem
occurred. The job has not yet been deleted
and some of its tasks might still be ready.

A WORD that contains an encoded reason for
termination of the new job. Whenever the
termination$code has a value other than 0 or
1, this parameter contains an error code that
the terminating task specified when invoking
the EXITSIO$JOB system call. The precise
meaning of this code is provided by the
terminating task, not by the operating system.

A TOKEN for the job that was terminated.
A BYTE that specifies the length (in bytes) of

the return$data parameter described below.
The maximum length is 89 (decimal) bytes.

return$data A sequence of BYTES that contain data
specified by the terminating task when it
invoked the EXIT10JOB system call.
Output Parameters
iv$job The TOKEN that represents the newly created job. The operating

system returns a valid token only if the Extended 1/0O System
returns an E$OK condition code.

exceptyptr A POINTER to a WORD where the Extended I/O System returns

the condition code.

Description

This system call creates a job whose tasks can invoke the system calls provided by the
Extended 1/0O System. Such jobs are called I/O jobs, and they differ from other jobs in

these ways:

+ Job parameter defaults: Many of the parameters required by the Nucleus’s
CREATESJOB system call are not required by the CREATEIOJOB system call.

These parameters include

directory$size
paramobject
max3objects
max$tasks
max$priority

EIOS System Calls

RQE$SCREATES$IO$JOB

The Extended [/O System allows you to specify values for some of these parameters
during the system configuration process. The precise instructions for defining these
values are provided in the Extended iRMX 11 Interactive Configuration Utility Reference
Manual.

» Default job attributes: The CREATESIO$JOB system call provides default values for
the following 1/O job attributes:

global job
default user
default prefix

The values for these attributes are passed from parent job to child job. For instance,
if Job A uses the ESCREATESIOSJOB system call to spawn Job B, then the Extended
1/0O System copies the values of the Job A attributes into the Job B attributes. Be
aware that if you change the Job A attributes after Job B has been created, the
changed values are not copied into Job B.

You can set the values for these attributes for the "first parent” job during the process
of configuring your system.

« Notification of job termination: The CREATESIOSJOB system call provides a
mechanism for notifying the parent job of the termination of the 1/0 job. The
Extended [/O System implements this mechanism by sending a termination message
to a mailbox of your choice whenever a task in the [/O job terminates (calls
EXITSIOSJOB). You specify the mailbox by using the msg$mbox parameter of this
system call.

The ESCREATESIOFJOB system call can be called only from another /O job. You can
set up one or more initial I/O jobs while configuring the operating system. For more
information about configuration, refer to Chapter 7 of the Extended iRMX I Extended 1/0
Svstem User's Guide.

Do not delete a task in an [/O job if the task is using a connection {that is, if the
connection has not been deleted). [t you do so, the connection will not be available to any
other task.

Condition Codes
E$OK 0000H No exceptional conditions.
ESCONTEXT 0005H The calling task’s job is not an 1/0O job.

EIOS System Calls 17

RQESCREATESIO$JOB

18

ESEXIST 0006H

ESMEM 0002H

ESNOTSCONFIGURED 0008H

ESNOUSER 8021H
ESPARAM 8004H
ESIOSIOR (047H

At least one of the following is true:

e The token cataloged under the name
RQGLOBAL (the global job) is not a token for
an existing object. (See the EXTENDED
iRMX I1 BASIC [/O SYSTEM USER’S
GUIDE for information on the global object
directory.)

¢ The value assigned to the msgSmbox parameter
is not a token for an existing mailbox.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the present
configuration.

The calling task’s job does not have a default user, or
the object cataloged under the logical name
R?IOUSER is not a user object. (See the
EXTENDED iRMX 1l BASIC 1/O SYSTEM
USER’S GUIDE for information on R?IOUSER.)

At least one of the following is true:

o The value assigned to the pool$min parameter
is less than 32 decimal, or it is greater than the
value assigned to the pool¥max parameter.

+ The value assigned to task$priority s not zero
and is greater than (numerically less than) the
maximum priority of the calling 1/0 job.

o The value assigned to the exception$mode
parameter is outside the range 0-3, inclusive.

The calling task’s job is not an 1/O job.

EIOS System Calls

EXITIOIOB sends a message to a previously designated mailbox and deletes the calling
task.

CALL RQSEXITS10J0B(user$faultScode, return$data$ptr, except$ptr);

Input Parameters

user$faultfeode A WORD containing the encoded reason for terminating the job.
If you terminate the job under normal circumstances, you should
enter a value of zero. If you terminate the job because of a
problem, you should enter an error code that identifies the
problem. The Extended /O System sends a structure containing
the value you enter to the mailbox specified in the
ESCREATESIO$JOB system call.

return$data$ptr A POINTER to a buffer containing a STRING containing data
(provided by the calling task) to be returned to the message
mailbox specified in the CREATESIO$JOB system call. If you
enter NIL, no data is returned. If the string is longer than 89
(decimal) bytes, only the first 89 bytes are returned.

Output Parameter

exceptdptr A POINTER to a WORD where the Extended /O System returns
the condition code.

Description

The EXITSIOSIOB system call complements the CREATESIOSJOB system call. Using
the EXITIOJOB system call, a task can delete itself and have the Extended 1/0O System
notify the parent job of the deletion.

When a task in an 1/0 job {a job created by the CREATESIOS$JOB system call) invokes
the EXITSIOSJOB system cali, two things happen:

¢ The Extended I/O System deletes the task (but not the job containing the task) that
invoked the EXITFIO3JOB system call.

o The Extended 1/0 System sends a termination message to the mailbox specified in the
CREATESIOS$JOB system call.

EIOS System Calls 19

EXIT10JOB

Special Circumstances

Your application code can use this system call to bring about an orderly deletion of an
[/O job. To do this, have a task within the [/O job invoke this system call. Then have a
task in the parent job receive the message and delete the 1/O job. Under certain
circumstances, this system call does not delete the calling task or does not send a
termination message.

Calling Task Not Deleted
Although the EXITSIOSJOB system call generally deletes the calling task, this deletion

does not occur in the following circumstances:

» [fthe DELETESTASK system call (which the Extended [/O System calls) returns an
exception code to the Extended /O System.

o If the calling task is an interrupt task.
In both cases, the Extended [/O System returns control to the calling task and issues an

exceptional condition code to indicate the nature of the problem. Under any other
circumstance, the Extended 1/0 System deletes the calling task.

Even if it fails to delete the task, the Extended 1/O System sends the termination message
if one has been requested, except for the following circumstances:

o If the msg$mbox parameter of the CREATESIOJOB was set to
SELECTORSOF(NIL).

+ If the mailbox specified in the msg$mbox parameter of the CREATEIOJOB system
call no longer exists.

Condition Codes

ESCONTEXT 0005H The task invoking the EXITIOJOB system call is
an interrupt task and cannot be deleted.
ESNOTSCON- 0008H This system call is not part of the
FIGURED present configuration.

20 EIOS System Calls

The GETSLOGICALSDEVICES$STATUS system call provides status information about
a logical device.

CALL RQGETLOGICALSDEVICESSTATUS(logSnameptr, devinfo$ptr,

except$ptr);
Input Parameter
log$nameSptr A POINTER to a STRING containing the logical name under
which the logical device object is cataloged in the root object

directory.

Output Parameters

devSinfo$ptr A POINTER to a structure in which the Extended I/O System
returns the status information. You can allocate memory for this
structure by requesting an extended iRMX 11 segment or by
reserving the memory in your code. The structure must have the
following form:

DECLARE dev$info STRUCTURE(

device$name(15) BYTE,
fileSdriver BYTE,
num$conns WORD,
owner5id WORD)
where
device$name A STRING containing the physical name
associated with the device. This is the name
established during Basic 1/O System
configuration.
file$driver The file driver associated with the device.

Possible values include

value file driver
1 physical
2 stream
4 named
5 remote

ELQOS System Calls 21

GETSLOGICALSDEVICESSTATUS

num$conns The current number of connections to the
device.
owner$id The owner ID for this device. This ID is the

first 1D listed in the default user object of the
attaching task’s job.

exceptdptr A POINTER to & WORD in which the Extended I/O System
returns the condition code.

Description

The GETSLOGICALSDEVICESSTATUS system call allows a task to obtain status
information about logical names that represent devices. The Extended [/O System does
not check access before returning status information.

Condition Codes

E$OK 0000H No exceptional conditions.
ESEXIST 0006H The device connection corresponding to the logical
name is being deleted.
ESLIMIT 0004H Either the user object or the calling task’s job is
already involved in 255 (decimal) 1/O operations.
E$LOGINAMES- 0045H The logical name was not found in the
NEXIST root object directory.
ESLOGSNAMES- 0040H The syntax of the specified logical name
SYNTAX is incorrect because at least one of the following

conditions s true:
+ The name was missing matching colons (:).

» The STRING pointed to by the log8name$ptr
parameter 15 of zero length or has a length
greater than 12 (not including colons (:).

¢ The logical name contains invalid characters.

ESNOTICON- 0008H This system call is not part of the
FIGURED present configuration.
ESNOTSDEVICE 8041H The specitied logical name does not represent a

valid device connection.

(&3
[§¥]

EIOS System Calls

The GETSUSERSIDS system call returns the user ID(s) associated with a USER defined
in the User Definition File (UDF).

CALL RQSGETSUSERSIDS (nameptr, idsptr, exceptSptr);

Input Parameter

name$ptr A POINTER to a STRING containing the user name. (Only the
first eight characters are significant.)

Output Parameters

ids3ptr A POINTER to a structure where the 1D(s) associated with the
user name will be placed. The structure has the following form:

DECLARE ids STRUCTURE ¢
length WORD,
count WORD,
id(*) WORD 3}

where

length Should be set by the caller to the maximum
number of ID(s) desired.

count Will contain the number of valid IDs in the 1D
array after GETSUSERSIDS has returned to
the caller. This value will never be greater
than the ids.length. The user does not need to
initialize this vajue.

id Is an array of IDs obtained from the UDF.
The length of this array is contained in
ids.count. The user does not need to initialize
this value.

except$ptr A POINTER to a WORD where the Extended 1/O System returns
a condition code.

EIOS System Calls 23

GETSUSERSIDS

Description

This system call returns the user [D(s) associated with a user name defined in the User
Definition File (UDF). It searches the file :CONFIG:UDF for the user name pointed to
by the name$ptr parameter and if found, returns that user’s ID(s). Refer to the section
on configuration in the Extended iRMX [1 Extended 1/0 System User's Guide for details.

Condition Codes

ESOK
ESBADSCALL

ESCONTEXT
ESDEVIDETACHING

ESDEVFD

ESUDFSFORMAT

ESFACCESS

ESFLUSHING
ESFNEXIST

ESFTYPE
ESILLVOL

ESINVALIDSFNODE

ESIOSHARD

E3IOFMEM

ESIOSOPRINT

O000H
3005H

0005H
0039H

0022H

O048H

0026H

002CH
O021H

(0Z7H
(002DH

O03DH

(0052H

0042H

0053H

No exceptional conditions.

A task wrote over the interface library or over the
EI1OS job.

The calling job is not an /O job.

An 1/O operation could not be performed on the
device (:SD) because 1t was being detached.

The device (:S1):) cannot be used with the file driver
as specified in the preceding logical attach
operation.

The UDF 1s not in the correct format.

The user does not have the proper access rights for
the requested operation.

The device (:SD:) is being detached.
At least one of the following is true:

o The file or a file in its path does not exist.

¢ The specitied physical device was not found.
A puth component is not a directory file.

The file driver given in the volume label conflicts
with the file driver specified in the preceding logical
attach operation.

The tnode associated with a file is either marked not
allocated. or the fnode number 1s out of range. This
tile should be deleted.

A hard error occurred; the BIOS cannot retry the
request.

The BIOS job did not have enough memory to
perform the requested function.

The device 1s off-line; operator intervention is
required.

E1OS System Calls

ESIOS$SOFT

ESIO3UNCLASS
ESIO$WRIPROT

ESLIMIT

ESLOGINAMES-

NEXIST

ESMEDIA

ESNAMESNEXIST

ESNOPREFIX
ESNOUSER
ESNOTSCON-

FIGURED
ESPARAM

ESSHARE

EIOS System Calls

005TH

0050H
0054H
0004H
0045H

0044H
0049H
822H

8021H

0028H

GETSUSERSIDS

A soft error occurred and the BIOS has retried the
operation and has failed; a retry is not possible.

An unclassified [/O error occurred.
The volume specified in this call is write protected.
The root job object directory is full.

The logical name was not tound in the
caller’s object directory, the global job object
directory, or the root job object directory.

The device associated with the system call is oft-line.
The name specified in this call is not defined.

The caller’s job does not have a default prefix, or it is
mvalid.

The caller’s job does not have a default user or it is
invalid.

This system call is not part of the
present configuration.

At least one of the following 1s true:
o The name$ptr parameter is equal to NIL.

o The length field of the ids structure is equal to
LeTO,

e The name contains invalid characters.

The file is not sharable with the requested access.

25

The HYBRIDS$DETACHSDEVICE system call removes the correspondence between a
logical name and a physical device without removing the logical name from the root ohject
directory.

CALL RQSHYBRIDSDETACHSDEVICE(logSname$ptr, except$ptr);

Input Parameter

logSnameS$ptr A POINTER to a STRING containing the logical name under
which the logical device object is cataloged in the root object
dircetory.

Output Parameter

except$ptr A POINTER to a WORD where the Extended 1/O System returns
the condition code.

Description

HYBRIDSDETACHS$DEVICE scevers an association created by a call to
LOGICALSATTACHSDEVICE without deleting the corresponding entry in the root
object directory. When a task calls HYBRIDSDETACHSDEVICE, the Extended 1/O
System detaches the device by issuing the Basic [/O System
ASPHYSICALIDETACHSDEVICE call. In so doing, the Extended 1/0 System specifies
the hard detach option which deletes all connections to files on the device.

A device detached using HYBRIDSDETACHSDEVICE can be reattached in one of two

ways:

o Atask can issue the Basic 1/O System ASPHYSICALSATTACHSDEVICE system
call.

o Atask can use the device's logical name (which is still cataloged in the root object
directory) as the pretix portion of a pathname when issuing an Extended /O System
call. In this case, the Extended [/O System physically attaches the device using the
parameters originally specified when the logical name was established (via
LOGICALSATTACHSDEVICE).

A task cannot use LOGICALSATTACHSDEVICE to reattach a device that
HYBRIDSDETACHS$ DL VICE detached. Before reattaching a device with
LOGICALSATTACHSDEVICE, a task must first issue LOGICALSDETACHS$DEVICE.

EIOS System Calls

HYBRIDSDETACHS$DEVICE

The HYBRIDSDETACHS$DEVICE system call is particularly useful for tasks that must
temporarily detach a device and attach it in a different way (for example, attaching a disk
as a physical device when formatting a volume). These tasks can call
HYBRIDSDETACHSDEVICE to detach the device, attach the device using
ASPHYSICALSATTACHSDEVICE, perform the special processing on the device, and
detach the device using ASPHYSICALSDETACHSDEVICE. Later, when a task includes
the device's logical name in an Extended I/O System call, the Extended 1/0O System
automatically reattaches the device in the previous manner.

The HYBRIDSDETACHSDEVICE system call can be issued as follows;

» By the task ("attaching task™) that created the logical name by issuing
LOGICALSATTACHSDEVICE, or by some other task in the same job as the
attaching task.

s By any task in a job whose default user object contains the file’s owner 1D in its 1D list.

+ By the System Manager.

Condition Codes

ESOK 0000H No exceptional conditions.
ESEXIST 0006H The device connection corresponding to the logical
name 1s being deleted.
ESLIMIT 0004H Either the user object or the calling task’s job is
already involved in 255 (decimal) 1/O operations.
ESLOGSNAMES- 0045H The logical name was not found in the root
NEXIST object directory.
ESL.OGSNAMES- 0040H The syntax of the specified logical name
SYNTAX is incorrect because at least one of the following

conditions is true:

e The STRING pointed to by the log$name$ptr
parameter is of zero length, has a length greater
than 12 not including colons (1), or is missing
matching colons.

» The logical name contains invalid characters.

ESNOTSCON.- 0008H This system call is not part of the
FIGURED present configuration.
ESNOTSDEVICE BO41H The specified logical name does not represent a
valid device connection.
ESNOTSOWNER 0046H The user (specified by the default user object) is not

the user that attached the device.

EIOS System Calls 27

The LOGICALSATTACHSDEVICE system call assigns a logical name to a physical

device.

CAUTION

Any task that uses this system call loses its device independence. To
maintain as much device independence as possible in your application, a
few selected tasks should perform all attaching and detaching of devices.

CALL RQSLOGICALSATTACHSDEVICE(logS$name$ptr, devSname, fileSdriver,
except$ptr);

Input Parameters

log$name$ptr A POINTER to a STRING (of 1 to 12 characters) containing the
logical name to be assigned to a device. The name can be
delimited with colons (:). The operating system removes the
colons so that a logical name with colons is the same as one without
(e.g., :F0: is effectively the same as F0), and colons do not count in
the length of the name. If you intend to use this logical name as
part of a pathname in other system calls, enclose it in colons.

deviname A POINTER to a STRING containing the name of the device to
which the logical name is assigned. This device name is the name
of a Device-Unit Information Block (DUIB) spectfied during Basic
/O System configuration.

file$driver A BYTE specifying which Basic 1/O System file driver to use with
the device. Possible values are as follows:

value file driver
1 physical
2 stream
4 named
5 remote

Output Parameter

exceptiptr A POINTER to a WORD where the Extended /O System returns
the condition code.

28 EIOS System Calls

LOGICALSATTACHSDEVICE

Description

LOGICALSATTACHSDEVICE assigns a logical name to a physical device. This system
call creates a Logical Device Object that corresponds to a physical device. This Logical
Device Object is cataloged in the root object directory under the logical name pointed to
by log¥nameS$ptr. The Logical Device Object must be cataloged before the Extended 1/0
System can make connections to files on the device.

The first Extended 1/O System call that uses the logical name as a prefix in a path name
causes the physical device to be attached. (The Extended [/O System uses the Basic 1/O
System call ASPHYSICALSATTACHSDEVICE.) The logical name can be used as a
prefix in other system calls and can be deleted by LOGICALSDETACH$DEVICE.

Because of the nature of LOGICALSATTACHSDEVICE, some exception codes that

result because of errors in this system call are not returned until the Extended [/O System
tries to attach the device with ASPHYSICALSATTACHSDEVICE.

Condition Codes

E$OK O000H No exceptional conditions.

ESCONTEXT 0005SH The root object directory already contains an entry
with the name pointed to by the log$nameSptr
parameter.

ESLIMIT O0004H At least one of the following is true:

¢ The calling task's job object directory is full.
» The root object directory 1s full.

o The calling task’s job is not an 1/O job.

ESMEM 0002H The memory available to the calling task’s job is not
sufficient to complete this call.
ESLOGINAMES- 0040H The specified logical name 1s
SYNTAX syntactically incorrect because at least one of the

following conditions is true:

+ The STRING pointed to by the log§nameSptr
parameter is of zero length or has a length of
greater than 12 (including the colons).

» The logical name contains invalid characters.

ESNOTSCON- 0008H This system call is not part of the
FIGURED present configuration.

EIOS System Calls 29

The LOGICALSDETACHS$DEVICE system call removes the correspondence between a
logical name and a physical device, and removes the logical name from the root object
directory.

CALL RQ$LOGICALSDETACHSDEVICE(logSname$ptr, except$ptr);

Input Parameter

logbname$ptr A POINTER to a STRING containing the logical name under
which the logical device object is catalogued in the root object
directory.

Output Parameter

exceptiptr A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

LOGICALSDETACHSDEVICE severs an association created by a call to
LOGICALSATTACHSDEVICE and deletes the corresponding entry in the root object
directory. After LOGICALSDETACHSDEVICE is issued, users cannot create new
connections using the logical name as a prefix. When the last file connection on the
physical device is severed, the Extended 1/O System detaches the device (issues the Basic
I/O System call ASPHYSICALSDETACHSDEVICE).

The LOGICALSDETACHS$DEVICE system call can be issued as follows:

+ By the task ("attaching task") that created the logical name by issuing
LOGICALSATTACHSDEVICE, or by some other task in the same job as the
attaching task.

» By another job having the same owner ID in its default user object.

* By the System Manager.

Condition Codes
ESOK 0000H No exceptional conditions.

ESEXIST 0006H The device connection corresponding to this logical
name is being deleted.

30 EIOS System Calls

ESLIMIT

ESLOGSNAMES-
NEXIST

ESLOGSNAMES-
SYNTAX

E$SMEM

ESNOTSCON-
FIGURED

ESNOTSDEVICE

ESNOTSOWNER

EIOS System Calls

0004H

0045H

0040H

000ZH

0008H

8041H

(0046H

LOGICALSDETACHSDEVICE

One of the following is true:

» The job has reached the object limit of the
calling task’s object directory.

» LCither the user object or the calling task’s job is
already involved in 255 (decimal) I/O
operations.

¢ The calling task’s job is not an I/O job.

The logical name was not found in the root
object directory.

The syntax of the specified logical name
is incorrect because at least one of the following
conditions is true:

o The STRING pointed to by the log§name$ptr
parameter is of zero length or has a length
greater than 12 (not including colons (2)).

¢ The logical name contains invalid characters.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the

present configuration.

The specified logical name does not represent a
valid device connection.

The user (specified by the default user object) is not
the user that attached the device.

STARTSIOSJOB starts the execution of a task in an 1/O job. The task was not started
when the 1/0 job was created.

CALL RQSSTARTS10SJOB(ioSjob, except$ptr);

Input Parameter

10§job TOKEN for the 1/0 job to be started. This is the TOKEN that was
returned by the call to CREATESIOS$JOB.

Output Parameter

exceptptr A POINTER to a WORD where the Extended [/O System returns
the condition code.

Description

When you call RQESCREATESIOS$JOB you can specify (with the task$flags parameter)
that the task in the new job not start running until the STARTSIOS$JOB call is issued. In
this way you can initialize any items that need to be set before the initial task in the new
job starts running. For example, you can create a job, catalog a logical name in the new

job’s object directory, and then issue START$IOSJOB.

Condition Codes

ESOK O000H No exceptional conditions.
ESNOT$CON- 0008H This system call is not part of the
FIGURED present configuration.
ESTIME 000IH The job cannot be started yet, probably because the

operating system has not finished processing the
CREATESIOS$JOB call that created this job.

32 EIOS System Calls

The SSATTACHSFILE system call creates a connection to an existing file.

connection = RQ$SSATTACHSFILE(path$ptr, exceptSptr);

Input Parameter

path$ptr A POINTER to a STRING containing the pathname of the file to
be attached.

Output Parameters
connection The TOKEN that represents the new connection to the file.

exceptptr A POINTER to a WORD where the Extended 1/0O System returns
the condition code.

Description

This system call allows a task to obtain a connection to any named, physical, or stream
file.

The Extended 1/O System allows any task to attach any file. However, if the file being
attached is a named file, the Extended 1/0 System computes access rights for the
connection. These access rights are hased on the file's access list and the user 1Ds in the
default user object of the calling task’s job. (Refer to extended iRMX 11 Operating
System user guides for more information.) If the file’s access list allows no access to the
users listed in the default user object, the call creates the connection, but it allows no
access.

Condition Codes

E$OK 0000H No exceptional conditions.
ESALREADYS- 0038H The Extended 1/0 System cannot attach the
ATTACHED device containing the file because the Basic I/O
system has already attached the device.
ESCONTEXT 0005SH The calling task’s job is not an I/O job.

ESDEVEDETACHING 0039H The device containing the specified file is in the
process of being detached.

E10S System Calls 33

SSATTACHSFILE

ESDEVFD

ESEXIST
E$FACCESS
ESFNEXIST
ESFTYPE

ESILLVOL

E$IN.VAUD$FNODF,
EIOHARD
E$IO§MEM
E$IOSOPRINT

ESIO$SOFT

ESIOSUNCLASS
ESLIMIT

0022H

0006H

0020H

0021H

0027H

002DH

003DH

0052H

0042H

0053H

(0051H

(0050H
0004H

The Extended 1/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it found that the
device and the device driver specified in the logical
attachment were incompatible.

The device connection TOKEN is invalid.

The default user object is not allowed access to the
file. See the Description section for more
information.

A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

The specified path ts attempting to use a data file as
a directory.

The Extended /O System attempted the physical
attachment of a device that had formerly been only
logically attached. During this process, it examined
the volume label and found that the volume does not
contain named files. This prevented the Extended
/0 System from completing physical attachment
because the named file driver was requested during
logical attachment.

The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

A hard 1/O error occurred. A retry is probably
useless.

The BIOS job did not have enough memory to
perform the requested function.

The device was off-line. Operator intervention is
required.

A soft 1/O error occurred. The Basic I/O System
tried to perform the operation a number of times
and failed (the number of retries is a configuration
parameter). Another retry might still be successful.

An unknown type of 1/O error occurred.
At least one of the following is true:
» The calling task reached the object limit.

» The user object or the calling task’s job is
already involved in 255 {(decimal) I/O
operations.

EIOS System Calls

ESLOGSNAMES-
NEXIST

ESLOGSNAMES-
SYNTAX

ESMEDIA

ESMEM

ESNOSPREFIX

ESNOTSCON-
FIGURED

ESNOTSLOGENAME

EINOSUSER

ESPARAM

ESPATHNAMES-
SYNTAX

EIOS System Calls

0045H

(040H

(0044H

0002H

8022H

O0008H

8040H

S021H

0041

003EH

SSATTACHSFILE

o The calling task’s job is not an I/O job.

The specified path contains an explicit

logical name, but the call was unable to find this
name in the object directories of the calling task’s
local job, the global job, or the root job.

The specified logical name contains at
least one of the following syntax errors:

o The specified path starts with a colon (:),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

s The specified path contains a logical name that
is either longer than 12 characters (including
colons), has no characters, or contains invalid
characters.

The device containing the specified file is not on-
line.

The memory available to the calling task’s job is not
sufficient to complete the call.

You did not specify an explicit prefix (logical name),
and the default prefix for the calling task’s job is
either undefined, or it is not a valid device
connection or file connection.

This system call is not part of the
present configuration.

The specified path contains a logical name that
represents an object that is neither a device
connection nor a file connection.

The calling task’s job does not have a default user, or
its default user is not a user object.

The Extended /0 System attempted the physical
attachment of a device that had formerly been only
logically attached. The logical attachment referred
to a file driver (named, physical, or stream) that is
not configured into your system, so physical
attachment is not possible.

The specified pathname contains invahid
characters.

The SSCATALOGSCONNECTION system call creates a logical name for a connection
by cataloging the connection in the object directory of a specific job.

CALL RQSS$CATALOGSCONNECTION(job, connection, logSnameSptr,
except$ptr)

Input Parameters

job A TOKEN for the job in whose object directory the logical name is
to be cataloged. If the value of this parameter is
SELECTORSOF(NIL), the Extended 1/0 System catalogs the

connection in the object directory of the calling task’s job.

connection A TOKEN for the connection to be assigned the logical name. If
the value of this parameter is SELECTORSOF(NIL), the
Extended 1/0 System obtains the connection by looking up the
name in the object directory of the calling task’s job.

log¥name$ptr A POINTER to a buffer containing the logical name, which must
be a STRING of 12 or fewer characters. The name can be
delimited with colons (). The operating system removes the
colons so that a logical name with colons is the same as one without
(e.g.. :FO: 15 effectively the same as FO); colons do not count in the
length of the name. If you expect to use this logical name in other
Extended 1/0 System calls, delimit the name with colons,

Output Parameter

exceptdptr A POINTER to a WORD where the Extended 1/0 System returns
the condition code.

Description

The Extended 1/0O System converts the characters in the log§name$ptr STRING to
uppercase and catalogs the connection in the object directory of the specified job.
However, two special situations atfect the outcome of this system call:;

» [Ifthe job’s object directory already contains the logical name, the new connection
replaces the existing object in the directory. The Extended 1/0 System considers this
to be a normal circumstance and, consequently, does not return an exception code.

36 EIOS System Catls

S$CATALOGSCONNECTION

» [f your task sets the connection parameter to SELECTORSOF(NIL), the Extended
[/O System looks up the logical name in the object directory of the calling task’s job.
The system then copies the logical name and its definition into the object directory of

the specified job.

Condition Codes
E$OK
E$CONTEXT

ESEXIST

ESLIMIT

ESLOGINAMESNEXIST

ESLOGSNAMES$-
SYNTAX

E$MEM

ESNOT$CON-
FIGURED

ESNOTICON-
NECTION

ESTYPE

EIQS System Calls

0000H

0005H

(006H

0004H

0040H

0002H

0O08H

8042H

8002H

No exceptional conditions.

The job in which your task is attempting to catalog
the connection has an object directory that is zero
bytes long.

The job or connection parameter is not a token for
an existing object.

At least one of the following is true:

» The object directory for the specified job is
already full.

o The calling task’s job is not an 1/O job.

0045H The Extended I/O System was unable to
find the specified logical name in the object
directory of the calling task’s job.

The specified logical name contains at
least one of the following syntax errors:

¢ The specified path starts with a colon (:),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

» The specified path contains a logical name that
is either longer than 12 characters, has no
characters, or contains invalid characters.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The connection parameter is a token for an
object that is not a connection.

The job parameter is a token for an object that is not
a job.

The SSCHANGESACCESS system call changes the access list for a named file. This
system call can be used for either data or directory files.

CALL RQSSSCHANGESACCESS (path$ptr, id, access, exceptSptr);

3%

Input Parameters
path$ptr

id

dCCESS

A POINTER to a STRING containing a path to the file whose
access 1s to be changed.

A WORD containing the 1D of the user whose access to the file is
to be changed. This value can differ from the owner ID of the
calling task’s default user object. If the file’s access list contains the
ID, the Extended [/O System changes the 1D’s current access. If
the access list does not contain the ID, the Extended I/O System
adds the ID to the file’s access list, unless the access list is full
(contains three entries). If the access parameter described in the
next paragraph is zero, this call removes the 1D from the access list.

A BYTE defining the new access rights to be assigned to the
specitied user. If the entire BYTE is set to zero, the Extended 1/0
System removes the specified ID from the access list of the file. If
the BYTE is nonzero, the meaning of the various bit settings
depend upon whether the file is a data file or a directory file. The
following two tables correlate the bit position and the kind of
access. (System calls that start with "AS$", like ASREAD, are part
of the Basic I/O System.)

[f the bit is set to 1, access is to be granted. If the bit is set to 0,
access is to be denied. (Bit 0 is low-order bit.)

DATA FILE ACCESS RIGHTS

Bit Access

0 Delete--permission to delete the entire file by
using the SSDELETESFILE or
ASDELETESFILE system calls. Also allows
changing the name of the file by using the
SSRENAMESFILE or ASRENAMESFILE
system call.

! Read--permission to read data from the file by
using the SSREADSMOVE or ASREAD
system call.

EIOS System Calls

E10S System Calls

b2

4-7

SSCHANGESACCESS

Append--permission to write information only
at the end of the file by using the
SIWRITESMOVE or ASWRITE system call.
This does not include permission to write over
information already in the file or permission to
truncate the file.

Update--permission to write over any
intormation in the file by using the
SSWRITEIMOVE or ASWRITE system calls,
and permission to truncate the file vsing the
SSTRUNCATESFILE or ASTRUNCATE
system call. This does not include permission
to add information to the end of the file.

Reserved. Set to zero.

DIRECTORY ACCLESS RIGHTS

0

2

Access

Defete--permission to delete the directory by
using the ASDELETESFILE or
SSDELETESEFILE system call. Also allows
changing the name of the directory by using
the ASRENAMESFILE or
SSRENAMESFILE system call.

Display--permission to read information from
the directory by using the ASREAD,
ASGETSDIRECTORYSENTRY, or
SSREADSMOVE system call.

Add entry--permission to add files to the
directory by using the ASCREATESFILE,
ASCREATESDIRECTORY,
ASRENAMESFILE, SSCREATESFILE,
SSCREATESDIRECTORY, or
SSRENAMESFILE system call. This does not
include permission to change existing entries.

Change entry--permission to change the access
list associated with a file contained in the
directory. In other words, permission to use
the ASCHANGESACCESS or
SSCHANGESACCESS system call. This does
not include permission to add new entries or
change the access list of the directory in which
the file is cataloged.

39

S$CHANGESACCESS

4-7 Reserved. Set to zero.

Output Parameter

except$ptr A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

The SSCHANGESACCESS system call allows a task to change the access rights
associated with named data or directory files. This system call can be used on any named
tile, including those created by the Basic [/O System.

For a task to be able to change the access rights associated with a file, the task’s job must
meet at least one of the following criteria:

* One of the IDs in the job’s detault user object is the owner of the file, or is the System
Manager 1D.

o One of the IDs in the job's default user object has change-entry access to the parent
directory of the file.

For more information about owners, access rights, and default user objects, refer to
Chapter 4 of the Extended iRMX 11 Estended /0 System User’s Guide.

Condition Codes

E$OK 0000H No exceptional conditions.
ESALREADYS- 0038H The Extended 1/O System cannot attach the
ATTACHED device containing the file because the Basic 1/O

System has already attached the device.

ESCONTEXT (005H The calling task’s job is not an 1/O job.

ESDEVSDETACHING 0039H The device containing the specified file is being
detached.

ESDEVFD 0022H The Extended I/O System attempted the physical

attachment of a device that had formerly been only
logically attached. In the process, it found that the
device and the device driver specified in the logical
attachment were incompatible.

ESFACCESS 0026H The job containing the calling task meets none of the
prerequisites for using this system call. None of the
iDs in the job's default user object is the owner of

the tile, nor does any have change-entry access to
the file's parent directory.

40 EIOS System Calls

ESFNEXIST

ESFTYPE

ESIFDR

ESILLVOL

ESINVALIDSFNODE

ESIOSHARD

ESTOSOPRINT

ESIO$SOFT

ESIOFUNCLASS
ESIOSWRPROT
E$IOIMEM

ESLIMIT

EIOS System Calls

O021H

0027H

002FH

0053H

0051H

0050H
0054H
0042H

0004H

S$CHANGESACCESS

One of the following conditions is true:

o Afile in the specified path, or the target file
itself, does not exist or is marked for deletion.

¢ The physical device was not found. The device
was specified by the original call to
ASPHYSICALSATTACHSDEVICE and is
indicated in this call by the path$ptr parameter.

The specified path is attempting to use a data file as
a directory.

The file driver associated with this connection is the
physical or stream file driver. However, the call is
compatible with the named file driver only.

The Extended 1/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it examined the
volume label and found that the volume does not
contain named fites. This prevented the call from
completing physical attachment because the named
tile driver was requested during logical attachment.

The fnode for the specitied file 1s invalid. The file
cannot be accessed; you should delete it.

A hard 1/O error occurred. A retry is probably
useless.

The device was off-line. Operator intervention is
required.

A soft 1/O error oceurred. The 1/0 System tried to

perform the operation a number of times and failed

(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of I/O error occurred.
The volume 1s write-protected.

The Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

At least one of the tfollowing is true:

o The user object or the calling task’s job is
already involved in 255 (decimal) I/ O
operations.

41

S$CHANGESACCESS

42

ESLOGINAMESNEXIST

ESLOGINAMES-
SYNTAX

ESMEDIA

ESMEM

ESNOSPREFIX

ESNOT$CONFIGURED

ESNOTSLOGSNAME

FESNOSUSER

ESPARAM

E$PATHNAMES-
SYNTAX

0040H

0044 H

0002H

8022H

G008H

8040H

8021H

s004H

(I03EH

» The calling task’s job is not an 1/O job.

(0045H The specified path contains an explicit
logical name, but the call was unable to find this
name in the object directories of the calling task’s
local job, the global job, or the root job.

The specified logical name contains at
least one of the following syntax errors:

+ The specified path starts with a colon (3),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

¢ The specified path contains a logical name that
is either longer than 12 characters (including
colons), has no characters, or contains invalid
characters.

The device containing the specified file is not on-
line.

The memory available to the calling task’s job is not
sufticient to complete the call.

You did not specify an explicit prefix (logical name),
and the default prefix for the calling task’s job 1s
either undefined, or it is not a valid device
connection or file connection.

This system call is not part of the present
configuration.

The specified path contains a logical name that
refers to an object that is neither a device
connection nor a file connection.

The calling task’s job does not have a default user, or
its default user is not a user object.

The Extended 1/0 System attempted the physical
attachment of a device that had formerly been only
logically attached. The logical attachment referred
to a file driver (named, physical, or stream) that is
not configured into your system. Therefore, physical
attachment is not possible.

The specified pathname contains invalid
characters.

EIOS System Calls

E$SUPPORT

EIOS System Calls

SSCHANGESACCESS

0023H At least one of the following is true:

The calling task attempted to change access for
a file other than a named file.

The calling task attempted to add another user
1D to the file’s access list, but the list already
contains three entries. The task must delete an
entry before it can add another.

The connection specified in the call is not
contained in the job making the call.

The SSCLOSE systeny call closes an open connection to a named, physical, or stream file.

CALL RQS$SSCLOSE(connection, except$ptr);

Input Parameter

connection A TOKEN tor a file connection that is currently open and was
opened by the SSOPEN system call.

Output Parameter

exceptiptr A POINTER to a« WORD where the Extended /O System returns
the condition code,

Description

The S$CLOSE system call closes o connection that has been opened by the SSOPEN
system call. Tt performs the following steps:

L. [t waits until all currently running [/O operations for the file are completed.

2. It ensures that any information in a partially filled output buffer is written to the
file.

3 It releases any bufters associated with the file.

4. It closes the connection to the file, deleting neither the file nor the connection.

The Extended 1/0 System performs no access checking before closing the connection.

The SSCLOSE system call cunnot be used to close connections that were opened by the
Basic 1/O System. 1f your task attempts to do this, the Extended [/O System returns an
ESCONNINOTSOPEN exception code.

Condition Codes
LSOK O0GOH No exceptional conditions.

ESCANNOTSCLOSE 004 1H An error occurred while flushing data from EIOS
bufters to an output device.

44 EIOS System Calls

S$CLOSE

ESCONNSNOTSOPEN 0034H One of the following conditions is true:
¢ The connection is not open.

» The connection was opened by ASOPEN rather
than SSOPEN.

ESEXIST 0606H The connection parameter is not a token for an
existing object.

EIOHARD 0052H A hard 1/O error occurred. A retry is probably
useless.

EIOSMODE 005611 One of the following is true:

* A tape drive attempted to perform a read
operation before the previous write operation
completed.

¢ Atape drive attempted to perform a write
operation before the previous read operation
completed.

ESIOSNOSDATA 0055H A tape drive attempted to read the next record, but
it found no data.

ESIO$OPRINT 005S3H The device was off-line. Operator intervention is
required.

ESIOSSOFT 0051H A soft /O error occurred. The 1/O System tried to

perform the operation a number of times and failed
(the number of retries 1s a configuration parameter).
Another retry might still be successful.

ESIOSUNCLASS 0050H An unknown type of 1/O error occurred.
ESIOSWRPROT {1054H The volume is write-protected.
ESLIMIT 0004H At least one of the following is true:

¢ The calling task’s job is not an /0O job.
¢ The calling task’s job is already involved in 255
(decimal) 1/O operations.

ESMEM (000ZH The memory available to the calling task’s job is not
sufficient to complete the call.

ESNOTSCONFIGURED (008H This system call is not part of the present
configuration.

ESNOTSCONNECTION 804211 The connection parameter is a token for an object
that 1s not a connection.

E$SUPPORT (023H The specified connection was not created by a task
in the calling task’s job.

EI10S System Calls 45

The SSCREATESDIRECTORY system call creates a new directory file.

connection — ROSSSCREATESDIRLCTORY (path$ptr, except$ptr);

Input Parameter

path$ptr A POINTLER to a STRING containing the pathname of the new
directory.

Output Parameters

connection A TOKEN that represents a connection to the new directory. You
cun use this TOKEN as a parameter in system calls that access the
directory.

exceptdptr A POINTER to &« WORID where the Extended 1/0 System returns
the condition code.

Description

A task imvokes this system call to ereate a new named-file directory. After creation, the
new directory contains no entries. This system call automatically adds a new entry to the
parent directory. The new directory is compatible with directories created by the Basic
[/ System.

Positioning the Directory

The calling task must use the path$ptr parameter to specify the location of the new
directory within the named file structure. The location indicated by the path must not be
occupied. In other words, this system call can be used only to obtain connections to new,
rather than existing. directories.

The default user object for the calling task’s job must have add-entry access to the parent
of the new directory. If the creation is successtul, the tirst ID in the job's default user
object (the owner [D) becomes the owner of the file.

The entry in the parent directory for the newly created directory provides the owner of

the new directory with full access (the ability to Delete, List, Add, and Change entries) to
the new directory.

46 EIOS System Calls

S$SCREATESDIRECTORY

Condition Codes

E$OK 0000H No exceptional conditions.
ESALREADYS- 0038H The Extended I/O System cannot attach the
ATTACHED device containing the file because the Basic /O
System has already attached the device.
ESCONTEXT 0005H The calling task’s job is not an 1/0 job.

ESDEVSDETACHING 0039H The device containing the specified file is in the
process of being detached.

ESDEVFD 0022H The Extended /O System attempted to physically
attach a device that had formerly been only logically
attached. In the process, it found that the device
and the device driver specified in the logical
attachment were incompatible.

ESFACCESS 0026H The user object associated with the calling task’s job
does not have add-entry access to the parent
directory.

ESFEXIST 0020H The file already exists.

ESFNEXIST 0U2IH At least one of the following is true:

e A file in the specified path does not exist or is
marked for deletion.

o The device specified in the call is not part of the
current configuration.

ESFNODESLIMIT 003FH The volume already contains the maximum number
of files. No more tnodes are available for new files.

ESFTYPE 0027H The specified path is attempting to use a data file as
a directory.
ESILLVOL 002DH The Extended 1/0 System attempted to physically

attach a device that had formerly been only logically
attached. and found that the volume does not
contain named files. This prevented the call from
completing physical attachment because the named
file driver was requested during logical attachment.

ESINVALIDSFNODE 003DH The fnode for a directory in the specitied pathname
1s invalid. The file cannot be accessed; you should
delete it.

EIOHARD 0052H A hard I/O error occurred. This means that a retry
1s probably useless.

EIOS System Calls 47

SSCREATESDIRECTORY

ESIOSOPRINT

ESIOSSOFT

ESIOFUNCILASS
ESIOSWRPROT
ESIOSMEM

ESLIMIT

ESLOGSNAMES-
NEXIST

ESLOGSNAMES-
SYNTAX

E$MEDIA

ESMEM

ESNOSPREFIX

48

0053H

0051H

0050H
0054H
0042H

0004H

0045H

0040H

0044H

0002H

8022H

The device was off-line. Operator intervention is
required.

A soft I/O error occurred. The I/O System tried to

perform the operation a number of times and failed

(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of 1/O error occurred.
The volume is write-protected.

The Basic 1/0O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

At least one of the following is true:

+ The user object or the calling task’s job is
already involved in 255 (decimal) 1/0
operations.

e The calling task’s job is not an 1/O job.

The specified path contains an explicit

logical name, but the call was unable to find this
name in the object directories of the calling task’s
local job, the global job, or the root job.

The specified logical name contains at
least one of the following syntax errors:

o The specified path starts with a colon (¢),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

» The speaified path contains a logical name that
is either longer than 12 characters (excluding
colons), has a length of zero characters, or
contains invalid characters.

The device containing the specified file is not on-
line.

The memory available to the calling task’s job is not
sufticient to complete the call,

You did not specify an explicit prefix (logical name),
and the default prefix for the calling task’s job is

either undefined, or it is not a valid device
connection or file connection.

EIOS System Calls

ESNOT$CONFIGURED (008H

ESNOTSLOGSNAME

ESNOSUSER

ESPARAM

ESPATHNAMES-
SYNTAX

ESSUPPORT

ESSPACE

EIOS System Calls

8040H

8021H

8004H

003EH

0023H

0029H

SSCREATESDIRECTORY

This system call is not part of the present
configuration.

The specified path contains a logical name that
refers to an object that is neither a device
connection nor a file connection,

The calling task’s job does not have a default user, or
its default user is not a user object.

The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. The logical attachment referred
to a file driver (named, physical, stream, or remote)
that is not configured into your system, so physical
attachment is not possible.

The specified pathname contains invalid
characters.

The NO ALLOCATE option is configured into the
BIOS. You cannot create any directories on this
volume.

The volume is full.

49

The SSCREATESFILE system call creates a new physical, stream, or named data file. It
cannot create a named directory file.

connection = RQ$SSCREATESFILE(pathSptr, except$ptr);

Input Parameter

path$ptr A POINTER to a STRING that contains the pathname of the file
to be created. The format of this pathname depends on the kind of
file being created. Refer to Chapter 4 of the Extended iRMX 1T
Extended 170 System User's Guide for a discussion of named file

paths, to Chapter S for physical files, and to Chapter 6 for stream
tile paths.

Output Parameters
connection The TOKEN that represents the connection to the new file.

except¥ptr A POINTER to « WORD where the Extended /O System returns
a condition code.

Description

A task invokes this system call to create a physical, stream, or named data file, or to attach
an existing file. This system call cannot be used to create or to attach a directory. (The
Extended /O System provides the SSCREATESDIRECTORY system call for that
purpose.) The file created by this system call is compatible with files created by the Basic
I/O System.

If the file specified by the path$ptr parameter already exists, the Extended 1/O System
attempts to truncate the file to zero length and return a connection to the empty file.
That is, SSCREATESFILE acts exactly as an ASATTACHSFILE followed by a call to
S§TRUNCATESFILE. The owner and the accessor list for the file remain unchanged.
it the file already exists, the call succeeds only if both of the following conditions are true:

e All connections to the file that are currently open allow sharing with writers.

e An ID n the default user object of the calling task’s job has update access to the
existing file. {This requirement applies to named files only.)

50 EIOS System Calls

S$CREATESFILE

If you wish to prevent the file from being truncated accidentally, use the
SSATTACHSFILE system call; if the call to SSATTACHSFILE returns an exception code
indicating the file does not exist, you can safely use SSCREATESFILE.

Specifying the Kind of File to be Created

The path$ptr parameter does more than simply indicate the path of the file being created.
it also tells the Extended I/O System what kind of file (stream, physical, or named data)
to create. The correlation between file paths and the kinds of files is discussed in detail in
Chapters 4, 5, and 6 of the Extended iRMX 1l Extended 1/0 System User's Guide.

Special Considerations for Named Files

These special considerations relate to named files:

* Your task must tell the Extended 1/O System which directory is to be the parent of
the new named file.

o Tocreate a named file, an ID in the default user object for the calling task’s job must
have add-entry access to the parent directory.

e The first ID in the detault user object of the calling task’s job becomes the owner of
the new file. The owner has full access (the owner can delete, read, append, and
update the file).

Temporary Named Files

If your task invokes this system call with the path of an existing directory file, the
Extended /O System creates a temporary named data file on the device that contains the
directory file. This temporary file differs from other named data files in two ways. First,
the tile is automatically marked for deletion, so that the Extended 1/0 System deletes the
file as soon as your application code deletes all connections to the file. Second, the file is
created without a path, so it can be accessed only through a connection.

Two access considerations apply to temporary files:

o First, any task can create a temporary file by referring to any directory. This is true
because the temporary files are not listed as ordinary entries in the directory, so no
add-entry access is required for the directory.

e Second, the owner of the temporary file (the first ID in the default user object of the
calling task’s job) has tull access to the tile.

Device Considerations

Every file, regardless of kind, has an associated device. Even stream files, which have no
physical devices, use the device connection to the stream tile pseudo-device.

Before any file can be created, its associated device must be attached to the system.

EIOS System Calls 51

SSCREATESFILE

There are two ways to attach devices to the system. One is to specify the attachment
during configuration. (For more information, refer to extended IRMX 1T Operating

System user guides}).

The second way is to attach a device while the system is running using the
LOGICALSATTACHSDEVICE system call.

Condition Codes
ESOK
ESALREADYS-

ATTACHED

ESCONTEXT
ESDEVISDETACHING

ESDEVFD

ESFACCESS

ESFNEXIST

ESFNODESLIMIT

ESFTYPE

A
| 3%

0000H
0038H

(0005H
0039H

0022H

0026H

0021H

003FH

0027H

No exceptional conditions.

The Extended 1/O System cannot attach the
device containing the file because the Basic 1/O
System has already attached the device.

The calling task’s job is not an /O job.
The device containing the specified file is being

detached.

The Extended [/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the device and the device
driver specified in the logical attachment were
incompatible,

At least one of the following is true:

o The default user object associated with the
calling task’s job does not have add-entry access
to the parent directory.

o The default user object associated with the
calling task’s job does not have update access to
the existing file with the specified pathname.

At least one of the following is true:

s Afile in the specified path does not exist or is
marked for deletion.

o The physical device specified in the call was not
found.

The volume already contains the maximum number
of files. No more fnodes are available for new files.

The specified path is attempting to use a data file as
a directory.

EIOS System Calls

ESILLVOL

ESINVALIDSFNODE

ESIOSHARD

ESIOSOPRINT

ESIOSSOFT

ESIO$UNCLASS
ESIOSWRPROT
ESIOSMEM

ESLIMIT

ESLOGINAMES-
NEXIST

ESLOGSNAMES-
SYNTAX

EIOS System Calls

002DH

003DH

0052H

0053H

0051TH

0050H
0054H
0042H

0004H

0045H

0040H

SSCREATESFILE

The Extended /O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the volume does not
contain named files. This prevented the call from
completing physical attachment,

The fnode for a directory in the specified pathname
is invalid. The file cannot be accessed; you should
delete it.

A hard I/O error occurred. A retry is probably
useless.

The device was off-line. Operator intervention is
required.

A soft 1/O error occurred. The I/O System tried to

perform the operation a number of times and failed

(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of /O error occurred.
The volume is write-protected.

The Basic /0 System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

At least one of the following is true:
« The calling task has reached the object’s limit.

« The user object or the calling task’s job 1s
already involved in 255 (decimal) 1/O
operations,

o The calling task’s job is not an I/O job.

The specified path contains an explicit

logical name, but the call was unable to find this
name in the object directories of the calling task’s
local job, the global job, or the root job.

The specified logical name contains at
least one of the following syntax errors:

» The specified path starts with a colon (),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

SSCREATESFILE

ESMEDIA

E$MEM

ESNOSPREFIX

ESNOTSCONFIGURED

ESNOTSLOGSNAME

ESNOSUSER

E$PARAM

ESPATHNAMES-
SYNTAX

E3SHARE

ESSPACE

0044H

0002H

8022H

0008H

8040H

8(21H

8004H

003EH

0028H

0029H

» The specified path contains a logical name that
s either longer than 12 characters (including
colons), does not contain at least one character,
or contains invalid characters.

The device containing the specified file is not on-
line. The media maybe inserted incorrectly (upside
down).

The memory available to the calling task’s job is not
sufficient to complete the call.

You did not specify an explicit prefix (logical name),
and the default prefix for the calling task’s job is
either undefined, or it is not a valid device
connection or file connection.

This system call is not part of the present
configuration.

The specified path contains a logical name that
refers to an object that is neither a device
connection nor a file connection.

The calling task’s job does not have a default user
abject, or the object cataloged in R?IOUSER is not
a user object.

The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached. The logical attachment referred to a file
driver (named, physical, or stream) that is not
configured into your system, so the physical
attachment is not possible.

The specified pathname contains invalid

characters.

You are trying to create a file that already exists.
The Extended 1/O System must truncate the existing
file to zero length to do the create. This truncate to

zero length failed for one or more of the following
reasons:

* Another open connection does not allow
sharing with writers,

e The default user for the calling task’s job does
not have update access to the file.

The volume is full.

EIOS System Calls

E$SUPPORT

El10OS System Calls

SSCREATESFILE

0023H One of the following is true:

o The NO CREATE FALSE option is configured
into the BIOS.

e The NO TRUNCATE option is configured into
the BIOS.

55

The SSDELETESCONNECTION system call deletes a file connection. 1t cannot delete a
device connection.

CALL RQS$SSDELETESCONNECTION(connection, except$ptr);

Input Parameter

connection A TOKEN for the file connection to be deleted.

Output Parameter

exceptiptr A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

This system call deletes a file connection, but it cannot delete a device connection. If the
connection is open, the SSDELETESCONNECTION system call automatically closes it
before deleting it.

If the file has been marked for deletion (by a previous system call) and there are no more
connections to the file, then SSDELETESCONNECTION deletes the file.

The Extended 1/0 System does not check access before deleting a connection.

The S§DELETESCONNECTION system call can be used with connections that were
created by the Basic /O System as long as the connections meet the requirements
discussed in the Extended (RMX I Basic /0 Syvstem User’s Guide, Appendix E.

Condition Codes

E$OK 0000OH No exceptional conditions.

ESEXIST 0006H The connection parameter is not a token for an
existing object.

ESIOFHARD 0052H A hard [/O error occurred. A retry is probably
useless.

56 EIOS System Calls

ESIOSMODE 0036H
E$IOSNOSDATA 0055H
ESIO$OPRINT 0053H
ESIO$SOFT 00STH
ESIO$SUNCLASS 0050H
EIOWRPROT 0054H
ESLIMIT 000 H
ESMEM 0002H

ESNOTSCONFIGURED 0008H

ESNOTSCONNECTION 8042H

E$SUPPORT 023H

EIOS System Calls

S$SDELETESCONNECTION

One of the following is true:

» A tape drive attempted to perform a read
operation before the previous write operation
completed.

* A tape drive attempted to perform a write
operation before the previous read operation
completed.

A tape drive attempted to read the next record, but
it found no data.

The device was off-line. Operator intervention is
required.

A soft I/O error occurred. The I/0 System tried to

pertorm the operation 4 number of times and tailed

(the number of retries is a contiguration parameter).
Another retry might still be successful.

An unknown type of 1/O error occurred.
The volume is write-protected.
At least one of the following is true:

o The associated job or the job's default user
object is already involved in 255 (decimal) 1/0
operations,

¢ The calling task’s job is not an 1/O job.

The memory available to the calling task’s job Is not
sutficient to complete the call.

This system call is not part of the present
configuration.

The connection parameter is a token for an object
that 1s not a file connection.

The specified connection was not created by a task
in this job.

57

The SSDELETESFILE system call deletes a stream, named data, or named directory file.
This system call cannot delete a physical file.

CALL RQSSSDELETESFILE(pathSptr, except$ptr);

Input Parameter

pathS$ptr A POINTER to a STRING that specifies the path for the file to be
deleted. The form of the path depends upon the kind of file. (See
the EXTENDED iIRMX 11 BASIC I/O SYSTEM USER'’S GUIDE
for information on path syntax.)

Output Parameter

except$ptr A POINTER to a WORD where the Extended I/O System returns
a condition code.

Description

A task can use this system call whenever the task needs to delete a stream, named data, or
named directory file. This system call marks the specified file for deletion, but the
Extended 1/O System postpones deletion until the following conditions are met:

s For stream and named data files, there is only one condition. The deletion occurs as
soon as no connections to the file remain. Your tasks can use the
SIDELETESCONNECTION system call to delete connections.

e For named directories there are two conditions. The directory must be empty, and no
connections to the directory can remain. The Extended [/O System deletes marked
directories as soon as both of these conditions are met.

This system call can delete files created by the Basic [/O System as well as those created
by the Extended [/O System. Refer to the Extended iRMX I Basic 1/0 User's Guide,
Appendix E for a general discussion of compatibility between the Extended and Basic I/O
Systems.

If the task attempts to delete a named data or directory file, the default user object of the
task’s job must have deletion access to the file.

58 EIOS System Calls

Condition Codes
E$OK

ESALREADYS$-
ATTACHED

ESCONTEXT
ESDEVSDETACHING

E$SDEVFD

ESDIRSNOTSEMPTY

ESFACCESS

ESFNEXIST

ESFTYPE

ESILLVOL

ES$IFDR

EIOS System Calls

0000H
0038H

0005H
0039H

0022H

0031H

0020H

0021H

0027H

002DH

002FH

SSDELETESFILE

No exceptional conditions.

The specitied device is already attached.

The calling task’s job is not an {/O job.

The device containing the specified file is in the
process of being detached.

The Extended 1/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the device and the device
driver specified in the logical attachment were
incompatible.

Your task 1s attempting to delete a directory that is
not empty.

At least one of the following is true:

¢ The default user object associated with the
calling task’s job does not have delete access to
the specified file.

¢ The call is attempting to delete a bit map file or
the root directory.

At least one of the following is true:

» Afile in the specified path, or the target file
itself, does not exist or is marked for deletion.

e The physical device was not found. The device
was specified by the original call to
ASPHYSICALSATTACHSDEVICE and s
indicated in this call by the path$ptr parameter.

The specified path contains a file name that should
be the name of a directory, but is not. (Except for
the last file, each file in a path must be a directory.)

The Extended 1/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the volume does not
contain named files. This prevented the call from
completing physical attachment because the named
file driver was requested during logical attachment.

The specified file is a physical file.

59

S$DELETESFILE

ESINVALIDSFNODE

ESIOSHARD
ESTOSOPRINT

ESIOSSOFT

ESIOSUNCLASS
ESIOSWRPROT
ESIOSMEM

ESLIMIT

ESLOGSNAMES-
NEXIST

ESLOGINAMES-
SYNTAX

ESMEDIA
ESMEM

60

003DH

a0s

)
s

0053H

0051H

0050H
0054H
0042H

O004H

0045H

0040H

0044H
(0002H

The fnode associated with a file is either marked not

allocated, or the fnode number is out of range. This
file should be deleted.

A hard 1/O error occurred. A retry is probably
useless.

The device was off-line. Operator intervention is
required.

A soft 1/O error occurred. The 1/O System tried to

perform the operation a number of times and failed

(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of 1/O error occurred.
The volume is write-protected.
The Basic 1/0O System job does not currently have a

block of memory large enough to allow this system
call to run to completion,

At least one of the following is true:

» Either the user object or the calling task’s job 1s
already involved in 255 (decimal) 1/0
operations.

o The calling task’s job is not an 1/0 job.

The specified path contains an exphicit

logical name, but the call was unable to find this
name in the object directories of the calling task’s
local job, global job, or the root job.

The specitied logical name contains at
least one of the following syntax errors:

o The specified path starts with a colon (2),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

o The specified path contains a logical name that
is either longer than 12 characters (including
colons), contains no characters, or contains
invalid characters.

The device containing the specified file is off-line.
The memory available to the calling task’s job is not
sufficient to complete the call.

EIOS System Calls

ESNOJPREFIX

ESNOTSCONFIGURED

EINOTILOGINAME

E$NOSUSER

E$PARAM

E$PATHNAMES-
SYNTAX

E$SUPPORT

EIOS System Calls

8022H

0008H

8040H

8BO21H

8004H

003EH

(0023H

SSDELETESFILE

You did not specify an explicit prefix (logical name),
and the default prefix for the calling task’s job 1s
either undefined, or it is not a valid device
connection or file connection.

This system call is not part of the present
configuration.

The specified path contains a logical name that
refers to an object that is neither a device
connection nor a file connection.

The calling task’s job does not have a default user
object, or the object cataloged in R?ZIOUSER is not
a user object,

The Extended 1/O System attempted to physically
attach a device that is logically attached. That
logical attachment refers to a file driver (named,
physical, or stream) that is not configured into your
system. Therefore, physical attachment is not
possible.

The specitied pathname contains invalid
characters.

The task is attempting to delete a physical file.

61

The SSGETSCONNECTIONS$STATUS system call provides status information about file

and device connections.

CALL RQ$SSGETSCONNECTIONSSTATUS (connection, info$ptr, except$ptr);

Input Parameter

connection A TOKEN for the connection whose status is desired.

Output Parameters

info$ptr A POINTER to a structure in which the Extended I/O System
places the status information. You can provide the memory for
this structure by requesting an extended iRMX II segment, or by
reserving it in your code. The structure must have the following
form:

DECLARE connection$info STRUCTURE(

fileSdriver BYTE,
flags BYTE,
openS$mode BYTE,
shareSmode BYTE,
file$pointer DWORD,
access BYTE,
number$bhuffers BYTE,
bufferSsize WORD,
seek BOOLEAN)
where
file$driver Identifies the kind of file associated with the
connection.
1 physical file
2 stream file
4 named file
5 remote
flags Indicates the kind of connection this is. If Bit

1 is one, the connection is capable of being
opened. If Bit 2 is one, the connection is a
device connection. (Bit zero is the low-order
bit.)

62 EIOS System Calls

open$mode

share$mode

tileSpointer

access

number$butters

buffer$size

seek

EIOS System Calls

SSGETSCONNECTIONSSTATUS

Indicates the purpose for which the connection
was opened. This applies only to file
connections.

0 closed

1 open for reading only

2 open for writing only

3 open for both reading and
writing

Indicates who can share the connection.
Applies to both device and file connections.

0 cannot be shared
1 share with readers only
2 share with writers only

3 share with anybody

A 32-bit offset from the beginning of the file
where the next 1/O operation will be
performed.

The access rights that were computed when
the connection was created. This information
applies only to connections for named files,
and the interpretation of the information
depends upon whether the file 1s a data file or
a directory. Access is represented as a bit
mask. In the following tables, access is granted
if a bit is set to one (bit zero is the low-order
bit.).

Bit Data File Directory

0 Delete Delete

1 Read List

2 Append Add Entry

3 Update Change Entry
4-7 Reserved Reserved

The number of buffers used with this
connection. This applies only to file
connections.

The size, in bytes, of each buffer used with the
connection.

Tells whether or not the SEEK function can be
used with this connection. Zero means no, and
OFFh means yes.

63

SSGETSCONNECTIONSSTATUS

exceptdptr A POINTER to a WORD where the Extended 1/O System returns
the condition code.

Description

The SSGET$CONNECTIONSSTATUS system call allows a task to obtain status
information about file connections and device connections that were created by either the
Basic I/O System or the Extended [/O System. The nature of the returned information
depends upon whether the connection is for a file or a device. Some of the information
also depends on the kind of file associated with the connection.

The Extended [/O System does not check access before returning status information.

Although you can use this system call with connections created by the Basic 1/O System,
you must adhere to the restrictions described in the Extended iRMX II Basic 1/0 User’s

Guide, Appendix E.

Condition Codes

64

E$OK 0000H
ESCONNSNOTSOPEN 0034H

ESEXIST 0006H

ESIFDR 0G2FH

ESLIMIT 0004H

ESMEM 0002H

ESNOTSCON- 0008H
FIGURED

ESNOTSCONNECTION 8042H

ESSUPPORT 0023H

No exceptional conditions.

The connection was opened by the ASOPEN system
call rather than the SSOPEN system call.

The connection parameter 1s not a token for an
existing job.

An invalid file driver request occurred.
At least one of the following is true:
» The calling task has reached its object limit.

+ Either the calling task’s job, or the job’s default
user object, is already involved in 255 (decimal)
1/0 operations.

+ The calling task’s job is not an [/O job.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The connection parameter is a token for an object
that is not a connection.

The specified connection was not created by a task
in the calling task’s job.

EIOS System Calls

The ROSSIGETSDIRECTORYSENTRY system call returns a directory entry name to

the caller. A directory entry name is a single path component for a file whose parent is
the directory.

CALL RQ$SSGET$DIRECTORYSENTRY (dir$name$ptr, entry$num, name$ptr,
exceptS$pt);

Input Parameters

dir$name$ptr A POINTER to a STRING containing the directory pathname.
This pathname can be up to 255 characters long,

entry$num A WORD giving the entry number of the desired file name.
Entries in a directory are numbered sequentially starting from
zero. The ESEMPTY3SENTRY condition code will be returned if
there is no directory entry associated with the number.

Output Parameter

name$ptr A POINTER to a buffer where the system will return the entry
name. This name, a maximum length of 14 BYTES, corresponds to
the entry number given by the user in the entry$num parameter.

exceptdptr A POINTER to a WORD where the condition code will be
returned.

Description
The SSGETSDIRECTORYSENTRY system call applies to named files only, When
called, it returns the file name associated with a specified directory entry. This name is a

single subpath component for a file whose parent is the designated directory. As an
alternative to using this system call, an application task can open and read a directory file.

NOTE

The caller must have List access to the designated directory.

EIOS System Calls 65

SSGETS$DIRECTORYSENTRY

Condition Codes

66

ESOK
ESDIRSEND

ESEMPTYSENTRY
E$FACCESS

ESFTYPE

ESIFDR

E3IO

ESLIMIT

ESMEM

0000H
0025H

0024H
0026H

0027TH

002FH

002BH

0004H

0002H

E$NOTSCONFIGURED 0008H

No exceptional conditions.

The entry$num parameter is greater than the
number of entries in the directory.

The file entry designated in the call is empty.

The specified connection is not qualified for list
access to the directory.

The specified connection does not refer to a
directory.

This system call applies only to named directories,
but the STRING pointed to by dir$name$ptr
specifies another type of file.

An [/O error occurred that might have prevented
the operation from completing.

The calling task’s job has already reached its object
limit.

The memory available to the calling task’s job is not
sufficient to complete this call.

This system call is not part of the present
configuration.

EIOS System Calls

The SSGETSFILESSTATUS system call allows a task to obtain information about a
physical, stream, or named file.

CALL RQS$SSGETSFILESSTATUS (path$ptr, infoSptr, except$ptr);

Input Parameter
path$ptr

Output Parameters

info$ptr

E10S System Calls

A POINTER to a STRING that contains the path for the file. The
format of this path varies from one kind of file to another. Refer
to Chapters 4, 5, or 6 of the Extended iRMX II Extended I/0 User’s
Guide for path syntax.

A POINTER 1o a structure where the Extended [/O System
returns the status information. You must allocate this memory,
either in your program code space or as an extended iIRMX 11
segment. The structure has the form described here.

The information in the first part of this structure--down to the
device$connections field--is returned for any file (physical, stream,
or named), but information from the file$id field to the end of the
structure is present only for named files. The contents of the
named$file field indicate whether the file is a named file.

DECLARE file$info STRUCTURE({(

deviceSshare WORD,
number$connections WORD,
numberSreader WORD,
number$writer WORD,
share BYTE,
named$file BYTE,
deviceSname(14) BYTE,
fileSdrivers WORD,
functions BYTE,
flags BYTE,
deviceSgranularity WORD,
deviceSsize DWCORD,
deviceS$connections WORD,

67

SSGETSFILESSTATUS

08

Information from this point on is returned only if the file is a named file.

fileSid WORD,
fileStype BYTE,
file$granularity BYTE,
owner$id WORD,
create$time DWORD,
accessStime DWORD,
modifyStime DWORD
file$size DWORD,
fileSblocks DWORD,
volumeSname (6) BYTE,
volume$granularity WORD,
volume$size DWORD,
accessorS$Scount WORD,
ownerSaccess BYTE;

The meanings of these fields are

device$share

number$connections-
number$reader

number$writer

share

named$file

deviceSname

Indicates whether or not the device can be shared.
Currently, this word is always set to 1, indicating that all
devices can be shared.

The number of connections to the file.

The number of connections currently open for reading.
The number of connections currently open for writing.
The current shared status of the file; possible values are

0 Private use only

1 Share with readers only
2 Share with writers only
3 Share with all users

Tells whether this structure contains any information
beyond the device$connections field. OFFh means yes and
0 means no.

The name of the physical device where this file resides.
This name 1s padded with blanks. To ensure the

uniqueness of device names, they should not be more than
14 characters in length.

EIOS System Calls

file$drivers

functions

flags

device$granularity

device$size

EIOS System Calls

S$GETSFILESSTATUS

A bit map that tells what kinds of files can reside on this
device. If bit n is on, then file driver n+ 1 can be used. Bit
0 is the low-order bit.

Bit Driver No. Driver

0 1 Physical file
1 2 Stream file
2 3 Reserved

3 4 Named file
4 5 Remote file

A bit map that describes the functions supported by the
device where this file resides. A bit set to one indicates the
corresponding function is supported. Bit 0 is the low-order
bit.

Bit Function

(FIREAD
F$WRITE
F$SEEK
FISPECIAL
FSATTACHSDEV
F§DETACHSDEV
F$CLOSE

=

R I R R

Meaningful only for diskette drives. This field is
interpreted as follows. (Bit 0 is the low-order bit.)

Bit Meaning
0 0=bits 1-7 not significant

1=hits 1-7 are significant

i () =single density
| =double density

2 0=single sided
I =double sided

3 ()=8-inch diskette
1=5 1/4-inch diskette

4 0 =standard diskette, meaning that
track 0 is single-density with 128
byte sectors
1 =4 nonstandard diskette or not a
diskette

3-7 reserved

The granularity, in bytes, of the device where this file
resides.

The storage capacity of the device, in bytes.

69

SSGETSFILESSTATUS

device$connections

The number of connections to the device.

The information from here to the end of the structure is returned only for named files, as
indicated by a value of OFFh in the named$file field.

file$id
file$type

file$granularity

owner$id

create$time

access$time

modify$time

file$size
fileSblocks
volume$name

volume$granularity

volume$size
accessor$count

owner$access

A number that distinguishes this file from all other files on
the same device.

The file type: 6 means directory file and 8 means data file.

The file granularity, as a multiple of volume$granularity.
For example, if fileSgranularity is 2 and volume$granularity
is 256, then the file’s granularity is 512.

The first ID in the creating task’s default user object.

The time and date when the file was created. Whether the
operating system maintains this field is a configuration
option.

The time and date when the file was last accessed.
Whether the operating system maintains this field is a
configuration option.

The time and date when the file was last modified.
Whether the operating system maintains this field is a
configuration option.

The total size of the file, in bytes.

The number of volume blocks allocated to this file. A
volume block is a contiguous area of storage that contains
volumeSgranularity bytes of data.

The left-adjusted, null-padded ASCII name for the volume
containing this file.
The volume granularity, in bytes.

The storage capacity, in bytes, of the volume on which this
file is stored.

The number of IDs in the creating task’s default user
object.

The access rights to this file that are currently held by the
owner. The access rights are encoded in a bit mask that
you can interpret by using the following table. Remember
that Bit 0 is the low-order bit, and that access is granted if
the corresponding bit is set to 1.

EIOS System Calls

S$GETSFILESSTATUS

Bit Data File Directory
0 Delete Delete
1 Read List
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved
except$ptr A POINTER to a WORD where the Extended [/O System

returns the condition code.

Description

This system call provides the calling task with information about the status of a file.
Fields through the device§connections field are always returned if the call is successful.
Fields following the device$connections field are returned only when the file being
referred to is a named file, as indicated by the namedStile field being OFFh.

The Extended 1/O System does not check access before returning file status information.

This system call can be used with any file, including those created by the Basic /O
System. However, because of the asynchronous nature of some of the Basic /O System
calls, there is some chance that the information returned might be inaccurate. For
instance, if your application code invokes the SSGETSFILESSTATUS system call while
the Basic [/O System is processing an ASWRITE for the same file, the values returned in
the file size fields might be incorrect. Refer to the Extended iRMX I Basic /0 User's
Guide, Appendix E for a more general discussion of compatibility between the Extended
and Bastc [/O Systems.

Condition Codes

ESOK O000H No exceptional conditions.
ESALREADYS- 0038H The Extended 1/O System is unable to
ATTACHED attach the device containing the file because the
Basic I/O System has already attached the device.
ESCONTEXT 0005SH The calling task’s job is not an 1/O job.

ESDEVSDETACHING 0039H The device containing the specified file is in the
process of being detached.

E$DEVFD 0022H The Extended 1/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it found that the
device and the device driver specified in the logical
attachment were incompatible,

EIOS System Calls 71

SSGETSFILESSTATUS

72

ESFNEXIST

ESFTYPE

ESILLVOL

ESINVALIDSFNODE

ESIO$SHARD

ESIOSMODE

ESIOINOSDATA

ESIOSOPRINT

ESIOISOFT

ESIO$UNCLASS
ESIOSMEM

0021H

0027H

002DH

003DH

0052H

0056H

0055H

0053H

0051H

0050H
0042H

At least one of the following is true:

« A file in the specified path, or the target file
itself, does not exist or is marked for deletion.

¢ The physical device specified in the call was not
found.

The specified path contains a file name that should
be the name of a directory, but is not. (Except for
the last file, each file in a path must be a directory.)

The Extended 1/0 System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it examined the
volume label and found that the volume does not
contain named files. This prevented the Extended
1/0 System from completing physical attachment
because the named file driver was requested during
logical attachment.

The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

A hard /O error occurred. A retry is probably
useless.

One of the following is true:

* A tape drive attempted to perform a read
operation before the previous write operation
completed.

« A tupe drive attempted to perform a write
operation before the previous read operation
completed.

A tape drive attempted to read the next record, but
it found no data.

The device was off-line. Operator intervention is
required.

A soft /O error occurred. The /O System tried to

perform the operation a number of times and failed

(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of I/O error occurred.

The Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

EIOS System Calls

SSGETSFILESSTATUS

ESLIMIT 0004H At least one of the following is true:
o The user object or the calling task’s job is
already involved in 255 (decimal) 1/O
operations,

¢ The calling task’s job is not an 1/0 job.
o The calling task’s object limit has been reached.
ESLOGINAMES- 0045H The specified path contains an explicit
NEXIST logical name, but the call was unable to find this

name in the object directories of the calling task’s
local job, the global job, or the root job.

ESLOGINAMES- 0040H The specified logical name contains at
SYNTAX least one of the following syntax errors:

o The specified path starts with a colon (1),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

« contains a logical name that is either longer
than 12 characters {including colons), has no
characters, or contains invalid characters.

ESMEDIA 0044H The device containing the specified file is not on-
line.

ESMEM 0002ZH The memory available to the calling task’s job is not
sutficient to complete the call,

ESNOSPREFIX 8022H You did not specity an explicit prefix (logical name),

and the default prefix for the calling task’s job is
either undefined, or it is not a valid device
connection or fife connection.

ESNOT$CON- 0008H This system call ts not part of the
FIGURED present configuration.

ESNOTSLOGSNAME 8040H The specitied path contains a logical name that
refers to an object that is neither a device
connection nor a file connection.

ESNOSUSER 8021H The calling task’s job does not have a default user, or
its detault user is not a user object.

E1OS System Calls 73

S$SGETS$FILESSTATUS

E$PARAM 8004H The Extended 1/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it found that the
logical attachment referred to a file driver (named,
physical, or stream) that 1s not configured into your
system. Therefore the physical attachment is not

possible.
ESPATHNAMES$- 003EH The specified pathname contains invalid
SYNTAX characters.

74 EIOS System Calls

SIGETSPATHSCOMPONENT returns the name of a named file as the file is known in

its parent directory.

CALL RQ$SSGETSPATHSCOMPONENT (connection, name$ptr, except$ptr):

Input Parameters

connection

Output Parameter

name$ptr

except$ptr

Description

A TOKEN for the file connection whose name is desired.

A POINTER to a STRING where the system returns the path
component. The maximum length of the STRING is 14 BYTES.

A POINTER to a WORD where the Extended I/O System returns
condition codes,

The format of the component returned by this call is dependent on the type of file driver
employed by the call. A null string is returned under the following circumstances:

» If the file driver is Named or Remote and the connection is to the root directory of a

volume.

¢ If the file driver’s connection accesses either Stream or Physical files.

Condition Codes
ESOK
ESCONTEXT
ESFNEXIST

ESINVALIDSFNODE

E3$I10

ESIO$MEM

E1OS System Calls

0000H
0005H
0021H

003DH

002BH

0042H

No exceptional conditions.
The name$ptr parameter is equal to NIL.

The file is marked for deletion. (In this case, the
string is undefined.)

The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

An 1/0 error occurred that might have prevented
the operation from completing.

The memory available to the EIOS is not sufficient
to complete the call.

75

The SSLOOKSUPSCONNECTION system call accepts a logical name from the calling
task and returns a token for the connection associated with the logical name.

connection = RQS$SSLOOKSUPSCONNECTION(logSname$ptr, except$ptr);

Input Parameter

log¥namedptr A POINTER to a STRING (of 1to 12 characters) containing the
logical name to be looked up. The name can be delimited with
colons (1). The operating system removes the colons so that a
logical name with colons is the same as one without (e.g., :F0: is
effectively the same as F0). Colons do not count in the length of

the name.
Output Parameters
connection The TOKEN that represents the connection associated with the
logical name.
exceptiptr A POINTER to « WORD where the Extended 1/O System returns

the condition code.

Description

After converting any lowercase letters in the logical name to uppercase, the Extended /O
System searches tor the logical name. Tt first checks the object directory of the local job,
then the global job, and tinally the root job. (This progressively more global search
sequence is described more completely in Chapter 3 of the Extended iRMX 11 Extended
1/O System User’s Guide.) When it finds the logical name, the Extended 1/0 System
returns the token for the connection.

Your tasks can invoke this system call to look up logical names created by the Nucleus
system call CATALOGSOBIJECT. However, CATALOGSOBIJECT does not convert
from lowercase to uppercase, So it vou desire compatibility, use uppercase characters
when you use the CATALOGIOBIECT system call.

Condition Codes

ESOK 0000H No exceptional conditions.
ESCONTEXT 0005SH The calling task’s job is not an [/O job.
ESLIMIT 0004H The calling task’s job is not an 1/O job.

76 EIOS System Calls

ESLOGSNAMES- 0045H
NEXIST

ESLOGSNAMES- 0040H
SYNTAX

ESMEM 0002H

ENOTCON- 0008H
FIGURED

ESNOTSCONNECTION 8042H

ESTIME (0001H

EIOS System Calls

SSLOOK$SUPSCONNECTION

The specified path contains an explicit

logical name, but the call was unable to find this
name in the object directories of the calling task’s
local job, the global job, or the root job.

The specified logical name contains at
least one of the following syntax errors:
» The specified path starts with a colon (),
indicating that it contains a logical name. But

the call was unable to find a second colon to
delimit the logical name.

» The specified path contains a logical name that
is either longer than 12 characters, has no
characters, or contains invalid characters.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The logical name refers to an object that is not a
connection.

The calling task’s job is not an 1/0 job.

77

The SSOPEN system call opens a file connection so that your tasks can access the file.

CALL RQS$SSOPEN(connection, mede, number$buffers, exceptSptr);

78

Input Parameters

connection

mode

number$buffers

A TOKEN for the file connection to be opened. The connection
must have been created in the calling task’s job. If the connection
was created in a different job, use SSATTACHSFILE to obtain a

new connection.

A BYTE telling how vour task is going to use the connection and
with whom it will share the connection. You should set the BYTE

as follows;
Yalue

1H
2H
3H

4H
5H
oH

H
sH
Gt

0AH
OBH
O0CH

How Connection is Used

For reading only; share with all.

For writing only; share with all.

For both reading and writing; share with
all.

For reading only; private use.

For writing only; private use.

For both reading and writing; private
use.

For reading only; share with readers.
For writing only; share with readers.

For both reading and writing; share with
readers.

For reading only; share with writers.
For writing only; share with writers.

For both reading and writing; share with
writers.

A BYTE containing the number of buffers that you want the
Extended [/O System to allocate for this connection. This number
must be between zero and a maximum value that you specified

when you configured the Basic I/O System.

EIOS System Calls

SSOPEN

Output Parameter

exceptdptr A POINTER to a WORD where the Extended 1/O System returns
the condition code.

Description

This system call performs the following functions:
s It creates the number of buffers requested.
¢ It sets the connection’s file pointer to NIL.

e It starts reading ahead if the number of buffers is greater than zero and the mode
parameter includes reading.

Access Rights and Selecting a Mode

When you specify the mode, you must be accurate or err on the side of generosity. If you
are not certain how the connection will be used, specify both reading and writing.

In the case of named files, the mode that you specify must match the access rights of the
connection. (These are the access rights that the Extended 1/O System assigned the
connection when the connection was created.) For example, if your task attempts to open
for reading a connection that has access for writing only, the Extended 1/O System returns
an ESFACCESS exception code.

Selecting the Number of Butfers

Deciding how many buffers to allocate for file I/O is based on two considerations--
memory and performance. The amount of memory used for buffers is directly
proportional to the number of buffers. So you can save memory by using fewer buffers.

The performance consideration is more complex. Up to 4 certain point, the more buffers
you allocate, the faster your task can run. The actual break-even point, the point where
more buffers don’t improve performance, depends on many variables. Be aware that in
order to overlap 1/O with computation, you must specify at least two buffers.

If performance is important, and you have no idea how many buffers to specify, start with
two. Once your task is running successfully, you can experiment, adding or removing

butfers until you have found the optimum number of buffers.

If performance is not so important and memory is, use zero buffers.

EIOS System Calls 79

S$SOPEN

Condition Codes

80

E$OK
ESCONNSOPEN
ESDEVSOFFSLINE
ESEXIST

ESFACCESS

ESIOSHARD

ESIOSMODE

ESIO$NOSDATA

ESIO$OPRINT

ESIO$SOFT

ESIOSUNCLASS
ESIO$WRPROT
ESLIMIT

ESMEM

ESNOT3$CON-
FIGURED

0600H
0035H
002EH
0006H

0026H

0052H

0056H

0055H

0053H

0051H

(0050H
0054H
0004H

0002H

0008H

No exceptional conditions.
The connection is already open.
The device being accessed i1s now offline.

The connection parameter is not a token for an
existing object.

The access rights embedded in the connection
prohibit opening the file in the specified mode.

A hard I /O error occurred. A retry is probably
useless.

One of the following is true:

e A tape drive attempted to perform a read
operation before the previous write operation
completed.

+ A tape drive attempted to perform a write
operation before the previous read operation
completed.

A tape drive attempted to read the next record, but
it found no data.

The device was off-line. Operator intervention is
required.

A soft 1/O error occurred. The 1/0 System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of I/O error occurred.
The volume is write-protected.
At least one of the following is true:

¢ The calling task’s job is not an [/O job.

¢ The calling task’s job, or the job’s default user
object, is already involved in 255 (decimal) I/O
operations.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

EIOS System Calls

ESNOTSCONNECTION 8042H

ESNOTSFILESCONN 0032H

ESPARAM BOO4H
E$SHARE 0028H
E$SUPPORT (0023H

EIOS System Calls

S$SOPEN

The connection parameter is a token for an object
that is not a file connection.

The connection is a device connection.

The mode parameter is set to a value other than }
through C hexadecimal.

At least one of the following is true:

» The call attempted to open a directory file or a
bit-map file for writing,

» The file's sharing attribute is currently not
compatible with the mode specified in this call.

The specified connection was not created by a task
in the calling task’s job.

81

The SSREADSMOVE reads a number of bytes from a file to a buffer.

bytes$read = RQ$SSREADSMOVE(connection, buffer$ptr, bytesSdesired,

exceptSptr);

Input Parameters

connection

bytes$desired

Output Parameters

bytes$read
buffer$ptr

except$ptr

Description

A TOKEN for the connection to the file. This connection must be
open for reading or for both reading and writing, and the file
pointer of the connection must point to the first byte to be read.

A WORD containing the maximum number of bytes you want to
read from the file.

A WORD containing the actual number of bytes that the Extended
1/0O System reads from the file.

A POINTER to a buffer that will receive the information that the
Extended /O System reads from the file.

A POINTER to a WORD where the Extended 1/O System returns
a condition code.

This system call reads a collection of contiguous bytes from the file associated with the
connection. These bytes are placed in a buffer specified by the calling task.

Creating the Buffer

The buffer$ptr parameter telis the Extended 1/O System where to place the bytes after
they are read. You must create this buffer because the Extended I/0O System does not.
To create the buffer, make an extended iRMX I segment, or create a buffer during the
compilation of your program. You must ensure that the buffer is long enough.

If you use an extended iRMX Il segment as your buffer, the 80286 microprocessor’s built-
in abilities will detect when a task attempts to write beyond a buffer. If you create a
bufter at compilation time, the Extended /O System will not sense when overwriting
occurs. If your task attempts to read more bytes than the buffer is capable of holding, the
information immediately following the buffer could be overwritten.

82

EIOS System Calls

S$SREADSMOVE

Number of Bytes Read

The number of bytes that your task requests (bytes$desired) is the maximum number of
bytes that the Extended I/O System places in the buffer. However, there are two
circumstances under which the Extended I/0 System reads fewer bytes.

o First, if the Extended I/O System detects an end-of-file before reading the number of
bytes requested, it returns only those bytes preceding the end-of-file. In this case, the
bytes$read parameter can be less than the bytes$desired parameter without
generating an exceptional condition.

» Second, if an exceptional condition occurs during the reading operation. In this case,
the information in the buffer and the value of the bytes$read parameter are
meaningless.

If your task performs random-access reads of the file, it must identify which bytes to read
from the file by using the SSSEEK system call to position the connection’s file pointer to
the first byte that it wants to read.

In contrast, if your task reads from the file sequentially, the Extended /O System
maintains the connection’s file pointer automatically.

Effects of Priority

The priority of the task invoking this system call can greatly affect the performance of the
application system. For better performance, the priority of the invoking task should be
equal to or lower than (numerically greater than) the priority of the task that attached the
device with the Basic I/O System call ASPHYSICALSATTACHSDEVICE. If the device
was attached with LOGICALSATTACHSDEVICE, the task that issues
ASPHYSICALSATTACHSDEVICE is an Extended 1/O System task created when the
system is initialized. The priority of this task is set to 130 decimal. If the priority of the
calling task is higher than the task that attached the device, the operating system cannot
overlap the read operation with computation or with other I/O operations. (To find out
how to set priorities for application tasks, refer to the Extended iRMX II Nucleus User’s
Guide.)

Condition Codes
E$OK 0000H No exceptional conditions.
ESBADSBUFF 8023H One of the following is true:
+ The specified memory buffer is not writeable.

¢ The specified memory buffer crosses a segment
boundary.

EIOS System Calls 83

S$READSMOVE

84

ESCONNINOTSOPEN

ESEXIST

ESFLUSHING

ESIDDR

ESIO$SHARD

EFIOSMODE

ESIOSNOSDATA

ESIOSOPRINT

ESIO$SOFT

ESIO$UNCLASS
ESLIMIT

ESMEM

0034H

0006H

002CH

002AH

0052H

0056H

0055H

0053H

(0051H

0050H
0004H

0002H

At least one of the following is true:

« The connection is not open for reading or for
both reading and writing.

¢« The connection is closed.

¢ The connection was opened by the ASOPEN
system call rather than the SSOPEN system call.

The connection is not a token for an existing object.
The specified device is being detached.

This request is invalid for the device driver. For
example, it is not valid to use this call with a line
printer.

A hard I/O error occurred. A retry is probably
useless.
One of the following is true:

« A tape drive attempted to perform a read

operation before the previous write operation
completed.

« A tape drive attempted to perform a write
operation before the previous read operation
completed.

A tape drive attempted to read the next record, but
it found no data.

The device was off-line. Operator intervention is
required.

A soft 1/O error occurred. The [/O System tried to

perform the operation a number of times and failed

(the number of retries i1s a configuration parameter).
Another retry might still be successful.

An unknown type of I/O error occurred.
At least one of the following is true:

e The calling task’s job, or the job's default user
object, is already involved in 255 (decimal) 1/0
operations.

¢ The calling task’s job is not an [/O job.

The memory available to the calling task’s job is not
sufficient to complete the call.

EIOS System Calls

ESNOTSCON- 0008H
FIGURED

ESNOTSCONNECTION 8042H

ESSPACE 0029H

E$SUPPORT 0023H

E10S System Calls

S$READSMOVE

This system call is not part of the
present configuration.

The connection parameter is a token for an object
that is not a file connection.
At least one of the following is true:

o This call attempted to read beyond the end of
the volume.

+ Another task is writing to the file using the
same connection and is attempting to write
beyond the end of the volume or the end of the
available space on the volume.

The connection parameter was not created by a task
in the calling task’s job.

85

The SSRENAMESFILE system call changes the name of a directory or data file. It

cannot be used for stream or physical files.

CALL RQSSSRENAMESFILE(pathSptr, mewpath$ptr, except$ptr);

Input Parameters

path$ptr A POINTER to a STRING that specifies the current path for an
existing file that is to be renamed. The syntax of this path is
described in Chapter 4 of the Extended iRMX 11 Estended 1/0
System User’s Guide.

newS$path$ptr A POINTER to a STRING that specifies the new path for the file.
This path must comply with the syntax and semantics of paths for
named files as discussed in Chapter 4 of the Extended iRMX 11
Extended 1/0 System User's Guide. Furthermore, this path cannot
refer to an existing file.

Output Parameter

except$ptr A POINTER to a WORD where the Extended /O System returns
a condition code.

Description

This system call, which can be used only with named files, allows your task to change the
path for a file. You can rename directory files as well as data files.

NOTE

When you rename a directory, you change the paths for all files and other
directories contained in the directory.

Restrictions
If your task is renaming a file, the task can change any aspect of the file’s path so long as

the file remains on the same volume. If you are renaming a directory, it must still have
the same parent directory (the directory above the one being renamed).

86 EIOS System Calls

S$RENAMESFILE

To be able to rename a file, the default user object of the calling task’s job must have two

kinds of access:

+ Deletion access to the original file

e Add-entry access to the file’s new parent directory

Condition Codes

E3OK
ESALREADYS-
ATTACHED

E$CONTEXT
ESDEVSDETACHING

ESDEVFD

ESFACCESS

ESFEXIST

ESENEXIST

ESFTYPE

E$IFDR

E$ILLOGICALS-
RENAME

EI1OS System Calls

0000H
0038H

0005H
0039H

0022H

0026H

0020H

0021H

0027H

002FH
003BH

No exceptional conditions.

The Extended I/O System is unable to
attach the device containing the file because the
Basic 1/O System has already attached the device.

The calling task’s job is not an 1/0 job.

The device containing the specified file is in the
process of being detached.

The Extended 1/O System attempted to physically
attach a device that had been only logically attached,
and found that the device and the device driver
specified in the logical attachment were
incompatible.

At least one of the following is true:

e The call is trying to rename a bit-map file or the
root directory.

» The default user object associated with the
calling task’s job does not have add-entry access
to the parent directory of the new$path$ptr file.

» The default user object associated with the
calling task’s job does not have delete access to
the file to be renamed.

The newS$path$ptr parameter refers to a file that
already exists.

A file in the specified path, or the file being
renamed, does not exist or is marked for deletion.

The specitied path contains a file name that should
be the name of a directory, but is not. {Except for
the last file, each file in a path must be a directory.)

The specified file is a stream or physical file.

The call attempted to rename a directory
to a new path containing itself.

87

SSRENAMESFILE

ESILLVOL

ESINVALIDSFNODE
ESIO$HARD
ESIOSOPRINT

ESIO$SOFT

ESIOSUNCLASS
ESIO$WRPROT
EIOSMEM

ESLIMIT

ESLOG$NAMES-
NEXIST

88

002DH

003DH

0052H

0053H

0051H

0050H
0054H
0042H

0004H

0045H

The Extended 1/O System attempted to physically
attach a device that had formerly been only logically
attached. In the process, it found that the volume
does not contain named files. This prevented the
Extended /O System from completing physical
attachment because the named file driver was
requested during logical attachment.

The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

A hard 1/O error occurred. A retry is probably
useless.

The device was off-line. Operator intervention is
required.

A soft I/O error occurred. The 1/0O System tried to
perform the operation a number of times and failed
(the number of retries i1s a configuration parameter).
Another retry might be successful.

An unknown type of 1/O error occurred.
The volume is write-protected.

The Basic /O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

At least one of the following is true:

e The user object or the calling task’s job is
already involved in 255 (decimal) I/O
operations.

e The calling task’s job is not an 1/O job.
» The calling task’s object limit has been reached.

At least one of the specified paths

contains an explicit logical name, but the call was
unable to find this name in the object directories of
the calling task’s local job, the global job, or the root
job.

EIOS System Calls

ESLOGINAMES-
SYNTAX

ESMEDIA

ESMEM

ESNOSPREFIX

ESNOT$CONFIGURED

ESNOTSLOGSNAME

ESNOTSSAMESDEV
ESNOSUSER

ESPATHNAMES-
SYNTAX

E$PARAM

E$SPACE
E$SUPPORT

EIOS System Calls

0040H

0044H

0002H

8022H

0008H

8040H

003AH
8021H

003EH

8004H

0029H
0023H

S$SRENAMESFILE

At least one of the specified paths
contain one or more of the following logical name
syntax errors:

¢ A path starts with a colon (:), indicating that it
contains a logical name. But the call was unable
to find a second colon to delimit the logical
name.

¢ A path contains a logical name that is either
longer than 12 characters (including colons), has
no characters, or contains invalid characters.

The device containing the specified file is not on-
line.

The memory available to the calling task’s job is not
sufficient to complete the call.

At least one of the specified paths contains no
explicit prefix (no logical name), and the default
prefix for the calling task’s job is either undefined, or
it is not a valid device connection or file connection.

This system call is not part of the present
configuration.

At least one of the specified paths contains a logical
name that refers to an object that is neither a device
connection nor a file connection.

The two paths refer to different devices.

The calling task’s job does not have a default user
object, or the object cataloged in R?IOUSER is not
a user object.

One or both of the specified pathnames
contain invalid characters.

The specified task$priority for an IO job is unequal
to 0 and is greater than the max$priority of the 10
job.

The volume is full.

The task attempted to rename a physical or stream
file.

89

Using the S$SEEK system call, your tasks can move the file pointer for any open physical-
or named-file connection. This system call cannot be used with stream files.

CALL RQSSSSEEK(connection, mode, moveScount, except$ptr);

Input Parameters

connection

mode

move$count

90

A TOKEN for an open connection whose file pointer you wish to

move.

A BYTE containing a value that controls the nature of the
movement of the file pointer. Any of the following values are

valid:
Mode
|

2

3

4

Meaning

Move the pointer backward by the number of
bytes specified in move$count. If the move
count is large enough to position the pointer
past the beginning of the file, the pointer
moves to the first byte ???NIL?(position zero).

Set the pointer to the position specified by the
move count. Position ?NIL?zero is the first
position in the file. Moving the pointer
beyond the end of the file is valid for named
files only.

Move the file pointer forward by the specified
amount. Moving the pointer beyond the end-
of-file is valid for named files.

First move the pointer to the end of the file
and then move it backward by the specified
amount. If the value specified by move$count
would position the pointer beyond the front of
the tile, the pointer moves to the first byte in
the file ?NIL?(position zero).

A DWORD integer that tells the Extended 1/0 System how far, in
bytes, to move the pointer.

EIOS System Calls

S$SEEK

Output Parameter

except$ptr A POINTER to the WORD where the Extended 1/O System
returns the condition code.

Description

When performing random 1/O, your tasks must use this system call to position the file
pointer before using the SSREADSMOVE, SSTRUNCATESFILE, and
SSWRITESMOVE system calls. The location of the file pointer tells the Extended 1/0

System where in the file to begin reading, truncating, or writing information.

[f your tasks are performing sequential I/O on a file, they do not need to use this system
call.

Access Control

Two requirements relate to access control. First, the connection must be open for reading
only, writing only, or both reading and writing. If this is not the case, your task can use the
SSOPEN system call to open the file.

The second access requirement is that the connection must have been created by a task
within the calling task’s job. If this is not the case, use the existing connection as a prefix,
and have the calling task obtain a new connection by invoking the SSATTACHSFILE
system call. This newly created connection satisfies the second requirement.

Reading and Writing Beyond the End of File

It is legitimate to position the file pointer beyond the end-of-file for a named file. If your
task does this and then invokes the SSREADSMOVE system call, the Extended 1/0O
System behaves as though the reading operation began at the end-of-file.

Also, it is possible to invoke the SSWRITESMOVE system call with the file pointer
beyond the end of the file. If your task does this, the Extended /O System attempts to
expand the file. If the Extended 1/0 System does expand your file in this manner, the file
contains random information between the old end-of-file and the new end-of-file.

Condition Codes
E$OK 0000H No exceptional conditions.
E$BADSBUFF 8023H One of the following is true:
» The specified memory buffer is not writeable.

+ The specified memory buffer crosses a segment
boundary.

E10OS System Calis 91

S$SEEK

ESCONNSNOTSOPEN

ESEXIST

ESFLUSHING

E$IDDR

E$IFDR

ESIO$HARD

E$IOSMODE

ESIOSNOSDATA

ESIOSOPRINT

ESIO$SOFT

ESIOSUNCLASS
ESLIMIT

E$MEM

0034H

0006H

002CH

002AH

002FH

0052H

(0056H

0055H

0053H

0051TH

0050H
0004H

0002H

ESNOT$CONFIGURED 0008H

ESNOTSCONNECTION 8042H

At least one of the following is true:
+ The connection is not open.

o The connection was opened by an ASOPEN
rather than an SSOPEN.

The connection parameter is not a token for an
existing object.

The specified device is being detached.

This request is invalid for the device driver. For

example, it is not valid to use this call with a line
printer.

The call attempted to seek in a stream file. The
S$SEEK system call can be used only with named
and physical files.

A hard I/O error occurred. A retry is probably
useless.

A tape drive attempted a read (write) operation
before the previous write (read) completed.

A tape drive attempted to read the next record, but
it found no data.

The device was off-line. Operator intervention is
required.

A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of I/O error occurred.
At least one of the following is true:

» Either the calling task’s job, or the job’s defauit
user object, is already involved in 255 (decimal)
1/0 operations,

» The calling task’s job is not an 1/O job.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the present
configuration.

The connection parameter is a token for an object
that is not a file connection.

EIOS System Calls

ESPARAM

E$SPACE

E$SUPPORT

El1OS System Calls

8004H

0029H

0023H

S$SEEK

At least one of the following is true:

o The value of the mode parameter is not 1, 2, 3,
or 4.

e The calling task was attempting to seek past the
end of a physical file.

This seek operation forced the Extended [/O System
to attempt to empty the connection’s buffer(s) by
writing their contents to the volume. However, the
volume is full.

The connection parameter refers to a connection
that was created by a task outside of the calling
task’s job.

93

The S$SPECIAL system call allows your tasks to perform functions that are peculiar to a

specific device.

CALL RQSSSSPECIAL{connection, function, data$ptr, iorsSptr,

except$ptr);

94

Input Parameters

connection

function

data$ptr

A TOKEN for a connection to the file for which the special
function is to be performed.

A WORD that specifies the special function being requested. Each
function is described in detail under the "Description” heading, but
the following table summarizes the values to be assigned to this
parameter.

Function Type of file Eftect of
Value for connection Function
0 Physical Format disk track
0 Stream Query
1 Stream Satisty
2 Physical or
Named Notify
3 Physical Get disk special data
4 Physical Get terminal data
S Physical Set terminal data
6 Physical Set signal character
7 Physical Rewind tape
8 Physical Read tape file mark
9 Physical Write tape file mark
10 Physical Retention tape
11-32767 Reserved for other Intel
products

A POINTER to a parameter block that your task uses to supply the
Extended I/O System with information, or to receive information
from the Extended 1/O System. The contents and form of the
parameter block depend upon the function being requested, so the
form of the parameter block is described later, under the
"Description” heading. If the function requires no parameter
block, set data$ptr to NIL.

EIOS System Calls

Output Parameters

iors$ptr

EIOS System Calls

S$SPECIAL

A POINTER to a structure of the form described below. The
Extended 1/O System uses this structure to return information that
might be of use to the calling task. If you set this POINTER to
NIL, the Extended I/O System does not return the information.

Be aware that this is relatively obscure information that most
applications do not need.

DECLARE iors$data STRUCTURE(

where

actual

actual$fill

device

unit
funct

subfunct

device$loc
but$ptr
count

count$fill

aux$ptr

actual WORD,
actual$fill WORD,
device WORD,
unit BYTE,
funct BYTE,
subfunct WORD,
device$loc DWORD,
buf$ptr POINTER,
count WORD,
count$fill WORD,
aux$per POINTER)

Number of bytes that were actually transferred
during the special function, if any.

Reserved for Intel’s use.

Device number identifying the device. For an
explanation of device numbers, refer to the
Extended iRMX I Interactive Configuration
Utility Reference Manual.

Number of the unit that contains the file on
which the special function is being performed.

Code recognized by the driver, usually
meaning that this is a special operation.

Function code you code into the call.

Location on the device where the operation
was performed.

POINTER to a buffer used for this operation,
if any buffer is used.

Number of bytes transferred, if any were
transferred.

Reserved for future use,

Same as dataSptr in the call to S$SPECIAL.

SSSPECIAL

except$ptr A POINTER to a WORD where the Extended /O System returns
the condition code.

Description

This system call allows your tasks to communicate with devices, device drivers, and the
stream file driver to pertform operations that are less device-independent than other
Extended 1/0 System operations.

S$SPECIAL allows your task to perform several special functions, The Extended [/O
System decides which function to perform by examining the function parameter and the
kind of connection provided in the connection parameter. The following sections explain
each function in detail.

Formatting a Track (Function Code 0)

To use the SSSPECIAL system call to format o track on a disk, the calling task must
supply the following information:

connection A TOKEN for a connection to a physical file. This connection
must be open for reading, writing or both.
function Must be set to zero.
data$ptr Must point to a STRUCTURE of the following form:
DECLARE trackS$formatter STRUCTURE(
trackSnumber WORD,
interleave WORD,
trackSoffset WORD,
fillSchar BYTE)
where
track¥number Number of the track to be formatted.

Acceptable values are 0 to one less than the
number of tracks on the volume. Other values
cause un ESSPACE exception code. When
formatting a tape or a RAM-disk, you must
nlace a zero value in this field.

96 EIOS System Calls

S$SPECIAL

interleave The number of physical sectors between
consecutive logical sectors. (This field does
not apply to tapes or to RAM-disks.) If the
interleave factor is zero or one, no physical
sectors are skipped. If the specified interleave
vilue is greater than the number of physical
sectors on a track, the operating system divides
that interleave value by the number of physical
sectors and uses the remainder as the
interleave factor. A remainder of zero has the
same etfect as an interleave of zero.

trackJoftset Number of physical sectors to skip between the
tndex mark and the first logical sector. (This
tield does not apply to tapes or to RAM-disks.)

tillSchar The character with which the sector will be
written; some drivers ignore this field and fill
the sectors with a character the driver
establishes.

Also see the description of Function Code 3, Getting Special Disk Data.

Obtaining information About Stream File Operations (Function Code 0)
Occasionally, a task using a stream file must find out what is being requested by another
task using the same stream file. For example, the task reading a stream file might need to

know how many bytes are being sent by a task writing to the same file. Tasks can obtain
this kind of information by catling SSSPECIAL with the following information:

connection A TOKEN for a connection to a stream {ile.
function Zero,
data$ptr Set to NIL.

I a task is reading from or writing to a stream file, the Extended 1/0 System returns
information in the structure to which jorsSptr points. The tollowing four fields contain
valid information:

actual The number of bvtes already transferred.
count The number of bytes remaining to be transterred.
but$ptr A POINTER to the memaory location to be used for the next byte

to be transterred.

funct A value that indicates the purpose of the queued request. The
value 1s zero for read requests and one for write requests.

EFOS System Calls 97

S$SPECIAL

If no task is reading from or writing to the stream file, the Extended 1/O System queues
the S$SPECIAL request. The request remains queued until a task issues a read or write
request. If, before a read or write request is issued, another S§SPECIAL request arrives,
the Extended 1/O System cancels both S$SPECIAL requests and returns
ESSTREAMSSPECIAL exception codes to the tasks that issued the S$SPECIAL calls.

Satisfying Stream File Transactions (Function Code 1)

98

Stream files provide two tasks with the ability to communicate. When one task tries to
read or write to a stream file, the task does not run again until the complementary task
issues a matching request.

For example, suppose that Task A wants to read 512 hytes, but Task B writes only 256
bytes. Task A stops running until Task B issues one or more requests which supply at
least 256 more bytes.

The S$SPECIAL system call enables tasks to force a stream file transaction to complete,
even if the number of bytes written does not match the number of bytes read.

To force this completion, a task must invoke the S§SPECIAL system call with the
parameters set as follows:

connection A TOKEN for a connection to the stream file. This connection
must be open for the operation that has not satisfied the matching
requirement. For example, if the reading task wants to force the
Extended 1/O System to consider the transaction completed, the
connection must be open for reading.

function One.

data$ptr Set to NIL.

After requesting this satisfy function, the only information that your task can obtain is the
condition code returned by the Extended [/O System. If the task invoking the

SISPECIAL system call has already completed the transaction, the Extended 1/0O System
returns an E$STREAMSSPECIAL condition code.

EIOS System Calls

S$SPECIAL

Requesting Notification that a Volume is Unavailable (Function Code 2)

This function applies to named and physical files only. When a person opens a door to a
flexible disk drive or presses the STOP button on other mass storage drives, the volume
mounted on that drive becomes unavailable. A task can request notification of such an
event by calling SSSPECIAL. For flexible disk drives attached to an iSBC 208 or iSBC
218A controller, and for some 5-1/4" flexible disk drives, notification occurs when the
Basic I/O System first tries to perform an operation on the unavailable volume. For most
other drives, notification occurs immediately. The reason for this difference is that
controller/drive combinations that include the iISBC 208 or iSBC 218A controller, or that
include some 5-1/4" drives, cannot generate an interrupt when the drive ceases to be
ready. In contrast, most other controller/drive combinations do.

On those drives where no notification occurs until the Basic I/O System attempts to
access the drive, a dangerous situation occurs whenever you change a volume without first
detaching the device. If you do not first detach the device and then reattach it, the Basic
1/0 System accesses the device using the directory information from the old volume.
Unless the new volume is write-protected, this process corrupts the entire volume,
rendering it useless. The correct sequence of events when changing volumes on one of
these devices is as follows:

| Detach the unit (via ASPHYSICAL$DETACHSDEVICE).

2 Remove the old volume.

3. Install the new volume.

4 Reattach the unit (via ASPHYSICALSATTACHSDEVICE).

For devices that can perform notification, a task requests notification by calling

S$SPECIAL with a token for a device connection, with spec$func set to 2, and with
data$ptr pointing to a structure of the following form:

DECLARE notify STRUCTURE(
mailbox TOKEN,
object TOKEN} ;
where
mailbox A TOKEN for a mailbox.
object A TOKEN for an object. When the Basic I/O System detects that

the implied volume is unavailable, the object is sent to the mailbox.

After a task has made a request for notification, the Basic 1/O System remembers the
object and mailbox tokens until either the volume is detected as being unavailabie or until
the device is detached by the ASPHYSICALSDETACHSDEVICE system call. When the
volume becomes unavailable, the object is sent to the mailbox. Note that this implies that
some task should be dedicated to waiting at the mailbox.

E10S System Calls 99

S$SPECIAL

If the volume is detected as being unavailable, the Basic 1/0 System will not execute 1/0
requests to the device on which the volume was mounted. Such requests are returned

with the status field of the 1/O result segment set to ESIO and the unit$status field set to
[OSOPRINT (value = 3). The latter code means that operator intervention is required.

If any task issues a subsequent notification request for the same device connection, the
Basic 1/O System replaces the old mailbox and object values with the new ones specified.
It does not return an exception code.

To restore the availability of a volume, perform the following steps:
I Close the door of the diskette drive or restuart the hard disk drive.

2. Call ASPHYSICALSDETACHSDEVICE. It may be necessary to do a "hard"
detach of the device.

3. Call ASPHYSICALSATTACHSDEVICE and reattach the device.

4, Create a new tile connection.

To cancel a request for notification, make a dummy request using the same connection
with a SELECTORSOF(NIL) value in the mailbox parameter.

Getting Disk Special Data (Function Code 3)

You c¢an write your own program to format a disk. ruther than using the FORMAT
command (part of the extended IRMX Il Human Intertace). 1f you do so, you must place
some special device data into the last bytes of the label on the extended iRMX 11 named
volume. Currently, this field in the label is eight (8) bytes long, although Intel reserves the
right to add to its length later. (The structure of an extended iIRMX 1T named file volume
is described in the Extended iRMX 1 Disk Verification Utility Reference Manual.)

You can obtain the dita in this field by issuing S$SPECIAL with a function code of three.
You can then save the duta and write it into the lubel tield when you format the disk.

To use the S§SPECIAL system call to obtain the special data for the label, the calling task
must supply the following information:

connection A TOKEN for a connection te a physical file. This connection
must be open for reading. for writing, or tor both reading and
writing.

function Three.

100 EIOS System Calls

S$SPECIAL

data$ptr A POINTER to a STRUCTURE of the following form:
DECLARE disk$labelS$data STRUCTURE(
label$data(8) WORD) ;

Getting Terminal Characteristics (Function Code 4)
Setting Terminal Characteristics (Function Code 5)

These two tunctions are complements of each other. They use the same type of data
structure with identical meanings for each field in the structure. A function code of four
returns the current characteristics of a particular terminal; a function code of five allows
you to set the characteristics of a terminal.

Intel recommends that before setting the terminal characteristics, you first invoke
SSSPECIAL with function code 4 to get the current characteristics. Then, modify the
returned structure to reflect your desired changes. Finally, invoke SSSPECIAL with
function code 5 to set the characteristics, using your modified structure as input.

In this section, certain terms unique to terminal devices (for example, line editing, OSC
sequence, translation) are described only briefly. If you are unfamiliar with these terms
refer to the Extended iRMX 11 Basic 1/0 Systemn Calls Reference Manual and the Extended
(RMX I Device Driver User’s Guide.

To use the SISPECIAL system call to get or to set terminal characteristics, the calling
task must supply the following information:

connection A TOKEN for a connection to a terminal.

function Four (get churacteristics) or five (set characteristics).

EIOS System Calls 101

SSSPECIAL

102

data$ptr

where

A POINTER to a STRUCTURE of the following form:

DECLARE terminal$Sattributes STRUCTURE(

num$words

num$used

numSwords WORD,
numSused WORD,
connectionSflags WORD,
terminal$flags WORD,
in$baudS$rate WORD,
out$baudSrate WORD,
scroll$lines WORD,
xSySsize WORD,
x$ySoffset WORD,
specialSmodes WORD,
high$water$mark WORD,
lowSwater$mark WORD,
feSonSchar WORD,
feSoffSchar WORD,
link$parameter WORD,
spc$hiSwaterSmark WORD,
special$char(4) BYTE) ;

The number of words, not including
num3¥words and num$used, that are reserved
for the remainder of the terminal$attributes
data structure. To access all of the
information, set this fieid to at least 16. Intel
reserves the right to expand the length of this
structure in later releases.

The number of fields, following the num$used
field, that are actually being used for getting or
setting terminal characteristics.

In getting and setting terminal information, the
amount of data returned or sent is governed by
the num$used field. For example, if function is
4 and num$used is 2, then an S$SPECIAL call
returns data in the connection$flags and
terminal$flags fields, but not in the remainder
of the fields.

EIOS System Calls

S$SPECIAL

However, when setting terminal attributes,
specifying a zero value for any of the next tive
ticlds (connection$flags through scroll$lines)
causes the [/O System to skip over the zeroed
field, leaving it at its previous setting. For
example, if num3$used is 2, while
connection$flags is 0 and terminal$flags is not
0, then S$SPECIAL uses the contents of the
terminal$flags field to set terminal attributes,
but it ignores the contents of connection$flags
tield. In this way, you can set some parameters
without affecting others.

For the functions represented by the remaining fields in this structure, invoking
SSSPECIAL is not the only way to set the functions. You can also set them with OSC
sequences. The description of cach field mentions, in parentheses, the OSC characters
you can use. (OSC sequences are described in the Extended iRMX 1 Device Drivers User’s
Guide.) You can also use the OSC Query sequence when debugging, to ensure that your
tasks invoked SSSPECIAL correctly.

connection$flags This word applies only to this connection to the terminal. (All
other parameters apply to the terminal itself and therefore to all
connections to the terminal.) If you attempt to set this ficld to
zero, the 1/O System ignores your entry and leaves the field set to
its previous value.

The flags in this word are encoded as follows. (Bit 0 is the low-

order bit.)
Bits Value and Meaning
0-1 Line editing control (corresponds to OSC

characters C:T). Line editing refers to how
the TSC (Terminal Support Code) handles
control characters such as those that delete
characters entered at a terminal, scroll
terminal output, and others. Refer to the
Extended iRMX I] Device Drivers User'’s Guide
for more information,

EL1OS System Calls 103

SSSPECIAL

NOTE

Line editing is supported on input only (that is, the stream of data entered
at, but not sent to, a terminal).

Bits Vialue and Meaning
0 = Invalid Entry.

1 = No line editing (transparent mode). Input
is transmitted to the requesting task exactly as
entered at the terminal*. Before being
transmitted, data accumulates in a buffer until
the requested number of characters has been
entered.

2 = Line editing (normal mode). Edited data
accumulates in a buffer until a line terminator
is entered.

3 = No line editing (flush mode). Input is
transmitted to the requesting task exactly as
entered at the terminal*. Before being
transmitted, data accumulates in a butfer until
an input request is received. At that time, the
contents of the buffer (or the number of
characters requested, if the buffer contains
more than that number) is transmitted to the
requesting task. If any characters remain in
the buffer, they are saved for the next input
request.

2 Echo control (corresponds to OSC characters
C:E).

0 = Echo. Characters entered at the terminal
are "echoed” to the terminal’s display screen.

1 = Do not echo.

* Except (1) signal characters (e.g.,, the Human
Intertace CONTROL-C) set by specifying "set
signal” in the spec$func parameter of
AS$SPECIAL or S$SPECIAL, and (2) any

enabled output control characters or OSC
sequences.

104 ELOS System Calls

EIOS System Calls

6-7

S$SPECIAL

Input parity control (corresponds to OSC
characters C:R). Characters entered into the
terminal have their parity bits (bit 7) set to 0
or not set by the Terminal Support Code,
according to the value of the input parity
control bit.

0
1

1§

Set parity bit to 0.

Do not alter parity bit.

Output parity control (corresponds to OSC
characters C:W). Characters being output to
the terminal have their parity bits (bit 7) set to
0 or not set by the Terminal Support Code,
according to the value of the output parity
control bit.

0

Set parity bit to ().
1

Do not alter parity bit.

Output control character control (corresponds
to OSC characters C:O). This bit specifies
whether output control characters are effective
when entered at the terminal. The value of
this bit applies only to output through this
connection. Control characters are described
in the Extended iIRMX 1T Device Drivers User’s
Guide.

Note that the output control characters are
supported only on input from a terminal, not
as output to a terminal.

0 = Accept output control characters in the
input stream.

I = Tgnore output control characters in the
input stream.

OSC control sequence enable/disable
(corresponds to OSC characters C:C). These
bits specify whether OSC control sequences
should be acted upon when they appear in the
input stream and, separately, when they
appear in the output stream. These bits apply
only to input or output through this
connection. OSC control sequences are
described in Extended iRMX [T Device Drivers
User's Guide.

105

SSSPECIAL

106

terminal$flags

8-15

0 = Act upon OSC sequences that appear in
either the input or output stream.

I = Act upon OSC sequences in the input
stream only.

2 = Act upon OSC sequences in the output
stream only.

3 = Do not act upon any OSC sequences.

Reserved bits. For future compatibility, set to
0.

This word applies to the terminal and therefore to all connections
to the terminal. If you attempt to set this field to zero, the Basic
1/0 System ignores your entry and leaves the field set to its
previous value. The flags in this word are encoded as follows. (Bit
0 1s the low-order hit.)

0
1

Value and Meaning

Reserved bit. Setto 1.

Line protocol indicator (corresponds to OSC
characters T:L). Full-duplex terminals support
simultaneous and independent input and
output. Half-duplex terminals support
independent input and output, but not
simultaneously.

0

1l

Full duplex.

1 = Half duplex.

Output medium (corresponds to OSC
characters T:H).

0 = Video display terminal (VDT).
1

il

Printed (Hard copy).

Modem indicator (corresponds to OSC
characters T:M).

(0 = Not used with a modem.

1 = Used with a modem.

EIOS System Calls

EIOS System Calls

4-5

6-8

S$SPECIAL

Input parity control bits (corresponding to
OSC characters T:R) determines how the
terminal driver handles input parity. The
parity bit {(bit 7) of each input byte can be used
in a variety of ways. A byte has even parity if
the sum of its bits is an even number.
Otherwise, the byte has odd parity.

0 = Terminal driver always sets parity bit to (.
1 = Terminal driver never alters the parity bit.

2 = Even parity 1s expected on input. The
terminal driver uses the parity bit to indicate
the presence (1) or absence (0) of an error on
input. That is, the driver sets the parity bit to {
unless the received byte has odd parity or
there 1s some other error, such as (a) the
received stop bit has a value of 0 (framing
error) or (b) the previous character received
has not yet been fully processed (overrun
errar).

3 = Odd parity is expected on input. The
terminal driver uses the parity bit to indicate
the presence (1) or absence (0) of an error on
input. That is, the driver sets the parity bit to 0
unless the received byte has even parity or
there is some other error, such as (a) the
received stop bit has a value of 0 (framing
error) or (b} the previous character received
has not vet been fully processed (overrun
error).

Output parity control bits (corresponding to
OSC characters T:W). Determines how the
terminal driver handles output parity. The
parity bit (hit 7) of each output byte can be
used in a variety of ways. A byte has even
parity if the sum of its bits is an even number.
Otherwise, the byte has odd parity.

0
|

Terminal driver always sets parity bit to 0.

Terminal driver always sets parity bit to 1.

2 = Terminal driver sets parity bit to give the
byte even parity.

107

S$SSPECIAL

3 = Terminal driver sets parity bit to give the
byte odd parity.

4 = Terminal driver does not alter the parity
bit.

5-7 Invalid values.

9 Translation control (corresponds to OSC
characters T:T). Translation refers to the
ability to define certain control characters so
that whenever these characters are entered at
or written to a terminal, certain actions,
usually cursor movements, take place
automatically. Translation is described in the
Extended iRMX Il Device Drivers User’s Guide.

0

Do not enable translation.
1 = Enable translation.

10 Terminal axes sequence control (corresponds
to OSC characters T:F). This specifies the
order in which Cartesian-like coordinates of
elements on a terminal’s screen are to be listed
or entered.

0 = List or enter the horizontal coordinate
first.

I = List or enter the vertical coordinate first.

L1 Horizontal axis orientation control
(corresponds to OSC characters T:F). This
specifies whether the coordinates on the
terminal’s horizontal axis increase or decrease
as you move from left to right across the
sCreen.

0 = Coordinates increase from left to right.
1 = Coordinates decrease from left to right.

12 Vertical axis orientation control (corresponds
to OSC characters T:F). This specifies
whether the coordinates on the terminal’s
vertical axis increase or decrease as you move
from top to bottom across the screen.

(0 = Coordinates increase from top to bottom.

| = Coordinates decrease from top to bottom.

108 EIOS System Calls

S$SPECIAL

13-15 Reserved bits. For future compatibility, set to
Q.

NOTE

If bits 4-5 contain 2 or 3, and bits 6-8 also contain 2 or 3, then they must
both contain the same value. That is, they must both reflect the same
parity convention {even or odd).

in$baudS$rate

out$baudS$rate

scroll$lines

x$ySsize

EIOS System Calls

The input baud rate indicator (corresponds to OSC characters T:I).
It you attempt to set this field to zero, the Basic I/O System
ignores your entry and leaves the field set to its previous value.
The word is encoded as follows:

() = Leave field set to the previous value.

1 = Use the input baud rate for output.
Other = Actual output baud rate, such as 9600.

The output baud rate indicator (corresponds to OSC characters
T:O}). if you attempt to set this field to zero, the Basic [/O System
ignores your entry and leaves the field set to its previous value.
The word is encoded as tollows:

0 = Leave field set to the previous value.
{= Use the input baud rate for output,
Other= Actual output baud rate, such as 9600.

Most applications require the input and output baud rates to be
equal. In such cases, use in$baud$rate to set the baud rate and
specity a one for out$baud$rate.

An operator at a terminal can enter a control character (default is
CONTROL-W) when he/she is ready for data to appear on the
terminal’s display screen. The scroll$lines value (corresponding to
OSC characters T:S) specities the maximum number of lines that
are to be sent to the terminal each time the operator enters the
control character. If you attempt to set this field to zero, the Basic
I/O System ignores your entry and leaves the field set to its
previous value.

The low-order byte of this word specifies the number of character
positions on each line of the terminal’s screen (and corresponds to
OSC characters T:X). The high-order byte specifies the number of
lines on the terminal’s screen (and corresponds to OSC characters
T:Y).

109

S$SSPECIAL

L1}

xbySoffset

special$modes

The low-order byte of this word specities the value that starts the
numbering sequence of both the X and Y axes (and corresponds to
OSC characters T:U). The high-order byte specifies the value to
which the numbering of the axes must "fall back” after reaching 127
(and corresponds to OSC characters T: V).

This and the following fields apply only to buffered devices (such as
the iSBC 544A and the iSBC [88/48 boards). These devices
maintain their own input and output butfers separately from the
ones managed by the Basic [/O System’s Terminal Support Code.
If you aren’t sure whether you can set these fields, invoke
S$SSPECIAL with tunction code 4 to get the terminal attributes. If
bit 15 of the special§modes ficld is set, your board is a buffered
device and vou can set the bits in specialfmodes and the following
tields. (I your board is not a buffered device, setting any of the
following fields will cause the Terminal Support Code to return an
ESPARAM Condition Code))

Bits Vilue and Meuaning

0 Flow control mode specifies whether the
communications board sends flow control
characters (selected by the fconchar and
fe§ofttchar fields, but usually XON and
XOFF) to turn input on and off (corresponds
to the OSC characters T:G). The low-order bit
{(bit 0) controls this option, as follows:

() = Disable flow control.
= Enable flow control.

When {low control is enabled, the
communication board can control the amount
of data sent to it to prevent buffer overflow.
This 1s especially important when
communicating with another computer.

f With the Special Character Mode
(corresponds to OSC characters T:D) you can
define up to four special characters. These
special characters are different from the signal
characters provided by the Terminal Support
Code, though they may be signal characters. 1f
your driver supports special characters, it
processes these characters differently when the
Special Character Mode is on.

E10S System Calls

S$SPECIAL

0 = Disable Special Character Mode.

1 = Enable Special Character Mode.
2-14 Reserved bits. Set to 0.
15 Buffered Device Control. This bit is set by the

Terminal Support Code to show if a device is
buffered. 1f invoking the SSSPECIAL system
call to get terminal attributes shows that this
bit is set, then the specialmodes bits and the
data fields following are valid. 1f the Buffered
Device Control bit is not set and you attempt
to alter these data fields, an ESPARAM error
is returned

() = Not a buffered device.

| = Buffered device.

n

The remaintng fields in the structure apply enly to buffered devices.

high$waterSmark When the communication board's butter fills to contain the
number of bytes represented by this field, the board’s firmware
sends the flow control "off” character to stop input. (This field
corresponds to the OSC characters T:J.)

The high-water mark of the iISBC 544A board is not configurable;
therefore, setting this field has no effect on that board.

lowSwater$mark When the number of bytes in the communication board’s input
butter drops to the number represented by this field, the board's
firmware sends the flow control "on" character to start input. (This
field corresponds to the OSC characters T:K.)

The low-water mark of the iSBC 544A board is not configurable;
therefore, setting this field has no effect on that board.

fcSonfchar An ASCII character that the communication board sends to the
connecting device when the number of bytes in its input buffer
drops to the low-water mark. Normally this character tells the
connecting device to resume sending data. (This field corresponds
to the OSC characters T:P.)

The fcon$char for the ISBC 544A board is set to the XON
(CONTROL-Q) churacter and is not configurable; therefore,
setting this field has no effect on that board.

EIOS System Calls 111

S$SPECIAL

feSoft$char

link$parameter

An ASCII character that the communication board sends to the
connecting device when the number of characters in its input buffer
rises to the high-water mark. Normally this character tells the
connecting device to stop sending data. (This field corresponds to
the OSC characters T:Q.)

The fcoffchar for the iISBC 544 A board is set to the XOFF
(CONTROL-S) character and is not configurable; therefore,
setting this field has no effect on that board.

This word specifies the characteristics of the physical link between
the terminal and a device. Not all device drivers support
link$parameter. (This field corresponds to the OSC characters
T:N, and is supported by the Terminal Communications Controller
driver.)

Bits Value and Meaning
0-1 Parity
0 = No parity

1 = Invalid Value
2 = Even parity
3 = Odd parity

2-3 Character length
0 = 6 bits/character.
1 = 7 bits/character.
2 = 8 bits/character.
3 = Invalid Value

i

4-5 Number of stop bits.
) = 1 stop bit.
I = 11/2stop bits.
= 2 stop bits,

6-14 Reserved

I5 Check if this word is to be used
(0 = not used
1 = used

If parity is enabled, an additional bit position beyond those
specified in the Character Length control is added to the
transmitted data and expected in received data. The received
parity bit is transferred to the CPU as part of the data unless 8
bits/character is selected. If a parity error is detected on input, the
character is discarded.

EIOS System Calls

S$SSPECIAL

In the 6 and 7 bits/character modes unused bit positions in
transmit data are ignored. Unused bits in receive data are set to 1.

If a framing error is detected on input, the character is returned as
an 8-bit null (00H).

Bit 15 is checked to see if this word is to be used. If set to 1, the
driver passes the low-order byte to the controller, which sets the
parity, character length, and stop bits. If set to 0, this word is
skipped and the terminal$flags field is used.

spcShifwater$mark This word specifies the high-water mark used by the special
character mode (bit | of special$modes) and is ignored if the
special character mode is off. If your device driver supports the
special character mode, the driver processes special characters
differently when the number of characters in the input buffer
reaches the high-water mark. You can define up to four special
signal characters (corresponds to the OSC characters T:A)

specialSchar(4) This array holds the characters you define as special characters
(and corresponds to the OSC characters T:Z). If you define less
than four special characters, then you must fill the remaining slots
in the array with duplicates of the last character you define.

Designating Characters for Signaling from a Terminal Keyboard (Function Code 6)

You can use the SJSPECIAL system call to associate a keyboard character with a
semaphore, so that whenever the character is entered into the terminal, the Basic [/O
System automatically sends a unit to the semaphore. Up to 12 character-semaphore pairs
can be so associated simultaneously; each character being associated with a different
semaphore, if desired. Character-semaphore pairs are called Signal Characters.

To set up a signal character, call SSSPECIAL with a device connection, with spec$func
equal to 6, and with data$ptr pointing to a structure of the following form:

DECLARE signal$pair STRUCTURE(

semaphore TOKEN,
character BYTE);

where

semaphore A TOKEN for the semaphore that is to be associated with the

character.

EIOS System Calls 113

S$SSPECIAL

character It the character value is in the range 0 to 1FH, or is 7FH, the
terminal support code sends a unit to the associated semaphore
when it receives the ASCII equivalent of this value.

If you add 20H to the character values in the 0 to IFH range
(making this range 20H to 3FH), or if the value is 40H, then the
type ahead buffer (and the input buffer if this is a buffered device)
is cleared and 4 unit is sent to the associated semaphore.

To delete a signal character, call SSSPECIAL with the semaphore field set to 0 and
character set to the signal character to be deleted.

Tape Drive Functions (Function Codes 7, 8, 9, and 10)

The S$SPECIAL system call performs four different functions that apply to tape drives
only. These functions include rewinding a tape, searching for file marks, writing file
marks, and retentioning a tape.

To rewind a tape, call S$SPECIAL with the following information:

connection A TOKEN for a connection to a physical file.
function Seven.
data$ptr Set to NIL.

This function terminates tape read and write operations and rewinds a tape to its load
point. If the tape drive is performing a write operation when you invoke this call, the tape
drive writes a file mark before it rewinds the tape.

To search for a file mark, call SSSPECIAL with the following information:

connection A TOKEN for a connection to a physical file.
function Eight.
data$ptr A POINTER 1o a structure of the following form:
DECLARE read$fileSmark STRUCTURE(
search BYTE) ;
where
search A value indicating the direction of the search,

as follows:
(0 Search forward
OFFH Seuarch backward (for start/stop drives

only)

This function terminates tape read operations and moves the tape to the next file mark.
Any outstanding requests are completed betore this call takes etfect.

114 EIOS System Calls

S$SSPECIAL

To write a file mark, call SSSPECIAL with the following information:

connection A TOKEN for a connection to a physical file.
function Nine.
dataptr Set to NIL.

This function terminates tape write operations and writes a file mark at the current
position on the tape.

To retention a tape, call SSSPECIAL with the tollowing information:

connection A TOKEN for a connection to a physical file.
function Ten.
data$ptr Set to NIL.

This function fast-forwards the tape to the end and then rewinds 1t to the load point.

Condition Codes
E$OK O000H No exceptional conditions.
ESCONNSNOTSOPEN 0034H At least one of the following is true:
¢ The connection is not open.

e The connection was opened by ASOPEN rather
than SSOPEN.

ESEXIST 0006H The connection parameter is not a token for an
existing object.

ESFLUSHING 002CH The specified device is being detached.

ESIDDR (002AH The requested function s not supported by the
device containing the spectfied file.

E$IFDR 002FH The Extended 1/0 System does not support the

requested function for the file driver associated with
the connection.

EFIOFHARD 0052H A hard [/O error occurred. A retry is probably

useless.

EIOS System Calls 115

S$SPECIAL

ESIOSMODE

ESIOSNOSDATA
ESIO$OPRINT

ESIO$SOFT

ESIO$UNCLASS
ESIO$WRPROT
ESLIMIT

ESMEM

EINOTICONFIGURED
ESNOT$CONNECTION

ESPARAM
ESSPACE

i6

0056H

0055H

0053H

0051H

0050H
0054H
0004H

0002H

0008H
8042H

8004H
0029H

One of the following is true:

e A tape drive attempted to perform a read
operation before the previous write operation
completed.

s A tape drive attempted to perform a write
operation before the previous read operation
completed.

The tape drive attempted to read the next record,
but it found no data.

The device was off-line. Operator intervention is
required.

A soft 1/O error occurred. The [/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of [/O error occurred.
The volume is write-protected.
At least one of the following is true:

o Either the calling task’s job or the job’s default
user object 1s already involved in 255 (decimal)
1/O operations.

¢ The calling task’s job is not an 1/O job.

The memory avatlable to the calling task’s job is not
sufficient to complete the call.

This call is not part of the present configuration.

The connection parameter is a token for an object
that is not a file connection.

The function code is not a legitimate value.
At least one of the following is true:

s The call attempted to format a track that is
beyond the end of the volume.

* When formatting a RAM-disk or a tape, the call
attempted to format a track other than track
zZero.

EIOS System Calls

ESSTREAMSSPECIAL

ESSUPPORT

EIOS System Calls

S$SPECIAL

003CH At least one of the following is true:

o The calling task is attempting to satisfy a stream
file request, but there is no request queued at
the stream file.

¢ The calling task attempted to satisfy a4 stream
tile request, but the only queued request is a
query.

» The calling task is querying a stream file, but
the only request queued at the file 1s another
query. The Extended 1/0O System removes both
queries from the queue and returns this
exception code.

0023H The specified connection was created by a task
outside of the calling task’s job.

117

The SSTRUNCATESFILE system call removes information from the end of a named
data file. This system call can be used only with named files.

CALL RQSSSTRUNCATESFILE(connection, except$ptr);

INPUT PARAMETER

connection A TOKEN for a connection to the named data file that is to be
truncated. The file pointer for this connection tells the Extended
[/O System where to truncate the file. The byte indicated by the
pointer is the tirst byte to be dropped from the file.

OUTPUT PARAMETER

exceptdptr A POINTER to a WORD where the Extended I/O System returns
a condition code.

Description

This system call applies to named data files only. When called, it truncates a file.
"Truncate” means to get rid of the data in the file from the current location of the file
pointer to the end of the file.

Unless the file pointer is already where you want it, your task should use the SSSEEK
system call to position the pointer before using the SSTRUNCATESFILE system call.

Truncation will occur immediately, regardless of the status of other connections to the
same file.

If the pointer is at or beyond the end-of-tile, no truncation occurs.

Access Requirements
Three access requirements pertain to this system call. First the connection must be open
for writing only or for both reading and writing. 1f this is not the case, your task can use

the SSOPEN system call to open the connection.

Second, the connection must have update access to the file. Recall that the Extended 1/0
System computes a connection’s access when the connection is created.

118 EIOS System Calls

SSTRUNCATESFILE

Third, the connection must have been created by a task within the calling task’s job. If this
is not the case, use the existing connection as a prefix, and have the calling task invoke the
S$ATTACHSFILE system call.

Condition Codes

ESOK

ESCONNSNOTSOPEN

ESFACCESS

ESEXIST

ES$IFDR

ESIOSHARD

ESIOSOPRINT

ESIOSSOFT

ESIO$UNCLASS
ESIOIWRPROT
ESLIMIT

ESMEM

EIOS System Calls

0000H
0034H

0026H

0006H

002FH

0052H

0053H

00531H

D050H
0054H
0004H

0002H

No exceptional conditions.
At least one of the following is true:

» The connection is open in the wrong mode. It
must be open for writing or tor both reading
and writing.

¢ The connection is not open.

s The connection was opened by an ASOPEN
rather than an SSOPEN.

The connection does not have update access to the
file.

The connection parameter is not a token for an
existing object.

Your task is attempting to truncate a stream or
physical file. The SSTRUNCATESFILE system call
can be used only on named files.

A hard 1/O error occurred. A retry is probably
useless.

The device was off-line. Operator intervention is
required.

A soft 1/O error occurred. The 1/O System tried to
perform the operation a number of times and failed
(the number of retries is u configuration parameter).
Another retry might still be successful.

An unknown type of [/O error occurred.
The volume is write-protected.
At least one of the tollowing is true:

o The calling task’s job is not an [/O job.

o Either the calling task’s job, or the job’s default
user object, is already involved in 255 (decimal)
/O operations.
The memory available to the calling task’s job is not
sufficient to complete the call.

119

SSTRUNCATESFILE

120

ESNOTSCONFIGURED 0008H

ESNOTSCONNECTION 8042H

ES$SPACE 0029H

E$SUPPORT 0023H

This system call is not part of the present
configuration.

The connection parameter is a token for an object
that is not a file connection.

The truncation required writing the contents of a
buffer to the tile, but the volume was full.

The connection was created by a task outside the
calling task’s job.

EIOS System Calls

The SSUNCATALOGSCONNECTION deletes a logical name from the object directory
of a job.

CALL RQSSSUNCATALOGSCONNECTION(job, logSname$ptr, exceptSptr);

Input Parameters

job A TOKEN for a job. The Extended I/O System deletes the logical
name from this job’s object directory. Setting the job parameter to
SELECTORSOLF(NIL) specifies the calling task’s job.

logSname$ptr A POINTER to a STRING (of 1 to 12 characters) containing the
logical name to uncatalog. The name can be delimited with colons
(:). The operating system removes the colons so that a logical
name with colons is the same as one without (e.g., :FO: 1s effectively
the same as F(1). Colons do not count in the length of the name.

Output Parameter
except$ptr A POINTER to a WORD where the Extended 1/O System returns

the condition code.

Description

Your tasks should invoke this system call to delete logical names that were added to the
object directory by the SSCATALOGSCONNECTION system call.

Condition Codes

ESOK 0000H No exceptional conditions.
ESEXIST 0006H The job parameter is not a token for an existing
object.
ESLIMIT 0004H The calling task’s job is not an 1/0 job.
ESLOGSNAMES$- 0045H The call could not tind the logical name
NEXIST in the job's object directory.

ELOS System Calls 121

SSUNCATALOGSCONNECTION

ESLOGSNAMES- 0040H
SYNTAX
ESMEM 0002H

ESNOTSCONFIGURED 0008H

ESTYPE 8002H

The syntax of the specified logical name
is incorrect because at least one of the following
conditions 1s true:

¢ The STRING pointed to by the log$name$ptr
parameter is of zero length or has a length
greater than 12 (not including colons (:)).

» The logical name contains invalid characters.

The memory available to the calling task’s job is not
sufficient to complete the call.

This system call is not part of the present
configuration.

The job parameter is a token for an object that is not
a job.

ELOS System Calls

The SSWRITESMOVE system call writes a collection of bytes from a buffer to a file.

bytesSwritten = RQ$SSWRITESMOVE (connection, buf$ptr, count,
except$ptr);

Input Parameters

connection A TOKEN for the connection to the file in which the information
15 10 be written.

buf$ptr A POINTER to a contiguous collection of bytes that are to be
written to the specified file.

count A WORD containing the number of bytes to be written from the
butfer to the file.

Output Parameters

bytes$written A WORD contatning the number of bytes that were actually
written to the file. This number will always be equal to or less than
the number specified in the count parameter.

exceptiptr A POINTER to a WORD where the Extended [/O System returns
a condition code.

Description

This system call causes the Extended /O System to write the specified number of bytes
from the huffer to the file.

Access Control

To write information into a file, the connection parameter must satisfy the following two
requirements:

« The connection must have been created by o task within the calling task’s job. [If this is
not the case, the Extended 1/0 System returns an ESSUPPORT exception code.

e The connection must be open for writing or for both reading and writing.

EIOS System Calls 123

SSWRITESMOVE

If the file is a named data file, the access rights associated with the connection must
permit the kind of writing being performed. That is, if you are writing over data in the
file, the connection must have update access or you will get an exception code; if you are
writing data beyond the end-of-file, the connection must have append access or you will
receive an exception code,

The connection can have access rights for updating, appending, or both. For information
regarding the process of assigning access to a connection, see the descriptions for the
SYATTACHSFILE and SSCREATESFILE system calls.

Number of Bytes Actually Written

Occasionally, the Extended [/O System writes fewer bytes than requested by the calling
task (upon return from the call, bytes$written is less than count). This happens under two
circumstances:

o When the Extended 1/0 System encounters an 1/0 error. Your task will be informed
of this circumstance because the Extended /0 System returns an exception code.

e When the volume to which your task is writing becomes full. The Extended 1/0
System informs your task of this condition by returning an E$SPACE exception code.

Where the Bytes are Written

The Extended /0O System writes the first byte starting at the byte pointed to by the file
pointer. As the Extended 1/O System writes the bytes, it also updates the pointer. After
the writing operation is complete, the tile pointer points to the byte immediately following
the last byte written.

Use the S$SEEK system call to position the file pointer if you are performing random-
access operations.

[f your task is using a connection that has append access, the task can start a writing
operation beyond (rather than at) the EOF. The Extended 1/O System extends the file
and performs the writing operation. If the file is extended, the extended section of the file
contains unknown, random information (you can write data into this area later). For
example, if the EOF is at location 200 and vour task positions the file pointer at 250 and
begins writing. locations 200 through 249 contain undetermined information.

Effects of Priority

The priority of the task invoking this system call can greatly affect the performance of the
application system. For better performance. the priority of the invoking task should be
equal to or lower than (numerically greater than) 130, 1f the priority of the calling task is
greater than 130, the operating system cannot overlap the write operation with
computation or with other 1/0O operations. (To find out how to set priorities for
application tasks, refer to the Extended iRMX I Nucleus User’s Guide.)

EIOS System Calls

Condition Codes
E$OK
EBADBUFF

ESCONNSNOTSOPEN

ESEXIST
ESFACCESS
ESFLUSHING

ESFRAGMENTATION
ESIOSHARD

ESIOSMODE

ESIO$OPRINT

ESIO$SOFT

ESIOSUNCLASS
ESIOSWRPROT

EIOS System Calls

0000H
8023H

0034H

0006H

0020H

002CH

0030H
0052H

0056H

(0053H

0051H

0050H
0054H

SSWRITESMOVE

No exceptional conditions.
One of the following is true:

+ The specified source memory buffer is not
writeable.

¢ The specified source memory buffer crosses
segment boundaries.

At least one of the following is true:
« The connection is not open for writing,
+ The connection is not open.

+ The connection was opened with ASOPEN
rather than with SSOPEN.

The connection parameter is not a token for an
existing object.

The call tried to write bevond the end-of-file, but the
connection specified does not have append access to
the file.

The specitied device is being detached.
The tile 1s too fragmented to be extended.

A hard 1/O error occurred. Another retry is
probubly uscless.
One of the following is true:

o A tape drive attempted to perform a read

operation before the previous write operation
completed.

e A tape drive attempted to perform a write
operation before the previous read operation
completed.

The device was off-line. Operator intervention 1s
required.

A soft 1/O error oceurred. The /0 System tried to

perform the operation a number of times and failed

(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of [/O error occurred.

The volume is write-protected.

125

SSWRITESMOVE

126

ESLIMIT

ESMEM

ESNOTSCONFIGURED

ESNOTSCONNECTION

ESPARAM

E$SPACE
ESSUPPORT

00044H

(0002H

0008H

8042H

8004H

0029H
00231

At leust one of the following is true:

e The calling task’s job is not an I/O job.

e The calling task’s job, or the job’s default user
object, is already involved in 255 (decimal) I/0O
operations.

The memory available to the calling task’s job is not
sufticient to complete the call.

This system cull is not part of the present
configuration.

The connection parameter is a token for an object
that is not a file connection.

The calling task is attempting to write beyond the
end of a physical file.

The volume is tull.

The connection parameter refers to a connection

thiat was created by a task outside of the calling
task’s job,

EIOS System Calls

The VERIFYSUSER system call validates a user’s name and password.

CALL RQ$VERIPYSUSER (user$t, name$ptr, password$ptr, except$ptr);

Input Parameters

user$t A TOKEN for the user object to be verified.

name$ptr A POINTER to a STRING containing the user name. This name
would typically be entered from the console during dynamic logon.
Only the first eight characters are used; any additional characters
are ignored.

password$ptr A POINTER to a STRING containing the unencrypted user
password. This password would typically be entered from the
console at the same time as the name$ptr parameter. Only the
first eight characters are used.

Output Parameter

exceptdptr A POINTER to a WORD where the Extended 1/O System returns
the condition code.

Description

The VERIFYJUSER system call validates a non-resident user’s name and password.
Validation means determining if the name and password supplied as parameters identify
a predefined user of an extended EXTENDED iRMX 11 system. This system call
searches the tile :CONFIG:UDF (User Detinition File) for a matching user name and
password. (See the Guide To The Extended iRMX I Interactive Configuration Utility for
information on the :CONFIG:UDF file.) The name must have the exact same form as it
appears in the UDF for a match to occur. The password parameter is encrypted and then
compared to the encrypted version in the UDF. The 1D defined in the UDF is also
compared with the 1D contained in the user object.

It a matching name, password, and 1D are tound, the user object is modified to indicate
the user has been verified. It IRMX-NET is configured into your system and the
VERIFYSUSER call succeeds, then you also gain access to remote files. (See the
IRMX Networking Software User’s Guide tor more information on iRMX-NET.)

EIOS System Calls 127

VERIFY$USER

Condition Codes

128

If the name is not found or if the password, once encrypted, does not match the encrypted
password associated with the name in :CONFIG:UDF, or if the IDs are not the same, an
error is returned and the user object is not modified.

The Human Interface can use the VERIFYSUSER system call to check a dynamic logon

process.

NOTE

The remote file driver will reject all user tokens created by the
CREATESUSER system call unless the VERIFY$USER system call is
used to verify the user tokens created.

ESOK
ESBADSCALL

ESCONTEXT
ESDEVFD

E$§DEVICES-
DETACHING

ESEXIST
ESFACCESS

ESFLUSHING
ESFNEXIST

ESFTYPE
ESILLVOL

ESINVALIDSFNODE

0000H
KOOSH

0005H
0022H

0039H

0006H
0026H

002CH
0021H

0027H
002DH

003DH

No exceptional conditions.

A task wrote over the interface library or over the
ELOS job.

The user TOKEN has already been verified.

The device cannot be used with the file driver as
specitied in the preceding logical attach operation.

An I/O operation could not be performed on
the device because it was being detached.

The user TOKEN parameter is not valid.

The user does not have the proper access rights for
the requested operation.

The device 1s being detached.

One of the following is true:

¢ The file or a file in its path does not exist.

¢ The specitied physical device was not found.
A path component is not a directory file,

The file driver given in the volume label conflicts
with the file driver specified in the preceding logical
attach operation.

The fnode associated with a file 1s either marked not
allocated, or the fnode number is out of range. This
file should be deleted.

EIOS System Calls

EIOSHARD

EIOMEM

ESIOSOPRINT

ESIO3SOFT

ESIO$UNCLASS
ESIO$WRSPROT
ESLIMIT

ESLOGSNAMES-
NEXIST

ESLOGSNAMES-
SYNTAX

ESMEDIA
ESMEM

ESNAMESNEXIST
ESNOPREFIX

ESNOTSCONFIGURED
ESNOTSLOGSNAME

E$NOUSER

ESPARAM

EIOS System Calls

0052H

0042H

0053H

0051H

00650H
0054H
0004H
0045H

0040H

(0044H
0002H

(049H
8022H

0008H
8040H

8021H

8004H

VERIFYSUSER

A hard error occurred; the BIOS cannot retry the
request.

The BIOS job did not have enough memory to
perform the requested function.

The device is off-line; operator intervention is
required.

A soft error occurred and the BIOS has retried the
operation and failed; a retry is not possible.

An unclassified 1/O error occurred.
The volume is write protected.
The caller’s job is not an /O job.

The logical name was not found in the
caller’s ebject directory, the global job object
directary, or the root job object directory.

One of the following was true:

» Aleading colon in the pathname STRING
indicated the start of a logical name, but a
terminate colon was not found.

e The logical name STRING has a length of 0 or
more than 12 characters.

» The logical name STRING contains invalid
characters.

The device associated with the system call is off-line.

The caller’s job does not have enough memory to
perform the requested operation.

The name specified in this call is not defined.

The caller’s job does not have a default prefix, or it is
invalid.

This call is not part of the present configuration.

The token referred to by the logical name supplied
does not refer to a valid device or file connection.

The caller’s job does not have a default user or it is
invalid.

The name or the password contain invalid characters
or the name length is equal to zero.

129

VERIFYSUSER

130

ESPASSWORDS-
MISMATCH

ESSHARE
ESTYPE

ESUDFSFORMAT
ESUIDSNEXIST

004BH

0028H
8002H

0048H
004AH

The password 1s incorrect.

The file cannot be shared using the requested access.

The user$t parameter is not a TOKEN for a user
object.

The UDF is not in the correct format.

The user 1D present in the user token does not
match that specified in the UDF.

EIOS System Calls

INDEX

A

Access rights 33, 38, 40, 63, 70, 124
Access rights and Selecting a Mode 79

B

Bit map for functions supported by GETSFILE$STATUS 69
Buffer 63, 78, 82, 95
Buffered Device Control 111

B

Condition codes
see also each system call 1
CREATESFILE
Device Considerations 51
Special Considerations for Named Files 51
Specifying the Kind of File to be Created 51
Temporary Named Files 51
CREATES$IOSjob 5
message structure 8
termination codes 8

D

Data file access rights 38
Directory access rights 39

E
EXITSIO$IOB 19

Calling Task Not Deleted 20
Special Circumstances 20

F

File$drivers bit map for GETSFILESSTATUS 69

E10OS System Calls Index-1

INDEX

G

GETSFILESSTATUS

flags for diskette drives 69

share modes 68
GETSLOGICALSDEVICESSTATUS 21
GETSUSERSIDS 23

H
HYBRIDSDETACHS$DEVICE 26
L

LOGICALSATTACHSDEVICE 28
LOGICALSDETACHSDEVICE 30

M
Modes for passing control to an exception handler 6

R

RQISIGETSDIRECTORYSENTRY 65
ROESCREATESIOJOB 12

message structure 15

termination codes 15

S

SSATTACHSFILE 33
SYCATALOGSCONNECTION 36
S$CHANGESACCESS 38
SYCLOSE 44

steps in closing a file 44
S$CREATESDIRECTORY 46

Positioning the Directory 46
S$CREATESFILE 50
SSDELETE$CONNECTION 56
SSDELETESFILE 58
SSGETSCONNECTIONSSTATUS 62
SSGETSFILESSTATUS 67
SGETPATHSCOMPONENT 75
SSLOOKSUPSCONNECTION 76

Index-2 EIOS System Calls

INDEX

S$OPEN 78
Access Rights 79
modes for using a connection 78
Selecting the Number of Buffers 79
S3IREADSMOVE 82
Effects of Priority 83
Number of Bytes Read 83
SSREADMODE
Creating the Buffer 82
SSIRENAMESFILE 86
Restrictions 86
S$SEEK 90
Access Control 91
modes for seeking 90
Reading and Writing Beyond the End of File 91
S$SPECIAL 94
Designating Characters for Signaling from a Terminal Keyboard (Function Code 6) 113
Formatting a Track (Function Code 0) 96
Getting Disk Special Data (Function Code 3) 100
Getting Terminal Characteristics (Function Code 4)
Setting Terminal Characteristics (Function Code 5) 101
tors$data 95
Obtaining Information About Stream File Operations (Function Code 0) 97
Requesting Notification that 4 Volume is Unavailable (Function Code 2) 99
Satisfying Stream File Transactions (Function Code 1) 98
Tape Drive Functions (Function Codes 7, 8, 9, and 10) 114
values for special functions 94
SSTRUNCATESFILE 118
Access Requirements 118
SSUNCATALOGSCONNECTION 121
SIWRITESMOVE 123
Access Control 123
Effects of Priority 124
Number of Bytes Actually Written 124
Where the Bytes are Written 124
Special circumstances for EXITSIO$JOB 20
STARTSIO$JOB 32
Structure
connection information for GETSCONNECTIONSSTATUS 62
device information 21
exception handler 6, 13
file$info for GETSFILESSTATUS 67
for label information 101

EIOS System Calls Index-3

INDEX

Structure (cont.)
for reading or writing a file mark 114
formatting a track 96
iors$data 95
notification of volume availability 99
signal$pair 113
terminal information 102
user name [Ds 23

T

Two conditions needed to create an existing file 50

\'/

Values for file$driver parameter 21

Values for file$driver parameter of GETSCONNECTIONSSTATUS 62
Values for the files§driver parameter 28
VERIFY$USER 127

w

What tasks can call HYBRIDSDETACHSDEVICE 27
When control passes to the exception handler 13

Index-4 EIOS System Calls

| Intel

EXTENDED iRMX"II
APPLICATION LOADER
SYSTEM CALLS
REFERENCE MANUAL

Intel Corporation
3065 Bowers Avenue
Santa Clara, Califorma 95051

Copyright = 1988, Intel Corporation, All Rights Reserved

PREFACE

This manual documents the svstem calls of the Application Loader, a

subsystem of the extended IRMX 11 Operating System. The information provided
in this manual is intended as a reference to the system calls and

provides detailed descriptions of each call.

READER LEVEL

Application Loader System Calls

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the Extended iRMX I Nucleus User’s Guide and with the PL/M-
286 programming language.

System call names appear as headings on the cutside upper corner of each page. The first
appearance of each system call name is printed in ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generie shorthand (such as
ASLOAD instead of RQSASLOAD). This convention is used to allow casier alphabetic
arrangement of the calls. The actual PL/M-286 external-procedure names must be used
in all calling sequences. The only exceptions to this convention are calls that exist only in
extended iIRMX T These calls begin with RQES and appear in their complete form.

You can also invoke the system calls from assembly lfanguage programs, but you must
adhere to the PL/M-2806 calling sequences when doing so. For more information on these
calling sequences refer to the Extended iRMX I Progranmuming Technigues Reference
Manual.

—
-
-

CONTENTS

iRMX® APPLICATION LOADER SYSTEM CALLS PAGE
| T B 4 oY S [0 [T 2 OO TR PO UTPP 1
1.2 Response Maibox Paramerer L.]
1.3 COnUITION COURS 1o ettt ettt n ettt 2
1.3.1 Condition Codes For Synchronous System Calls....., 2
1.3.2 Condition Codes For Asynchronous System Calls . 2
1.3.2.1 Scequential Condition Codes . 2

1.3.2.2 Concurrent Condition CodesS. i D

1A System Call DHCTODATY oo 3
A L A D e e 4
AL A DS LS B e e, 10
RO S A S LA DS IO B e e 18

ST LA DS L T e e e 26
ROESSSLOADSIOSTOB e en e 3

S OV I R LAY L e et 30

Application Loader System Calls

IRMXe® |l
APPLICATION LOADER
SYSTEM CALLS

1.1. INTRODUCTION

This manual describes the PL/M-286 calling sequences for the system calls of the
Application Loader.

Throughout this manual, PL/M-286 data types, such as BYTE, WORD, and SELECTOR
are used. In addition, the extended IRMX 11 data type TOKEN s used. Data types
always appear in capital letters. If your compiler supports the SELECTOR data type, a
TOKEN can be declared literally as SELECTOR. Because TOKEN is not a PL/M-286
data type, you must declare it to be literally a SELECTOR every place you use it.
Definitions of both PL/M-286 and extended iRMX Il data types are given in the Extended
IRMX I Application Loader User’s Guide, Appendix A. The word "token" in lowercase
refers to a value that the iRMX I Operating System returns to a TOKEN (the data type)
when it creates an object.

1.2 RESPONSE MAILBOX PARAMETER

Three system calls described in this manual are asynchronous. These are the ASLOAD,
ASLOADSIOSIOB, and RQESASI.OADSIOSIOB system calls. Your task must specify a
mailbox whenever it invokes an asynchronous system call. The purpose of this mailbox is
to receive a Loader Result Segment.

In general, the Loader Result Segment indicates the result of the loading operation. The
format of a Loader Result Segment depends on which system calf was invoked, so details
about Loader Result Segments are included in descriptions of the ASLOAD,
ASLOADSIOSIOB, and RQESASLOADSIOSIOB system calls.

Avoid using the same responsc mailbox for more than one concurrent invocation of
asynchronous system calls. This is necessary because it is possible for the Application
Loader to return Loader Result Segments in an order different than the order of
invocation. On the other hand, it is safe to use the same mailbox for multiple invocations
of asynchronous system calls if only one task invokes the calls and the task always obtains
the result of one call via RQSRECEIVESMESSAGE before making the next call.

Application Loader System Calls 1

iRMX® H APPLICATION LOADER SYSTEM CALLS

1.3 CONDITION CODES

The Application Loader returns a condition code whenever a system call is invoked. 1t
the call executes without error, the Application Loader returns the code EJOK. If an
error occurs, the Application Loader returns a condition code.

This manual includes. for each of the Application Loader’s system calls, descriptions of
the condition codes that the system call can return. The system call manuals tor the other
layers of the extended iIRMX 11 Operating System do the same thing tor those layers.

You can use the condition code information to write code to handle exceptional
conditions that arise when system calls fail to perform as expected. See the Extended
IRMX T Nucleus User’s Guide for a discussion of condition codes and how to write code 10
handle them.

1.3.1 Condition Codes For Synchronous System Calls

For system calls that are synchronous (SSLOADSIOSIOR, ROESSSLOADIIOSOB, and
SSOVERLAY), the Application Loader returns a single condition code each time the cal
is invoked. If your svstem has an exception handler, it will receive this code when an
exceptional condition occurs, depending on how the exception$mode parameter ts set.
For more information see the Extended iIRMX 11 Nucleus User'’s Guide and the Exrended
IRMX II Interactive Configuration Utility Reference Manual.

1.3.2 Condition Codes For Asynchronous System Calls

For system calls that are asynchronous (ASLOAD, ASLOADSIOSJOB,
ROESASLOADSIOSIOB), the Application Loader returns two condition codes each time
the call 1s invoked. One code s returned after the sequential part of the system call is
executed, and the other is returned after the concurrent part of the call 1s executed. Your
task must process these two condition codes separately.

The Extended iRMX 11 Application Loader User’s Guide describes the sequential and
concurrent portions of asvnchronous system calls.

1.3.2.1 Sequential Condition Codes

The Application Loader returns the sequential condition code in the word pointed to by
the except¥ptr parameter. 1f your system has an exception handler, it will receive this
code when an exceptional condition occurs, depending upon how the exception$mocle
parameter is set.

[%]

Application Loader System Calls

iIRMX® [T APPLICATION LOADER SYSTEM CALLS

1.3.2.2 Concurrent Condition Codes

The Application Loader returns the concurrent condition code in the Loader Result
Segment it sends to the response mailbox. If the code is E$OK, the asynchronous loading
operation ran successfully. If the code is other than ESOK, a problem occurred during the
asynchronous loading operation, and your task must decide what to do about the problem.
Regardless of the exception mode setting for the application, the exception handler is not
invoked by concurrent condition codes, so your program must handle it.

1.4 SYSTEM CALL DICTIONARY

The following list is a summary of the extended IRMX 11 Application Loader system calls,
together with a brief deseription of cach call and the page where the deseription of the call

begins.

Name

Description

Type

Paue

ASLOAD

ASLOADSIOS$JOB

ROQESASLOADSIOSJOB

SSLOADSIOSJOB

ROQE$SSLOADSIOQSIOB

S$OVERLAY

Loads object code or data

into memory.

Creates an |/Q job, loads
the job’s code, and causes
the job's task to run.

Creates an |/0 job with a
memory pool of up to 16M
bytes, and locads the code as
the initial task.

Creates an /0 job, loads
the job's code, and causes
the job’s task to run.

Creates an | /0 job with a
memory poo! of up to 16M
bytes and loads the code as
the initial task,

Loads an overlay into

memaory.

Asynchronous

Asynchronous

Asynchronous

Synchrenous

Synchronous

Synchronous

26

31

36

Application Loader System Calls

The ASLOAD system cull loads an object file from secondary storage into memory.

CALL RQSASLOAD (connection, responseSmbox, except$ptr);

input Parameters

connection

responseSmbox

Output Parameter
exceptSptr

Description

A TOKEN for a connection to the file that is to be loaded. The
connection must satisfy all of the following requirements:

¢ It must have been created in the calling task’s job.

o Tt must be a connection to a named file.

e The calling user must have had READ access to the file.
» 1t must be closed.

If all of these connection requirements are not met, the
Application Loader returns an exception code,

A TOKEN for the matilbox to which the Application Loader sends
the Loader Result Segment atter the concurrent part of the system
call finishes running. The format of the Loader Result Segment is
given in the following DESCRIPTION section.

A POINTER to a WORD where the Application Loader will place
the condition code generated by the sequential part of the system
call.

ASLOAD allows your tusk to load object code files from secondary storage into memory.
The object code to be loaded must be of the Single Task Loadable (STL) type with

LLODFIX records.

Unlike the ASLOADSIOS$JOB und S$LOADSIOSJOB system calls, ASLOAD cannot

automatically cause the code to be executed as a task. The caller must explicitly cause the

code to be executed.

Application Loader System Calls

ASLOAD

Asynchronous Behavior

The ASLOAD system call is asynchronous. It allows the calling task to continue running
while the loading operation is in progress. When the loading operation is finished, the
Application Loader sends a Loader Result Segment to the mailbox designated by the
response$mbox parameter. Refer to Appendix C of the Extended iRMX If Application
Loader User's Guide for an explanation of how asynchronous system calls work.

File Sharing

The Application Loader does not expect exclusive access to the file. However, other tasks
sharing the file are affected by the following:

» The other tasks should not attempt to share the connection passed to the Application
Loader, but instead should obtain their own connections to the file.

» The Application Loader specifies "share with readers only" when opening the
connection, so, during the loading operation, other tasks can aceess the file only for
reading.

The ASLOAD Loader Result Segment

The Application Loader uses memory from the pool of the calling task’s job to create the
Loader Result Segment for this system call. The calling task should defete the segment
after (tis no Jonger needed. Creating multiple segments without deleting them can result
in an ESMEM or ESSLOT exception code,

The Loader Result Segment has the following form:

STRUCTURE {exceptScode WORD,
reserved$word$1 WORD,
reservedibyte BYTE,
reserved$wordS?2 WORD,
codeSsegboffset WORD
code$sepSbase TOKEN,
stackSoffset WORD,
stack$segShase TOKEN,
stack$size WORD,
data$segS$base TOKEN
numSmoreSslots BYTE
more$slots (%) TOKEN) ;

where:

A WORD containing the condition code for the concurrent part of
the svstem call. If the code is other than ESOK, some problem
occurred during the leading operation.

exceptdcode

reservedsword$ | Reserved for use by Intel.

Application Loader System Calls 5

ASLOAD

reserved$byte
reserved$word$2

codeSsegoifset

code$segfbase
stackSoffset
stackSscgShase

stuckSsize

data$segdbuse

numSmoresslots

moreS$slots(*)

Reserved for use by Intel.
Reserved for use by Intel.

A WORD containing the initial value for the loaded program’s
instruction pointer (IP register) taken from the Task State
Segment (TSS) of the object file.

A TOKEN containing the initial value of the code segment
selector.

A WORD containing the initial value of the stack pointer taken
from the Task State Segment ('TSS) of the object file

A TOKEN containing the initial value of the stack segment
selector.

A WORD specifving the number of bytes required for the loaded
program’s stack.

The Application Loader sets this value to (0 whenever stackSoftset
is () and stack$segShase is SELECTORSOF(NIL).

A TOKEN containing the initial value of the data segment selector
taken from the Task State Segment ('18S) of the object file.

The Application Loader sets this value to Selectorfot(NIL) if the
target file contains no initial data segment selector.

A BYTE having a value between (0 and 255 that indicates how
many GDT or LDT slots were allocated, this number includes the
inttial code, data, and stack segments. If the actual value was
greater than 255, the value returned is set to 255,

A TOKEN ARRAY that lists the SELECTORS of all the segments
that were allocated for the loaded program. The length of this
array is contained in num$moreSslots, up to the maximum ot 235,

Using The Loader Result Segment

The contents of the result segment enable vou to start the loaded code by ereating a task

or job. When doing this, vou must specify the initial address, stack pointer, stack size, and
dati segment. These are all available in the Loader Result Segment.

Once the loaded program has stopped running, you may want to delete all the segments
allocated for this program. Deleting these segments frees the memory for use by other
tasks or jobs. To find tokens for the segments to delete, check the TOKEN ARRAY in

more$slots(*).

f

Application Loader System Calls

Condition Codes

ASLOAD

The AFLOAD system call can return condition codes at two ditferent times. Codes
returned to the calling task immediately after invocation of the system call are sequential
condition codes. Codes returned after the concurrent part of the system call has finished
running are concurrent condition codes. The following list is divided into two parts, one
for sequential codes and one for concurrent codes.

Sequential Condition Codes

The Application Loader can return any ot the following condition codes to the WORD
pointed to by the except$ptr parameter of this system call.

ESOK

ESBADSHEADER

ESCONNSNOTSOPEN

ESCONNSOPEN

EYEOF

ESEXIST

LSFACCESS

ESFLUSHING

ESICSHARD

ESIOSOPRINT

Application Loader System Calls

0000H

0062H

0034H

(035H

(065H

0006H

(0020H

002CH

No exceptional conditions.

The object file contains an invalid header
record.

The Application Loader opened the connection
but some other task closed the connection
before the loading operation was begun.

The calling task specified a connection that was
already open.

The Application Loader encountered an
unexpected End-Of-File while reading a record.
At least one of the following is true:

o The connection parameter is not a token for
an existing object.

o The msg¥mbox parameter did not refer to
an existing object.

The specitied connection did not have "read”
access to the file.

The device containing the target fite 15 being,
detached.

A hard 1/0 error occurred. This means that
another try is probably useless.

The device containing the target file was oft-
line. Operator intervention is required.

ASLOAD

ESIOSSOFT

ESIOSUNCLASS

ESLIMIT

ESLOADERSSUPPORT

ESMEM

EENOTSFILESCONN

ESSHARE

ESSUPPORT

ESTYPE

(051H

0050H

0004H

006FH

0002H

{032H

0028H

0023H

8002H

A soft [/O error occurred. This means that the
1/0O System tried to perform the operation and
failed, but another try might still be successful.

An unknown type of 1/O error occurred.

At least one of the following is true:

o The calling task’s job has already reached its
object limit.

o Either the calling task’s job, or the job’s
default user object, 1s already involved in
255 (decimal) 1/0 operations.

To load the target file requires capabilities not
configured into the Application Loader.

The memory available to the calling task’s job or
the Basic I/O System is not sufficient to
compiete the call.

The calling task specified a connection to a
device rather than to a named file.

The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible with
the open request.

The specitied connection was not created by the
calling task’s yob.

The connection parameter is a token for an
object that is not a connection.

Application Loader System Calls

ASLOAD

Concurrent Condition Codes

After the Application Loader attempts the loading operation, it returns a condition code
in the except§code field of the Loader Result Segment. The Application Loader can
return the following condition codes in this manner.

ESOK 0000H No exceptional conditions.

ESEOF 0065H The call encountered an unexpected End-Of-
File.

ESEXIST 0006H At least one of the following is true:

e The mailbox specified in the response$mbox
parameter was deleted before the loading
operation was completed.

¢ The device containing the file to be loaded
was detached before the loading operation
was completed.

ESFLUSHING 002CH The device containing the target file 1s being
detached.
ESIOSHARD 0052H A hard 1/O error occurred. This means that

another try is probably useless.

ESIOSOPRINT 0053H The device containing the target file was off-
line. Operator intervention is required.

ESIOFSOFT 005TH A soft 1/O error occurred. This means that the
1/0 System tried to perform the operation and
failed, but another try might still be successful,

ESIOSUNCLASS 00501 An unknown type of 1/O error occurred.

ESLIMIT 0004H The calling task’s job has already reached its
object limit.

ESNOSLOADERSMEM 0067H The memory pool of the newly created 1/0 job
does not currently have a block of memory large
enough to allow the Application Loader to run.

ESPARAM 8004H The target file has a stack smaller than 16 bytes.

Application Loader System Calls 9

The ASLOADSIOSIOB system call asynchronously loads an object file from secondary
storage to main memory and creates an [/O job for it.

job = RQ$ASLOADSIOSJOB(connection, pool$min, poclémax,

except$handler, job$flags, task$priority,
task$flags, msgSmbox, except$ptr);

Input Parameters

connection

pool$min

poolfmax

excepthandler

jobstlags

1)

A TOKEN for a connection to the file that the Application Loader
will load. The connection must be a connection to a named file.
Also, the connection must be closed, the user object specified when
the connection was created must have had READ access, and the
connection must have been ereated in the calling task’s job.

The Application Loader opens the connection for sharing with
readers only, so, during the loading operation, other tasks may
access the file only for reading.

A WORD containing a value the Application Loader uses to
compute the poolfmin size for the new [/O job that will be created
tor the loaded program.

A WORD containing a value the Application Loader uses to
compute the pool size for the new 1/0 job.

A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTIONSHANDLERSPTR ~ POINTER,
EXCEPTIONSMODE BYTE):

This parameter is used as the input to ROESCREATESIOSIOR,
when it is called to create a new job for the loaded code. If the
exception handler pointer field is NIL, the new job will have the
same exception handler as its parent. For more details, see the
description of this parameter in ROESCREATESIOFIOB in the
EXTENDED iRMX Il EXTENDED [/O SYSTEM CALLS
manual.

A WORD specitying whether the Nucleus is to check the validity of
ohjects used as parameters in system calls. Setting bit 1 (where bit
015 the low-order bit) to 0 specities that the Nucleus is to check the
vitlidity of objects. All bits other than bit 1 must be set to (0,

Application Loader System Calls

ASLOADSIOS$JOB

task$priority

task$tlags

msgSmbaox

Output Parameters

job

exceptSptr

Application Loader System

A BYTE which,

o if equal to 0, indicates that the new job's initial task is to have a
priority equal to the maximum priority of the initial job of the
Extended 1/O System.

» if not equal to 0, contains the priority of the initial task of the
new job. If this priority is higher (numerically lower) than the
maximum priority of the initial job of the Extended [/0
System, an ESPARAM error occurs.

A WORD indicating whether the initial task uses floating-point
instructions, and whether to start the task immediately.

Set bit () (the low-order bit) to 1 if the task uses tloating-pomt
instructions; otherwise set it to 0.

Bit 1 indicates whether the initial task in the job should run
immediately, or whether it should be suspended until a
STARTHIOSIOB system call is issued to start it. Setit to 0 if the
task is to be made ready immediately; set it to 1if the task is o be
suspended.

Set bits 2 through 15 to 0.

A TOKEN for a mailbox that receives the Loader Result Segment

atter the loading operation is completed.

o You must always specify a valid mailbox TOKEN for this
parameter.

The second purpose of this parameter s to recelve an exit message

from the newly created 1/0O job. The description of the

CREATESIOYOB system call in the Extended iRMX 11 Extended

1/0 System Calls manual shows the format of an exit message.

The format of the Loader Resuilt Segment is provided later in this
description.

A TOKEN, returned by the Application Loader, for the newly
created 1/O joh. This token is valid only if the Application Loader
returns an ESOK condition code to the WORD pointed to by the
except$ptr parameter.

A POINTER to a WORD where the Application Loader is to
place the condition code generated by the sequential part of the
system call.

Calls 11

ASLOADS!IOS$JOB

Description

This system call operates in two phases. The first phase occurs during the sequential part
of this system call. (Refer to the Application Loader User’s Guide for a discussion of the
sequential and concurrent parts of an asynchronous system call.) During this first phase,
the Application Loader does the following:

s Checks the validity of the header record of the target file, and calculates the required
memory pool that will be given to the new job.

o Createsan 1/0 job. This [/O job is a child of the calling task’s job. The initial task of
this job is a loader task that will asynchronously load the object file.

« Returns a condition code reflecting the success or failure of the first phase. The
Application Loader places this condition code in the WORD pointed to by the
except$ptr parameter, 1 the condition code is not ESOK, the job token returned is
not valid and the asynchronous part of the call did not execute,

The second phuse oceurs during the concurrent part of the system call. This part runs as
the initial task in the new job and does the tollowing:
¢ Loads the tile designated by the connection parameter.

o Creates the tusk that will execute the loaded code. If there are no errors while the tile
is being loaded and if bit 1 of the task$flags parameter is 0, the concurrent part makes
the task in the new job ready to run. If bit one of task$flags is one, the task will be
suspended until an RQSSTARTSIORIOB is issued for this task.

¢ Sends a Loader Result Segment to the mailbox specified by the msg$mbox parameter.
second phase.

o It the object tile does not contain overlays, the loader task will delete itself at this
point. If it does contam overlays, the loader task will be suspended, until a request to
lead an overlay s issued.

Restriction

This system call should be invoked only by tasks running within [/O jobs. Failure to heed
this restriction causes a sequential exception condition.

Format Of The Loader Result Segment
The Loader Result Segment has the form deseribed below. This structure is deliberately

compatible with the structure of the message returned when an 1/O job exits. (Sce the
Extended iRMX 11 Fxtended 1/0 System User's Guide for a description of exit messages.)

2 Application Loader System Calls

ASLOADSIOS$JOB

STRUCTURE (termination$caode WORD,
except$code WORD,
jobStoken TOKEN,
returnSdata$len BYTE,
reservedSword$l WORD,
reservedSbhyte BYTE,
reservedSword$? WORD,
mem$requested WORD,
mem$received WORD) ;

where:

termination$code
operation.

A WORD indicating the success or failure of the loading

o Avalue of 100H indicates that the loading operation

succeeded.

o A value of 2 indicates that the loading operation failed. In this
case, your system should delete the newly created 1/O job; the

exceptScode

job§token

return$data$len

reservedSword$ |
reserved$byte
reserved$words$?

mem§requested

memdreceived

Condition Codes

Application Loader doesn’t do so.

A WORD containing the concurrent condition code. Codes and
interpretations follow this description.

A TOKEN for the newly created I/0 job.

A BYTE that indicates the length of the remainder of the data
structure minus 13 bytes.

Reserved for use by Intel,
Reserved for use by Intel.
Reserved for use by Intel.

A WORD indicating the number of 16-byte paragraphs the target
tile requested for the new job, including the memory needed for all
segments and that needed for the job’s memory pool.

A WORD indicating the number of 16-bvte paragraphs actually
allocated to the new job.

This system call can return condition codes at two different times. Codes returned to the
calling task immediately after the invocation of the system call are considered sequential
condition codes. Codes returned after the concurrent part of the system call has finished
running are considered concurrent condition codes. The following list is divided into two
parts -- one for sequential codes and one for concurrent codes.

Application Loader System Calls 13

ASLOADSIOS$JOB

Sequential Condition Codes

The Application Loader returns one of the following condition codes to the WORD
pointed to by the except$ptr parameter:

ESOK 0000H No exceptional conditions.

ESBADSHEADER 0062H The object file contains an invalid header
record.

ESCONNSNOTSOPEN 0034H The Application Loader opened the connection,

but some other task closed the connection
before the loading operation was begun.

ESCONNSOPEN 0035H The specified connection was already open.
ESCONTEXT 000SIT The calling task’s job is not an 1/O job.
ESEOF 0065SH The Application Loader encountered an

unexpected End-Of-File while reading a record.

ESEXIST 0006H At least one of the following is true:

o The connection parameter is not & token for
an existing object.

» The calling task’s job has no global job.
Refer to the Extended iRMX I Extended 1/0
System User's Guide for a definition of global
job.

* The msgSmbox parameter does not refer to
an existing object.

ESFACCESS 0026H The specitied connection does not have "read”
access to the file.

ESFLUSHING 002CH The device containing the target file is being
detached.

ESIO$HARD 0052H A hard 1/O error occurred. This means that

another try is probably useless.

ESIOSOPRINT 0053H The device containing the target file is off-line.
Operator intervention is required.

14 Application Loader System Calls

ASLOADSIOS$JOB

ESIOSSOFT

EFIOSUNCLASS
ESIOSWRPROT

L$JOBSPARAM

ESJOBSSIZE

ESLOADERSSUPPORT

ESMEM

E3SLOT

ESNOSIL.OADERSMEM

ESNOTSCONFIGURED

ESNOTSFILESCONN

ESPARAM

ESSHARE

ESSUPPORT

Application Loader System Calls

0051H

0050H

0054H

8060H

006H

006FH

0062 H

O00CH

0067H

0008H

0028H

A soft [/O error occurred. This means that the
1/0 System tried to perform the operation and
failed, but another try might still be successful.

An unknown type of 1/0O error occurred.
The volume is write-protected.

The pool§max parameter 1s both non-zero and
smaller than the pool$min parameter.

The poolSmax parameter is non-0 and too small
for the target file.

The target file requires capabilities not
configured into the Application Loader.

The memory available to the calling task’s job or
the Basic [/O System is not sufficient to
complete the call.

The Global Descriptor Table (GDTY) has no

available slots.

The memory pool of the newly created 1/0O job
does not currently have a block of memory large
enough to allow the Application Loader to run.

This system call is not part of the present
configuration.

The specitied connection is to a device rather
thun to a named file.

The value of the exceptSmode field within the
exceptShandler structure lies outside the range
0 through 3.

The calling task tried to open a connection to a
file already being used by some other task, and
the file’s sharing attribute is not compatible with
the open request.

The specified connection was not created in this
job.

ESTIME

ESTYPEE

Concurrent Condition Codes

0001H

SO02H

ASLOADSIOS$JOB

The calling task’s job is not an 1/0 job.

The connection parameter is a token for an
object that is not a connection.

After the Application Loader attempts the loading operation, it returns a condition code
in the exceptScode field of the Loader Result Segment. The Application Loader can
return the following condition codes:

ESOK

FESEOF

SEXIST

LSFACCESS

ESFLUSHING

ESTOSHARD

ESTOSOPRINT

LESIOSSORT

ESIOSUNCILASS

16

(000H

0065

000nH

0026H

002CH

0031H

0050H

No exceptional conditions.

The call encountered an unexpected End-Of-
File.

At least one of the following 1s true:

» The mailbox specified in the msgEmbox
parameter was deleted before the loading
operation was completed.

¢ The device containing the target file was
detached before the loading operation was
completed.

The default user of the newly created [/O job
does not have "read" access to the target file.

The device containing the target file is being
detached.

A hard I/O error occurred. This means that
another try 1s probably useless.

The device containing the target file is off-line.
Operator intervention is required.

A soft [/O error occurred. This means that the
I/O System tried to perform the operation and

failed, but another try might still be successful.

An unknown type of [/O error occurred.

Application Loader System Calls

ASLOADSIOS$JOB

ESLIMIT

ESNOSLOADERSMEM 067H
ESNOSTART 006CH
EfPARAM 8004 H

Application Loader System Calls

0004H At least one of the following is true:

The taskSpriority parameter is higher
(numerically lower) than the newly created
[/O job’s maximum priority. This maximum
priority is specified during the contiguration
of the Extended 1/0O System (if the job is a
descendant of the Extended 1/O System) or
during configuration of the Human
Interface (if the job is & descendant of the
Human Interface).

Either the newly created [/O job, or its
default user, 1s already involved in 235
(decimal) I/O operations.

The calling task’s object directory is {ull.

The root object directory is full.

There 1s not sutticient memory available to the

newly created [/O job or the Basic 1/0 System
to allow the Application Loader to run.

The target file does not specify the entry point
for the program being loaded.

The target file has a stack smaller than 16 bytes.

17

185

The RQESASLOADSIOSIOB system call asynchronously loads an object file from
secondary storage to main memory and creates an 1/0 job for it. The difference between
this call and ASLOADSIOSIOB is the maximum memory pool for
ROESASLOADSIONIOB is 16M bytes.

ROLESASLOADSIOSIOR creates a new job using ROESCREATESIOJOB and loads the
specitied object file. The loaded file’s code becomes the initial task of the new job. The
calling task continues to run during the loading operation. If the task$flags parameter
specifies delaved activation, a STARTSIO$JOB call must be issued to start the new task.
[t the task$flags parameter specifies immediate activation, the task becomes ready at the
end of the loading operation.

Jjob = RQESASLOADSIOSIOB(connection, pool$min, pool$max,
exceptShandler, job8flags, task$prioricy,
taskSflaps, msgSmbox, except$ptr);

Input Parameters

connection A TOKEN for a connection to the file that the Application Loader
will load. The connection must be a connection to a named file.
Also. the connection must be closed, the user object specitied when
the connection was created must have had READ access, and the
connection must have been created in the calling task’s job.

The Application Loader opens the connection for sharing with
readers only, so. during the loading operation, other tasks may
access the tile only for reading.

poolfmin A DWORD containing a value the Application Loader uses to
compute the pool size for the new 1/0 job.

poolfmax A DWORD contaming a value the Application Loader uses to
compute the pool size for the new 1/0 job.

Application Loader System Calls

except$handier

job$flags

task3priority

task$tlags

RQESASLOADSIO$JOB

A POINTER to a structure of the following form:

STRUCTURE(
EXCEPTTONSHANDLERSPTR POINTER,
EXCEPTIONSMODE BYTE);

If exception$handier$ptr is not NIL, then it is a POINTER to the
first instruction of the new job’s own exception handler. 1f
exception$handler$ptr is NIL, the new job's exception handler is
the system default exception handler. In both cases, the exception

handler for the new task becomes the default exception handler for
the job.

Set exception$mode to specify when control is to pass to the new
task’s exception handler. Encode the mode as follows:

When Contrcl Passes

Value To Exception Handler

0 Never

1 On programmer errors only

2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers and the
exception mode, reter to the Extended iRMX 1] Nuclews User’s
Guide.

A WORD specifying whether the Nucleus is to check the validity of
objects used as parameters in system calls. Setting bit 1 (where bit
(0 is the low-order bit) to 0 specifies that the Nucleus is to check the
validity of objects. All bits other than bit 1 must be set to 0.

A BYTE which,

o it equal to 0, indicates that the new joly's mitial task 1s to have a
priority equal to the maximum priority of the initial job of the
Extended 1/O System.

« if not equal to O, contains the priority of the initial task of the
new job. [t this priority is higher (numerically lower) than the
maximum priority of the initial job of the Extended I/O
Svstem, an ESLIMIT error occurs.

A WORD indicating whether the initial task uses tloating-point
instructions, and whether to start the task immediately.

Set bit 0 (the low-order bit) to 1 if the task uses floating-point
instructions; otherwise set it to (.

Application Loader System Calls 19

RQESASLOADSIOS$JOB

mseSmbox

Output Parameters

job

except$ptr

Description

Bit 1 indicates whether the nitial task in the job should run
immediately, or whether it should be suspended until a
STARTSIOS$IOB system call is issued to start it. Set it to 0 if the
task 1s to be made ready immediately; set it to 1 if the task is to be
suspended.

Set bits 2 through 15 to 0.

A TOKEN for a mailbox that receives the Loader Result Segment
after the loading operation is completed. This parameter is similar
to the corresponding parameter in the CREATESIO$JOB system
call in the Extended /O System, with these exceptions:

« You must always specify a valid mailbox TOKEN for this
parameter.

« SELECTORS$OF(NIL} may not be used as a value tor the
TOKEN.

o Euach call to ASLOADSIOSIOB requires a unique mailbox.

The second purpose of this parameter is to receive an exit message
from the newly created 1/O job. The description of the
CREATESIOSJOB system call in the Extended iRMX 11 Fxtended
1/0 System Calls manual shows the format of an exit message.

The format of the Loader Result Segment is provided later in this
description.

A TOKEN, returned by the Application Loader, for the newly
created I/O job. This token is valid only if the Application Loader
returns an E$OK condition code to the WORD pointed to by the
except$ptr parameter.

A POINTER to a WORD where the Application Loader is to
place the condition code generated by the sequential part of the
svstem call.

This system call operates in two phases. The tiest phase occurs during the sequential part
of this system call. (Refer to the Application Loader User’s Guide for a discussion of the
sequential and concurrent parts of an asynchronous system call.) During this first phase,
the Application Loader does the following:

o Checks the vatidity of the header record of the target file.

Application Loader System Calls

RQESASLOADSIOSJOB

» Createsan 1/O job. This 1/O job is a child of the calling task’s job. (Refer to the
Extended iIRMX I Extended 1/0 System User's Guide for a definition of 1/O jobs.)

* Returns a condition code reflecting the success or failure of the first phase. The
Application Loader places this condition code in the WORD pointed to by the
exceptypte parameter.

The second phase occurs during the concurrent part of the system call. This part runs as
the initial tusk in the new job and does the following:
» Loads the file designated by the connection parameter.

» Creates the task that will execute the loaded code. If there are no errors while the file
is being loaded and it bit 1 of the task$flags parameter is 0, the concurrent part makes
the task in the new job ready to run.

¢ Scendsa Loader Result Segment to the mailbox specified by the msg§mbox parameter.
One element in this segment is a condition code indicating the success or failure of the
second phase,

o Deletes itselt.
Restriction

This svstem call should be invoked only by tasks running within /0 jobs. Failure to heed
this restriction causes a sequential exception condition.

Format Of The Loader Result Segment
The Loader Result Segment has the torm described in this section. This structure is
compitible with the structure of the message returned when an 1/0 job exits. (See the

Extended iIRMA 1 Extended 1/0 Systenm User'S Guide for a description of exit messages.)

STRUCTURE (termination$code WORD ,

exceptScode WORD,
jobStoken TOKEN,
returnSdata$Slen BYTE,
reservedSwordSl WORD
reserved$hyte BYTE,
reserved$Sword$?2 WORD,
mem$requested WORD,
memSreceived WORD) ;

where:

terminationScode A WORD indicating the success or failure of the loading
operation.

e Avalue of 100H indicates that the loading operation
succeeded.

Application Loader System Calis 21

RQES$ASLOADSIOSJOB

[§%]
| &)

exceptdcode

job$token

return$data$len

reserved$word$!
reservedShyte
reserved$word$2

memfreguested

mem$received

Condition Codes

« Awalue of 2 indicates that the loading operation failed. In this
case, vour system should delete the newly created 1/0O job; the
Application Loader doesn’t do so.

A WORD containing the concurrent condition code. Codes and
interpretations follow this description.

A TOKEN for the newly created /0 job.

A BYTE that indicates the length of the remainder of the data
structure minus 13 bytes.

Reserved for use by Intel.
Reserved for use by Intel.
Reserved for use by Intel.

A WORD indicating the number of 16-byte paragraphs the target
file requested for the new job, including the memory needed for all
segments and that needed for the job’s memory pool. If more than
[M byte was requested, this tield will contain OFFFFFH.

A WORD indicating the number of 16-byte paragraphs actually
allocated to the new job. If more than 1M byte was allocated, this
field will contain OFFFFFH,

This system call can return condition codes at two different times. Codes returned to the
calling task immediately after the invocation of the system call are considered sequential
condition codes. Codes returned atter the concurrent part of the system call has finished
running are considered concurrent condition codes. The following list is divided into two
parts -- one for sequential codes and one for concurrent codes.

Sequential Condition Codes

The Application Loader returns one of the following condition codes to the WORD
pointed to by the exeept$ptr parameter:

[LSOK

O000H No exceptional conditions.

ESCONNINOTSOPEN 0034H The Application Loader opened the connection,

ESCONNSOPEN

ESCONTEXT

but some other task closed the connection
betore the loading operation was begun.

0035H The specified connection was already open.

0005H The calling task’s job is not an 1/O job.

Application Loader System Calls

RQESASLOADSIOSJOB

ESEXIST 0006t At least one of the following is true:

o The connection parameter is not a token for
an existing object.

+ The calling task’s job has no global job.
Refer to the Extended iIRMX 1 Extended 1/0

System User’s Guide for a definition of global
job.

+ The msg¥mbox parameter does not refer to
an existing object.

ESFACCESS 0026H The specified connection does not have "read"
access to the file.

ESFLUSHING 0J2CH The device containing the target file is being
detached.

ESIOSHARD 0052H A hard 1/O error occurred. This means that
another try is probably useless.

E$IOSOPRINT 0053H The device containing the target fife is off-line.
Operator intervention is required.

ESIOSSOFT 0051H A soft 1/O error occurred. This means that the
[/O System tried to perform the operation and
failed, but another try might still be successful.

E$IOSUNCLASS 0050H Anunknown type of 1/O error occurred.

ESJOBSPARAM 8060H The poolSmax parameter is both non-zero and

smaller than the pool¥$min parameter.

E$JOBSSIZE 006DH The pool$max parameter is non-0 and too small
for the target file.

ESLOADERSSUPPORT 006FH The target file requires capabilities not
configured into the Application Loader.

E$MEM 0002H The memory available to the calling task’s job or
the Basic /O System is not sufficient to
complete the call.

ESNOSLOADERSMEM 0067H The memory pool of the newly created 1/0 job
does not currently have a block of memory large
enough to allow the Application Loader to run.

Application Loader System Calls 23

RQESASLOADSIO$JOB

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

ESNOTSFILESCONN 0032H The specified connection is to a device rather
than to a named file.

ESPARAM 8004H The value of the except$mode field within the
except$handler structure lies outside the range
0 through 3.

ESSHARE 0028H The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible with
the open request.

E$SUPPORT 0023H The specified connection was not created in this
job.

ESTIME DO0TH The calling task’s job is not an T/O job.

ESTYPE 8002H The connection parameter is a token for an

object that is not a connection.

ESSLOT 000CH The Global Descriptor Table (GDT) has no
available slots.

Concurrent Condition Codes

After the Application Loader attempts the loading operation, it returns a condition code
in the except$code field of the Loader Result Segment. The Application Loader can
return the following condition codes:

ESOK 0000H No exceptional conditions.

ESEOF 0065H The call encountered an unexpected End-Of-
File.

ESEXIST 0006H At least one of the tollowing 1s true:

e The mailbox specified in the msgfmbox
parameter was deleted before the loading
operation was completed.

« The device containing the target file was
detached before the loading operation was
completed.

24 Application Loader System Calls

ESFACCESS (0026H
ESFLUSHING (002CH
ESIOSHARD (0052H
ESIOSOPRINT 0053H
ESIOSSOFT 0051H
ESIOSUNCLASS 0050H
ESLIMIT 0004 H
ESNOSLOADERSMEM 0067H
ESNOSTART 006CH
ESPARAM 8004H

Application Loader System Calls

RQESASLOADSIOSJOB

The default user of the newly created 1/0O job
does not have "read” access to the target file.

The device containing the target file is being
detached.

A hard 1/0O error occurred. This means that
another try is probably useless.

The device containing the target file is off-line.
Operator intervention is required.

A soft 170 error occurred. This means that the
[/O System tried to perform the operation and
failed, but another try might still be successful.

An unknown type of 1/0 error occurred.

At least one of the following is true:

o The task$priority parameter is higher
(numerically lower) than the newly created
[/O job's maximum priority. This maximum
priority is specified during the configuration
of the Extended 1/0O System (if the jobis a
descendant of the Extended 1/0O System) or
during configuration of the Human
Interface (if the jobis a descendant of the
Human Interface).

» Either the newly created 1/O job, or its
default user, is already involved in 255
(decimal) 1/0 operations.

» The calling task’s object directory is full.

e The root object directory is full.

There is not sufficient memory available to the
newly created 1/O job or the Basic 1/0O System
to allow the Application Loader to run.

The target file does not specity the entry point
for the program being loaded.

The target file has a stack smaller than 16 bytes.

25

The SSLOADSTOSIOB system call synchronously loads an object file from secondary
storage to memory and creates an 1/0 job for it.

RQSSTLOADSIOSIOB creates a new job using RQESCREATESIOS$JOB and loads the
specitied object file. The loaded file’s code becomes the initial task of the new job. The
calling task is suspended during the loading operation. If the task$flags parameter
specifies delayed activation, a STARTIOJOB call must be issued to start the new task.
It the task$tlags parameter specifies immediate activation, the task becomes ready at the
end of the loading operation.

job = RQSSSLOADSTOSJOR(path$ptr, pool$min, poolSmax,
exceptShandler, job$flags, task$priority,
task$flags, msg$mbox, exceptéptr);

Input Parameters

path$ptr A POINTER to a STRING containing a path name for the named
file with the object code to be loaded. The path name must
conform to the Extended I/O System path name syntax for named
files. If you are not familiar with extended iRMX [1 path name
syntax, refer to the Extended iRMX I Extended 1/0 System User’s

Guide.

pool$min A WORD containing a value that the Application Loader uses to
compute the pool size for the new 1/0 job. See the
DESCRIPTION section for details.

pool$max A WORD containing a value that the Application Loader uses to
compute the pool size for the new 1/0 job. See the
DESCRIPTION section for details,

except$handler A POINTER to a structure of the following form:

STRUCTURE(
EXCEPTIONSHANDLERSPTR POINTER,
EXCEPTIONSMODE BYTE);

[f exception$handler$ptr is not NIL, then it is « POINTER to the
first instruction of the new job’s own exception handler. If
exception$handler§ptr is NIL, the new job’s exception handler is
the system default exception handler. In both cases, the exception
handler for the new task becomes the default exception handler for
the job.

Application Loader System Calls

S$LOADSIOSJOB

Set the exception$mode to tell the Application Loader when to
pass control to the new task’s exception handler. Encode the mode
as follows:

When Control Passes

Valug Jo Exception Handler
0 Control never passes to handler
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers and the
exception mode, refer to the Extended iRMX I Nucleus User's
Guide.

job$flags A WORD specifying whether the Nucleus is to check the validity of
objects used as parameters in system calls. Setting bit 1 (where bit
0 1s the low-order bit) to 0 specifies that the Nucleus is to check the
validity of objects. All bits other than bit 1 must be set to 0.

task$priority A BYTE which,

o it equal to 0, indicates that the new job’s initial task is to have a
priority equal to the maximum priority of the initial job of the
Extended I/O System.

» if not equal to 0, contains the priority of the initial task of the
new job. If this priority is higher (numerically lower) than the
maximum priority of the initial job of the Extended [/O
System, an ESLIMIT error occurs.

tusk$tlags A WORD indicating whether the initial task uses tloating-point
instructions, and whether to start the task immediately.

Set bit 0 (the low-order bit) to | if the task uses tloating-point
Instructions; otherwise set it to 0.

Bit 1 indicates whether the initial task in the job should run
immediately, or whether it should be suspended until a
STARTSIOSIOB system call is issued to start it. Set bit 1 to 0 if
the task is to be made ready immediately; set it to 1 if the task is to
he suspended.

Set bits 2 through 15 to 0.

msgdmbox A TOKEN for a mailbox that receives an exit message from the
newly created [/O job. This parameter is similar to the
CREATESIO$JOB system call documented in the Extended iRMX
11 Extended [/O System Calls manual, with these exceptions:

Application Loader System Calls 27

S

$LOADSIO$JOB

« You must always specify a valid mailbox TOKEN for this
parameter.

« SELECTORSOF(NIL) may not be used as a value for the
TOKEN.

« Each call to SSLOADSIO$JOB requires a unique mailbox.

Output Parameters

job A TOKEN, returned by the Application Loader, for the newly
created I/0 job. This token is valid only if the Application Loader
returns an E$OK condition code to the WORD specified by the
exceptdptr parameter.

exceptdptr A POINTER to a WORD where the Application Loader is to
place a condition code.

Description

This system call performs the same function as ASLOADSIOSJOB. The only difference
between the calls is that SSLOADSIOSIOB is synchronous. That is, the calling task
resumes running only after the call has completed its attempt to create an 1/0 job and a
user task in that job.

The Application Loader does not necessarily have exclusive access to the file being
loaded. During the loading operation, however, if other tasks are also using the file, they
may access the file only for reading.

NOTE

This system call should be invoked only by tasks running within I/0O jobs.
Failure to heed this restriction causes the Application Loader to return an
ESCONTEXT exception code.

Condition Codes

The Application Loader returns one of the following condition codes to the WORD
specified by the exceptSptr parameter of this system call:

ESOK 0000H No exceptional conditions.

ESBADSIHEADER 0062H The object file contains an invalid header
record.

ESCONTEXT 0005H The calling task’s job is not an 1/0 job.

Application Loader System Calls

SSLOADSIOSJOB

ESEOF 0065H The call encountered an unexpected End-Of-
File.
ESEXIST 0006H At least one of the following is true:

o The msg¥mbox parameter is not a token for
an existing object.

o The calling task’s job has no global job.
(Refer to the Extended iRMX I Extended
1/O System User'’s Guide for a definition of

global job.)
s The device containing the target file was
detached.
ESFACCESS 0026H The default user object for the new [/O job
does not have "read" access to the specified file.
ESFNEXIST 0021H The specified target file, or some file in the
specified path, does not exist or is marked for
deletion.
ESFLUSHING 002CH The device containing the target file is being
detached.
ESINVALIDSFNODE 003DH The tnode for the specitied file is invalid, so the
file must be deleted.
ESIOSHARD 0052H A hard I/O error occurred. This means that
another try is probably useless.
ESIOSIOB 0047H The calling task’s job s not an [/O job.
ESIOSOPRINT 0053H The device containing the target file is off-line.
Operator intervention is required.
ESIOSSOFT 005TH A soft 1/O error occurred. This means that the
[/O System tried to perform the operation and
failed, but another try might still be successful.
ESIOSUNCLASS 0050H An unknown type of I/O error occurred.
ESJOBIPARAM 8060H The pool¥max parameter is nonzero and

smaller than the pool$min parameter.

ESIOBSSIZE 006DH The pool$max parameter is nonzero and too
small for the target file.

Application Loader System Calls 29

S$SLOADSIOSJOB

ESLIMIT

ESLOADERSSUPPORT

ESMEM

ESNOJLOADERSMEM

ESNOSSTART

ESNOTSCONFIGURED

E$SPARAM

CSPATHNAMESSYNTAX

ESTIME

ESTYPE

0004H

006FH

0002H

0067TH

006CH

0008 H

8004H

003EH

0001H

3002H

At least one of the following is true:

o The taskSpriority parameter is higher
(numerically lower) than the newly created
[/O job’s maximum priority. This maximum
priority is specified during the configuration
of the Extended [/O System (if the job is a
descendant of the Extended 1/O System) or
of the Human Interface (if the job is a
descendant of the Human Interface).

» Either the newly created 1/0 job or its
default user object is already involved in 255
(decimal) I/O operations.

The target file requires capabilities not
configured into the Application Loader.

The memory available to the calling task’s job is
not sufficient to complete the call.

The memory pool of the newly created 1/0 job
does not currently have a block of memory large
enough to allow the Application Loader to run.

The target file does not specify the entry point
for the program being loaded.

This system call is not part of the present
configuration.
At least one of the following is true:

¢ The value of the exceptImode field within
the except$handler structure lies outside the
range 0 through 3.

» The target file requested a stack smaller
than 16 bytes.

The specified pathname contains one or more
invalid characters.

The calling task’s job is not an [/O job.

The connection parameter is a token for an
object that is not a connection.

Application Loader System Calls

The RQESSSLOADSIOS$JOB system call creates an 1/O job containing the Application
Loader task, which loads the code for the user task from secondary storage. The
RQES$SSLOADSIOSIOB allows you to specify memory pools of up to 16M bytes using
the DWORD parameters, pool$min and pool$max.

job = RQSRQESSSLOADSIOSJOB(pathSptr, poolSmin, poolSmax,
exceptShandler, job$flags, task$priority,
task$flags, msgSmbox, except$ptr);

Input Parameters

path$ptr A POINTER to a STRING containing a path name for the named
file with the object code to be loaded. The path name must
conform to the Extended 1/0 System path name syntax for named
files. If you are not familiar with extended iRMX 11 path name
syntax, refer to the Fxtended iRMX II Extended /0 System User’s
Guide.

pool$min A DWORD containing a value that the Application loader uses to
compute the pool size for the new /O job.

yoolSmax A DWORD containing a value that the Application Loader uses to
I g PP
compute the pool size for the new 1/O job.

exceptShandler A POINTER to a structure of the following form:

STRUCTURE(
EXCEPTIONSHANDLERSPTR POINTER,
EXCEPTIONSMODE BYTE) ;

If exception$handler$ptr is not NIL, then it is a POINTER to the
first instruction of the new job’s own exception handler. If
exception$handler$ptr is NIL, the new job’s exception handler is
the svstem default exception handler. In both cases, the exception
handler for the new task becomes the default exception handler for
the job.

Set exception$mode to tell the Application Loader when to pass
control to the new task’s exception handler. Encode the mode as
tollows:

Application Loader System Calls 31

RQESSLOADSIOS$JOB

fad
[]

job$tlags

task$priority

task$flags

msgdmbox

When Control Passes

Value To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers and the
exception mode, refer to the Extended iRMX I Nucleus User’s
Guide.

A WORD specifying whether the Nucleus is to check the validity of
objects used as parameters in system calls. Setting bit 1 (where bit
0 is the low-order bit) to 0 specifies that the Nucleus is to check the
validity of objects. All bits other than bit 1 must be set to 0.

A BYTE which,

o it equal to 0, indicates that the new job’s initial task is to have a
priority equal to the maximum priority of the initial job of the
Extended 1/0O System.

o if not equal to 0, contains the priority of the initial task of the
new job. If this priority is higher (numerically lower) than the
maximum priority of the initial job of the Extended [/O
System, an ESPARAM error occurs.

A WORD indicating whether the initial task uses floating-point
instructions, and whether to start the task immediately.

Set bit O (the low-order bit) to 1 if the task uses floating-point
instructions: otherwise set 1t to 0.

Bit 1 indicates whether the initial task in the job should run
immediately, or whether it should be suspended until a
STARTS$IOSIOB system call is issued to start it. Set bit 1 to 0 if
the task is to be made ready immediately; set it to 1 if the task is to
be suspended.

Set bits 2 through 15 to 0.

A TOKEN for a mailbox that receives an exit message from the
newly created 170 job. This parameter is similar to the
CREATESIOSJOB system call documented in the Extended iRMX
11 Extended 1/0 System Calls manual, with these exceptions:

e You must always specify a valid mailbox TOKEN for this
parameter.

« SELECTORSOF(NIL) may not be used as a value for the
TOKEN.

Application Loader System Calls

RQESSSLOADSIOS$JOB

+ Each call to ROE$SSLOADSIOSJOB requires a unique
mailbox.

Output Parameters

job A TOKEN, returned by the Application Loader, for the newly
created I/O job. This token is valid only if the Application Loader
returns an ESOK condition code to the WORD specified by the
exceptdptr parameter.

exceptSptr A POINTER to a WORD where the Application Loader is to
place a condition code.

Description

This system call performs the same function as ASLOADSTIO$JOB. The only difference
between the calls is that RQESSSLOADSIOS$JOB is synchronous. That is, the calling task
resumes running only after the call has completed its attempt to create an 1/0 job and a

user task in thit job,

The Application Loader does not necessarily have exclusive access to the file being
loaded. During the loading operation, however, if other tasks are also using the file, they
may access the file only for reading,

NOTE

This system call should be invoked only by tasks running within 1/0 jobs.
Failure to heed this restriction causes the Application Loader to return an
ESCONTEXT exception code.

Condition Codes

The Application Loader returns one of the following condition codes to the WORD
specified by the exceptptr parameter of this system call:

ESOK
ESCONTEXT

ESEOF

ESEXIST

Application Loader System Calls

CUO0OH

(005H

(065H

0006H

No exceptional conditions.
The calling task’s job is not an 1/0 job.

The call encountered an unexpected End-Of-
File.
At least one of the following is true:

o The msgfmbox parameter is not a token for
an existing object.

RQES$SSLOADSIO$JOB

» The calling task’s job has no global job.
(Refer to the Extended iRMX Il Extended
1/0 System User’s Guide for a definition of
global job.)

+ The device containing the target file was

detached.

ESFACCESS (0026H The default user object for the new /O job
does not have "read" access to the specified file.

ESENEXIST 0021H The specified target file, or some file in the
specified path, does not exist or 1s marked for
deletion.

ESFLUSHING 002CH The device containing the target file is being
detached.

ESINVALIDSENODE 003DH The fnode for the specified file 1s invalid, so the
file must be deleted.

ESIOSHARD 0052H A hard 1/O error occurred. This means that
another try is probably useless.

ESIOSIOB 0047H The calling task’s job is not an [/O job.

ESTOSOPRINT 0053H The device containing the target file is off-line.

Operator intervention is required.

ESTOSSOFT 00STH A soft I/O error occurred. This means that the
/0O System tried to perform the operation and
failed, but another try might still be successful.

ESTOSUNCLASS 00S0H An unknown type of [/O error occurred.

ESJOBSPARAM 8060H The pool$max parameter 1s nonzero and
smaller than the pool§min parameter.

EESJOBSSIZE 006DH The pool$max parameter is nonzero and too
small for the target file.

ESLIMIT 0004H At least one of the following 15 true:

34 Application Loader System Calls

ESLOADERSSUPPORT

ESMEM

ESNOSLOADERSMEM

E$SLOT

EINOSSTART

ESNOTSCONFIGURED

ESPARAM

ESPATHNAMESSYNTAX

ESTIME

ESTYPE

Application Loader System Calls

(06FH

0002H

(067H

000CH

006CH

0008H

8004H

(003EH

0001H

8002H

RQE$SSLOAD$I0$JOB

» The task$priority parameter is higher
(numerically lower) than the newly created
1/0 job’s maximum priority. This maximum
priority is specified during the configuration
of the Extended /O System (if the job is a
descendant of the Extended 1/O System) or
of the Human Interface (if the jobis a
descendant of the Human Interface).

« Either the newly created 1/O job or its
default user object is already involved in 255
(decimal) 1/O operations.

The target file requires capabilities not
configured into the Application Loader.

The memory available to the calling task’s job is
not sufficient to complete the call.

The memory pool of the newly created 1/0 job
does not currently have a block of memory large
enough to allow the Application Loader to run.

The Global Descriptor Table (GDT) has no
available slots.

The target file does not specify the entry point
for the program being loaded.

This system call is not part of the present
configuration.
At least one of the following is true:

¢ The value of the exceptSmode field within
the except$handler structure lies outside the
range (through 3.

o The target file requested a stack smaller
than 16 bytes.

The specified pathname contains one or more
mnvalid characters.

The calling task’s job 1s not an /O job.

The connection parameter is a token for an
object that is not a connection.

In programs with overlays, the root module of the program calls SSOVERLAY to load
overlay modules. The root module must be loaded using one of the system calls that
create an 1/O job.

CALL RQS$SSOVERLAY(nameSptr, except$ptr);

Input Parameter

name$ptr A POINTER to a STRING containing the name of an overlay.
The overlay name should have only uppercase letters, both in this
string and when you specify the name in the overlay definition file.
For information about OQVL286, refer to the i4PX 286 Utilities
User’s Guide For IRMX 11 Systems.

Output Parameter

exceptdptr A POINTER to a WORD in which the Application Loader will
place a condition code.

Description

Root modules issue this system call when they want to load an overlay module. The
Extended IRMX [Application Loader User’s Guide describes overlays.

Synchronous Behavior

This system call is synchronous. The calling task resumes running only after the system
call has completed its attempt to load the overlay.

File Sharing
The Application Loader does not expect exclusive access to the file containing the overlay

module. However, while the overlay is being loaded, if other tasks are also using the file,
they can access the file only for reading.

36 Application Loader System Calls

S$OVERLAY

Condition Codes

The Application Loader returns one of the following condition codes to the calling task:

E$OK 0000H No exceptional conditions.

ESEOF 0065H The call encountered an unexpected End-Of-
File.

ESEXIST 0006H The specified device does not exist.

ESFLUSHING 002CH The device containing the target file is being
detached.

ESIOSHARIDD 0052H A hard 1/O error occurred. This means that

another try is probably useless.

ESIOSOPRINT 0053H The device containing the target overlay is off-
line. Operator intervention is required.

ESIOSSOFT 0051H A soft T/O error occurred. This means that the
[/O System tried to perform the operation and
failed, but another try might still be successful.

ESIOFUNCLASS 0050H An unknown type of I/O error occurred.

ESLIMIT 0004H Either the calling task’s job, or its default user
object, 1s already involved in 255 (decimal) 1/0O
operations.

ESNOMEM 0068H The memory pool of the new 1/0 job does not

have a block of memory large enough to allow
the Application Loader to foad the overlay
module.

ESNOTSCONFIGURED 0008H This system call is not part of the present
configuration.

E$OVERLAY 006EH The overlay name indicated by the name$ptr
parameter does not match any overlay module
name in your overlay definition file.

Application Loader System Calls 37

INDEX

A

ASLOAD 4
ASLOADSIOSIOB 10

C

Cendition codes 2
for asynchronous system calls 2
tor synchronous system calls 2
sequential 2

F

File sharing 5,36
Format of the loader result segment 12, 21

R

Response mailbox parameter 1
ROESASLOADSIOIIOB 18
RQESSSLOADSIOSOB 31

S

S§LOADSIOSJOB 26
SFOVERILAY 36
System call dictionary 3

U

Using the loader result segment (ASLOAD) 6

Application Loader System Calls Index-1

EXTENDED iRMX®I1
HUMAN INTERFACE
SYSTEM CALLS
REFERENCE MANUAL

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright @ 1988, intel Corporation, All Rights Reserved

PREFACE

This manual documents the system calls of the Human Interface, a subsystem of the
IRMX® | Operating System. The information provided in this manual is intended as a
reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the Extended iRMX II Nucleus User's Guide and with the PL/M-
286 programming language.

CONVENTIONS
System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
C$GETICHAR instead of RQ$CSGETSCHAR). This convention is used to allow easier
alphabetic arrangement of the calls. The actual PL/M-286 external-procedure names

must be used in
all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the

PL/M-286 calling sequences when doing so. For more information on these calling
sequences refer to the Extended iRMX 11 Programming Techniques Reference Manual.

Human Interface System Calls iii

CONTENTS

iIRMX® 1| HUMAN INTERFACE SYSTEM CALLS PAGE
1.1 Introduction
1.2 System Call DICHONATY ..ococoiiiiiiicece e b 2
CIBACKUPSCHAR ..ottt 4
C$CREATESCOMMANDSCONNECTIONcocoovviveriiercie e, 5
CSDELETESCOMMANDSCONNECTION.....cccoviiviictiricesseee v 9
CIFORMATSEXCEPTION ..o 10
CEIGETICHAR e s 12
CIGETICOMMANDSINAME ... 14
CSGETSINPUTSCONNECTION ...oovvvressrnes st 16
CIGETSINPUTSPATHNAME oot 21
CIGETSOUTPUTSCONNECTION .ottt s 27
CIGETIOUTPUTEPATHNAMEcoiiiiiierce e 34
CISENDSCOMMAND .o s s 40
CISENDSCOFRESPONSE ..ottt s 48
CESENDSIEOSRESPONSEooovviiiniietinrin it ansssesssss s s snssnsssssnsenss 51
CESETICONTROLSC ..ottt s 54
CISETSPARSESBUFFER ..ot 56

Human Interface System Calls

iRMXe I
HUMAN INTERFACE SYSTEM CALLS

1.1 INTRODUCTION

The Human Intertace system calls described in this manual are presented in alphabetical
sequence and are not organized by function. However, the calls are grouped according to
function in the System Call Dictionary. For each call, the following information is
provided:

e Brief tunctional description

o Calling sequence format

o Input parameter definitions, if applicable

o Output parameter definitions, it applicable

o Considerations and consequences of call usage

¢ Potential exception codes und their possible causes

This manual refers to PL/M-286 data types such as BYTE, WORD, and SELECTOR,
and extended IRMX [T data types such as STRING. These words, when used as data
types, are always capitalized; their definitions are found in Appendix A of the Extended
IRMX I Hinan Interface User’s Guide. This manual also refers to an extended iRMX I
data type called TOKEN. You declare a TOKEN to be literally a SELECTOR. The word
"token” in lowercase reters to a value that the extended IRMX 11 Operating System
assigns to an object. The operating system returns this value to a TOKEN (the data type)
when 1t creates the object.

It you are a new user of the Human Interface calls, you should review the parsing
considerations in the Extended iIRMX 1T Human Interface User’s Guide before writing your
source code. You should also review the format of the released Human Interface
commands. They are described in the Operator’s Guide To The Extended iRMX 11 Human
Interfuce.

This manual assumes that you are tamiliar with terms and concepts of the extended
IRMX Il Operating System. 1f you are not, you shouid read Introduction To The Extended
IRMX 1 Operating System and the chapters in the Extended iRMX 1T Nucleus User's Guide
that refer to the terms "memory pool” and "catalog.”

Human Interface System Calls f

iIRMX® 1T HUMAN INTERFACE SYSTEM CALLS

(SN

1.2 System Call Dictionary

System Call Synopsis Page
1/0 Processing Calls
CSGETSINPUTSCONNECTION Return an EIOS connection for
the specified input file. 16
CSGETSOUTPUTSCONNECTION Return an EIQS connection for
the specified output file, 27
Command Parsing Calls
CSBACKUPSCHAR Mceve the parsing buffer pointer
back one bye. 4
CSGETSCHAR Get a character from the command line 12
CSGETEINPUTSPATHNAME Parse the command line and return an
input pathname. 21
C$GETSPARAMETER Parse the command line for the next
parameter and return it as a
keyword name and a value. 36
CSGETSOUTPUTSPATHNAME Parse the command line and return
an output pathname. 33
CSSET$PARSESBUFFER Parse a buffer other than the
current command line. 56
CSGETSCOMMANDSNAME Return the command name by which
the current cammand was invoked 14
Message Processing Calls
CSFORMATSEXCEPTION Create a default message for an
exception code and place it in a
user buffer, g
CSSEND$COSRESPONSE Send a message to the command
output {CO) and read a response
from the command input (Cl). 48
CSSENDSEOSRESPONSE Send a message to the operator's
terminal and return a response from
that terminal. 51

Human Interface System Calls

iRMX® I1 HUMAN INTERFACE SYSTEM CALLS

System Call Synopsis Page
Command Processing Calls
C$CREATE$COMMANDS- Create a command connection and
CONNECTION return a token. 5
C$DELETESCOMMANDS- Delete a specific command
CONNECTION connection. 9
C$SENDSCOMMAND Concatenate command lines into
the data structure created by
CREATE$COMMANDSCONNECTION and
then invoke the command, 40
Program Control Calls
C$SETSCONTROLSC Change the default response for
a CONTROL-C. 54

Human Interface System Calls

CSBACKUPSCHAR, a command parsing call, moves the parsing buffer pointer back one
byte.

CALL CSBACKUPSCHAR(exceptSptry);

Output Parameter

exceptdptr A POINTER to a WORD in which the Human Interface returns a
condition code.

Description
When un operator invokes o command, the command’s parameters are placed in a parsing

buffer. The CSBACKUPSCHAR system call allows you to move the parsing buffer’s
pointer back one character for each occurrence of the call.

Exception Codes

ESOK 0000H No exceptional conditions were encountered.

ESLIMIT 0004H The parsing butfer's pointer is at the start of the
command.

PSCONTEXT 0005H The job that issued the call is not an 1/0 job,

Human Interface System Calls

CSCREATESCOMMANDSCONNECTION.L.CSCREATESCOMMANDSCONNECTI
ON;, a command processing call, creates an extended iIRMX 11 object called a command
connection that is required in order to invoke commands programmatically.

command$conn = RQSCSCREATESCOMMANDSCONNECTION(defaultbei,
default$co, flags, except§ptr);

input Parameters

defaultSel A TOKEN for a connection that is used as the :CI: {console input)
for any commands you invoke using this command connection.

defaultSeo A TOKEN tor a connection that 1s used as the :CO: (console
output) for any commands vou invoke using this command
connection.

tlags A WORD used to indicate that the Human Interface should

return an ESERRORSOUTPUT exception code if the system call
CSSENDSEOSRESPONSE is used by any task. If the user wants
the exception code, then the parameter is set to one (1); otherwise,
the parameter must equal zero (0).

Output Parameters

command$conn A TOKEN which receives a token tor the new command
connection.
exceptdptr A POINTER to a WORD in which the Human Interface returns a

condition code.

Description

You can use this call when you want to invoke a command programmatically instead of
interactively. 1t provides a place to store command lines until the command invocation is
complete.

The call creates an extended iIRMX 1] object called a command connection and returns a
token for that commanid connection. The CSSENDSCOMMAND system call can use this
token to send command lines to the command connection, where they are stored until the
command invocation is complete. The command connection also defines default :CI: and
:CO: connections that are used by any commands invoked via this command connection.

un

Human Interface System Calls

C$SCREATESCOMMANDS$SCONNECTION

Although a job can contain multiple command connections, the tasks in a job cannot
create command connections simultaneously. Attempts to do this result in an
ESCONTEXT exception code. Therefore, it is advisable for one task to create the
command connections for all tasks in the job.

A possible application where the parameter "flags" might be set to one is when you want
to write a custom CLI to perform batch jobs in the background. When any of the
background batch jobs attempt to communicate with the terminal through
CS$SENDSEOS$SRESPONSE, the Human Interface issues an exception code. In this way,
the Human Interface keeps all the jobs in the background. Note that the Human
Interface CLI does not provide resident background or batch processing capability.

Exception Codes
E$OK 0000H No exceptional conditions were encountered.

ESALREADYSATTACHED 0038H While creating a STREAM file, the Extended
I/O System was unable to attach the
:STREAM: device because another task had
already invoked a Basic [/O system call to
attach the :STREAM: device.

E$SCONTEXT 0005H At least one of the following is true:

¢ Two command connections were being
created simultaneously by two tasks in the
same job.

+ The calling task’s job was not created by the
Human Interface.(Refer to the Extended

iIRMX II Fxtended 1/0 System User's Guide
for information.)

E$DEVSDETACHING 0039H The :STREAM: device, the default$ci device, or
the default$co device was in the process of
being detached.

6 Human Interface System Calls

ESDEVFD

ESEXIST

ESFNEXIST

ESIFDR

ESINVALIDSFNODE

ESIOSMEM

E$LIMIT

Human Interface System Calls

C$CREATESCOMMANDSCONNECTION

0022H

0006H

0021H

002FH

003DH

0042H

0004H

The Extended 1/0 System attempted the
physical attachment of the :STREAM: device.
This device had formerly been only logically
attached. In the process, the Extended 1/O
System found that the device and the device
driver specified in the logical attachment are
incompatible. The operating system would not
have returned this exception code if the
:STREAM: device had been properly
configured.

The default$ci or default§co parameter is not a
token for an existing object.

The :STREAM: file does not exist or is marked
for deletion.

The Extended 1/0 System attempted to obtain
information about the defaultSci or default$co
connection. However, the request for
information resulted in an invalid file driver
request.

The fnode associated with the specified file
(:CI: or :CO:) 1s invalid. Delete the file.

The Basic [/O System job does not currently
have a block of memory large enough to allow
the Human Interface to create a stream file.

At {east one of the following is true:

e The object directory of the calling task’s job
has already reached the maximum object
directory size.

o The calling task’s job has exceeded its object
limit.

e The calling task’s job (or that job’s default
user object) is already involved in 255
(decimal) /O operations.

e The calling task’s job was not created by the
Human Interface. (Refer to the Extended

IRMX I Extended 1/0 System User's Guide
for information.)

C$CREATESCOMMANDSCONNECTION

ESLOGS$NAMESNEXIST

ESMEM

ESNOPREFIX

ESNOT$CONNECTION

ESNOTSLOGINAME

ESNOUSER

ESPARAM

ESSUPPORT

0045H

0002H

8022H

8042H

8040H

8021H

8004H

0023H

The call was unable to find the logical name
:STREAM: in the object directories of the local
job, the global job, or the root job.

The memory available to the calling task’s job is
not sufficient to complete the call.

The calling task’s job does not have a valid
default prefix.

The default$ci or default$co parameter is a

token for an object that is not a connection to a
file.

The logical name :STREAM: refers to an object
that is not a file or device connection.

The calling task’s job does not have a valid
default user object.

The system call forced the Extended [/O
System to attempt the physical attachment of
the :STREAM: device, which had formerly been
only logically attached. In the process, the
Extended 1/O System found that the stream file
driver 1s not properly configured into your
system, so the physical attachment is not
possible.

The default$ci or default§co device connection
was not created by this job.

Human Interface System Calls

CSDELETESCOMMANDSCONNECTION, a command processing call, deletes a
command connection object and frees the memory used by the command connection’s
data structures.

CALL RQSCSDELETESCOMMANDSCONNECTION (command$conn, except$ptr):

Input Parameter

command$conn A TOKEN for a valid command connection.

Output Parameter

exceptSptr A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

This call deletes a command connection object previously defined in a
CSCREATESCOMMANDSCONNECTION call and releases the memory used by the
command connection’s data structures,

Exception Codes
ESOK 0000H No exceptional conditions were encountered.

ES$EXIST 0006H The command$conn parameter is not a token
for an existing object.

ESTYPE 8002H The commandS$conn parameter is a token for an
object that is not a command connection object.

Human Interface System Calls 9

C$FORMATSEXCEPTION, a message processing call, creates a default message for a

given exception code and writes that message into a user-provided string.

CALL RQSCSFORMATSEXCEPTION(buffSp, buff$max, exception$code,
reservedSbyte, except$ptr);

Input Parameters

buftSmax A WORD that specifies the maximum number of bytes that may be
contitined in the string pointed to by buff$p.

exception$code A WORD containing the exception code value for which a message
is to be created.

reserved$byte A BYTE reserved for future use. [Its value must be one (1).

Output Parameters

buttSp A POINTER to a STRING into which the Human Interface
concatenates the formatted exception message.

except$ptr A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

CSFORMATSEXCEPTION causes the Human Interface to create a message for the
exception code. The message consists of the exception code value and exception code
mnemonic in the following format:

value : mnemonic

where the mnemonics are provided by the Human Interface from an internal table and
are listed in the Operator’s Guide To The Extended iRMX II Human Interface.

The call concatenates the message to the end of the string pointed to by the buff$p
pointer and updates the count byte to reflect the addition. If a string is not already
present in the buffer, the first byte of the buffer must be a zero. The message added by
CSFORMATSEXCEPTION will not be longer than 30 characters (not including the
length byte).

10 Human Interface System Calls

Exception Codes
E$OK

ESPARAM
EJSTRING

ESSTRINGSBUFFER

Human Interface System Calls

0000H

8004H

8084H

0081H

C$SFORMATSEXCEPTION

No exceptional conditions were encountered.

An undefined exception code value was
specified.

The message to be returned exceeds the length
limit of 255 characters.

The buffer pointed to by the buff$p parameter
is not large enough to contain the exception
message.

11

CS$GETSCHAR, a command parsing call, gets a character from the parsing buffer.

char = RQSCSGETSCHAR (exceptSptr);

Output Parameters

char A BYTE in which the Human Interface places the next character
of the parsing buffer. A null (00H) character is returned when the
parsing buffer’s pointer 1s at the end of the parsing buffer.

except§ptr A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

When an operator invokes a command, the command’s parameters are placed in a parsing
butfer. The CSGETSCHAR system call gets a single character from that buffer and
moves the parsing butfer pointer to the next character. Consecutive calls to
CSGETSCHAR return consecutive characters from the parsing buffer,

Exception Codes
EFfOK 0000H No exceptional conditions were encountered.

ESCONTEXT 0005H The calling task’s job was not created by the
Human Interface. Refer to the Extended iRMX
[Extended I/0 System User’s Guide for
information.

ESLIMIT (004H At least one of the following situations
occurred:

» The object directory of the calling task’s job
has already reached the maximum object
directory size.

+ The calling task’s job has exceeded its object
fimit.

¢ The calling task’s job was not created by the
Human Interface. Refer to the Extended

IRMX 1l Extended 1/0 System User's Guide
for information.

12 Human Interface System Calls

CGETCHAR

ESMEM 0002H The memory available to the calling task’s job is
not sufficient to complete the call.

Human Interface System Calls 13

CGETCOMMANDSNAME, a command parsing call, obtains the pathname of the

command that the operator used when invoking the command.

CALL RQSCSGETSCOMMANDSNAME (path$name$p, name$max, except$ptr);

Input Parameter

name$max A WORD that specifies the maximum length in bytes of the string
pointed to by the path$§name$p parameter.

Output Parameters

pathSname$p A POINTER to a buffer that receives a STRING containing the

name of the command.

exceptdptr A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

It a command needs to know the name under which it was invoked, the
CSGETSCOMMANDSNAME returns this information. This information is available to
each command and is stored in a buffer that is separate from the parsing buffer.
Therefore, calling CSGETSCOMMANDSNAME does not obtain information from the
parsing bufter, nor does it move the parsing pointer.

It the operator invokes the command without specifying a logical name, the Human
Intertace automatically seurches a number of directories for the command. In such cases,
the value returned by CSGETSCOMMANDSNAME also includes the directory name
{such as :SYSTEM:, :PROG:, or :3:) as a prefix to the command name.

Exception Codes
E$OK

ESLIMIT

ESPATHNAMESSYNTAX

14

No exceptional conditions were encountered.

The calling task’s job was not created by the
Human Interface.

The specified pathname contains invalid
characters.

Human Interface System Calls

ESSTRING}BUFFER

ESTIME

Human Interface System Calls

0081H

0001H

CSGETSCOMMANDSNAME

The buffer pointed to by the path$name$p
parameter is not large enough to contain the
command name.

The calling task’s job was not created by the
Human Interface.

15

CSGETSINPUT$CONNECTION, an I/O processing call, returns an Extended [/O
System connection to the specified input file.

connection = RQSCSGETSINPUTSCONNECTION (path$nameSp, exceptSptr);

Input Parameter

path§name$p A POINTER to a buffer that receives a STRING. (The path of the
specified input file.)

Output Parameters

connection A TOKEN in which the operating system returns the token for the
connection to the specified pathname.
exceptdptr A POINTER to ¢« WORD in which the Human Interface returns a

condition code.,

Description
CSGETSINPUTSCONNECTION obtains a connection to the specified file. This
connection 1s open for reading and has the following attributes:
+« Readonly
+ Accessible to all users
+ Has two 1024-byte buffers (This is the default size.)
CSGETSINPUTSCONNECTION causes an error message to be displayed at the
operator’s terminal (:CQO:) whenever the operating system encounters an exceptional
condition. The exceptional condition that triggers the error message can either be one of

those listed for CRGETSINPUTSCONNECTION or it can be one of those associated with

the Extended 1/O System calls SSATTACHSFILE and S$OPEN. The following messages
can oceur:

» <pathname:>, fite does not exist
The nput file does not exist.
o <pathname>, invalid file type
The input file was a data file and a directory was required, or vice versa.

¢ <pathname >, invalid logical name

Human Interface System Calls

CSGETSINPUTSCONNECTION

The input pathname contains a logical name that is longer than 12 characters, that
contains unmatched colons, invalid characters, or zero characters.

¢ <pathname>, logical name does not exist

The input pathname contains a logical name that does not exist.
s <pathname>, READ access required

The user does not have read access to the input file.
* <pathname>, <exception value >: <exception mnemonic >

An exceptional condition oceurred when CSGETSINPUTSCONNECTION attempted
to obtain the iput connection. The <exception value > and <exception mnemonic>
portions of the message indicate the exception code encountered. Refer to "Exception
Codes" in this call description and to the descriptions of SSATTACHSFILE and
S$OPEN in the Extended iRMX II Extended 1/0 System Calls Reference Manual.

Exception Codes
E$OK 0000H No exceptional conditions were encountered.

ESALREADYSATTACHED 0038H The device containing the file specified in the
path$name$p parameter is already attached.

ESCONTEXT 0005H At least one of the following is true:

o The calling task’s job was not created by the
Human I[nterface. (Refer to the Extended
IRMX II Extended 1/0 System User’s Guide
for information.)

o The calling task’s job was not created by the
Human Interface.

ESDEVSDETACHING 0039H The device specified in the path§name$p
parameter is in the process of being detached.

ESDEVFD 022H The call attempted the physical attachment of a
device that had formerly been only logically
attached. In the process, the call found that the
device and the device driver speaified in the
logical attachment were incompatible.

ESEXIST 0006H The specified device does not exist.

ESFACCESS 0026H The specified connection does not have read
access to the file.

Human Interface System Calls 17

CSGETSINPUTSCONNECTION

ESFNEXIST

ESFTYPE

ESILLVOL

ESINVALIDSFNODE

ESIOSHARD

ESIOSMEM

ESIOSNOTSREADY

18

0021H

0027H

002DH

003DH

0052H

0042H

0053H

At least one of the following is true:

e The target file does not exist or is marked
for deletion.

» While attaching the file pointed to by the
path$name$p parameter, the call attempted
the physical attachment of the device as a
named device. It could not complete this
process because the device specified when
the logical attachment was made was not
defined during configuration.

The path pointed to by the path$name$p
parameter contained a file name that should
have been the name of a directory, but is not.
(Except for the last path component, each file in
a pathname must be a named directory.)

The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically
attached. The call found that the volume did
not contain named files. This prevented the call
from completing physical attachment because
the named file driver was requested during
logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the file specified in
the path$nameSp parameter, the call detected a
hard I/O error. Another call is useless.

While attempting to create a connection, the
call needed memory from the Basic 1/O
subsystem’s memory pool. However, the Basic
1/0O System job does not currently have a block
of memory large enough to allow this call to run
to completion,

While attempting to access the file specified in
the path§name$p parameter, the call found that
the device was off-line. Operator intervention is
required.

Human Interface System Calls

EIOSOFT

ESIOSUNCLASS

ESLIMIT

ESLOGSNAMES-NEXIST

ESLOGSNAMES$SYNTAX

ESMEDIA

ESMEM

ESNOPREFIX

ESNOTSI.OGINAME

ESNOUSER

Human Interface System Calls

0051H

0050H

000411

0045H

(0040H

0044H

0002H

8022H

804011

8021H

CSGETSINPUTSCONNECTION

While attempting to access the file specified in
the path$name$p parameter, the call detected a
soft 1/O error. It tried the operation again but
was unsuccessful. Another try might be
successful.

An unknown type of [/O error occurred while
this call tried to access the file given in the
path$name$p parameter.

At least one of the following is true:

o The calling task’s job or the job’s default
user object is already involved in 255
{(decimal) 1/O operations.

¢ The calling task’s job was not created by the
Human Interface.

» The object limit of the calling job has been
reached.

The pathname for the specified device contains
an explicit Jogical name. The call was unable to
find this name in the object directories of the
local job, the global job, or the root job.

The pathname pointed to by the path$name$p
parameter contains a logical name. This logical
name contains an unmatched colon, 1s longer
than 12 characters, has zero (0) characters, or
contains invalid characters.

The specified device was oft-line.

The memory available to the calling task’s job is
not sufficient to complete the call.

The calling task’s job does not have a valid
default prefix.

The logical name specified by the path§name3$p
parameter does not refer to a file or device

connection.

The calling task’s job does not have a valid
default user.

19

CSGETSINPUTSCONNECTION

ESPARAM

ESPATHNAMESSYNTAX 003EH

E$SHARE 0028H

ESSTREAMSSPECIAL (003CH

20

8004H At least one of the following is true:

The system call forced the Extended 1/0O
System to attempt the physical attachment
of the device referenced by the
path$name$p parameter. This device had
formerly been only logically attached. In the
process, the Extended 1/0O System found
that the logical attachment referred to a file
driver (named, physical, or stream) that is
not configured into your system, so the
physical attachment is not possible.

The connection to the specified file cannot
be opened for reading.

The specified pathname contains invalid
characters.

The file sharing attribute currently does not
allow new connections to the file to be opened
for reading.

The call attempted to attach a stream file and in
so doing issued an invalid stream file request.

Human Interface System Calls

CSGETSINPUTSPATHNAME, a command parsing call, gets a pathname from the list of
input pathnames in the parsing buffer.

CALL RQ$CSGETSINPUTSPATHNAME(path$name$p, path$name$max,
except$ptr);

Input Parameter

path$name$max A WORD that specifies the maximum length in bytes of the string
pointed to by the path$name$p parameter. The maximum length
that you can specify is 256 bytes (255 characters for the pathname
and one byte for the count).

Output Parameters

pathSname$p A POINTER to a STRING which receives the next pathname in

the pathname list. A zero-length string indicates that there are no
more pathnames.

exceptdptr A POINTER to a WORD in which the Human Interface returas a
condition code.

Description

The first call to CSGETSINPUTSPATHNAME retrieves the entire input pathname list
and moves the parsing pointer to the next parameter. C$GETSINPUTSPATHNAME
stores the list in an internal buffer and returns the first pathname in the string pointed to
by the pathSname$p parameter. Succeeding calls to CSGETSINPUTSPATHNAME
return additional pathnames from the input pathname list but do not move the parsing
pointer. CSGETSINPUTSPATHNAME denotes the end of the pathname list by
returning a zero-length string.

CIGETSINPUTSPATHNAME accepts wild-card characters in the last component of a
pathname. It treats a pathname that contains a wild-card as a list of pathnames. To
obtain each pathname, it searches in the parent directory of the component containing the
wild-card, comparing the "wild-carded" name with the names of all files in the directory. It
returns the next pathname that matches.

The pathname returned by CSGETSINPUTSPATHNAME can be used for any purpose.

However, it i1s most often used in a call to C3GETSINPUTSCONNECTION, to obtain a
connection.

Human Interface System Calls 21

CSGETSINPUTSPATHNAME

Exception Codes
ESOK 0000H

ESALREADYSATTACHED 0038H

ESCONTEXT 0GOSH
ESDEVSDETACHING 0039H
E$DEVFD 0022H
ESEXIST 0006H
E$FACCESS 0026H
ESFLUSHING 002CH
ESFNEXIST 0021H

No exceptional conditions were encountered.

The device containing the file pointed to by the
path$name$p parameter is already attached.

At least one of the following is true:

¢ The calling task’s job was not created by the
Human Interface. (Refer to the Extended

iIRMX II Extended 1/0 System User’s Guide
for more information.)

s The task called
CSGETSOUTPUT$PATHNAME before
calling CSGETSINPUTSPATHNAME.

The device pointed to by the path$name$p
parameter is in the process of being detached.

The Extended 1/0 System attempted the
physical attachment of a device that had
tormerly been only logically attached. In the
process, the Extended 1/0O System found that
the device and the device driver specified in the
logical attachment were incompatible.

At least one of the following is true:

» The connection to the parent directory of
the file pointed to by the pathSname$p
parameter is not a token for the existing job.

o The calling task’s job was not created by the
Human Interface.

The connection used to open the directory does
not have read access to the directory.

The device containing the directory was in the
process of being detached.

At least one of the following is true:

» The target file does not exist or is marked
for deletion.

Human Interface System Calls

ESFTYPE

ESIFDR

ESILLVOL

ESINVALIDSFNODE

ESIO$HARD

E$IOSMEM

Human Interface System Calls

0027H

002FH

002DH

003DH

(0052H

0042H

CSGETSINPUT$PATHNAME

¢ While attaching the parent directory of the
file pointed to by the path$name$p
parameter, the I/O System attempted the
physical attachment of the device as a
named device. It could not complete this
process because the device specified when
the logical attachment was made was not
defined during configuration.

The path pointed to by the path$name$p
parameter contained a file name that should
have been the name of a directory, but is not.
{Except for the last file, each file in a pathname
must be a named directory.)

The specified file i1s a stream or physical file.

The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically
attached. The call found that the volume did
not contain named files. This prevented the call
from completing physical attachment because
the named file driver was requested during
logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the parent directory
of the file pointed to by the path$name$p
parameter, the call detected a hard 1/O error.
This means that another call 1s probably useless.

While attempting to create a connection, this
call needed memory from the Basic I/O
System’s memory pool. However, the Basic [/O
System job does not currently have a block of
memory large enough to allow this call to run to
completion.

C$GETSINPUT$SPATHNAME

24

ESIOSNOTIREADY

ESIOFSOFT

ESIOSUNCLASS

ESLIMIT

ESLIST

E$LOGSNAMESNEXIST

ESLOGSNAMESSYNTAX

ESMEDIA

0053H

0051H

0050H

0004H

0085H

0045H

0040H

0044H

While attempting to access the parent directory
of the file pointed to by the path$name$p
parameter, this call detected that the device was
off-line. Operator intervention is required.
C$FORMATSEXCEPTION returns the value
ESTOSNOTSREADY for this code.

While attempting to access the parent directory
of the file pointed to by the pathSnameS$p
parameter, this call detected a soft /O error. It
tried the operation again, but was unsuccessful.
Another try might be successful.

An unknown type of I/O error occurred while
this call tried to access the parent directory of
the file pointed to by the path$name$p
parameter.

At least one of the following is true:

s The calling task’s job has already reached 1ts
object limit.

o The calling task’s job or the job’s default
user object is already involved in 255
{decimal) I/O operations.

¢ The calling task’s job was not created by the
Human Interface.

The last value of the input pathname list is
missing. For example, "ABLE,BAKER," has no
value following the second comma.

The pathname for the specified device contains
an explicit logical name. The call was unable to
find this name in the object directory of the
local job, the global job, or the root job.

The pathname pointed to by the path$name$p
parameter contains a logical name that has an
unmatched colon, is longer than 12 characters,
has zero (0) characters, or contains invalid
characters.

The specified device was off-line.

Human Interface System Calls

ESMEM

ESNOPREFIX

ESNOTSLOGSNAME

ESNOUSER

ESPARAM

ESPARSESTABLES

ESPATHNAMESSYNTAX

E$SHARE

ESSTREAMSSPECIAL

ESSTRING

ESSTRING$BUFFER

Human Interface System Calls

000ZH

8022H

8040H

8021H

8004H

8080H

003EH

0028H

003CH

8U84H

0081H

CSGETSINPUTSPATHNAME

The memory available to the calling task’s job is
not sufficient to complete the call.

The calling task’s job does not have a valid
default prefix.

The logical name specified by the path$name$p
parameter does not refer to a file or device
connection.

The calling task’s job does not have a valid
default user object.

At least one of the following is true:

» The Extended I/O System attempted the
physical attachment of the device pointed to
by the path$name$p parameter. This device
had formerly been only logically attached.

In the process, the Extended 1/0 System
found that the logical attachment referred
to a file driver (named, physical, or stream)
that is not configured into your system, so
the physical attachment is not possible.

» The connection to the parent directory
cannot be opened for reading.

The call detected an error in an internal table
used by the Human Interface.

The specified pathname contains invalid
characters.

The connection to the parent directory cannot
be opened for reading.

The Extended /O System issued an invalid
stream file request when an attempt to attach a
stream file failed.

The pathname to be returned exceeds the
length limit of 255 characters.

The buffer pointed to by the path$name3p
parameter was not large enough for the
pathname to be returned.

25

CSGETSINPUTSPATHNAME

26

ESSUPPORT

E$WILDCARD

0023H

0086H

This call attempted to read the parent directory
of the pathname pointed to by the path$name$p
parameter. However, the file driver
corresponding to that directory does not
support this operation.

The pathname to be returned contains an
invalid wild-card specification.

Human Interface System Calls

C$GETSOUTPUTSCONNECTION, an 1/O processing call, parses the command line
and returns an Extended I/O System connection referring to the requested output file.

connection = RQSCSGETSOUTPUT$CONNECTION (pathSname$p, preposition,

exceptSptr);
Input Parameters
path$namelp A POINTER to a STRING containing the pathname of the file to
be accessed.
preposition A BYTE that defines which preposition to use to create the output

tile. Use one of the following values to specify the preposition
mode:

Value Meaning
0 Use same preposition as was returned by
the last CSGETSOUTPUTSPATHNAME call
| TO
2 OVER
3 AFTER
4-255 Undefined, results in an error
Output Parameters
connection A TOKEN in which the Human Interface returns a token for the
connection to the output file,
except$ptr A POINTER to a WORD in which the Human Interface returns a

condition code.

Description
CIGETSOUTPUTSCONNECTION obtains a connection to the specified file.

This connection is open for writing and has the following attributes:
o Write only
s Accessible to all

¢ Has two 1024-byte buffers

Human Interface System Calls 27

C$SGETSOUTPUTSCONNECTION

If the call to CSGETSOUTPUTSCONNECTION specifies the TO preposition and the
output file already exists, CSGETSOUTPUT$CONNECTION issues the following
message to the terminal (:CO:):

<pathname>, already exists, OVERWRITE?

If the operator enters Y, y, R, or r, CSGETSOUTPUTSCONNECTION returns a
connection to the existing file, allowing the command to write over the file. Any other
response causes CSGETSOUTPUTS$CONNECTION to return an E3FACCESS
exception code.

CGETOUTPUTSCONNECTION causes an error message to be displayed at the
operator’s terminal (:CO:) whenever an exceptional condition occurs. The exceptional
condition that causes the error message can be one of those listed below or one associated
with an Extended 1/0 System call. The following messages can occur:

s <pathname>, DELETE access required
The user does not have delete access to an existing file.
s <pathname >, directory ADD entry access required
The user does not have add entry access to the parent directory.
e <pathname>, file does not exist
The output file does not exist.
o <pathname>, invalid file type
The output file was a data file and a directory was required, or vice versa.
+ <pathname>, invalid logical name

The output pathname contains a logical name longer than 12 characters, contains
unmatched colons, contains invalid characters, or zero characters.

¢ <pathname >, logical name does not exist
The output pathname contains a logical name that does not exist.
s <pathname>, <exception value>:<exception mnemonic>

An exceptional condition occurred when CSGETSOUTPUTSCONNECTION
attempted to obtain the output connection. The <exception value> and <exception
mnemonic> portions of the message indicate the exception code encountered. Refer

to "Exception Codes" in this call description and to the Extended iRMX II Extended
1/0 System User’s Guide.

Exception Codes

EJOK 0000H No exceptional conditions were encountered.

28 Human Interface System Calls

ESALREADYSATTACHED 0038H
ESCONTEXT 0005H
ESDEVIDETACHING 0039H
ESDEVFD 0022H
ESEXIST 0006H
ESFACCESS 0026H
ESFNEXIST 0021H

Human Interface System Calls

CSGETSOUTPUT$CONNECTION

The Extended 1/O System was unable to attach
the device containing the file because the Basic
I/O System has already attached the device.

The calling task’s job was not created by the
Human Interface.

The device referred to by the path$name3p
parameter was in the process of being detached.

The call attempted the physical attachment of a
device that had formerly been only logically
attached. In the process, the call found that the
device and the device driver specified in the
logical attachment were incompatible.

The connection parameter for the device
containing that file is not a token for an existing
object.

At least one of the following is true:

o The default user for the calling task’s job did
not have update access to an existing file
and/or add-entry access to the parent
directory.

o The TO or OVER preposition was specified
and the default user for the calling task’s job
did not have the ability to truncate the file.

At least one of the following is true:

o The target file does not exist or 1s marked
for deletion.

¢ While attaching the file pointed to by the
path$name$p parameter, the Extended /O
System attempted the physical attachment
of the device as a named device. It could
not complete this process because the
device specified when the logical attachment
was made was not defined during
configuration.

29

CSGETSOUTPUT$CONNECTION

ESFIYPE

ESIFDR

ESILLVOL

ESINVALIDSFNODE

EFIO$HARD

ESIOSMEM

ESIOSNOTSREADY

ESIOSSOFT

0027H

002FH

002DH

003DH

0052H

0042H

0053H

0051H

The path pointed to by the path$name$p
parameter contained a file name that should
have been the name of a directory, but is not.
(Except for the last component, each file in a
pathname must be a named directory.)

The call requested information about the
specified file, but the request was an invalid file
driver request.

The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically
attached. The call found that the volume did
not contain named files. This prevented the call
from completing physical attachment because
the named file driver was requested during
logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the file specified in
the pathSname$p parameter, the call detected a
hard I/O error. A retry is probably useless.

While attempting to create a connection, this
call needed memory from the Basic I/O
System’s memory pool. However, the Basic [/O
System job does not currently have a block of
memory large enough to allow this call to run to
completion.

While attempting to access the file specified in
the path$nameSp parameter, the call detected
that the device was off-line. Operator
intervention is required.
CSFORMATSEXCEPTION returns the value
ESIOSNOTSREADY for this code.

While attempting to access the file specified in
the path$name$p parameter, the call detected a
soft I/O error. It tried the operation again but
was unsuccessful. Another try might be
successful.

Human Interface System Calls

ESIOSUNCLASS

ESIOSWRPROT

ESLIMIT

ESLOGSNAMESNEXIST

ESLOGSNAMESSYNTAX

ESMEDIA

ESMEM

ESNOPREFIX

ESNOTSLOGENAME

ESNOUSER

Human Interface System Catlls

0050H

0054H

0004H

0045H

0040H

(044H

0002H

8022H

8040H

8021H

CSGET$SOUTPUTSCONNECTION

An unknown type of I/O error occurred while
this call tried to access the file given in the
path$namedp parameter.

While attempting to obtain an input connection
to the file specified in the path$name$p
parameter, this call found that the volume
containing the file is write-protected.

At least one of the following is true:

o The calling task’s job or the job’s default
user object is already involved in 255
(decimal) 1/O operations.

¢ The calling task’s job was not created by the
Human Interface.

+ The calling task’s job has reached its object
limit. (Refer to the Extended iRMX II
Extended /0 System User’s Guide for more
information about 1/0 jobs.)

The specified pathname contains an explicit
logical name. The call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

The pathname pointed to by the path$name$p
parameter contains a logical name. However,
the logical name contains unmatched colons, 1s
longer than 12 characters, contains invalid
characters, or contains zero characters.

The specified device was off-line.

The memory available to the calling task’s job is
not sufficient to complete the call.

The calling task’s job does not have a valid
default prefix.

The logical name spectfied by the path$name$p
parameter does not refer to a file or device
connection.

The calling task’s job does not have a valid
default user object.

CSGET$SOUTPUTS$CONNECTION

ESPARAM

ESPATHNAMESSYNTAX

ESPREPOSITION

ESSHARE

ESSPACE

EFSTREAMSSPECIAL

8004H

003EH

0087H

0028H

0029H

003CH

The system call forced the Extended I/O
System to attempt the physical attachment of
the device referenced by the path$nameSp
parameter. The device had formerly been only
logically attached. In the process, the Extended
[/O System found that the logical attachment
referred to a file driver (named, physical, or
stream) that is not configured into your system,
so the physical attachment is not possible.

The specified pathname contains invalid
characters.

One of the following is true:

¢ The command line contained an invalid
preposition value (a value greater than 3).

e The command line contained a zero as the
preposition value. This indicated that the
same preposition was to be used as in the
last call to

C$SGETSOUTPUTSCONNECTION.
However, this is the first call to
CGETOUTPUTSCONNECTION.

The new connection cannot be opened for
writing.

One of the following is true:

¢ The volume is full.

» The volume already contains the maximum

number of files.

The Extended 1/O System issued an invalid
stream file request when an attempt to attach a
stream file failed.

Human Interface System Calls

CIGETSOUTPUTSPATHNAME, a command parsing call, gets a pathname from the list
of output pathnames in the parsing buftfer.

preposition = RQSCSGETSOUTPUTSPATHNAME (pathS$nameSp, path$nameS$max,
default$output$p, exceptSptr);

Input Parameters

path$name$max A WORD that specifies the maximum length in bytes of the string
pointed to by the path$name$p parameter. The maximum length
that you can specify is 256 bytes (255 characters for the pathname
and one byte for the count).

default$output$p A POINTER to a STRING containing the command’s default
standard output. If the first invocation of this system call does not
encounter a TO/OVER/AFTER preposition, the text of this
parameter will be used as though it had appeared in the command
line. The text must specify TO, OVER, or AFTER for the output
mode. Examples: TO :CO: or TO :LP:.

Output Parameters

preposition A BYTE describing the preposition type that
CIGETSOUTPUTIPATHNAME encountered. You can pass this
vilue to CSGETSOUTPUTSCONNECTION when obtaining an

output connection to the file. The value will be one of the
following:

Value Meaning
1 TO
2 OVER
3 AFTER
path$name$p A POINTER to a buffer that receives a STRING. (The next
pathname in the pathname list.)
exceptdptr A POINTER to a WORD in which the Human Interface returns a

condition code.

Description

You should not call CSGETSOUTPUTSPATHNAME before first calling
CSGETSINPUTSPATHNAME.

Human Interface System Calls 33

C$SGET$SOUTPUTSPATHNAME

The first call to CSGETSOUTPUTSPATHNAME retrieves the preposition
(TO/OVER/AFTER) and the entire output pathname list; it then moves the parsing
pointer to the next parameter. If the parsing buffer does not contain a preposition and
pathname list, CSGETSOUTPUTSPATHNAME uses the default pointed to by the
default$output$p pai ameter (and does not move the parsing pointer). After retrieving
the pathname list, CSGETSOUTPUT$PATHNAME stores it in an internal buffer,
returns the first pathname in the string pointed to by the path$name$p parameter, and
returns the preposition in the preposition parameter. Succeeding calls to
CSGETSOUTPUTSPATHNAME return additional pathnames from the output
pathname list (as well as the preposition), but they do not move the parsing pointer.
CIGETSOUTPUTIPATHNAME denotes the end of the pathname list by returning a
zero-length string in the STRING pointed to by path§name$p.

C$GETSOUTPUTSPATHNAME accepts characters with a wild-card as the last
component of a pathname. It generates each output pathname based on this pathname
and wild-card, the corresponding pathname and wild-card that was input to
CIGETSINPUTSPATHNAME, and the most recent input pathname returned by
C$GETSINPUTSPATHNAME.

The pathname returned by CSGETSOUTPUTSPATHNAME can be used for any
purpose. However, it is most often used in a call to CSGETSOUTPUT$CONNECTION
to obtain a connection to the file. In such a case, CSGETSOUTPUT$CONNECTION
processes the TO/OVER/AFTER preposition. If the pathname is used as input to a
system call other than CSGETSOUTPUTSCONNECTION, the interpretation of the
TO/OVER/AFTER preposition is the user’s responsibility.

Exception Codes

34

ESOK 0000H No exceptional conditions were encountered.

ESCONTEXT 0005H The calling task’s job was not created by the
Human Interface.

ESDEFAULTSSO 8083H The default output string pointed to by
default$output$p contained an invalid
preposition or pathname.

Human Interface System Calls

ESLIMIT

E$SMEM

ESPATHNAMESSYNTAX

E$STRING

E$STRING$BUFFER

ESUNMATCHEDSLISTS

ESWILDCARD

Human Interface System Calls

0004H

0002H

003EH

8084H

0081H

008BH

0086H

CSGETSOUTPUTSPATHNAME

At least one of the following is true:

o The calling task’s job has already reached its
object limit.

» The calling task’s job was not created by the
Human Interface.

s The calling task’s job or the job’s default
user object is already involved in 255
(decimal) I/O operations.

The memory available to the calling task’s job is
not sufficient to complete the call.

The specified pathname contains invalid
characters.

The pathname to be returned exceeds the
length limit of 255 characters.

The buffer pointed to by the path$name$p
parameter was not Jarge enough for the
pathname to be returned.

The numbers of files in the input and output
lists are not the same.

The output pathname contains an invalid wild-
card specification.

35

GET$PARAMETER, a command parsing call, gets a parameter from the parsing buffer.

more = RQSCSGETSPARAMETER (name$p, name$max, value$p, valueS$max,

index$p, predict$list$p, exceptSptr);

Input Parameters

name$max

value$max

predict$list3p

Output Parameters

more

nameS$p

value$p

A WORD that specifies the maximum length in bytes of the string
pointed to by the name$p parameter. The maximum length is 256
bytes (255 characters for the name and one byte for the count).

A WORD that specifies the maximum length in bytes of the string
pointed to by the value$p parameter. The maximum length is
65535 decimal bytes.

A POINTER to a STRINGS$TABLE, as described in Appendix C
of the Extended IRMX Il Human Interface User’s Guide, that
specifies the values that this system call accepts as prepositions.
The predict$list§p POINTER should be NIL if you do not intend
to retrieve parameters that use prepositions.

A BYTE value that indicates whether or not the current call to
CSGETSPARAMETER returned a parameter. A value of 00H
indicates that there are no more parameters (and that no
parameter was returned); a value of OFFH indicates that a
parameter was returned.

A POINTER to a buffer that receives the keyword portion of the
parameter. If this parameter does not contain a keyword portion,
the Human Interface returns a null (zero-length) string.

A POINTER to a buffer used to store a STRINGSTABLE, as
described in Appendix C of the Extended iRMX 1 Human Interface
User's Guide, that receives the value portion of the parameter. 1f
the value portion contains a list of values separated by commas, the
Human Interface returns the values to the string table one value
per string.

Human Interface System Calls

CGETPARAMETER

index$p A POINTER to a BYTE that receives the index to the list of
prepositions pointed to by predict$list$p. This index identifies the
namedp keyword as a preposition and identifies it out of the list of
possible prepositions. If the predict$listSp list is empty, or if the
keyword name is not contained in the predict$list$p list, the system
call returns a value of zero for the index. That is, the index will be
non-zero only if a keyword exists and it is one of the prepositions in
the predict$list$p list.

exceptdptr A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

C$GETSPARAMETER retrieves one parameter from the parsing buffer and moves the
parsing pointer to the next parameter. The parameter can be one of the following:

s keyword/value-list parameter using parentheses
» keyword/value-list parameter using an equal sign
» keyword/value-list parameter with the keyword as a preposition

» value-list without a keyword

A description of the types, format, and syntax of acceptable parameters is provided in the
Extended iRMX I Human Interface User’s Guide.

CIGETSPARAMETER places the keyword portion of the parameter in the string
pointed to by name$p; it places the keyword list in the string table pointed to by value$p.

Without input from you, CSGET$PARAMETER cannot determine whether groups of
characters separated by spaces are separate parameters or a single parameter that uses a
preposition. CSGETSPARAMETER uses the list of prepositions that you supply in the
string table pointed to by predict$list$p to determine the prepositions that can appear.
When C$GETIPARAMETER retrieves a parameter, it obtains, from the parsing buffer,
the next group of characters that are separated by spaces. These characters are checked
against those in the predict$list$p list. If the characters match one of the values in the list,
CIGETSPARAMETER realizes that the characters represent a preposition and not an
entire parameter; it then obtains the next group of characters separated by spaces as the
value portion of the parameter.

Exception Codes

ESOK 0D00H No exceptional conditions were encountered.

Human Interface System Calls 37

C$GETSPARAMETER

ESCONTEXT 0005H The calling task’s job was not an 1/O job.
(Refer to the Extended iRMX Il Extended I/0

System User's Guide for information about 1/O
jobs.)

ESCONTINUED 0083H The call found a continuation character in the
parse buffer. Command lines should not
contain continuation characters.

ESLIMIT 0004H At least one of the following is true:

¢ The calling task’s job has already reached its
object limit.

o The calling task’s job was not an [/O job.
(Refer to the Extended iRMX 1T Extended
1/0 System User's Guide for information
about 1/0 jobs.)

ESLIST 0085H At least one of the following is true:

» The parameter contains an unmatched
parenthesis.

e A value in the value list is missing or an
improper value was entered. Examples of
both these conditions are

Value Comments
AB, No value following second
comma.

AB=CD The equal sign can not be
used unless it is between
quotes: 'B=C’is valid.

AB(CE)F The parentheses can not be
used in a value unless it
is between quotes or set
off by commas.

A,B,(C,E)/F is valid.

ESLITERAL 0080H The call found a literal (quoted string) in the
parsing buffer with no closing quote. This
condition should not occur in the command line

buffer.

ESMEM 0002ZH The memory available to the calling task’s job is
not sufficient to complete the call.

38 Human Interface System Calls

ESPARAM

ESPARSE$TABLES

E$SEPARATOR

ES$STRING

ESSTRINGSBUFFER

Human Interface System Calls

8004H

8080H

0082H

8084H

0081H

CSGET$PARAMETER

The predict$list$p parameter pointed to a string
table, but the index$p parameter was set to zero

(0).

The call found an error in an internal table used
by the Human Interface.

The call found an invalid command separator in
the parsing buffer. This condition should not
oceur in the command line buffer. The
following is a list of invalid command
separators: > <, <>, ||, |, [, and].

The string to be returned as the parameter
name or one of the parameter values exceeds
the length limit of 255 characters.

The string to be returned as the parameter

name or one of the parameter values exceeds
the buffer size provided in the call.

39

C$SENDSCOMMAND, a command processing call, sends command lines to a command
connection created by CSCREATESCOMMANDSCONNECTION and, when the
command 1s complete, invokes the command.

CALL RQSCSSENDSCOMMAND (command$conn, line$p. command$except$ptr,
except$ptr);

Input Parameters

command$conn A TOKEN for the command connection that receives the
command line.

line$p A POINTER to a buffer used to store a STRING containing a
command line to execute.

Output Parameters

command$exceptiptr A POINTER to a WORD in which the Human Interface
returns a condition code indicating the status of the invoked
command. This parameter is undefined if an exceptional
condition code is returned in the WORD pointed to by
exceptiptr.,

except$ptr A POINTER to a WORD in which the Human Interface

returns a condition code indicating the status of the
CSSENDICOMMAND system call.

Description

You can use this system call when you want to invoke a command programmatically
instead of interactively. It stores a command line in the command connection created by
the CSCREATESCOMMANDSCONNECTION call, concatenates the command line
with any others already stored there, and (if the command invocation is complete) invokes
the command. The command can be any standard Human Interface command (as
described in the Operator’s Guide To The Extended iRMX Il Human Interface) or a
command that you create.

40 Human Interface System Calls

C$SEND$SCOMMAND

As described in greater detail in the Extended iRMX H Universal Development Interface
User's Guide, a command invocation can contain several continuation marks. The
continuation mark (&) indicates that the command line is continued on the next line. If
the command line sent by CSSENDSCOMMAND is continued on another line (that is,
contains a continuation mark), the Human Interface returns an ESCONTINUED
exception code and does not invoke the command. You can then call
C$SENDICOMMAND any number of times to send the continuation lines.

C$SENDSCOMMAND concatenates the original command line and all continuation lines
into a single command line in the command connection. It removes all continuation
marks and comments from this command line.

When the command invocation is complete (that is, the line sent by
CISENDICOMMAND does not contain a continuation mark), the Human Interface
parses the command pathname from the command line. If no exception conditions halt
the process at this point, the Human Interface requests the Application Loader to load
and execute the command,

An Application Loader call creates an 1/0 job for the command, and validates the header,
group definition and segment definition records of the command’s object file. Refer to
the iAPX 2806 Ulilities User’s Guide For Extended iRMX II Systems for explanations of
segments, groups and object file formats.

CSSENDSCOMMAND returns two condition codes: one for the CSSENDSCOMMAND
call and one for the invoked command. The word pointed to by the except$ptr parameter
returns the CRSENDJCOMMAND conditions, as described under the "Exception Codes”
heading in this command description. The WORD pointed to by the
command3$exceptdptr returns the invoked command’s condition codes; the values
returned depend on the command invoked. The ESCONTROLSC exception code can be
returned at either place.

NOTE

When a C3SENDSCOMMAND call is made, the Human Interface sets
the CONTROL-C semaphore to the default Human Interface
CONTROL-C handler. If you previously set the CONTROL-C handler, it
must be set again after making this call. For more information see the
Extended IRMX 1T Human Interface User's Guide.

Exception Codes

ESOK 0000H No exceptional conditions were encountered.

Human Interface System Calls 41

CSSENDSCOMMAND

42

ESALREADYSATTACHED 0038H

ESBADSGROUP

ESBADSHEADER

ESBADSSEGDEF

ESCHECKSUM

ESCONTEXT

ESCONTINUED

ESDEVSDETACHING

ESDEVFD

ESEOF

0061H

0062H

0063H

0064H

0005H

0083H

0039H

0022H

0065H

The Extended I/O System was unable to attach
the device containing the object file because the
Basic 1/O System has already attached the
device.

The object file represented by the command’s
pathname contained an invalid group definition
record.

The object file represented by the command’s
pathname does not begin with a header record
for a loadable object module.

The object file represented by the command’s
pathname contains an invalid segment
definition record.

At least one record of the object file
represented by the command’s pathname
contains a checksum error. This situation could
occur if the CHECKSUM amount calculated
during the read operation did not match the
CHECKSUM field of the record being read.

The calling task’s job was not created by the
Human Interface.

The operating system detected a continuation
character while scanning the command line
pointed to by the line§p parameter. This
condition should occur if the command line is to
continue on the next line.

The device containing the object file was in the
process of being detached.

The Extended I/O System attempted the
physical attachment of a device that had
formerly been only logically attached. In the
process, the Extended 1/O System found that
the device and the device driver specified in the
logical attachment were incompatible.

The Application Loader encountered an
unexpected end of file on the object file
represented by the command’s pathname.

Human Interface System Calls

ESEXIST

ESFACCESS

ESFLUSHING

ESFNEXIST

ESFTYPE

ESILLVOL

ESINVALID$FNODE

EIOHARD

Human Interface System Calls

0006H

0026H

002CH

(0021H

0027H

002DH

003DH

0052H

C$SEND$SCOMMAND

At least one of the following is true:

» The call detached the device containing the
object file before completing the loading
operation.

¢ The command$conn parameter is not a
TOKEN for a command connection.

The default user for the calling task’s job does
not have read access to the object file.

The device containing the object file was being
detached.

At least one of the following is true:

» The file in the command’s pathname is
either marked for deletion or does not exist.

» While attaching the file specified in the
line$p parameter, the Extended 1/O System
attempted the physical attachment of the
device as a named device. It could not
complete this process because the device
specified when the logical attachment was
made was not defined during configuration.

The path pointed to by the path§name$p
parameter contained a component name that
should have been the name of a directory, but is
not. (Except for the last file, each file in a
pathname must be a named directory.)

The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically
attached. The call found that the volume did
not contain named files. This prevented the call
from completing physical attachment because
the named file driver was requested during
logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the object file, this
call detected a hard I/O error.

43

C$SSEND$SCOMMAND

44

ESIOSMEM

EFIOSNOTSREADY

ESIO$SOFT

ESIOSUNCLASS

ESLIMIT

ESLITERAL

ESLOGINAMESNEXIST

0042H

0053H

0051H

Q050H

0004H

0080H

0045H

The Basic [/O System does not currently have

enough memory to allow the Human Interface

to create the connection necessary to allow this
call to run to completion.

While attempting to access the object file, this
call found that the device was off-line. Operator
intervention is required.
C$FORMATSEXCEPTION returns the value
ESIOSNOT$READY when given this code.

While attempting to access the object file, this
call detected a soft [/O error. It tried again, but
was not successful. Another try might be
successful.

An unknown type of [/Q error occurred while
this call tried to access the object file.

At least one of the following is true:

s The calling task’s job has already reached its
object limit.

» The calling task’s job, or the job’s default
user object, 1s already involved in 255
(decimal) I/O operations.

s The new /O job, or its default user, is
already involved in 255 (decimal) I/O
operations.

» The calling task’s job was not created by the
Human Interface. (See to the Extended
iRMX II Extended 1/0 System User’s Guide
for information.)

The call found a literal (quoted string) with no
closing quote while scanning the contents of the
command line pointed to by the line$p
parameter.

The command’s pathname contains an explicit
logical name, but the call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

Human Interface System Calls

ESLOGINAMESSYNTAX

ESMEDIA

ESMEM

ESNOSLOADERSMEM

E$NOPREFIX

E§NOSSTART

ESNOTSCONNECTION

EINOT$LOGINAME

ESNOUSER

Human Interface System Calls

0040H

0044H

0002H

0067H

8022H

006CH

8042H

8040H

8021H

CSSEND$SCOMMAND

The pathname pointed to by the path§name$p
parameter contains a logical name. However,
the logical name contains an unmatched colon,
is longer than 12 characters, has zero (0)
characters, or contains invalid characters.

The device containing the object file was off-
line.

The memory available to the calling task’s job,
the new [/O job, or the Basic 1/O System job 1s
not sufficient to complete the call.

At least one of the following is true:

» The memory pool of the newly created 1/O
job does not currently have a block of
memory large enough to allow the
Application Loader to run.

» The memory pool of the Basic 1/O System’s
job does not currently have a block of
memory large enough to allow the
Application Loader to run.

The calling task’s job does not have a valid
default prefix.

The object file represented by the command
pathname does not specify the entry point for
the program being loaded.

The default$ci or default§co parameter is a
token for an object that is not a file connection.

The command pathname contains a logical
name. The logical name of an object that is
neither a device connection nor a file
connection.

The calling task’s job does not have a valid
default user.

45

C$SENDSCOMMAND

46

ESPARAM

ESPARSESTABLES

ESPATHNAMESSYNTAX

ESRECSFORMAT

ESRECSLENGTH

ESRECSTYPE

ESSEGIBOUNDS

ESSEPARATOR

ESSTRING

8004H

8080H

003EH

0069H

006AH

(06BH

0070H

0082H

8084H

The Extended I/O System attempted the
physical attachment of a device containing the
object file. This device had formerly been only
logically attached. While attempting this, the
Extended 1/0 System found that the logical
attachment referred to a file driver (named,
physical, or stream) that is not configured into
your system. Hence, the physical attachment 1s
not possible.

The call found an error in an internal table.

The command’s pathname contains invalid
characters.

At least one record in the object file contains a
record format error.

The object file contains a record that is longer
than the Loader’s maximum record length. The
Application Loader’s maximum record length is
a parameter specified during the configuration
of the Loader. (Refer to the Extended iRMX 11
Interactive Configuration Utility Reference
Manual for details.)

At least one of the following is true:

* At least one record in the file being loaded
is of a type that the Application Loader
cannot process.

e The Application Loader has encountered
records in a sequence that it cannot process.

The Application Loader created multiple
segments in which to load information. One of
the data records in the object file specified a
load address outside of the created segments.

The call found an invalid separator while
scanning the command line. The following is a
list of the invalid command separators: > <,
<>, |1 |, [, and }.

The size of the command’s pathname exceeds
the length limit of 255 (decimal) characters.

Human Interface System Calls

ESSTRINGIBUFFER

ESTIME

ESTYPE

Human Interface System Calls

0081H

0001H

8002H

C$SENDSCOMMAND

The size of the command’s pathname exceeds
the size of the command name buffer specified
during the configuration of the Human
Interface.

The calling task’s job was not created by the
Human Interface.

The command$conn parameter is a token for an
object that is not a command connection.

47

C$SEND$SCOSRESPONSE, a message processing call, sends a message to :CO: and reads
a response from :Cl:.

CALL RQSCSSENDSCOSRESPONSE (response$p, response$max, message$p,
except$ptr);

Input Parameters

responsedmax A WORD whose value specifies the maximum length in bytes of
the string pointed to by the response$p parameter. The value in
response$max must equal the length of the string plus one
(stringlength + 1). If response$max is zero or one, no response

from :C!: will be requested; control returns to the calling task
immediately.

message$p A POINTER to a STRING containing the message to be sent to
:CO:. If NIL, no message is sent.

Output Parameters

response$p A POINTER to a buffer that receives the operator’s response from
:Cl.
exceptSptr A POINTER to a WORD in which the Human Interface returns a

condition code.

Description

When used with all its features, CSSENDCORESPONSE sends the string pointed to by
message$p to :CO: and waits for a response from :CI:. It places this response in the string
pointed to by response$p. However, if message$p is NIL, CSSENDSCO$RESPONSE
omits sending the message to :CO:; of either responseSmax or response$p i1s NIL, it does
not wait for a response from :ClL:. Therefore, the operations performed by
C$SENDSCO$SRESPONSE depend on the values of the message$p and response$max
parameters, as follows:

messagedp responsefmax Action

NIL zero Perform no 1/O

NIL non-zero Send no message, wait for input
NOT NIIL. non-zero Send message, wait for input
NOT NIL Zero Send message, don’t wait

Human Interface System Calls

C$SEND$SCOS$SRESPONSE

If C$SENDSCOSRESPONSE requests a response from :CI:, output from other tasks can
be displayed at :CO: while the system waits for a response from :CI:.

The difference between the CSSENDSCOSRESPONSE and C$SENDSEOSRESPONSE
calls is that CSSENDSEOSRESPONSE always sends messages to and receives messages
from the operator’s terminal; input and output cannot be redirected to another device. In
contrast, CSSENDSCOSRESPONSE sends messages to :CO: and receives messages from.
:CI; therefore, programs such as SUBMIT can redirect this input and output.

Exception Codes
ESOK 0000H No exceptional conditions were encountered.

ESCONTEXT 0005H The calling task’s job was not created by the
Human Intertace.

ESCONNSOPEN 00351 At least one of the following is true:

e The connection to :Cl: was not open for
reading or the connection to :CO: was not
open for writing.

e The connection to :Cl: or :CO: was not
open.

¢ The connection to :CI: or :CO: was opened
with ASOPEN rather than SSOPEN.

ESEXIST 0006H The token value for :CI: or :CO: is not a token
for an existing object.

ESFLUSHING 002CH The device containing the :Cl: and :CO: files
was being detached.

ESICGSHARD 0052H While attempting to access the :Cl: or :CO: file,
the operating system detected a hard 1/O error.

ESIOSNOTEREADY 0053H While attempting to access the :Cl: or :CO: file,
this call found that the device was off-line.
Operator intervention is required.
CSFORMATSEXCEPTION returns the value
ESIOSNOTSREADY for this code.

ESIO$SOFT 0051H While attempting to access the :CI: or :CO: file,
this call detected a soft /O error. It tried
again, but was unsuccessful. Another try might
be successtul.

Human Interface System Calls 49

C$SEND$COSRESPONSE

ESIOSUNCLASS

ESIOSWRPROT

ESLIMIT

FESMEM

ESNOTSCONNECTION

ESPARAM

E$SPACE

ESSTREAMSSPECIAL

FEISUPPORT

ESTIME

0050H

0054H

0004H

0002H

8042H

BOO4H

{0029H

003CH

0023H

(J001H

An unknown type of 1/O error occurred while
this call tried to access the :CI: or :CO: file.

While attempting to obtain a connection to the
:CO: file, this call found that the volume
containing the file is write-protected.

At least one of the following is true:

o The calling task’s job has already reached its
object limit.

e The calling task’s job, or the job’s default
user object, is already involved in 255
(decimal) 1/O operations.

» The calling task’s job was not created by the

Human Interface.

The memory avaitable to the calling task’s job is
not sufficient to complete the call.

The call obtained a token for an object that
should have been a connection to :ClI: or :CO:,
but was not a file connection.

The call attempted to write beyond the end of a
physical file.
One of the following 1s true:
¢ The output volume 1s full.
The call attempted to write beyond the end
of a physical file.

When attempting to read or write to :CI: or
:CO:, the Extended /O System issued an
invalid stream file request.

The connection to :CI: or :CO: was not created
by this job.

The calling task’s job was not created by the
Human Interface.

Human Interface System Calls

CSSENDIEOSRESPONSE, a message processing call, sends a message to and reads a
response from the operator’s terminal.

CALL RQ$CSSENDSEOSRESPONSE(response$p, response$max, message$p,

exceptSptr);

Input Parameters

response$max

message$p

Output Parameters

response$p

except§ptr

Description

A WORD that specifies the maximum length in bytes of the string
pointed to by the response$p parameter. The value in
response$max must equal the length of the string plus one
(stringlength + 1). If response$max is zero or one, no response
from the operator's terminal will be requested; control returns to
the calling task immediately.

A POINTER to a buffer containing the message to be sent to the
operator’s terminal. If NIL, no message is sent.

A POINTER to a STRING that receives the operator’s response
from the terminal.

A POINTER to a WORD in which the Human Interface returns a
condition code.

When used with all its teatures, CSSENDSEOSRESPONSE sends the string pointed to by
messagedp to the operator’s terminal and waits for a response from the operator. It
places this response in the string pointed to by response$p. However, if message$p is
NIL, CSSENDSEOSRESPONSE omits sending the message to the operator; if either
responsedmax is zero or response$p is NIL, it does not wait for a response. Therefore,
the operations performed by C$SENDSEOSRESPONSE depend on the values of the
message$p and response$max parameters, as follows:

NIL
NIL
NOT NIL
NOT NIL

response$max Action
Zero Perform no 1/O
NoOnN-zery Send no message, wait for input
non-zero Send message, wait for input
ZCro Send message, don’t wait

Human Interface System Calls 51

C$SENDS$SEOSRESPONSE

If C$SENDSEOSRESPONSE requests a response from the terminal, no other output can
be displayed at the terminal until CSSENDSEO$RESPONSE receives a line terminator
from the operator. However, the operator can choose to ignore the displayed message by

entering a line terminator only.

The main distinction between the CSSEND$COSRESPONSE and
C$SENDSEOSRESPONSE calls is that CSSENDSEOSRESPONSE always sends
messages to and receives messages from the operator’s terminal; input and output cannot
be redirected to another device. In contrast, CSSENDJCOSRESPONSE sends messages
to :CO: and receives messages from :CI:; therefore, programs such as SUBMIT can

redirect this input and output.

Exception Codes
ESOK

ESCONNJOPEN

ESCONTEXT
ESERRORSOCUTPUT
ESEXIST

ESFLUSHING

ESIOINOTSREADY

0000H

0035H

0005H

8085H

0006H

002CH

0053H

No exceptional conditions were encountered.

At least one of the following is true:

o Either, the connection to the operator’s
terminal was not open for reading or it was
not open for writing.

s The connection to the operator’s terminal
wads not open.

+ The connection to the operator’s terminal
was opened with AJOPEN rather than
S$OPEN.

The calling task’s job was not created by the
Human Interface.

The call to SENDSEOSRESPONSE was
attempted through an invalid method.

The token values for the operator’s terminal are
not for existing objects.

The operator’s terminal was being detached.

While attempting to access the terminal, this
call found that the device was off-line. Operator
intervention is required.
C§FORMATSEXCEPTION returns the value
ESIOSNOTSREADY when given this code.

Human Interface System Calls

ESLIMIT

E$MEM

ESNOTSCONNECTION

ESPARAM

ESSTREAMSSPECIAL

ESSUPPORT

ESTIME

Human Interface System Calls

0004H

0002H

8042H

8004H

003CH

0023H

0001H

C$SSENDSEOS$SRESPONSE

At least one of the following is true:

» The calling task’s job has already reached its
object limit.
+ The calling task’s job or the job’s default

user object is already involved in 255
(decimal) I/O operations.

¢ The calling task’s job was not created by the
Human Interface.

The memory pool of the calling task’s job does
not currently have a block of memory large
enough to allow this system call to run to
completion.

The call obtained a token for an object that
should have been a connection to the operator’s
terminal, but was not a file connection.

The call attempted to write beyond the end of a
physical file.

When attempting to read or write to the
operator’s terminal, the Extended I/O System
issued an invalid stream file request.

The connection to the terminal was not created
by this job.

The calling task’s job was not created by the
Human Interface.

53

CSETSCONTROLSC, a program contro] call, changes a calling task’s CONTROL-C
exchange to the semaphore specified by the first parameter in the CSSETSCONTROLSC
call. ‘

CALL RQSCSSETSCONTROLSC(controlcsemaphore, except$ptr);

Input Parameter

control§c$semaphore A TOKEN for a user-created semaphore that will receive units
when a CONTROL-C is typed on the console keyboard.

NOTE

When a C$SENDSCOMMAND call is made, the Human Interface sets
the CONTROL-C semaphore to the default Human Interface
CONTROL-C handler. I you previously set the CONTROL-C handler, it
must be set again after making this call. For more information see the
Extended iRMX 11 Human Interfuce User's Guide.

Output Parameter

except$ptr A POINTER to 4 WORD in which the Human Interface returns a
condition code.

Description
This call lets you change the default response to a CONTROL-C entry to a response that
meets the needs of your task. (The Human Interface’s default CONTROL-C action is to
delete the acting job--for example, any Human Interface command.)
One unit will be sent to the semaphore each time a CONTROL-C is typed. Any units
sent to the semaphore that exceed the maximum number specified during system

configuration will be ignored.

A job running in background mode cannot set CONTROL-C.

Exception Codes

ESOK 0000H No exceptional conditions were encountered.

Human Interface System Calls

ESCONTEXT

ESLIMIT

ESTYPE

Human Interface System Calls

0005H

0004H

8002H

C$SETSCONTROLSC

The calling task’s job was not an 1/O job.
(Refer to the Extended iRMX Il Extended 1/0
System User's Guide for information about 1/0
jobs.)

At least one of the following is true:

¢ The calling task’s job has already reached its
limit.

o The calling task’s job was not created by the
Human Interface.

« The calling task’s job or the job’s default
user object is already involved in 255
(decimal) 1/O operations.

The TOKEN given in the parameter
controlcsemaphore is not a TOKEN for a
semaphore.

55

C$SETSPARSE$BUFFER, a command parsing call, permits parsing the contents of a
buffer other than the command line buffer whenever the parsing system calls are used.

offset = RQSCSSETSPARSESBUFFER(buff$p, buff$max, exceptéptr);

Input Parameters

buft$p A POINTER to a buffer containing a STRING containing the text
to be parsed. If the buff$p is NIL, the buffer used for parsing
reverts to the command line buffer and the buff$max parameter is
ignored.

buff$max A WORD that specifies the length in bytes of the STRING pointed
to by the buff$p parameter.

Output Parameters

offset A WORD in which the Human Interface places the byte offset
from the start of the parsing buffer of the last byte parsed in the
previous parsing buffer.

exceptSptr A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

56

CSETPARSE$BUFFER allows you to parse buffers other than the command line. You
can change buffers at will; you can also revert to the command line parsing buffer by
calling CSETPARSE$BUFFER with buff$p =NIL. However, only one parsing buffer
per job can be active at any given time.

When called, C$SETSPARSESBUFFER sets the parsing pointer to the beginning of the
specified buffer. However, it also returns a value (in the offset parameter) that identifies
the last byte parsed in the previous parsing butfer. This gives you the ability, when
switching back to the previous buffer, of positioning the parsing pointer to its previous
posttion with successive calls to CSGET$CHAR.

Note that CSSET$PARSE$BUFFER does not affect the buffer from which
C$GETSINPUT$PATHNAME and CSGET$OUTPUTSPATHNAME retrieve
pathnames. These system calls always obtain their pathnames from the command line.

Human Interface System Calls

Exception Codes
ESOK

ESCONTEXT

ESLIMIT

E$MEM

Human Interface System Calls

0000H

0005H

0004H

0002H

CSETSPARSES$SBUFFER

No exceptional conditions were encountered.

The calling task’s job was not created by the
Human Interface. (Refer to the Extended iRMX
II Extended I/0 System User’s Guide for
information.)

At least one of the following is true:

o The calling task’s job has already reached its
object limit.

¢ The calling task’s job was not created by the
Human Interface.

The memory available to the calling task’s job is
not sufficient to complete the call.

57

INDEX

C

C$BACKUP$CHAR 4
CIDELETESCOMMANDSCONNECTION 9
CIFORMATSEXCEPTION 10
CGETCHAR 12
CIGETSCOMMANDSNAME 14
C$GETSINPUT$CONNECTION 16
CSGETSINPUTSPATHNAME 21
CIGETSOUTPUTSCONNECTION 27
CSGETSOUTPUTSPATHNAME 33
CSGET$PARAMETER 36
CSSENDSCOSRESPONSE 48
CISENDSCOMMAND 40
CSSENDSEOSRESPONSE 51
CSSETSCONTROLSC 54
CS$SETSPARSESBUFFER 56

E

ESLIST, improper value examples 38

ESSEPARATOR, list of invalid command separators 39, 46

Errors returned to:CO: from
CIGET$OUTPUTSCONNECTION 28
CSGETSINPUTS$CONNECTION 16

F

Format of exception code from CSFORMATSEXCEPTION 10
S

System call dictionary 2
v

Values of the preposition parameter of
CSGETSOUTPUTSCONNECTION 27
CSGETSOUTPUTIPATHNAME 33

Human Interface System Calls Index-1

intal

EXTENDED iRMX*1I
UDISYSTEM CALLS
REFERENCE MANUAL

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright © 1988, Intel Corporation, All Rights Reserved

PREFACE

This manual documents the system calls of the Universal Development Interface, a
subsystem of the extended iRMX 1I Operating System. The information provided in this
manual is intended as a reference to the system calls and provides detailed descriptions of
each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the Extended iRMX I Nucleus User's Guide and with the PL/M-
286 programming language.

CONVENTIONS
System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
ALLOCATE instead of DQSALLOCATE). This convention is used to allow easier
alphabetic arrangement of the calls. The actual PL/M-286 external-procedure names
must be used in all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the

PL/M-286 calling sequences when doing so. For more information on these calling
sequences refer to the Extended iRMX Il Programming Techniques Reference Manual.

UDI System Calls iii

CONTENTS

UDISYSTEM CALLS PAGE
L1 IRErOdUCTION ..o e 1
1.2 Descriptions Of System Calls ... 2
1.3 UDI System Calls DICHIONATY w.oviviiiiiiiiriiieiter et s 4

DQIALLOCATE ..ot nb b 7
DOSATTACH s 8
DOQSCHANGESACCESS. ... 10
DQSCHANGESEXTENSION ..o et 13
DOICLOSE ..ottt s s 15
DOQICREATE ...ttt 16
DQIDECODESFEXCEPTION ..ot 17
DQSDECODESTIME ... e 18
DOQIDELETE ..ottt 20
DOQIDETACH e 21
DO EXIT e 22
DOIFILEFINFO .ot et 24
DOIFREE ..ttt 28
DOSGETSARGUMENT ..ottt 29
DQIGETSCONNECTIONSESTATUS ..ottt scsenrene s 32
DOISGETSEXCEPTIONSHANDLER ... 34
DOIGETISYSTEMSID ..ot 37
DQIGETITIME ..o e 38
DQIMALLOCATE ... e 39
DOQIMFEREE . e 41
DQIOPEN ettt e 42
DOFOVERLAY ..ottt 45
DOSREAD ..t 47
DOQIRENAME s 49
DQSRESERVESIOSMEMORY ..o senrenesavsssnsseenns 51
DQISEEK ..o 53
DOQISPECTAL e e 55
DOISWITCHSBUFFER ..o 58
DOITRAPICC s s 61
DOSTRAPSEXCEPTION s 62
DOSTRUNCATE ..ottt 63
DOIWRITE ..ot s 64

UDI System Calls

UDI SYSTEM CALLS

1.1 INTRODUCTION

This manual describes the requirements and behavior of UDI system calls in the
Extended iRMX II Operating System environment.

Table 1. Standard UDI Condition Codes and Their Meanings

Hex
Value Mnemonic uDl Calls Meaning
O000OH E$OK All but DQSEXIT No exceptional conditions.
0002H ESMEM DQSALLOCATE Insufficient memory for
DQSATTACH the requested operation,
DQ$CREATE
DQ$OPEN
DQ$RESERVESIOS-
MEMORY
DAQSMALLOCATE
0020H ESFEXIST DQ$RENAME The specified file exists.
0021H E$FNEXIST DQSATTACH The specified fite
DQSDELETE does not exist.
DQ$RENAME
DQFCHANGESACCESS
{continued)

UDI System Calls

iRMX® 11 UDI SYSTEM CALLS

Table 1. Standard UDI Condition Codes and Their Meanings (continued)

Hex

Value Mnemonic UDI Calls Meaning

0023H E$SUPPORT DQSATTACH An unsupported operation
DQ$CHANGESACCESS was attempted.
DQ$CREATE

DQSDECODES$TIME
DQSFILESINFO
DQSGET$CONNECTIONS-
STATUS

DQSOPEN

DQSOVERLAY

DQSREAD

DQS$SRENAME
DQSRESERVESIOSMEMORY
DQSSEEK

DQSSPECIAL
DQ$TRUNCATE
DQSWRITE

0026H E$FACCESS DQ$CHANGESACCESS Access to the specified

DQS$DELETE file is denied.
DQ$OPEN
0028H E$SHARE DQ$OPEN The specified file may not
be shared.
0029H E$SPACE DQ$CREATE The operation attempted
DQSWRITE to add a directory entry to
a full directory.
0081H ESSTRING- DQGETARGUMENT The string is over 45
$BUFFER DQ$CHANGESEXTENSION characters long or the

argurnent is over 80
characters long.

1.2 DESCRIPTIONS OF SYSTEM CALLS

This section describes the individual UDI calls in detail. Immediately preceding the
detailed descriptions, the UDI Call Dictionary (Table 2) arranges the calls in functional
groups, and lists the page numbers of the more detailed descriptions.

2 UDI System Calls

iRMX® II UDI SYSTEM CALLS

Every system call description contains the following information in this order:
» The name of the system call.
+ A brief summary of the function of the call.

» The form of the call as it is invoked from a PL/M-286 program, with symbolic names
for each parameter.

» Definition of input and output parameters.

* A complete explanation of the system call, including any information you will need to
use it

s Condition codes--a list of the error codes that can be incurred.

UDI System Calls 3

iRMX® [I UDI SYSTEM CALLS

1.3 UDI SYSTEM CALLS DICTIONARY

Table 2. UDI System Calls Dictionary

UDI Call Function Performed Page
PROGRAM CONTROL CALLS
DQSEXIT Exits from the current application job. 22
DQS$OVERLAY Causes the specified overlay to be loaded. 45
DQSTRAPSCC Captures contral when CONTROL-C is typed. 61
FILE-HANDLING CALLS
DQSATTACH Creates a connection to a specified file. 8
DQ$CHANGES- Changes access rights associated with a
ACCESS file or directory. 10
DQ$CHANGE$- Changes the extension of a file name
EXTENSION in memory. 13
DQ$CLOSE Closes the specified file connection, 15
DQ3$CREATE Creates a file for use by the application. 16
DQ$DELETE Deletes a file. 20
DQSDETACH Closes a file and deletes its connection. 21
DQSFILESINFO Returns data about a file connection 24
DQGETCON-
NECTIONESTATUS Returns status of a file connection, 3z
DQ$OPEN Opens a file for a particular type
of access. 42
DQ$READ Reads the next sequence of bytes
from a file, 47

UDI System Calls

iRMX® II UDI SYSTEM CALLS

Table 2. UDI System Calls Dictionary (continued)

UD! Call Function Performed Page
FILE-HANDLING CALLS
DQSRENAME Renames the specified file. 49
DQ$SEEK Moves the current position pointer
of a file. 53
DQSSPECIAL Se.s terminal line-edit /transparent mode. 55
DQ$TRUNCATE Truncates a file to the specified length. 63
DQSWRITE Writes a sequence of bytes to a file. 64
MEMORY MANAGEMENT CALLS
DQSALLOCATE Requests a memory segment of a specified 7
size.
DQ$FREE Returns a memory segment to the system, 28
DQS$GETSMSIZE Returns the size of the specified
memory block. 35
DQGETSIZE Returns the size of the specified segment. 36
DQ$MALLOCATE Requests a logically contigucus memory
segment of a specified size. 33
DQSMFREE Returns memory allocated by DQSMALLOCATE
to the Free Space Pool. 41
DQ$RESERVE$- Requests memory to be set aside for
IO$MEMORY overhead to be incurred by 1/0O operations. 51

UDI System Calls 5

iRMX® II UDI SYSTEM CALLS

Table 2, UDI System Calls Dictionary (continued)
uDI Call Function Performed Page
EXCEPTION-HANDLING CALLS
DQSDECODES- Converts an exception numeric code into its
EXCEPTION equivalent mnemonic. 17
DQ$GETSEXCEPT- Returns a POINTER to the address of the
IONSHANDLER program currently being used to process
errors. 34
DQSTRAPS- Identifies a custom exception processing
EXCEPTION program for a particular type of error. 59
UTILITY AND COMMAND PARSING
DQ$DECODES- Returns system time and date in both
TIME binary and ASCll-character format 18
DQSGET$ARGUMENT Returns an argument from a STRING. 29
DQ$GETS- Returns the identity of the environment
SYSTEMSID for the UDI. 37
DQSGETSTIME Obsolete: inctuded for compatibility. 38
DQ$SWITCHS- Selects a new buffer from which to process
BUFFER commands. 58

UDI System Calls

DQSALLOCATE requests a memory segment from the free memory pool.

segSt = DQSALLOCATE (size, exceptSptr);

Input Parameter
size A WORD which,

e if not zero, contains the size, in bytes, of the requested
segment.text deleted

s if zero, indicates that the size of the request 1s 65536 (64K)
bytes.

Output Parameters

seg$t A TOKEN, into which the operating system places the base
address of the memory segment. If the request fails because the
memory requested is not available, this value will be undefined and
the system will return an ESMEM exception code.

exceptiptr A POINTER to a WORD where the system places the condition
code.

Description

The DQSALLOCATE system call is used to request additional memory from the free
space pool of the program. Tasks may use the additional memory for any desired
purpose.

Condition Codes
ESOK 0000H No exceptional conditions.
ESMEM 0002H Insufficient memory to create a segment of the

desired size.

In addition to the condition codes listed above, DQSALLOCATE can return the
condition codes associated with the Nucleus system calls
RQSGETSPOOLSATTRIBUTES and ROQJCREATESSEGMENT. See the Extended
IRMX II Nucleus System Calls Reference Manual for detalls.

UDI System Calls 7

The DOQSATTACH system call creates a connection to an existing file.

connection$t = DQSATTACH (path$ptr, except$ptr);

Input Parameter

path$ptr A POINTER to a STRING containing the pathname of the file to
be attached.

Output Parameters

connection$t A TOKEN for the connection to the file.
except$ptr A POINTER to a WORD where the system places the condition
code.

Description

This system call allows a program to obtain a connection to any existing file. When the
DQS$ATTACH call returns a connection, all existing connections to the file remain valid.

Your program can use the DOQJRESERVESIOMEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls DQ$ATTACH
and for buffers when the program calls DQSOPEN. The advantage of reserving memory
is that the memory is guaranteed to be available when needed. If memory is not reserved,
a call to DQSATTACH might not be successful because of a memory shortage. See the
description of DQSRESERVESIO$SMEMORY later in this chapter for more information
about reserving memory.

UDI System Calls

Condition Codes
E$OK
E$FNEXIST

ESMEM

E$SUPPORT

0000H

0021H

0002H

0023H

DQSATTACH

No exceptional conditions.
The specified file does not exist.

Insufficient memory for the requested
operation.

An unsupported operation was attempted.

In addition to the condition codes listed above, DQSATTACH can return the exception
codes associated with the Extended I/O System call RQSSSATTACHSFILE. See the
Extended iRMX II Extended I/0 System Calls Reference Manual for details.

UDI System Calls

The DQ$CHANGESACCESS enables you to change the access rights of the owner of a
file (or directory), or the access rights of the WORLD user.

CALL DQSCHANGESACCESS (path$ptr, user, access, except$ptr);

INPUT PARAMETERS
path$ptr A POINTER to a STRING containing a pathname of the file.
user A BYTE specifying the user whose access is to be changed.
Value User
0 Owner of the file
1 WORLD (all users on the system)
2 GROUP (ignored by iRMX Il Operating System
3-255 Reserved
If you specify a value of 3-255, an E§SUPPORT exception will be
returned.
access A BYTE specifying the type of access to be granted the user. This
WORD is to be encoded as follows. (Bit 0 is the low-order bit.)
Bit Meaning
0 User can delete the file or directory
1 Read (the file) or List (the directory)
2 Append (to the file) or Add entry (to the directory)
3 Update (read and write to the file) or
Change Access (to the directory)
4 User can execute the file. Set to the value of bit one for
compatibility with other operating systems.
5-7 Reserved. If you specify bits 5-7, an ESSUPPORT

10

exception will be returned.

UDI System Calls

DQ$SCHANGESACCESS

Output Parameter

exceptiptr A POINTER to a WORD where the system places the condition
code.

Description

[n the general extended iIRMX 11 environment, every program is assoctated with a user
object, usually referred to as the default user for the program. The default user consists
of one or more user IDs. Each file has an associated collection of user [D-access mask
pairs, where each mask defines the access rights the corresponding user ID has to the file.
When the program calls DQ$CREATE to create a file or DQSATTACH to get another
connection to a file, the resulting connection receives all access rights corresponding to
user IDs that are both associated with the file and in the default user. The purpose of the
DQ$CHANGESACCESS system call is to change, for a particular file, the access rights
associated with a particular user ID. This has the effect of changing the access granted
when the program makes subsequent calls to DQSATTACH to get further connections to
the file.

In the UDI subset of the extended iRMX I1 environment, a default user has two IIDs. One
of them, called the owner ID, is associated with the program. The other, called the
WORLD, is associated universally with all programs. DQ$CHANGESACCESS can
change, for the file, the access mask of either the owner 1D or the WORLD.

Changing the access rights for a user ID has no effect on connections already obtained by
the program. However, all subsequently obtained connections reflect the changed access
rights.

For more information about user 1Ds, default users, access masks, WORLD, access rights,
owner IDs, and how connections are related to all of these entities, refer to the Extended
IRMX !l Basic /0 System User’s Guide.

NOTE

DQSCHANGES$ACCESS affects only connections made after the call is
issued. It does not affect existing connections to the file.

UDI System Calis 11

DQ$CHANGESACCESS

Condition Codes
E$OK 000H No exceptional conditions.

E$SUPPORT 0023H The value specified for the user parameter 1s
greater than two.

You tried to set bits 5-7 of the access
parameter.

ESFACCESS 0026H Access to the specified file is denied.

In addition to the condition codes listed above, DQ$CHANGESACCESS can return the
same condition codes as the Extended 1/0 System call RQ§SSCHANGESACCESS. See
the Extended iRMX Il Extended 1/0 System Calls Reference Manual for details.

12 UDI System Calls

DQ$CHANGESEXTENSION changes or adds the extension at the end of a file name
stored in memory (not the file name on the mass storage volume).

CALL DQSCHANGESEXTENSION (pathS$ptr, extensionS$ptr, except$ptr);

INPUT PARAMETERS
path$ptr A POINTER to a STRING containing a pathname of the file to be
renamed.
extension$ptr A POINTER to a series of three bytes containing the characters to

be added to the pathname. This is not a STRING. You must
include three bytes, even if some are blank.

Output Parameter

except§ptr A POINTER to a WORD where the system places the condition
code.

Description

This is a facility for editing strings that represent file names in memory. If the existing file
name has an extension, DQSCHANGESEXTENSION replaces that extension with the
specified three characters. Otherwise, DQSCHANGESEXTENSION adds the three
characters as an extension,

For example, a compiler can use DQSCHANGESEXTENSION to edit a string containing
the name, such as (AFD1:FILE SRC, of a source file to the name, such as
'AFD1:FILE.OBJ, of an object file, and then create the object file.

Note that extended iRMX II file names may contain multiple periods, but if they do, the
extension, if any, consists of the characters following the last period. Note also that an
extension may contain more than three characters, but any extension created or changed
by DQ$CHANGESEXTENSION has at most three (non-blank) characters.

The three-character extension may not contain delimiters recognized by
DQIGETSARGUMENT but may contain trailing blanks. If the first character pointed to
by extension$ptr is a space, DQSCHANGESEXTENSION deletes the existing extension
including the period, if any, preceding the extension.

UDI System Calls 13

DQSCHANGESEXTENSION

Condition Codes
ESOK 000H No exceptional conditions.

ESSTRINGSBUFFER 0081H The filename is more than 14 characters.

14 UDI System Calls

DQSCLOSE waits for completion of 1/O operations (if any) taking place on the file,
empties the output buffers, and frees all buffers associated with the connection.

CALL DQSCLOSE (connection$t, exceptSptr);

Input Parameter

connection$t A TOKEN for a file connection that is currently open.

Output Parameter

exceptiptr A POINTER to a WORD where the system places the condition
code.

Description

The DQSCLOSE system call closes a connection that has been opened by the DQSOPEN
system call. It performs the following actions, in order:

1. Waits until all currently running I/O operations for the connection are completed.

2. Ensures that information, if any, in a partially filled output buffer is written to the
file.

3. Releases all buffers associated with the connection.

4. Closes the connection. The connection 1s still valid, and can be re-opened if
necessary.

Condition Codes
ESOK O0N0H No exceptional conditions.

In addition to the condition code listed above, DQSCLOSE can return the same condition
codes associated with the Extended /O System call RQSCLOSE. See the Extended
IRMX Il Extended 1/0 System Calls Reference Manual for details.

UDI System Calls 15

DQSCREATE creates a new file and establishes a connection to the file.

connection$t = DQSCREATE (path$ptr, except$ptr);

Input Parameter
path$ptr A POINTER to a STRING containing a pathname for the file to

be created.

Output Parameters

connection$t A TOKEN for the connection to the file.
except$ptr A POINTER to a WORD where the system places the condition
code.
Description

This call creates a new file with the name you specify and returns a connection to it. If a
file of the same name already exists, it is truncated to a length of zero and the data in it is

destroyed.

To prevent accidentally destroying a file, call DQSATTACH before calling
DQSCREATE. If the file does not exist, DQ$ATTACH returns an ESFNEXIST

exception code.

Condition Codes

16

ESOK 0000H
ESMEM 0002H
ESSPACE 0029H
E$SUPPORT 0023H

No exceptional conditions.

Insufficient memory remains to complete the
call.

Insufficient space exists on a direct-access
device.

An unsupported operation was attempted.

In addition to the condition codes listed above, DQ3CREATE can return the condition
codes associated with the Extended 1/0 system calls RQ$SSCREATESFILE and
RQSSSDELETESFILE. See the Extended iIRMX Il Extended I/0 System Calls Reference

Manual for details.

UDI System Calls

DQS$DECODESEXCEPTION translates an exception code into its mnemonic.

CALL DQSDECODESEXCEPTION (exception$code, buff$ptr, except$ptr);

Input Parameter

exception$code A WORD containing the numeric exception code that is to be
translated.

Output Parameters

buff$ptr A POINTER to a STRING (at least 81 bytes long) into which the
system returns the mnemonic.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

Your program can call DQSDECODESEXCEPTION to exchange a numeric exception
code for its hexadecimal equivalent followed by its mnemonic. For example, if you pass
DQSDECODESEXCEPTION a value of 2 in the except$code parameter, the system
returns the following string to the area pointed to by the buftSptr parameter:

0002H: ESMEM
The hexadecimal values and mnemonics for condition codes are kisted in Table 1. This

system call can decode any extended iIRMX II exception code value. See the Operator’s
Guide To The Extended IRMX I Human Interface for more details.

Condition Codes
ESOK 0000H No exceptional conditions.
In addition to the condition code listed above, DQ$DECODESEXCEPTION can return
the condition codes associated with the Human Interface system call,

RQSCSFORMATIEXCEPTION. See the Extended iRMX Il Human Interface System
Calls Reference Manual for details.

UDI System Calls 17

DQSDECODESTIME returns the current system time and date as ASCII date and time
strings. You can also use DQ§DECODESTIME to return the current time and date in
binary format or as a decoded ASCII string.

CALL DQSDECODESTIME (dateStime$ptr, except$ptr);

Output Parameters
date$timeSptr A POINTER to a structure of the following form:

DECLARE DT STRUCTURE(
SYSTEMSTIME DWORD,
DATE (8) BYTE,
TIME (8) BYTE) ;

where

SYSTEMSTIME is an operating-system-dependent DWORD
containing the current time and date. To get the current time and
date, the value in SYSTEMS$TIME must be zero when the
DQSDECODESTIME call is issued. To decode a binary time
value, the time value must be stored in SYSTEMS$TIME before
making the call. (See the following Description section for format
information.)

SYSTEMSTIME receives the time as the number of seconds
since midnight, January 1, 1978.

DATE receives the date portion of the time, in the form of
ASCII characters.

TIME receives the time-of-day portion of the time, in the form
of ASCII characters.

If the value in SYSTEM$TIME is not 0 when
DQSDECODESTIME is called, DQSDECODESTIME accepts
that value as the number of seconds since midnight, January 1,
1978, decodes the value, and returns it in the DATE and TIME
fields.

except$ptr A POINTER to a WORD where the system places the condition
code.

18 UDI System Calls

D1$DECODESTIME

Description

This system call returns the indicated date and time, each as a series of ASCII bytes.
(Note that they are not STRINGs.)

DATE has the form MM/DD/YY for month, day, and year. The two slashes (/) are in
the third and sixth bytes. For example, the date January 15th of 1982 would be returned
as

01/15/82

TIME has the form HH:MM:SS for hours, minutes, and seconds, with separating colons
(:). The value for hours ranges from 0 through 23. For example, the time 20 seconds past
3:12 PM would be returned as

15:12:20

If, when you call DQSDECODESTIME, the SYSTEMS$TIME parameter is zero, the call
first gets the system time (number of seconds since midnight, January 1, 1978) and then
decodes it into the series of bytes as just described.

But if SYSTEMSTIME is not zero on input, DQSDECODESTIME uses it as the time to
decode.

One thing your program can do with DO§DECODESTIME is first to call
DQSFILESINFO to get two DWORD values associated with a file (the last time the file
was updated and the time the file was created). Then the program can call
DQSDECODESTIME to interpret the times.

Condition Codes
E$OK 0000H No exceptional conditions.
E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition code listed above, DQ$DECODES$TIME can return the
condition codes associated with the Basic I/O System call RQ$GETS$TIME, see the
Extended iRMX]I Basic 1/0 System Calls Reference Manual for details.

UDI System Calls 19

DQ$DELETE deletes an existing file.

CALL DQSDELETE (path$ptr, exceptS$Sptr);

Input Parameter

path$ptr A POINTER to a STRING containing a pathname of the file to be
deleted.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

A program can use this system call to delete a file. The immediate action this call takes is
to mark the file for deletion. Tt does this rather than abruptly deleting the file, because it
will not delete any file as long as there are existing connections to the file. DQSDELETE
will defete the file only when there are no longer any connections to the file, that is, when
all existing connections have been detached. On the other hand, once the file is marked
for deletion, no more connections may be obtained for the file by way of DQSATTACH.

Condition Codes

ESOK 0000H No exceptional conditions.
ESFNEXIST 0021H The specified file does not exist.
ESFACCESS 0026H Access to the specified file is denied.

In addition to the condition codes listed above, DQSDELETE can return the condition
codes associated with the Extended 1/0 System call RO$SSDELETESFILE. See the
Extended iIRMX II Extended 1/0 System Calls Reference Manual for details.

20 UDI System Calls

DQSDETACH deletes a connection (but not the file) established by DQSATTACH or
DQSCREATE,

CALL DQSDETACH (connection$t, except$ptr):

Input Parameter

connection$t A TOKEN for the file connection to be deleted.

Output Parameter

exceptéptr A POINTER to a WORD where the system places the condition
code.

Description

This system call deletes a file connection. If the connection is open, the DQSDETACH
system call automatically closes it first (see DQ$CLOSE). DQ$DETACH also deletes the
file if the file has been marked for deletion, and this is the last existing connection to the
file. The results of specifying an invalid connection are operating-system-dependent.

Condition Codes
E$OK 0000H No exceptional conditions.

In addition to the condition code listed above, DQ$DETACH can return the condition
codes associated with the Universal Development Interface system call DQ$CLOSE and
the Extended 1/0 system call RQ$SSDELETESCONNECTION. See the DQ$CLOSE
system call in this manual, or the Extended iRMX Il Extended 1/0 System Calls Reference
Manual for details.

UDI System Calls 21

DQSEXIT transfers control from your program to the iIRMX 1l Operating System. It
does not return any value to the calling program, not even a condition code.

CALL DQSEXIT (completionScode);

Input Parameter

completion$code A WORD containing the encoded reason for termination of the

program. See the following description for information about this
value.

Description

DQSEXIT terminates a program. Before the actual termination, all of the program’s
connections are closed and detached, and ali memory allocated to the program by
DOSALLOCATE is returned to the memory pool.

DQSEXIT does not return a condition code to the calling program.

If the calling program is running as an /O job, the calling task, normally the command
line interpreter (CLI), receives an extended iIRMX 11 condition code based on the value
your program supplied in the end$code field when it called DQSEXIT. This assumes the
following sequence of events:

1.
2.

[3]
]

The CLI calls RQSCREATESIOS$JOB, specifying a response mailbox in the call.

Your program, running as a task in the created 1/O job, performs its duties and
then calls DQSEXIT, specifying an end$code value.

DQSEXIT converts the end$code value into an extended iRM X 1{ condition code,
as follows:

IRMX I
end$code Condition Associated
Value Code Mnemaonic Meaning
0 0O000H E$OK Termination was normal.
1 0C1H ESWARNINGSEXIT Warning messages were issued.
2 0C2H ESERRORSEXIT Errors were detected.
3 0C3H ESFATALSEXIT Fatal errors were detected.
4 0C4H ESABORTSEXIT The job was aborted.
5-65535 0COH ESUNKNOWNSEXIT Cause of termination not known.

DQSEXIT calls ROSEXITSIOS$JOB, specifying the extended iRMX IT condition
code in the user$faultScode field.

UDI System Calls

DQSEXIT

5. RQSEXITIIOSJOB places the condition code into the user$fault§code field of a
message. Then RQIEXITSIOSIOB sends the message to the response mailbox set
up by the earlier call to ROSCREATESIOSJOB.

6. The CLI, when it obtains the message from the response mailbox, can take
appropriate actions. Note that it can call DQ$DECODESEXCEPTION first, to
convert the condition code into its associated mnemonic.

The CLI program supplied with the extended iRMX II Operating System ignores these
UDI condition codes when they are returned in the user$fault$code field of the response
message. These condition codes are ignored because the UDI is not required to be in the
extended iRMX II Operating System, so the extended iRMX [T CLI assumes that it is not.
Therefore, if you want the CLI to take actions based on that code, you must provide your
own CLIL

For more information about RQSCREATEIOJOB, RQSEXITIOJOB see the
Extended iIRMX I Extended 1/0 System Reference Manual; for more information on the
format of the response message, see the Extended iRMX II Extended 1/0 System User’s
Guide.

UDI System Calls 23

DQS$FILESINFO returns information about a file.

CALL DQSFILESINFO (connection$t, mode, file$info$ptr, exceptSptr);

INPUT PARAMETERS
connection$t A TOKEN containing a connection for the file.
mode An encoded BYTE specifying whether DQSFILESINFO is to
return the User ID of the owner of the file. Encode as follows:
Value Meaning
0 Do not return owner’s User ID.
1 Return the owner’s User 1D.

2-255 Return E3SUPPORT exception.

Output Parameters

fileSinfo$ptr A POINTER to a structure into which the requested information is
to be returned. The form of the structure is

DECLARE FILESINFO STRUGTURE(

OWNER (15) BYTE,
LENGTH DWORD,
TYPE BYTE,

OWNERSACCESS BYTE,
WORLDSACCESS BYTE,
CREATESTIME DWORD,
LASTSMODSTIME DWORD,
GROUPSACCESS BYTE,
RESERVED(19) BYTE) ;

where

OWNER A STRING containing (if requested) the User 1D
of the file’s owner.

LENGTH A DWORD that gives the size of the file in bytes.
TYPE A value indicating the type of file, as follows:

24 UDI System Calls

DQSFILESINFO

Value File Type

0 Data file

1 Directory file

2 System-specific file
3-255 Reserved

OWNERSACCESS An encoded BYTE whose bits specify the
type of access granted to the owner, as
follows. When a bit is set, it means the type of
access is granted; otherwise the type of access
is denied. (Bit 0 is the low-order bit.)

Associated Access Type

0 Delete

1 Read (the data file) or
Display (the directory)

2 Append (to the data file) or Add Entry (to the
directory)

3 Update (read and write to the file) or Change Access
(to the directory)

4 Execute the specified file.

(Set to the value of bit 1 for compatibility with other
operating systems.)

5-7 Reserved

WORLDSACCESS An encoded BYTE whose bits specify the
type of access granted to the WORLD (all
users on the system). When a bit is set, it
means the type of access is granted; otherwise
the type of access is denied. (Bit 0 is the low-
order bit.)

UDI System Calls 25

DQSFILESINFO

Bit Associated Type of Access

0 Delete

1 Read (the data file) or Display (the directory)
2 Write (to the data file) or Add Entry (to the directory)
3 Update (read and write to the file) or Change Access

(to the directory)

4 Execute the specified file. (Set to the value of bit 1 for
compatibility with other operating systems.)

5-7 Reserved

CREATESTIME The date and time that the file or directory
was created, expressed as the number of
seconds since midnight, January 1, 1978.
(You can convert this date/time to ASCIH
characters by calling DQ$DECODESTIME.}

LAST$MODSTIME The date and time that the file or directory
was last modified. For data files, modified
means written to or truncated; for directories,
modified means an entry was changed or an
entry was added. (You can convert this
date/time to ASCII characters by calling
DQSDECODESTIME.)

GROUPSACCESS An encoded byte that is always set to the
value of WORLD$ACCESS. The extended
iIRMX 1T UDI does not use
GROUPSACCESS, it 1s included for
compatibility with other operating systems.

exceptdptr A POINTER to a WORD where the system places the condition
code.

Description

The DQSFILE$INFO system call returns information, as described above, about a data
file or a directory file.

26 UDI System Calls

DQSFILESINFO

Condition Codes
EJOK 0000H No exceptional conditions.
ESSUPPORT 0023H The mode parameter has a value greater than 1.

In addition to the condition codes listed above, DQSFILESINFO can return the condition
codes associated with the Nucleus system calls RQJCREATE$MAILBOX and
RQ$RECEIVESMESSAGE and the Basic 1/0 system call RQSASGETSFILESSTATUS.
See the Extended iRMX II Nucleus System Calls Reference Manual and the Extended iRMX
1 Basic 1/O System Calls Reference Manual for details.

UDI System Calls 27

DQSFREE returns to the system a segment of memory obtained earlier by
DQSALLOCATE.

CALL DQSFREE (seg$t, exceptSptr);

Input Parameter

seg$t A TOKEN containing the memory segment to be deleted. The
TOKEN is returned by a DOSALLOCATE call and is no longer
valid for this procedure once the call is made.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

The DQSFREE system call returns the specified segment to the memory pool from which
it was allocated. A subsequent attempt to use this deleted segment may cause errors or
unexpected results, since the memory may have been otherwise allocated.

Condition Codes
ESOK 0000H No exceptional conditions.

In addition to the condition code listed above, DQ$FREE can return the condition codes
associated with the Nucleus system call RQSDELETESSEGMENT. See the Extended
iIRMX I Nucleus System Call Reference Manual for details.

28 UDI System Calls

The DQSGETSARGUMENT system call returns arguments, one at a time, from a
command line entered at the system console. This command line is either that which
invoked the program containing the DQSGETSARGUMENT call or a command line
entered while the program was running.

delimit$char = DQ$GET$ARGUMENT (argument$ptr, except$ptr);

Input Parameter

argument$ptr A POINTER to a STRING (at least 81 bytes long) that will receive
the argument.

Output Parameters

delimit$char A BYTE which receives the delimiter character.
exceptSptr A POINTER to a WORD where the system places the condition
code.
Description

Your program can call GETSARGUMENT to get arguments from a command line. Each
call returns an argument and the delimiter character following the argument.

Your program can use this command in two ways. One way is to get arguments from the
command line used to invoke the program at the console. In this case, you can assume
that the command line is already in a buffer that has automatically been provided for this
purpose.

The other way to use this command is to get arguments from command lines that are
entered in response to requests from your program. In this case, your program must
supply a when calling DQSREAD. This is the buffer you want used when your program
calls DQSGETSARGUMENT. To set this up, your program must call
DQ3$SWITCH3IBUFFER before the call to DQ$GETSARGUMENT.

A delimiter is returned only if the exception code is zero. The following delimiters are
recognized by the extended iRMX II Operating System:

(= #0 % v & <> 1\]~

as well as a space () and all characters with ASCII values in the range 0 through 20H, or
between 7FH and OFFH.

UDI System Calls 29

DQ$SGETSARGUMENT

Before returning arguments in response to DQSGETSARGUMENT, the system does the
following editing on the contents of the command buffer:

o It strips out ampersands (&) and semicolons (;).

s Where multiple blanks are adjacent to each other between arguments, it replaces
them with a single blank. (Tabs are treated as blanks.)

s It converts lowercase characters to uppercase unless they are part of a quoted string.

o It treats the command line and the buffer (after a DQ$SWITCHSBUFFER system
call) as if they were preceded by a null delimiter.

When returning arguments in response to DQSGETSARGUMENT, the system considers
strings enclosed between matching pairs of single or double quotes to be literals. The
enclosing quotes are not returned as part of the argument.

Example

The following example illustrates the arguments and delimiters returned by successive
calls to DO$GETSARGUMENT. The example assumes that the contents of the buffer
are

PIM286 LINKER.PLM PRINT(:LP:) NOLIST

The following shows what is returned if DQ3GETSARGUMENT is called five times.

Call Number Argument Returned Delimiter Returned
1 (06H)PLM2806 space
2 (0AH)LINKER.PLM space
3 (0SH)PRINT (
4 (04H). LP:)
5 (O6H)NOLIST cr

Note that the argument returned has the form of an iRMX I string, with the first byte
devoted to specifying the length of the string. In the second call, there are ten characters
in the argument, so the first byte contains 0AH.

Note that the last delimiter for the example is a carriage return (cr). This is how your
program can determine that there are no more arguments in the command line.

UDI System Calls

Condition Codes
E$OK

ESSTRINGSBUFFER

UDI System Calls

0000H

0081H

DQSGETSARGUMENT

No exceptional conditions.

An argument has been found that is longer than
80 characters. This only indicates that another
call to DQSGETSARGUMENT is needed to
obtain the rest of the argument.

31

The DQ$GETSCONNECTIONSSTATUS system call returns information about a file
connection.

CALL DQSGETS$CONNECTIONSSTATUS (connection$t, info$ptr, except$ptr);

Input Parameter

connection$t A TOKEN containing the connection whose status is desired.

Output Parameters

infolptr A POINTER to a structure into which the operating system is to
place the status information. The structure has the following
format:

DECLARE INFC STRUCTURE(

OPEN BYTE,
ACCESS BYTE,
SEEK BYTE,

FILESPTR DWORD} ;

where

OPEN A Boolean that is 0FFH (TRUE) if the connection is
open; 000H (FALSE) otherwise.

ACCESS Access privileges of the connection. The right is

granted if the corresponding bit is set to 1. (Bit 0 is
the low-order bit.)

Access

Delete

Read

Write

Update (read and write)
Execute (Set to the value

of bit 1 for compatibility

with other cperating systems.)
57 Reserved

—

UDI System Calls

DQ$SGET$CONNECTIONSSTATUS

SEEK Types of seek supported.

Value Meaning
0 No seek allowed
3 Seek forward and backward

Other values are not meaningful.

FILESPTR This DWORD integer marks the current position in
the file. The position is expressed as the number of
bytes from the beginning of the file, the first byte
being byte 0. This field is undefined if the file is not
open or if seek is not supported by the device. (For
example, seek operations are not valid for a line
printer.)

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

DQSGETSCONNECTIONSSTATUS returns information about a file. You might use
this system call, for example, if your program has performed several read or write
operations and you must determine where the file pointer 1s now located.

Condition Codes
ESOK 0000H No exceptional conditions.
E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition code listed above, DQ$GETICONNECTIONSSTATUS can
return the condition codes associated with the Extended 1/0 system call
RO$SIGETSCONNECTIONSSTATUS. See the Extended iRMX 11 Extended 1/0 System
Calls Reference Manual for details.

%]
[P

UDI System Calls

DQS$GETSEXCEPTIONSHANDLER returns the address of the current exception
handler.

CALL DQSGETSEXCEPTIONSHANDLER (currentS$handler$ptr, except$ptr);

Output Parameters

current$handler$ptr A POINTER to a STRUCTURE into which this system call
returns the entry point of the current exception handler. This
STRUCTURE has the same form as a long POINTER.
DQSTRAPSEXCEPTION specifies this entry point if it is called.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

DQSGETSEXCEPTIONSHANDLER is a system call that returns the address of the
current exception handler to your program. This is the address specified in the most

recent call, if any, to DOSTRAPSEXCEPTION. Otherwise, the value returned is the
address of the system default exception handler.

This routine always returns a long POINTER, even if called from a program compiled
under the SMALL model of segmentation. You can use this long POINTER in two ways:
* You can use it to make an indirect call to the current exception handler.

+ After temporarily substituting another exception handler, you can use it to restore the
current exception handler.

DQIGETSEXCEPTIONSHANDLER is used in conjunction with
DQSTRAPSEXCEPTION and DQ$DECODESEXCEPTION. See the descriptions of
these calls for more information.

Condition Codes

34

E$OK 0000H No exceptional conditions.

In addition to the condition code listed above, DQ$SGETSEXCEPTIONSHANDLER can
return the condition codes associated with the Nucleus system call
ROQIGETSEXCEPTIONSHANDLER. See the Extended iRMX II Nucleus System Calls
Reference Manual for details.

UDI System Calls

DQSGETSMSIZE returns the size, in BYTES, of the memory block specified.

size = DQSGETSMSIZE(seg$ptr, exceptionSptr);

Input Parameter

segdptr A POINTER that indicates an area of memory that was allocated
earlier by a call to DQSMALLOCATE.

Output Parameters

size A DWORD which receives the size (in BYTES) of the memory
block previously allocated by DOQSMALLOCATE.
exception$ptr A POINTER to a WORD where the system call places the

condition code.

Description

The DQSGETS$MSIZE system call returns the size, in bytes, of a segment allocated by the
DQIMALLOCATE system call. Okay folks! Does this call allocate memory in
paragraphs and round up to the next highest multiple of 16 like DQ$GETSSIZE? Are
there any restrictions on who should use this call? Should 1 give any information about
the memory being checked not always being in a new segment?

Condition Codes
E$OK 0000H No exceptional conditions.
E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$GETSMSIZE can return the
condition codes associated with the Nucleus system call RQ$GETSSIZE. See the
Extended iRMX II Nucleus System Calls Reference Manual for details.

UDI System Calls 35

DQSGETSSIZE returns the size of a previousiy allocated memory segment.

size — DQSGETSSIZE (seg$t, exceptdptr);

Input Parameter

seght A TOKEN for a segment of memory allocated by the
DQSALLOCATE call.

Output Parameters
size A WORD which,

if not zero, contains the size, in bytes, of the segment identified by
the seg$t parameter.

if zero, indicates that the size of the segment is 65536 (64K) bytes.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

The GETSSIZE system call returns the size, in bytes, of a segment.

Condition Codes
E$OK 0000H No exceptional conditions.
In addition to the condition code listed above, DQSGETS$SIZE can return the condition

codes associated with the Nucleus system call RQ$GETSSIZE. See the Extended iRMX 11
Nucleus System Calls Reference Manual for details.

36 UDI System Calls

DQIGET$SYSTEMSID returns the identity of the operating system providing the
environment for the UDL

CALL DQSGETSSYSTEMSID (idS$ptr, exceptdptr);

Output Parameters

id$ptr A POINTER to a 21-BYTE buffer into which
DQSGETSSYSTEMSID places a STRING identifying the
operating system.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

This system call returns the string

iRMX TI

Condition Codes

ESOK 0000H No exceptional conditions.

UDI System Calls 37

DQSGETSTIME returns the current date and time in character format. This procedure
is obsolete.

CALL DQSGETSTIME (date$Stime$ptr, exceptSptr);

This system call is included only for compatibility with previous versions of the UDI. Use
the more general DQ§DECODESTIME system call for this function.

UDI System Calls

DQSMALLOCATE requests that a specific amount of logically contiguous free memory
be added to the existing memory available to the calling program.

segSptr = DQSMALLOCATE (size, exceptSptr);

Input Parameter

size A DWORD that specifies the number of BYTES of memory being
requested.

Output Parameters

segdptr A POINTER that indicates the starting address of the acquired
memory.
exceptiptr A POINTER to a word in which the system places the condition
code.
Description

The DOQSMALLOCATE system call requests a specific amount of logically contiguous
memory be added to the memory pool of the calling program. If the call is successful, the
procedure returns a POINTER to the first byte of the acquired memory. If the call fails,
the procedure returns a POINTER of undefined value and an exception code.

Multiple calls to DQSMALLOCATE will result in multiple segments being allocated.

NOTE

DQSMALLOCATE cannot be used in the PL/M-286 SMALL model of
compilation.

UDI System Calls 39

DQSMALLOCATE

Condition Codes

ESOK 0000H No exceptional conditions.

E$MEM 0002H Insufficient memory is available to fill the
request.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DOSMALLOCATE can return the
condition codes associated with the Nucleus system calls
RQIGET$SPOOLSATTRIBUTES and RQ$SCREATESSEGMENT. See the Extended
IRMX II Nucleus System Calls Reference Manual for details.

40 UDI System Calls

DQSMFREE returns memory allocated, by DQSMALLOCATE, to the available memory
pool.

CALL DQSMFREE (seg$ptr, exception$ptr);

INPUT PARAMETERS

seg$ptr A POINTER to a block of memory that is to be returned to the
available memory pool.

Output Parameters

exception$ptr A POINTER to a WORD where the system places the condition
code.

Description

The DQSMFREE system call is used to return to available memory space a block of
memory that was previously allocated using the DQSMALLOCATE system call. Any
memory freed by this call is no longer available to the calling program. Further attempts
to use this area of memory may result in unexpected results since the memory referenced
may have reallocated to another process.

In using the DO$SMFREE system call you must return an entire block of memory, it is not
possible to return a portion of the memory allocated by a previous call to
DQSMALLOCATE.

Condition Codes
ESOK 0000H No exceptional conditions.
In addition to the condition code listed above, DQ$MFREE can return the condition

codes associated with the Nucleus system call RQSDELETESSEGMENT. See the
Extended iRMX Il Nucleus System Call Reference Manual for details.

UDI System Calls 41

The DQ$OPEN system call opens a file for I/O operations, specifies how the file will be
accessed, and specifies the number of buffers needed to support the 1/O operations.

CALL DQSOPEN (connection$t, mode, num$buf, exceptéptr);

INPUT PARAMETERS
connection$t A TOKEN for the file connection to be opened.
mode A BYTE specifying how the connection will be used to access the
file. This value is encoded as follows:
Value Meaning
1 Read only
2 Write only
3 Update (both reading and writing)
4 Reserved
5-7 Available for Xenix systems;
ignored by iRMX 1l systems
8-255 Reserved
num$buf A BYTE containing the number of buffers needed for this

connection. Specifying a value larger than 0 implicitly requests that
"double buffering" (that is, read-ahead and/or write-behind) is to
be performed automatically. Specifying a value greater than 2,
results in an ESSUPPORT error.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

This system call prepares a connection for use with DQSREAD, DQ$WRITE,
DQSSEEK, and DQ$TRUNCATE commands. Your program can have up to six
connections open simultaneously.

The DQSOPEN system call does the following:

» Creates the requested buffers.

42 UDI System Calls

DQSOPEN

» Sets the connection’s file pointer to zero. This a place marker that tells where in the
file the next I/O operation is to begin.

» Starts reading ahead if num$buf is greater than zero and the access parameter is
"Read only" or "Update."
Selecting Access Rights

The system does not allow reading using a connection open for writing only nor writing
using a connection open for reading only. If you are not certain how the connection will
be used, specify updating. However, if the specified connection does not support the
specified type of access, an exception code is returned.

Selecting the Number of Buffers

The process of deciding how many buffers to request is based on three considerations--
compatibility, memory, and performance.

COMPATIBILITY. If you expect to run your UDI program on other systems, which
support the UDI, you should request no more than two buffers.

MEMORY. The amount of memory used for buffers is directly proportional to the
number of buffers. You can save memory by using fewer buffers.

PERFORMANCE. The performance consideration is more complex. Up to a certain
point, the more buffers you allocate, the faster your program can run. The actual break-
even point, where more buffers don’t improve performance, depends on many variables.
Often, the only way to determine the break-even point is to experiment. However, the
following statements are true of every system:

» To overlap I/O with computation, you must request at least two buffers.
» If performance is not at all important but memory is, request no buffers.
Requesting zero buffers means that no buffering is to occur. That is, each DQ$READ or
DQ$WRITE is followed immediately by the physical I/O operation necessary to perform

the requested reading or writing. Interactive programs should open :CI: and :CO: with a
request for no buffers.

If your program normally calls DQ$SEEK before calling DQSREAD or DQ$WRITE, it
should request one buffer.

UDI System Calls 43

DQSOPEN

Your program can use the DQSRESERVESIOSMEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls DQSATTACH
and for buffers when the program calls DQSOPEN. The advantage of reserving memory
is that the memory is guaranteed to be available when needed. If memory is not reserved,
a call to DQSOPEN might not be successful because of a memory shortage. See the
description of DQSRESERVES$IOSMEMORY later in this chapter for more information
about reserving memory.

Condition Codes
ESOK 0000H No exceptional conditions.

ESSUPPORT 0023H At least one of the following is true:
» The mode parameter is 4 or 8-255.

e The num$buffs parameter is greater than

two.
ESFACCESS 0026H Access to the specitied file is denied.
E$SHARE 0028H The specified file may not be shared.
ESMEM 0002H Insufficient memory remains to complete the

call.
In addition to the condition codes listed above, DQSOPEN can return the condition codes

associated with the Extended I/O system call RQSOPEN. See the Extended iRMX II
Extended 1/0 System Calls Reference Manual for details.

44 UDI System Calls

In systems using overlays, the root module calls DQSOVERLAY to load an overlay
module.

CALL DQSOVERLAY (name$ptr, exceptSptr);

Input Parameter

name$ptr A POINTER to a STRING containing the name of an overlay
module. The name must be in uppercase.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

A root module, in an overlay system, calls DQSOVERLAY each time it wants to load an
overlay module.

If your assembly language or PL/M-286 program uses the DQSOVERLAY procedure,
you should ensure that you bind the UDI library to your program correctly. The i4PX 286
Utilities manual describes the OVL286 utility in detail. The following steps describe the
process for loading iRMX 11 programs in overlay form.

1. Use BND286 to create linkable overlay files from compiled modules belonging to
each overlay.

2. Use BND286 to create a nonpacked STL module from the linkable overlay files.
The BND286 NOPACK control must be used.

3. Write an overlay definition file to describe the structure of the overlays in the
program.
4. Use OVL286 to create an overlaid executable file from the linkable overlay files,

the loadable module, and the overlay definition file.

To maintain portability to other operating systems that support the UDI, you should call
no more than one level of overlay invoked only from the root of the application,

UDI System Calls 45

DQSOVERLAY

Condition Codes

ESOK 0000H No exceptional conditions.
ESSUPPORT 0023H An supported operation was attempted.

In addition to the condition code listed above, DQ$OVERS$LAY can return the condition
codes associated with the Extended [/O system call RQ$SSSOVERLAY. See the Extended
iRMX II Extended 1/O System Calls Reference Manual for details.

46 UDI System Calls

The DQSREAD system call copies bytes from a file into a buffer.

bytes$read = DQSREAD (connection$t, hufféptr, count, except$ptr);

INPUT PARAMETERS

connection$t A TOKEN for the connection to the file. This connection must be
open for reading or for both reading and writing, and the file
pointer of the connection must point to the first byte to be read.

buff$ptr A POINTER to the buffer that is to receive the data from the file.

count A WORD containing the requested number of bytes to be read
from the file.

Output Parameters

bytes§read A WORD containing the number of bytes actually read. This
number is always equal to or less than count.
except$ptr A POINTER to a WORD where the system places the condition
code.
Description

This system call reads a collection of contiguous bytes from the file associated with the
connection. The bytes are placed into the buffer specified in the call. 1f bytes3read is less
than count and the exception code returned from the DO$READ system call is ESOK, an
end of file was encountered. If you type an interrupt or a terminate character from the
console, for example a CONTROL-C, while the operating system performs a read
operation, an E3OK exception code is returned and bytes$read is set to zero.

The Buffer

The buff$ptr parameter tells the operating system where to place the bytes when they are
read. Your program must provide this buffer. DQSREAD copies as many bytes as it 1s
instructed to copy (unless it encounters the end of the file). If the buffer is not long
enough, copying continues beyond the end of the buffer.

UDI System Calls 47

DQS$READ

48

Number of Bytes Read

The number of bytes that your program requests is the maximum number of bytes that
DQ$READ copies into the buffer. However, there are circumstances under which the
system reads fewer bytes.

o Ifthe DQSREAD detects an end of file before reading the number of bytes requested,
it returns only the bytes preceding the end of file. In this case, the bytes$read
parameter is less than the count parameter, yet no exceptional condition is indicated.

s If an exceptional condition occurs during the reading operation, information in the
buffer and the value of the bytesSread parameter are meaningless and should be
ignored.

« If a CONTROL-C (interrupt or terminate) character is typed at the console (see
description).

Connection Requirements

The connection must be open for reading or updating. 1f it is not, DQSREAD returns an
exceptional condition,

Condition Codes
E$OK 0000H No exceptional conditions.
ESSUPPORT (0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$READ can return the condition
codes associated with the Extended /O system call RQ$SSREADSMOVE (except
ESFLUSHING). See the Extended iRMX II Extended 1/0 System Call Reference Manual
for details.

UDI System Calls

The DOSRENAME system call changes the pathname of a file.

CALL DQSRENAME (path$ptr, newSpathSptr, exceptSptr);

Input Parameters

path$ptr A POINTER to a STRING that specifies the pathname of the file
to be renamed.
new$path$ptr A POINTER to a STRING that specifies the new pathname for the

file. This path must not refer to an existing file.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

This system call allows your programs to change the pathname of a data or a directory
file. Be aware that when you rename a directory, you are changing the pathnames of all
files contained in the directory. When you rename a file to which a connection exists--this
is permitted--the connection to the renamed file remains established.

A file’s pathname may be changed in any way, provided the file or directory remains on
the same volume. Successfully renaming a file without appropriate access permission

depends on the operating system.

It your operating system does not allow renaming a file to another volume or storage
device, an E$SUPPORT exception is returned.

Condition Codes

E$SOK 000H No exceptional conditions.

ESFEXIST 0020H The file represented by newSpath$ptr already
exists.

E$SUPPORT 0023H The file represented by new$path$ptr exists on

another volume.

ESFNEXIST 0021H The file represented by path$ptr does not exist.

UDI System Calls 49

DQSRENAME

In addition to these condition codes, DQSRENAME can return the condition codes
associated with the Extended I/O System call ROSSSRENAMESFILE. See the Extended
IRMX Il Extended 1/0 System Calls Reference Manual for detalils.

50 UDI System Calls

The DQSRESERVESIOSMEMORY system call lets your program reserve enough
memory to ensure that it can open and attach the files it will be using.

CALL DQ$RESERVESIOSMEMORY (numberS$files, numberS$buffers, except$ptr);

INPUT PARAMETERS

number$files A WORD whose value indicates the maximum number of files the
program will have attached simultaneously. This value must not be
greater than 12. Moreover, no more than 6 of these files may be
open simuitaneously.

number$buffers A WORD whose value indicates the total number of buffers (up to
a maximum of 12} that will be needed at one time. For example, if
your program will have two files open at the same time, and each
of them has two buffers (specified when they are opened),
number$files should be two and number$bufters four.

If you specify a value for number$files or number$buffers that
exceeds the limits explained above, an ESSUPPORT exception will
be returned. If you specify a zero for both number§$files and
number$buffers, the memory reserved earlier will be returned to
the memory pool.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

DQSRESERVESIOSMEMORY sets aside memory on behalf of the calling program,
guaranteeing that it will be available when needed later for attaching and opening files.
This memory is used for internal UDI data structures when the program requests file
connections via DQSATTACH and for buffers when the program opens file connections
via DQSOPEN. Memory reserved in this way is not eligible to be allocated by
DQSALLOCATE or DQSMALLOCATE. Your program should call
DQIRESERVESIOSMEMORY before making any calls to DQSALILOCATE or
DQSMALLOCATE.

UDI System Calls 51

DQ$RESERVESIOSMEMORY

For an application to be portable across all operating systems that support UDI, it should
not allow 1/0O without first explicitly reserving the memory by calling
DQSRESERVESIOSMEMORY. In the call to DOSRESERVESIO$MEMORY, you
may specify as many as 12 files (that can be attached using the reserved memory) and as
many as 12 buffers (that can be requested when opening files).

NOTE

If a program calls DQ$RESERVESIOSMEMORY after making one or
more calls to DQSATTACH or DQSOPEN, the memory used by those
calls is immediately applied against the file and buffer counts specified in
the DQ$RESERVES$IOSMEMORY call, possibly exhausting the memory
supply being requested.

If your program calls DQ$RESERVES$IOSMEMORY more than once in a program, it
simply increases or decreases the amount of memory reserved, unless your requests total
more than 12 files or 12 buffers. If the requests exceed the maximum number of files or
buffers, the maximum is reserved and no error is returned.

RESTRICTION

This system call is effective only if your program uses exclusively UDI system calls to
communicate with the extended iRMX 1l Operating System.

Portability across operating systems that support the UDI cannot be guaranteed if your
application requires more than 12 files attached simultaneously or a group of
simultaneously open files whose total number of buffers exceeds 12.

Condition Codes

52

ESOK 0000H No exceptional conditions.

ESMEM 0002H TInsufficient memory remains to complete the
call.

E$SUPPORT 0023H At least one of the following is true:

o The value specified for number$files is
greater than 12.

e The value specified for number$buffers is
greater than 12,

UDI System Calls

DQSSEEK moves the file pointer associated with the specified connection.

CALL DQ$SEEK (connection$t, mode, offset, except$ptr)

Input Parameters

connection$t A TOKEN for the open connection whose file pointer is to be
moved.
mode A BYTE indicating the type of file pointer movement being

requested, as follows:

Mode Meaning

1 Move the pointer backward by the specified
move count. If the move count is large
enough to position the pointer past the
beginning of the file, the pointer is set to
the first byte of the file (position zero).

2 Set the pointer to the position specified by
the move count. Position zero is the first
position in the file. Moving the pointer
beyond the end of the file is permitted.

3 Move the file pointer forward by the
specified move count. Moving the pointer
beyond the end of the file is permitted.

4 First move the pointer to the end of the
tile and then move it backward by the
specified move count. If the specified move
count would position the pointer beyond the
front of the file, the pointer is set to the
first byte in the file (position zero).

offset A DWORD specifying either how far, in bytes, the file pointer is to
be moved, or the exact position in the file to which the pointer is to
be moved.

Output Parameter

exceptiptr A POINTER to a WORD where the system places the condition
code.

UDI System Calls 53

DQ$SEEK

Description

When performing non-sequential 1/0, your programs can use this system call to position
the file pointer before using the DQ$READ, DOSTRUNCATE, or DOQSWRITE system
calls. The location of the file pointer specifies where in the file a DOSREAD,
DQS$WRITE, or DQ$TRUNCATE operation is to begin. If your program is performing
sequential 1/O on a file, it need not use this system call.

You can position the file pointer beyond the end of a file. If your program does this and
then invokes the DQSREAD system call, DQSREAD behaves as though the read
operation began at the end of file. If your program calls DOSWRITE when the file
pointer is beyond the end of the file, the file is extended and the data is written as
requested. A subsequent DQ$READ returns an end of file condition. Attempting a seek
past the end of a file without performing an explicit DOQSWRITE call and subsequently
expecting the file to be lengthened, will produce indeterminate results.

Condition Codes

34

ESOK 0000H No exceptional conditions.
E$SUPPORT 0023H The mode parameter was set to 0 or 5-255.
In addition to the condition code listed above, DQ$SEEK can return the condition codes

associated with the Extended [/O system call ROSISEEK. See the Extended iRMX II
Extended 1/0 System Calls Reference Manual for details.

UDI System Calls

DQSSPECIAL sets options or specifies actions to be performed in the program execution
environment.

CALL DQ$SPECIAL (mode, parameter$ptr, except$ptr);

input Parameters

mode A BYTE used to specify the options to be set or the actions to be
performed. Values and meanings of mode are

Value Meaning
1 Transparent
2 Line editing (default value)
3 Polling
4-5 Reserved
6 Baud rate

Each of these modes is explained in the Description section.

parameter§ptr A POINTER. See complete explanation in the Description
section.

Output Parameter

exceptiptr A POINTER to a WORD where the system places the conditton
code.

Description

This system call changes the mode in which your program receives input from a console
input device. When your system starts to run, the mode is line editing (mode 2). By using
DQS$SPECIAL, you can change to either of the other two modes, or back to line editing.

The meanings of the mode parameter values are as follows:

UDI System Calls 55

DQS$SSPECIAL

Value

56

Meaning

Transparent. Interactive programs must often obtain characters from the
console exactly as they are typed. Transparent mode makes this possible.
In transparent mode, normal input characters are placed in the buffer
specified by the call to DQSREAD. Two exceptions to this are (1) signal
characters (e.g., the Human Interface CONTROL-C) set by specifying "set
signal” in the spec$func parameter of ASSPECIAL or S$SPECIAL, and
(2) any enabled output control characters or .

DQS$READ returns control to the calling program when the number of
characters entered equals the number of characters specified in the read
request.

Line Editing. This option enables you to correct typing errors with special
keys before the application program receives the characters typed.
Characters used for editing are operating-system-dependent. The
RETURN character is always converted to CARRIAGE-RETURN-LINE-
FEED (CRLF).

Polling. This option is nearly the same as Transparent (1) mode, except
that in Polling mode DQ$READ returns control to your program
immediately after it is called, regardless of whether any characters have
been typed since the last call to DQSREAD. If no characters have been
typed, this is indicated by the bytes$read parameter of the DQSREAD
call. Characters typed between successive calls to read the terminal are
held in the "type-ahead" buffer.

where

parameter$ptr A POINTER to a TOKEN for a connection
to the :CI: file previously established by
DQSATTACH.

Reserved, ESSUPPORT will be returned.
Baud Rate Specifies baud rate selection for an asynchronous line.
where

parameter$ptr points to this structure:

DECLARE LINE BASED parameter$ptr STRUCTURE (
conn TOKEN,

inShaudSrate BYTE,
out$haudSrate BYTE) ;

UDI System Calls

DQ$SPECIAL

where

LINE.CONN is a connection previously established by a
DQSATTACH call.

LINE.inSbaud$rate specifies the desired input baud rate.
LINE.out$baud$rate specifies the desired output baud rate.

These values specify baud rate:

Byte Value Baud Rate

0 Unspecified

1 300

2 600

3 1200

4 2400

5 4800

6 9600

7 19200

8-255 Reserved
Condition Codes

E$OK 000H No exceptional conditions.
E$SUPPORT 0023H The mode parameter represents an

unsupported mode.

[n addition to the condition codes listed above, DQ$SPECIAL can return the condition
codes associated with the Extended 1/O system call RQSSPECIAL. See the Extended
{RMX IT Extended 1/0 System Calls Reference Manual for details.

UDI System Calls 57

DQSSWITCHSBUFFER substitutes a new command line for the existing one.

char$offset = DQ$SWITCHSBUFFER (buff$ptr, except§ptr);

Input Parameter

buff$ptr A POINTER to a buffer containing the "new" command line. That
is, the one whose arguments are to be returned by subsequent catls
to DQSGETSARGUMENT. The buffer must not exceed 32 K-
bytes in length.

Output Parameters

char$offset A WORD into which the UDI places a number. This number
represents the number of bytes from the beginning of the "old"
command line to the last character of the last argument so far
processed by DQSGETSARGUMENT. In other words, the value
in char$offset tells how many characters in the old command line
have been processed by the time of this call.

exceptSptr A POINTER to a WORD where the system places the condition
code.

Description

58

When your program is invoked from the console, the operating system places the
invocation command into a buffer. Typically, your program will use
DQIGETSARGUMENT to obtain the arguments in that command. If your program
subsequently calls DQ$READ to obtain an additional command line from the console, it
can call DOSSWITCH$BUFFER to designate the buffer with the new command line as
that from which arguments are to be obtained when DQSGETSARGUMENT is called.

You can use DQ$SWITCHSBUFFER any number of times to point to different strings in
your program. However, you cannot use DQ$SWITCH$BUFFER to return to the
command line that invoked the program, because only the operating system knows the
location of that buffer. Therefore, you should use DQ$GETSARGUMENT to obtain all
arguments of the invocation command line before issuing the first call to
DQSSWITCH$BUFFER.

UDI System Calls

DQSSWITCHSBUFFER

A second service of DQ$SWITCH$BUFFER is that it returns the location of the last byte
of the last argument so far obtained from the old buffer by calls to
DQSGETSARGUMENT. Therefore, in addition to using DQ$SWITCH$BUFFER to
switch buffers, you can use it after one or more DQ§GET$ARGUMENT calls to
determine where in the buffer the next argument starts. However, doing this "resets" the
butfer, in the sense that the next call to DQ$GETSARGUMENT would return the first
argument in the buffer. To return to the desired point in the buffer, where you can
continue to extract arguments, call DQ§SWITCH$BUFFER again, but when doing so, use
the sum of the starting address of the buffer and the value returned by the previous call to
DQISWITCH$BUFFER. The following is an example showing how to use the second
service of DQ$SWITCH$BUFFER:

DECLARE
E$OK LITERALLY 'O’
ESFATALSEXIT LITERALLY '3

mybuffer$ptr POINTER,
buff$ptr POINTER,
arg$ptr POINTER,
buff STRUCTURE({

offset WORD,
segment WORD) AT (@buff$ptr),

nextSchar WORD,
char$offset WORD,
condition$code WORD,
delimit$char BYTE;

L]
/¥ initialize buffSptr and next$char */

buff$ptr = mybuff$ptr;
next$char = 0;

L]

»

/* determine where in the buffer the next argument starts */
char$offset = DQSSWITCHSBUFFER(buffSptr, @condition$code);
IF condition$code < ESOK THEN /* do error processing */

CALL DQSEXIT(ESFATALSEXIT)
next$char = charSoffset + nextSchar;

(Example continued on next page)

UDI System Calls 59

DQSSWITCH$BUFFER

/* return to desired point in buffer */

buff.offset = buff.offset + char$ocffset;
charSoffset = DQSSWITCHSBUFFER(buff$ptr, @condition$code);
IF conditionScode <> ES0K THEN /% do error processing
CALL DQSEXIT(ESFATALSEXIT)

/% get next argument */

delimit$char = DQSGETSARGUMENT(arg$ptr, @conditionSptr);
IF condition$code <> ESOK THEN /* do error
processing */
CALL DQSEXIT(ESFATALSEXIT)

Condition Codes

ESOK 0000H No exceptional conditions.

In addition to the condition code listed above, DQSSWITCHSBUEFFER can return the

condition codes associated with the Human Interface system call
RQS$CISETSPARSESBUFFER. See the Extended iRMX 11 Human Interface System Calls

Reference Manual for details.

60 UDI System Calls

*/

DQSTRAPSCC lets you specify a procedure that gains control if an operator enters an
interrupt character (such as CONTROL-C) at the console.

CALL DQSTRAP$SCC (cc$routine$ptr, except$ptr);

Input Parameter

ccSroutine$ptr A POINTER to the entry point of your interrupt procedure.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

The action the default interrupt procedure takes depends on the operating system. Using
the DQSTRAPSCC system call, lets you substitute an alternate interrupt procedure that
will automatically receive control when you enter an interrupt character on the console.
(See the Extended iRMX IT Human Interface User’s Guide for more information.) The
context of the program executing at the time you invoke DQ$TRAP$CC must be saved by
your operating system. Due to this context switch, the contents of the CPU registers at
the time the interrupt procedure receives control may not be those associated with your
program. The CPU registers may contain values for an internal task that was executing
when the interrupt character was entered.

To ensure portability across other operating systems, a GOTO statement (PL/M, C,
FORTRAN, etc.) must not branch outside the DQSTRAP$CC procedure’s routine.

Condition Codes

E$OK 0000H No exceptional conditions.

UDI System Calls 61

DQSTRAPSEXCEPTION substitutes an alternate exception handler for the default
exception handler provided by the operating system.

CALL DQSTRAPSEXCEPTION (handler$ptr, except$ptr);

Input Parameter

handler$ptr A POINTER to a STRUCTURE containing a long peinter to the
entry point of the alternate exception handler. The STRUCTURE
has the form

DECLARE handler$ptr STRUCTURE (
offset WORD,
base TOKEN) ;

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

DQSTRAPSEXCEPTION designates an alternate exception handler as the one to which
control should pass when an exceptional condition occurs. The DQSTRAPSEXCEPTION
routine should restore the default exception handler before it terminates. Therefore, your
program should call DOSGETSEXCEPTIONSHANDLER before calling
DQSTRAPSEXCEPTION to get the default exception handler address.

See the section Condition Codes and Exception-Handling Calls at the beginning of this
manual for an explanation of the conditions of the stack when your alternate exception
handler receives control.

Condition Codes

62

ESOK 0000H No exceptional conditions.

In addition to the condition code listed above, DQSTRAPSEXCEPTION can return the
condition codes associated with the Nucleus system cal!
RQS$SETSEXCEPTIONSHANDLER. See the Fxtended iIRMX [T Nucleus System Calls
Reference Manual for details.

UDI System Calls

DQSTRUNCATE moves the end-of-file to the current position of 2 named file
connection’s file pointer, thereby freeing the portion of the file lying beyond the file
pointer.

CALL DQ$TRUNCATE (connection$t, except$ptr);

Input Parameter

connection§t A TOKEN for an open connection to the named data file that is to
be truncated. The file pointer of this connection marks the place
where truncation is to occur. The byte indicated by the file pointer
is the first byte to be dropped from the file.

Output Parameter

except§ptr A POINTER to a WORD where the system places the condition
code.

Description

This system call truncates a file at the current setting of the file pointer and releases all
file space beyond the pointer for reallocation to other files. If the pointer is at or beyond
the end of file, no truncation 1s performed. Unless the file pointer is already at the proper
location, your program should use the DO$SEEK system call to position the pointer
before calling DQSTRUNCATE.

The connection should have write, or read and write access rights, established when the
connection was opened.

Condition Codes
E$OK 0000H No exceptional conditions.
E$SUPPORT 0023H An unsupported operation was attempted.
In addition to the condition codes listed above, DQ$TRUNCATE can return the

condition codes associated with the Extended 1/O system call RQSTRUNCATESFILE.
See the Extended iIRMX II Extended 1/0 System Calls Reference Manual for details.

UDI System Calls 63

The DQ$WRITE system call copies a collection of bytes from a buffer into a file.

CALL DQSWRITE (connection$t, buff$ptr, count, except§ptr);

INPUT PARAMETERS
connection$t A TOKEN containing the connection to the file into which the
information is to be written.
buff$ptr A POINTER to a buffer containing the data to be written to the
specified file.
count A WORD containing the number of bytes to be written from the

buffer to the file.

Output Parameter

exceptptr A POINTER to a WORD where the system places the condition
code.

Description

This system call causes the operating system to write the specified number of bytes from
the buffer to the file.

Number of Bytes Written

Occasionally, DQ§WRITE writes fewer bytes than requested by the calling program. This
happens under the following two circumstances:
¢+ When DQ$WRITE encounters an 1/O error.

e When the volume to which your program is writing becomes full.

Where the Bytes Are Written

64

DQIWRITE starts writing at the location specified by the connection’s file pointer. After
the writing operation is completed, the file pointer points to the byte immediately
following the last byte written.

If your program must reposition the file pointer before writing, it can do so by using the
DQS$SEEK system call.

UDI System Calls

DQSWRITE

Condition Codes

ESOK 0000H No exceptional conditions.

E$SUPPORT 0023H An unsupported operation was attempted.

E$SPACE 0029H Inadequate memory space remains to complete
the write.

In addition to the condition code listed above, DQSWRITE can return the condition
codes associated with the Extended 1/O system call RQ$SSWRITESMOVE. See the
Extended IRMX II Extended 1/0 System Calls Reference Manual for details.

UDI System Calls 65

INDEX

A

Access mask 11
Access rights 10
from the ACCESS filed of DOQ$GETSCONNECTIONSSTATUS 32
needed to perform DQ§TRUNCATE 63
OWNERSACCESS field in DQ$FILESINFO 25
selecting 43

B

Baud rate
how to set using DQS$SPECIAL 56
value for mode parameter of DQ$SPECIAL 55
BND286, using to create overlay files 45
Buffer 29
DQS$CLOSE 15
for DQYGETSSYSTEMSID 37
for DQ$READ 29
for the buff$ptr parameter of DQ$READ 47
number required for DQSOPEN 42
the buff$ptr parameter of DQ$SWITCHSBUFFER 58
the buff$ptr parameter of DQSWRITE 64
the number$buffers parameter of DQSRESERVE$SIOSMEMORY 51

C

CI (console input) 43
CO (console output) 43
Command line 30
parsing with DQSGETSARGUMENT 29
Compatibility
DQS$GETS$TIME system call 38
number of buffers permitted in the DQSOPEN system call 43
setting the ACCESS bit of DQSCHANGESACCESS for 10
setting the ACCESS field of the DQSGETICONNECTIONSSTATUS system call 32
setting the GROUPSACCESS field of the DQSFILESINFO system call 26
setting the WORLDSACCESS field of DQSFILESINFO system cail 25
Condition codes 3
Condition codes, table of 1,2

UDI System Calls Index-1

INDEX

Connection
Boolean test for state 32
creating using DOSCREATE 16
default access rights 11
deleting using DOQ$DETACH 21
freeing buffers associated with a connection 15
getting information using DQGETCONNECTIONSSTATUS 32
moving the file pointer 53
requirements for DQSREAD 48
truncating the associated file 63
Connection, specifying the number of buffers required for 42
CONTROL-C 4, 47, 48, 56, 61

D

Data structure

for DQ$DECODESTIME 18

for DQSFILESINFO 24

for DQSGETSCONNECTIONSSTATUS 32

for DOSSPECIAL 56

for DQSTRAPSEXCEPTION 62
DATE 18, 19,38
Default user 11
Delimiter 29, 30

example of delimiters returned from DQSGETSARGUMENT 30
DQOSALLOCATE 7
DQSATTACH 8
DQSCHANGESACCESS 10
DQSCHANGESEXTENSION 13
DQSCLOSE 15
DQ$CREATE 16
DQ$DECODESEXCEPTION 17
DQ$DECODESTIME 18
DOQSDELETE 20
DOSDETACH 21
DQSEXIT 22
DOSFILESINFO 24
DQSFREE 28
DQIGETSARGUMENT 29
DQSGETSCONNECTIONSSTATUS 32
DQSGETSEXCEPTIONSHANDLER 34
DQSGETSMSIZE 35
DQSGETSSIZE 36
DQSGETSSYSTEMSID 37
DQSGETSTIME 38

Index-2 UDI System Calls

INDEX

DQ$MALLOCATE 39
DOSMFREE 41
DQS$SOPEN 42
DQSOVERLAY 45
DQSREAD 47
DQI$RENAME 49
DQSRESERVESIOSMEMORY 51
DQS$SEEK 53
DQ$SPECIAL 55

baud rate 56

line editing 56

polling 56
DQISWITCH$BUFFER 58
DQITRAPSCC 61
DQSTRAPSEXCEPTION 62
DO$TRUNCATE 63
DQSWRITE 64

E

End of file 47, 48, 54, 63

Examples
delimiters returned by DOSGETSARGUMENT 30
DQ$SWITCH$BUFFER 59

Exception handling
getting the address of the current exception handler 34
using your own exception handler 62

F

File
changing the pathname 49
creation 16
deletion 20
extension 13
information 24, 32
operations 42,47, 51, 63, 64
pointer 53, 63
size 24
Free space pool, requesting additional memory from 7

UDI System Calls Index-3

INDEX

Interactive programs

getting characters from the console 56

opening CI and CO for interactive programs 43
Interrupt procedure 61

L
Line editing mode 56

Memory
block 35, 41
pool 7,28, 39 41, 51
reservation 44, 51
Mode
file pointer seeks 53
parameter of DQSFILESINFO 24
parameter of DQSOPEN 42
terminal 55
Model of segmentation 34, 39

O

Object
file 13
user 11
Object file 13
Operating system identification 37
OSC sequences 56
OVL286, using to create programs that use overlays 45
Owner ID 11
Owner of a file 10

P

Performance 43
PL/M-286 3, 39, 45
Polling 55
Portability 45, 52, 61

Index-4 UDI System Calls

INDEX

Program control
DQSEXIT 22
DQS$OVERILAY 45
DQSTRAPSCC 61
system calls 4

R

Reserving memory 44, 51
Root module 45

S

Segment 7, 28, 35, 36

System calls
descriptions 2
dictionary 4
exception-handling 6
file-handling 4
memory management 5
program control 4
utility and command parsing 6

I

Task 7, 22, 61
Terminal modes

polling 55
Terminating programs 22
TIME 18, 38
Transparent mode 56

U

UDI library 45
User
default 11
1D 11,24
object 11
WORLD 10
User object 11
WORLD 10, 11, 25
WORLD user 10

UDI System Calls Index-5

INTERNATIONAL SALES OFFICES

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051

BELGIUM

Intet Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK

intel Denmark A/S
Glentevej] 61-3rd Ficor
dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.
Piper's Way

Swindon, Wiltshire SN3 1R)

FINLAND

Intel Finland OY
Ruosilante 2
00390 Helsinki

FRANCE
Intel Paris
1 Rue Edison-BP 303

78054 St.-Quentin-en-Yvelines Cedex

ISRAEL

Intel Semiconducters LTD.
Atidim Industrial Park
Neve Sharet

P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel CorporationS.P A
Milandfiori, Patazzo E/4
20090 Assago (Milang)

JAPAN

Intel Jlapan K K.
Flower-Hill Shin-machi
1-23-9, Shinmachi
Setagaya-ku, Tokyo 15

NETHERLANDS

Intel Semiconductor {(Netherland B.V.}

Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam

NORWAY

Intel Norway A/S
P.O. Box 92
Hvamveien 4
N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-1ZQDA
28010 Madrid

SWEDEN

Intel Sweden A.B.
Daivaegen 24
5-171 36 50ina

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17

8125 Glatthrugg
CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.
Seidlestrasse 27

D-8000 Munchen

