
iRMX®

Command Reference

Order Number: 469158-004

2

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and
DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIX is a
registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension.
MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of
Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software,
Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of
TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of
Digital Equipment Corporation. Visual Basic and Visual C++ are trademarks of Microsoft Corporation. All
Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows,
Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of
Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a
trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.

Copyright © 1991, 1992, 1993 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Revision One 08/92
-003 Revision Two 12/93
-004 Update for release 2.2 of the OS 12/95

Command Reference 3

Quick Contents

Chapter 1. Using Commands

Chapter 2. Command Descriptions

Appendix A. Using Disk Mirroring

Appendix B. Using Diskverify in Interactive Mode

Appendix C. Structure of a Named Volume

Appendix D. Real-time Graphics Interface

Appendix E. Supplied Device Drivers and Physical Device
Names

Appendix F. Partitioning PCI Hard Disk Drives

Index

Service Information

4

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead
of PL/M (for example, the system call send_message instead of send$message). If
you are working in C, you must use the C header files, rmx_c.h, udi_c.h, and
rmx_err.h. If you are working in PL/M, you must use dollar signs ($) and use the
rmxplm.ext and error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers
include the H radix character (for example, 0FFH). Binary numbers include the
B radix character (for example, 11011000B).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader
BIOS Basic I/O System
EIOS Extended I/O System
HI Human Interface
UDI Universal Development Interface

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read,
rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the
same operations.

Command Reference Contents 5

Contents

1 Using Commands
How to Use This Manual... 17
Commands Available on Your System .. 19

The Human Interface (HI) .. 20
The Command Line Interpreter (CLI)... 21
Networking Software.. 21

Understanding the File Systems .. 22
File Types .. 23
Named File Tree .. 24
File Access and User IDs.. 25
Using Pathnames.. 26
Using the Copy Command with Multiple Pathnames............................ 27
Using Wildcards in Filenames.. 27
Specifying Hidden Files ... 30

Entering Commands.. 30
Command Syntax ... 31
Using the To, Over, and After Parameters .. 33
Abbreviating Parameters .. 33
Abbreviating Command Names.. 34
Recalling and Editing Commands .. 34
Using Command Search Paths.. 35
Creating Command Aliases .. 36
Redirecting I/O... 37

Using Commands on Directories ... 38
Displaying Files with the DIR Command ... 38
Creating a New Directory... 38
Referring to a Directory ... 39
Creating a Directory Within a Directory... 40
Changing Your Working Directory... 40
Renaming Directories... 41
Deleting a Directory... 41

Using Commands on Volumes .. 42
Formatting a New Volume ... 43

Using TCP/IP and NFS Commands... 45

6 Contents

Executing TCP/IP Commands ... 45
Case Sensitivity in TCP/IP and NFS Command Syntax 45
Executing OS Commands From a Posix Shell...................................... 46

Creating and Using Logical Names .. 46
Creating Logical Names for Devices ... 47
Creating Logical Names for Files .. 47
Where Logical Names are Stored .. 48
Logical Names Created by the Operating System 49

Error Messages... 51
General HI Error Messages.. 51
General iRMX-NET Error Messages ... 53

2 Command Descriptions
Command Descriptions .. 55

Command Summary.. 55
! .. 61
accounting... 63
addloc.. 66
aedit .. 70
alias... 73
arpbypass... 79
attachdevice .. 83
attachfile ... 89
background.. 93
backup... 96
bcl ... 104
bootdos.. 107
bootpd ... 108
bootrmx... 110
case ... 111
changeid.. 112
cli .. 113
connect.. 114
console .. 116
copy .. 117
copydir .. 120
createdir .. 124
date ... 126
dealias ... 129
debug .. 130
delete... 133
deletedir .. 135

Command Reference Contents 7

deletename... 137
detachdevice .. 138
detachfile ... 140
deviceinfo .. 142
dir .. 144
disconnect .. 151
diskverify ... 152
domain ... 159
dump.. 160
enetinfo .. 161
esubmit .. 162
exit... 187
find .. 188
findname .. 189
format .. 192
ftp .. 211
ftpd .. 222
getaddr ... 225
getname.. 226
grep.. 228
help .. 230
history.. 232
hostid... 234
hostname.. 235
ic ... 236
ifconfig .. 242
inamon ... 247
initstatus... 248
jobdelete .. 250
jobs.. 252
keyb ... 253
kill ... 254
lanstatus ... 255
listname.. 256
load.. 259
loadname.. 260
loadrmx.. 262
locdata ... 266
lock .. 270
logicalnames .. 272
logoff ... 275
make (mk).. 276
memory.. 290

8 Contents

mirror .. 291
mkdep ... 295
modcdf .. 297
modinfo... 299
netinfo... 300
netstat.. 301
offer .. 307
paginate... 309
password... 311
path ... 318
pause ... 319
pci ... 320
pcnet ... 322
permit.. 323
physname .. 332
ping ... 335
psh... 337
publicdir .. 339
rarp.. 340
rarpd.. 341
rcp... 342
rdisk.. 344
remini.. 356
remove .. 357
rename .. 358
restore ... 361
retension.. 368
rlogin... 369
rlogind... 371
rmextdbg ... 373
rmxloc... 374
rmxtsr.. 375
route.. 377
rpcinfo... 384
rsh ... 386
rshd... 388
ruptime.. 391
rwho.. 393
rwhod.. 394
set.. 395
setname ... 399
share.. 402
showmount.. 405

Command Reference Contents 9

shutdown.. 407
skim ... 411
sleep... 413
slipd ... 414
sort... 415
submit .. 416
super.. 420
sysinfo.. 422
sysload... 425
tcplisten.. 429
telnet .. 431
telnetd .. 436
term.. 438
tftp ... 441
tftpd ... 444
time.. 445
timer .. 448
touch .. 449
translate.. 451
traverse .. 452
tree... 453
uname .. 454
uniq.. 455
unloadname.. 456
unlock .. 458
unshare... 460
unxlate ... 462
version... 463
whoami .. 465
xlate ... 466
zscan .. 471

A Using Disk Mirroring
Introduction .. 476
Disk Mirroring Concepts... 476

Mirror Sets... 477
Failure Detection.. 478
Rollover ... 478

Rollover on Different Hard Disk Controllers 479
On-line and Off-line Repair.. 480

System Device Repair ... 480
On-line Resynchronization ... 480
Automatically Enabling Disk Mirroring ... 481

10 Contents

Event Notification ... 482
Disk Mirroring Configuration... 483

Hardware Configuration .. 483
Mirror Set on One PCI Server... 484
Mirror Set Across SCSI Busses... 485
Mirror Set Across Two PCI Servers.. 486
Mirror Set on Multiple Multibus II Systems.................................. 487

Software Configuration ... 488
Setting the Maximum Outstanding Commands 489

Using Disk Mirroring... 489
Summary of Disk Mirroring Operations... 489
Tutorial: Using the Mirror Command ... 491
Handling Events .. 493
Handling Failures .. 494

Handling Secondary Hard Disk Failure... 494
Handling Primary Hard Disk Failure... 496

Protecting Hard Disks.. 498
Using A_special for Disk Mirroring... 498
Mirror State Structure.. 498

B Using Diskverify in Interactive Mode
Introduction.. 501
Invoking Diskverify ... 503

Invocation Error Messages .. 504
Using Diskverify Commands.. 505

Abbreviating Command Names... 505
Using Parameters... 506
Abbreviating Parameters ... 506
Specifying Input Radices... 506
Aborting Diskverify Commands .. 507

Diskverify Error Messages... 508
Tutorial: Backing Up and Restoring Fnodes .. 509

Structure of the Volume Label and Fnode File..................................... 509
Creating the Backup Volume Label and Fnode File............................. 510

Example ... 511
Maintaining the Backup Fnode File ... 512

Examples.. 512
Restoring Fnodes... 513

Examples.. 513
Restoring the Volume Label .. 514

Example ... 515
Displaying R?save Fnodes... 515

Example ... 516

Command Reference Contents 11

Diskverify Command Descriptions.. 517
Command Summary... 517
allocate... 519
arithmetic commands ... 521
backupfnodes ... 523
conversion commands .. 525
disk.. 530
displaybyte... 533
displayword.. 535
displaydirectory.. 537
displayfnode... 539
displaysavefnode.. 544
displaynextblock .. 545
displaypreviousblock.. 546
editfnode .. 547
editsavefnode ... 550
exit... 551
fix .. 552
free... 554
getbadtrackinfo .. 556
help .. 558
listbadblocks .. 559
quit... 560
read.. 561
restorefnode ... 562
restorevolumelabel ... 565
save.. 567
substitutebyte ... 569
substituteword.. 571
verify ... 572

Named1 Output ... 573
Named2 Output ... 575
Physical Output ... 575
Named and All Output... 575
Verify Command Error Messages.. 577
Named1 Error Messages.. 577
Named2 Error Messages.. 578
Physical Error Messages.. 580
Miscellaneous Error Messages... 580

write... 581

12 Contents

C Structure Of A Named Volume
Introduction.. 583
Volume Structure ... 584
Volume Labels ... 584

ISO Volume Label... 585
iRMX Volume Label and Partition Table .. 587

Partition Table Structure... 591
Bootloader Location Table .. 592

Initial Files... 595
Fnode File ... 595
Fnode 0: Fnode File.. 602
Fnode 1: Volume Free Space Map File... 603
Fnode 2: Free Fnodes Map File .. 603
Fnode 3: Accounting File ... 603
Fnode 4: Bad Blocks Map File ... 604
Fnode 5: Volume Label File ... 604
Fnode 6: Root Directory ... 604
Fnodes 7 and 8: R?secondstage and R?save.. 605

R?secondstage .. 605
R?save.. 605

Other Fnodes... 606
Short and Long Files .. 607

Short Files ... 607
Long Files ... 608

Diskette Formats .. 612

D Real-Time Graphics Interface
Description... 615
Using the Windows .. 615
Using the Mouse .. 617
Basic Menu .. 618
Expanded Menu ... 622

E Supplied Device Drivers and Physical Device Names
Supplied Device Drivers... 627

Preconfigured Drivers, iRMX For Windows and iRMX For PCs......... 627
ROM BIOS-based Hard Disk Driver... 627
ROM BIOS-based Diskette Driver.. 628
Byte Bucket Driver... 629
COM1 and COM2 Driver... 629

Command Reference Contents 13

Loadable Device Drivers.. 630
Loadable Device Driver Support Files ... 630

ICU-configurable Drivers For iRMX III Systems 631
Physical Device Names... 632
iRMX for Windows and iRMX for PCs Systems... 633
iRMX III Systems... 635

iRMX III Multibus I and Multibus II Systems 635

F Partitioning PCI Hard Disk Drives
The Partition Table ... 645
Specifying iRMX Partitions .. 646

Example DUIB Name .. 647
How to Use PCI Partitioning ... 647

Partitioning and Formatting Tools .. 647
Partitioning Example for the iRMX III OS.. 648
MSA Booting.. 649
Partition Support for Multibus I Systems or PCs.. 650

Multibus I Systems... 650
PC Systems.. 650

Index 651

Service Information Inside Back Cover

14 Contents

Tables
1-1. Directory Search Paths for Commands ... 35
2-1. Command Summary... 56
2-2. System Aliases in the :config:alias.csd File.. 75
2-3. Default Aliases in the :prog:alias.csd File.. 76
2-4. Property Types Used in Name Server Entries ... 190
2-5. How Access Rights Apply to Files and Directories..................................... 325
2-6. TSAP IDs Used in Transport Addresses.. 400
B-1. Diskverify Command Summary ... 517
C-1. Characteristics of 5 1/4-Inch Non-SCSI Boot Diskettes 612
C-2. Characteristics of 5 1/4-Inch SCSI Boot and Data Diskettes 612
C-3. Characteristics of 3 1/2-Inch SCSI Boot and Data Diskettes 613
E-1. Hard Disk Partition Names... 628
E-2. Diskette Driver Device Names ... 629
E-3. Supplied ICU-configurable Device Drivers .. 631
E-4. iRMX for Windows/PCs Default Device Names... 633
E-5. PC Terminal Device Names ... 633
E-6. Device Names for SBC 214, 221, and 215G/217C/218A Controllers.......... 635
E-7. Device Names for SBC 386/12S and 486/12S SCSI Controllers................. 637
E-8. Device Names for SBC 386/258(D) and 486/133SE Controllers................. 638
E-9. Multibus I Terminal Device Names.. 640
E-10. Multibus II Terminal Device Names... 641
E-11. Suggested Physical Device Names for Other Devices................................. 642

Command Reference Contents 15

Figures
1-1. iRMX Operating System Layers that Provide Commands 19
1-2. Example File Tree Structure.. 25
2-1. Gateways.. 379
2-2. Subnet Routing ... 382
A-1. Mirror Set Operations.. 477
A-2. Rollover, Repair, and Resynchronization .. 479
A-3. Automatically Enabling Disk Mirroring .. 481
A-4. Mirror Set on One PCI Server ... 484
A-5. Mirror Set Across a SCSI Bus... 485
A-6. Mirror Set Across Two PCI Servers.. 486
A-7. Mirror Set on Multiple Multibus II Systems .. 488
C-1. General Structure of Named Volumes ... 584
C-2. Short File Fnode.. 607
C-3. Long File Fnode.. 610
D-1. An Example of Windows Displayed on the System 520 616
D-2. Basic Menu Selections .. 618
D-3. Expanded Menu Selections ... 622
F-1. Partition Table With iRMX and DOS Partitions.. 646

Command Reference Chapter 1 17

Using Commands 1
This manual describes the command interface to the iRMX Operating Systems
(OS): the iRMX III OS, iRMX for PCs, and iRMX for Windows. It describes how
to use the commands, and contains information about line-editing and terminal
control characters. In addition, this manual provides methods for verifying and
correcting the data structures of iRMX named or physical volumes.

The introductory sections of this manual assume you are familiar with the terminal
characteristics of your monitor and the keyboard from which you enter commands.
Later sections, such as those on using diskverify in interactive mode, require an
understanding of iRMX volume structure.

How to Use This Manual
The information in this manual applies to a variety of user levels, system types, and
configurations. You will need to choose the information appropriate to your
system. Some system types covered by this manual include:

• Installations running on PC bus, Multibus I, or Multibus II systems

• ICU-configurable iRMX systems, which may vary from the standard device
types and OS layers described in this manual

• iRMX for Windows and iRMX for PCs systems: descriptions of configuration
issues don't apply to preconfigured iRMX for Windows, but discussions of
loading device drivers and user jobs, and modifying :config: files do apply

• Single-user systems, which need little or no file protection and user password
protection

• Multiple-user systems, including systems operating on a network, which may
need to strictly enforce file and system access

18 Chapter 1 Using Commands

Use these guide to determine which parts of this manual you should read:

If you are: Refer to:

A new user Chapters 1 and 2 and Appendix E

An experienced user Chapter 2 and Appendices A-F

Responsible for managing the
system

Appendices A, B, and C, in addition to
other chapters

Using the SBX 279 Graphics
interface

Appendix D, in addition to other chapters

Command Reference Chapter 1 19

Commands Available on Your System
Figure 1-1 shows the layers of the iRMX OS that provide commands:

Command Line Interpreter (CLI)
DOS/Windows
iRMX-NET networking software
Human Interface (HI)

The figure also shows the layers of the OS necessary to support these command-
level layers:

Nucleus
Basic I/O System (BIOS)
Extended I/O System (EIOS)
Application Loader
VM86 Dispatcher
Remote File Driver (RFD)

Command Line Interpreter
(CLI)

DOS/Windows
Command Line

iRMX-Net
and

Remote File
Driver (RFD)

Application
Loader

(AL)

EIOS

BIOS VM86 Dispatcher

Nucleus

DOS/Windows

OM04425

Human Interface
(HI)

NFS

TCP/IP

iNA 960
Network Software

Figure 1-1. iRMX Operating System Layers that Provide Commands

20 Chapter 1 Using Commands

The commands in Chapter 2 are labeled according to their source or function: CLI,
HI, DOS, NET (iRMX-NET), TCP/IP, and NFS commands. The commands
available to you depend on your type of system:

• If you use iRMX for Windows or iRMX on a PC, all the OS layers are part of
the system. You may choose not to install the networking software; in this
case the NET and/or TCP/IP and NFS commands are not available, depending
on what network you install. Some of the HI and NET commands in Chapter 2
are not provided in iRMX for Windows. These commands are noted in that
chapter.

• If you use an ICU-configurable system, the command-providing layers must be
configured into the system to support the command-level layers. The iRMX-
NET and TCP/IP subsystems are also optional in these systems.

• In any system, it is possible to replace the CLI with a user-written command
interface program. In such a system, the CLI commands are not available.

• In any system you may selectively install individual HI and NET commands,
which are simply HI commands provided by the iRMX-NET software. Each
command is a separate executable file. You may also write new commands.

Except where noted, this manual assumes that all commands provided by your type
of installation are available.

The Human Interface (HI)
The HI provides single- or multi-user support for one or more terminals. When the
system is booted, the HI initializes each terminal and begins running an initial
program, which is an interactive HI job. The initial program can be your custom
command interface or the iRMX CLI.

The HI initializes terminals as either static or dynamic. A static terminal always
has a specific user associated with it. You do not log on or off such a terminal; you
simply begin entering commands. A dynamic terminal is one where you must log
on and provide a user password. Each logon session begins a new HI interactive
job.

HI commands are executable files loaded and run by the CLI (or other command
interface). Each command is a separate file stored on disk.

Command Reference Chapter 1 21

You can use the dir command to display the names of the HI system commands,
utilities, or development tools available on your system. Enter the commands
shown below:

dir :system:
dir :utils:
dir :lang:

See also: Logging on, Installation and Startup
CLI initial program, System Concepts
static and dynamic terminals, System Configuration and
 Administration
dir command, Chapter 2

The Command Line Interpreter (CLI)
The CLI is an application running under the HI. It enables operators to
communicate with the OS by entering commands. The CLI takes each HI
command as it is entered, divides it into a program name and parameters, runs the
program indicated by the command name, and passes the parameters to the
program. CLI commands are internal to the CLI, not separate files on disk.

The CLI provides such features as type-ahead, command-line editing, and I/O
redirection: taking input from or sending output to a file or device on the
command line.

Three HI commands, logon, super, and submit, are similar to CLI commands by
the same name. The duplicate HI commands are for use with a custom command
interface, but lack CLI features such as aliasing, line-editing, and background
processing.

Networking Software
The iRMX-NET networking software provides connections across a network to
other systems that use OpenNET software. OpenNET is Intel's implementation of
an ISO-TP4 network and is available for such diverse OSs as MS-DOS (through
MS-Net), iRMX, UNIX, and VAX/VMS.

The iRMX-NET software also provides a set of HI commands that allow you to
perform such operations as managing the network attributes of the system, locating
a system by name, restarting the network software on the network controller board,
or loading a boot file to the network controller on a remote system. The network
software can perform many of these functions automatically during initialization.

22 Chapter 1 Using Commands

In addition to, or instead of, iRMX-NET, you may install TCP/IP software, which
includes its own set of utilities. This manual includes the TCP/IP commands. If
you do install TCP/IP, you can also choose to install NFS software to get
transparent file access across the net.

See also: Network User's Guide and Reference
TCP/IP and NFS for the iRMX Operating System

Understanding the File Systems
You can use commands more effectively with an understanding of the basic file
systems. These terms are used in relation to file names, and are explained in more
detail in later sections:

Pathname The designation used by the OS to find or specify the
location of a file or directory in the file tree. The forward
slash (/) is the usual separator in iRMX pathnames.

Logical name A short identifier or symbolic name for a pathname,
command string, device, etc. Logical names are usually
surrounded by colons, and are used to simplify command
entry.

Volume A physical device for storing files. The volume might be a
hard disk, a partition on a disk, a RAM disk, or a diskette or
tape. The diskette is associated with the name of the disk
drive, and the tape is associated with the name of the tape
drive.

Prefix The beginning reference in a pathname, usually a volume
name or a logical name.

Wildcards Characters (* and ?) used to replace some or all of the
characters in a filename. Wildcards are most often used to
specify several files in a single reference within a command.

Command Reference Chapter 1 23

File Types
The iRMX environment has five types of files: named, DOS, physical, stream, and
remote. If you use NFS software, there is also an NFS file driver.

Named files Divide the data on storage devices into individually
accessible units. Users and programs refer to these files by
name when they want to access information stored in them.
When operating from the command line, you access named
files more often than any other file type.

Physical files Enable the OS to deal with an entire I/O device as a single
file. The HI accesses backup volumes and devices such as
line printers and terminals in this manner. It also accesses
secondary storage devices (such as disk drives) as physical
devices when formatting them. When operators access
physical files, it is usually in a manner that is transparent to
them (such as copying a named file to the line printer or
formatting a disk).

Stream files Enables communication between programs. Two programs
can use a stream file for communication if one program
writes information to the stream file while another program
reads the information.

Remote files Are the same as named files. However, remote files reside
on a remote system connected to the network. No special
semantics are needed to access remote files, but file access
permissions may be different from local files. These are files
made available through the iRMX-NET Remote File Driver.

DOS files Are named files in the DOS file system format. They are
accessed through the EDOS file driver on iRMX for
Windows and the DOS file driver on all other iRMX
platforms. All iRMX users have access to all DOS files.

NFS Any file available on a remote system that is made available
through the NFS File Driver. In a generic sense, these are
also remote files.

24 Chapter 1 Using Commands

When you create files, use DOS conventions to name DOS and EDOS files: a
prefix of up to eight characters, followed by a dot (.) and a three-character suffix.
On other files, use the iRMX convention of up to 14 characters and no suffix. The
characters in file and directory names must meet the rules of both the DOS and
iRMX OSs. They can include letters (A through Z), numbers (0 through 9), and
any of the these characters:

. _ $ ~ ! # % & @ - { }

They cannot include spaces or any of these characters:

: / ^ * ? " ' | , = + < > () [] ;

There are two uses for the term named files. One is the generic sense, where any
files in a file hierarchy are established with individual names. In this sense, remote
and DOS files and directories are named files. However, there is also a named file
driver, which only operates on iRMX named files, not remote or DOS files (these
use their own file drivers). If a command parameter refers to files as named, as in
the format and attachdevice commands, the term refers to the named file driver.
Otherwise, the term named files in this manual can encompass any file that is not a
physical file.

See also: File types, System Concepts

The OS treats both data files and directories as files. It also treats devices as files,
after you use the attachdevice command to establish a logical name for the device.
Thus, when a command parameter gives you the option to write to a file, you can
write to a printer or terminal device by specifying the logical filename associated
with the device.

See also: Logical names, in this chapter

Named File Tree
Figure 1-2 shows a simple named file tree. In this figure, :vol: is a logical name
for the volume, which also represents the root directory of the tree. Within the root
directory are two directories named dept1 and dept2. Dept1 has two subdirectories,
user1 and user2. Dept2 contains a single file, myfile. The user1 directory contains
two files, fileA and fileB, while user2 contains fileC.

Command Reference Chapter 1 25

:vol:

dept1 dept2

user1
fileA
fileB

user2
fileC

myfile

W-2867

Figure 1-2. Example File Tree Structure

File Access and User IDs
All named files have an associated owner and list of users who have various
permissions to access the file. The file's owner and accessors are stored as user ID
numbers. If a file is owned by the World user, any user has complete access to the
file. If a file can be accessed by the World user, any user has the type of access
permissions granted, including the right to read, overwrite, append, and/or delete
the file. Directories have similar access rights, which apply not only to the
directory itself, but to files (and other directories) stored in it.

When you use a command to create a file (for instance, by copying a file or
specifying an output file in a command), your user ID is listed as the file's owner.
You can use the dir command with the long parameter to look at your access rights
to files, or with the extended parameter to display all the owners and accessors of a
file, along with the associated access rights. You use the permit command to
establish accessors and access rights.

See also: Creating files and copying files, Installation and Startup

All files managed by the DOS or EDOS file drivers are owned by the World user,
from the point of view of the iRMX OS. The DOS file system supports read-only
or read/write attributes for files. Directories cannot be made read-only.

If your system is configured to include the iRMX-NET networking software, any
user on the system who gains access to the HI through logon automatically
becomes a verified user. In the OpenNET network system, a verified user can
access files on remote systems through iRMX-NET. On a TCP/IP network, users
can access files on remote systems through NFS, which has its own verification
process.

See also: Access rights, permit command, Chapter 2

26 Chapter 1 Using Commands

Using Pathnames
If the directory where you are currently working is on another volume, you must
specify the volume name to refer to a file. For example, to refer to myfile from
another volume, you would specify the file as:

:vol:dept2/myfile

The forward slash (/) is the standard iRMX filename separator. When you specify
a logical name at the beginning of the pathname, you cannot use a slash between
the logical name and the next component of the pathname.

However, if your current working directory is on :vol:, you do not need to specify
:vol: as the root directory part of the pathname. You could refer to myfile from
anywhere on the volume with the pathname:

/dept2/myfile

The slash at the beginning of the pathname specifies the root directory of the
current volume. Both :vol:dept2/myfile and /dept2/myfile are considered full
pathnames to the file, as long as the beginning logical name refers to the root
directory of the volume.

You can also specify a file with a pathname that is relative to your current working
directory. For example, if your current directory is user1, you can refer to fileA
simply as filea. In iRMX, to refer to fileC, you could use a circumflex (^) operator:

^user2/filec

In iRMX, each circumflex tells the OS that the next path component resides up one
level in the file tree. When you use a circumflex in the pathname, you do not use
the / separator at that point in the pathname. For example, from the user1
directory, you could refer to the myfile file with either of the these pathnames:

/dept2/myfile
^^dept2/myfile

The pathname does not need to end in the name of a data file. You use the same
sort of pathnames to specify directories as to specify files.

In the DOS and EDOS file drivers, the dot-dot (..) operator works in a similar
manner.

The :$: logical name, discussed later in this chapter, determines the location of
your current working directory.

See also: Logical names, in this chapter
specifying pathnames, in your DOS documentation

Command Reference Chapter 1 27

Using the Copy Command with Multiple Pathnames
When specifying pathnames in a command's input and output lists, remember these
rules:

• If you specify multiple input pathnames and a single output pathname for the
copy command, file concatenation takes place.

• If you specify multiple input pathnames and one output pathname that is a
directory rather than a file, the HI copies all the input files into the directory.
Each file keeps its original name in the new directory.

• If you specify multiple output pathnames, you must specify the same number
of input pathnames as output pathnames. Specifying more input pathnames
than output pathnames results in an error message. For example, these
commands return error messages:

-copy a,b,c to d,e <CR> (invalid)
-copy a,b to c,d,e <CR> (invalid)

When the sequence of data in a concatenated file is important, remember that all
operations are performed in the sequence you specify in the command line.

Using Wildcards in Filenames
Wildcards are characters used to specify several files in a single reference within a
command. Use wildcards in any position in a filename to replace some or all of the
characters in the name.

You cannot use wildcards in the directory path part of a pathname, but if the last
component of a pathname is a directory name you may use a wildcard in that
directory name. Thus the name system/app1/*file is valid, but system/app*/infile
is not.

28 Chapter 1 Using Commands

The wildcard characters are * and ?:

? The question mark matches any single character. The HI selects every file that
meets this requirement. For example, the name file? implies all of these files:

file1
file2
filea

* The asterisk matches any number of characters (including zero characters).
The HI selects every file that meets this requirement. For example, the name
file* implies all of these files:

file1
file.obj
file
filechange

You can use multiple wildcards in a single name. For example, the name *if?.*
matches every file containing the sequence if followed by any character and a
period. This could include all of these files:

rmxifc.lib
ifl.p28
lnkifc.

The * character matches as close to the end of the pathname as possible. For
example, suppose the directory contains the file abxcdefxgh, and you enter:

copy *x* to :prog:*2*

The first asterisk matches the characters abxcdef and the second asterisk matches
the characters gh. The command creates a new file in the :prog: directory named
abxcdef2gh.

Command Reference Chapter 1 29

Many commands use input and output pathnames as parameters. You can use
wildcards in both input and output pathnames. For example:

copy a* to b*

In this command, the a* represents the input pathname and b* represents the output
pathname. The HI searches the appropriate directory for all files that begin with A.
It copies each file to a file of the same name, but beginning with B, as shown
below:

Original Files Copied Files
alpha blpha
a112 b112
a b

In some commands you can specify lists of input and output pathnames, separated
by commas. For example:

copy a,b,c to d,e,f

This command copies a to d, b to e, and c to f. If you use wildcards in any one of
the output pathnames, you must use the same wildcards in the same order in the
corresponding input pathname. This means that if you use both the * and the ?
characters, their ordering must be the same in both the input and output pathnames.
For example, this command is valid:

copy a*b?c*, x to *de?fgh*i, y

However, this command is invalid because the wildcards are out of order:

copy a*b?c* to *de*fgh?i

If you use wildcards in an input pathname, you can omit all wildcards from the
corresponding output pathname to concatenate files. For example, suppose a
directory contains files a1, b1, and c1. This command is valid:

copy *1 to x

It copies files in this manner:

a1 to x
b1 after x
c1 after x

However, if x is a directory, the HI does not concatenate files, but makes copies of
the files in the x directory.

See also: copy command, Chapter 2

30 Chapter 1 Using Commands

Specifying Hidden Files
An iRMX hidden file is any file whose name begins with r? or R?. Ordinarily, you
cannot specify a hidden file in a pathname because the HI interprets the question
mark as a wildcard. To specify a hidden file, surround the pathname or the
question mark with single or double quotes. For instance:

copy 'r?logon.csd' to :co: or
copy r'?'logon.csd to :co:

The dir command has an invisible parameter that lets you list the hidden files in a
directory.

See also: dir command, Chapter 2
specifying filenames, in your DOS documentation

Entering Commands
When you enter a command, line wraparound is not permitted. The maximum line
length is 76 characters, excluding the prompt, and no more than 79 characters
including the prompt. All characters exceeding the maximum line length are
ignored. To enter a line that exceeds 79 characters, create a continuation line by
using an ampersand (&) as the last character in the line. If you continue a line, do
not break the line in the middle of a command or a parameter. You may enter as
many continuation lines as necessary.

The CLI does not recognize continuation marks, comment characters, or quotation
marks within its own commands. These characters, however, are recognized by HI
commands. If the result of a CLI command causes execution of an HI command,
the HI command is governed by HI syntax. For example, background is a CLI
command but copy is an HI command. You may use a semicolon as shown below
to include a comment in the copy command. This command executes copy as a
background job:

background copy hi.txt to output.txt ;hi.txt contains tables

To execute a command, press <Esc> to execute the whole command line, or press
<CR> to execute only the beginning part of the command, up to the letter under the
cursor.

Command Reference Chapter 1 31

Command Syntax
The notation used for command syntax is shown below. Unless otherwise
instructed, you may enter any item in upper- or lower-case, or a combination of the
two. A few commands, for example grep, include a parameter that can be case-
sensitive; these are noted in the text. Include any punctuation shown except
brackets ([]), ellipses (...), and the vertical bar (|); these are described below.
Commas are usually used to separate items in lists, such as input and output paths.
Parameters (such as query) are usually separated with a space. However, when the
syntax includes a comma (,) or equals sign (=), using spaces to separate items is
optional.

Syntax

command variable [optional] [choice= item1|item2]
[repeated [item] [, repeated [item]]...]

command Enter any item printed like this exactly as it is shown.

variable For items printed in italic, enter a substitute, such as the name of a file
or a control character from a list of possible choices.

[optional]
Items surrounded by brackets indicate an optional parameter. If you
enter this parameter do not include the brackets.

[choice= item1|item2]
For items separated with a vertical bar, enter only one of the items.
You may enter choice=item1 or choice=item2, but not both.

[repeated [item] [, repeated [item]]...]
Items followed by an ellipsis (...) indicate that the item may be
repeated more times than it is shown. For this example, any of these
would be valid entries:

repeated
repeated item
repeated, repeated, repeated
repeated item, repeated, repeated item

32 Chapter 1 Using Commands

A few commands with many parameters have an additional syntax diagram. The
parameters are listed along a track, as shown below. Enter the track at the top left
and follow it through to the exit. Mandatory parameters are shown in line with the
track. Optional parameters are shown below the track (you may follow the main
track or follow the path through the option and return to the main track). Where
you have a choice of parameters, the track branches through them.

W-2627

(start) command A

B

C
D

E

F

G

A vertical dotted line indicates that the following parameters may be entered in any
order as long as they obey the rest of the syntax. Parameters preceding the dotted
line must be entered in the order they appear. In this example:

• A is a required parameter and you must enter it immediately after the
command.

• Either B or C is required. Whichever parameter you enter must follow A.

• D, E, and F are all optional but you may select only one. If you select one of
these parameters, you may enter it before or after G.

Command Reference Chapter 1 33

Using the To, Over, and After Parameters
Many commands include the option of writing output to one or more files. The
syntax is [to|over|after pathname], where you have a choice of writing to, over, or
after a specified file. If you don't specify this parameter at all, the output is
displayed onscreen (to the :co: device). You may use the parameter to direct the
output to a named file or to a device such as a printer (:lp:). When writing to a file,
use this parameter as follows:

to The command assumes the specified output file does not exist. If the
file already exists, the command displays a message similar to:

<pathname>, already exists, overwrite?

In response, enter Y to overwrite the existing file. Enter R to
overwrite not only this file but any remaining files in an output list,
without further prompting.

If you do not wish to overwrite the file, enter any other character or a
carriage return. If this is the only output file specified, the command
does not complete. If you are writing to a list of files, this particular
file is not overwritten, but other files in the list are written.

over If the output file exists, it is overwritten without a prompt; if not, it is
created.

after Output is appended to the end of an existing file; the current file
contents are preserved. If the file does not exist, it is created.

✏ Note
You cannot use to, over, and after with TCP/IP and NFS
commands. You cannot, for example, use these parameters with
the rcp command.

Abbreviating Parameters
Many of the command parameters have full names that may be abbreviated.
Generally, you can abbreviate these parameters by entering the first letter or
enough letters to distinguish one parameter from another. For example, when
entering a command that contains a query parameter you could simply type q. The
abbreviation is listed in the command syntax and the parameter description is
shown as:

q(uery)

34 Chapter 1 Using Commands

Other parameter abbreviations may not be a simple truncation of the name. For
example, the format command has a setbadtracks parameter; one possible
abbreviation is sbt. The parameter description shows this as:

s(etbadtracks) (or sbt)

This indicates that you could enter s, setbadtracks, or sbt.

Abbreviating Command Names
Some command names have abbreviations or aliases already provided. These are
listed in the Command Summary Table (in parentheses after the command name),
and in the table of System Aliases. In addition, the syntax descriptions give the
abbreviations along with the full name, as options. For example:

ad|attachdevice means that ad may be entered for attachdevice

Aliases must always be followed by a space, not a tab.

Recalling and Editing Commands
The CLI allows you to continue typing commands as the current command is being
processed, and to edit commands on the command line. You may edit a command
you are currently typing or recall a previous command and edit it. You may also
recall a previous command and re-issue it without editing.

There are a several ways to recall a previous command. One method is to use the
<Up-Arrow> and <Down-Arrow> keys to scroll through the command list stored in
a history buffer. For each keystroke, the previous or next command is displayed on
the command line, with the cursor at the end of the line. You can also use the ! and
history commands.

See also: ! and history commands, Chapter 2

To edit a command, use <Left-Arrow> and <Right-Arrow> to move within the
line. As you type new characters the following characters are advanced, not
overwritten.

When the cursor is in the command, there are two ways to invoke it. If you press
the enter key (<CR>), only the part of the command up to the cursor is invoked. If
you press <Esc>, the entire command line is invoked, regardless of the cursor
position.

When you reinvoke a previous command, it becomes the current command at the
end of the history buffer, and you are no longer scrolled upward in the command
list.

Command Reference Chapter 1 35

Using Command Search Paths
Each HI command is an executable file stored on disk. When you specify a
command, you are actually invoking the filename, and the HI must locate the file
in the directory structure. Typically, you don't invoke a command by its full
pathname (although you may), so the HI searches for the file in a set of directories
called a search path.

The number of directories searched and the order of search are set in the system
configuration for ICU-configurable iRMX III.

This table shows the default search paths in the standard definition files. The
directories shown are logical filenames, which are described later in this chapter.
These directories are searched in the order shown.

Table 1-1. Directory Search Paths for Commands

iRMX III iRMX for Windows

:prog: :prog:

:utils: :utils:

:util286: :util286:

:system: :system:

:lang: :lang:

:icu: :$:

:$: :rmx:

/etc /etc

If you write your own commands, you can take advantage of the order in which the
OS searches directories. For example, suppose you write your own copy command
that provides different functions than the HI copy command. If you want to invoke
your program whenever you use the copy command, place your program in a file
called copy in your :prog: directory. The OS searches the :prog: directory before
searching the :system: directory (which normally contains HI commands) and runs
your copy program instead of the default HI command.

If you have multiple versions of a command, you can specify the directory
pathname as part of the command name, to specify the particular version you want.

36 Chapter 1 Using Commands

Creating Command Aliases
You may use the alias command to retrieve a command from one of the directories,
as well as to create a shorter name for the command. For example, you might
define the attachfile command with an alias using this command:

alias af = :system:attachfile

In this case, every time you enter af, the OS replaces it with :system:attachfile and
invokes the attachfile command found in the :system: directory. The OS does not
search for the command in the search path. (This particular alias is already the
standard alias for attachfile.)

If you are a DOS user, you can use this facility to make commands similar to the
ones you use in DOS. For instance, you could use the command above, but define
:system:attachfile as cd, the DOS command to change the working directory.
However, keep in mind that the commands are not an exact match; attachfile also
performs other functions, such as assigning a logical name to a file.

See also: Logical names, in this chapter
Quick Reference to Commands for equivalent commands in DOS
 and iRMX OS
table of system aliases and alias command, Chapter 2

Aliases are useful to reduce the work of entering commands and command
sequences that you use often. You can also use aliases in submit files, which are
command files used with the submit command, similar to DOS batch (.bat) files.

You can also use alias to assign parameters to commands. For instance, you can
define:

alias C = :util386:RUN86 :LANG:IC386

Then you can enter the alias C with a filename, such as myfile.C:

C myfile.C

The CLI executes:

:util386:RUN86 :LANG:IC386 myfile.C

You can nest aliases up to five levels. For instance, you can define:

alias C = :util386:RUN86 :LANG:IC386
alias CNL = C #0.PC nolist

Command Reference Chapter 1 37

Then you can enter:

CNL source

The CLI executes:

:util386:RUN86 :LANG:IC386 source.PC nolist

Redirecting I/O
You may use I/O redirection to replace the command's standard input and/or output
with a file. Specify I/O redirection is with angle brackets, < for input and > for
output, which are recognized by the CLI. Normally, input to a command is from
the keyboard and output is to the screen. These are designated as :ci: (console
input) and :co: (console output). I/O redirection replaces the command's :co: and
:ci: with the specified file. When you redirect output, error messages and program
output are written to the specified file. When you redirect input, command input is
read from the specified file. This option is particularly useful when you execute
the background command. By redirecting output messages to a file, you free the
terminal for other operations. To use I/O redirection, include either or both of
these parameters anywhere in the command line:

<infile
>outfile

Where:

infile The name of the input file that replaces the terminal as standard input.

outfile The name of the output file that replaces the terminal as standard
output. If the file already exists, it is overwritten.

The examples below illustrate the use of the I/O redirection feature.

1. This example uses I/O redirection with the background command to redirect
screen output created by the copy command to a file called copy.log:

background copy myfile to yourfile > copy.log

2. This example uses I/O redirection to change the source of input from the
keyboard to a file named in.dat and to redirect the output to a file named
out.dat:

myprog < in.dat > out.dat

To use angle brackets for anything other than I/O redirection, surround them with
single or double quotes.

38 Chapter 1 Using Commands

Using Commands on Directories
A directory contains a list of all files assigned under its name. Display the contents
of a directory by using the dir command. Optional dir command parameters also
allow you to access and display other pertinent information about each file, such as
file size and other file attributes.

Displaying Files with the DIR Command
The iRMX dir command does not work exactly like the DOS dir command. In the
iRMX OS, if you just type dir , it displays all files in the current directory (:$:), as
in DOS. If, however, you include command line parameters, you must type $ to
specify the current directory.

For example, to display just the file myfile in the current directory, you cannot
enter dir myfile . You must enter dir $ myfile . The dir command always
interprets the first command line parameter as a directory, so when you type dir
myfile , it attempts to display the contents of a subdirectory named myfile under
the current directory. Similarly, if you want to display all invisible files in the
current directory, you cannot enter dir i (the “invisible” switch), you must enter
dir $ i .

Creating a New Directory
You create new directories by using the createdir command. You must specify
names for the new directories. Directory names are limited to 14 characters.

To create two directories named mytest and NUTEST, enter:

-createdir mytest,NUTEST <CR>

The HI responds:

mytest, directory created
NUTEST, directory created
-

Once you create directories and data files, you can enter their pathnames in either
lower-case or upper-case characters in subsequent commands; the HI commands
are not case-sensitive.

Command Reference Chapter 1 39

Referring to a Directory
To access any file or directory within the parent directory, you must specifically
identify the path in your command, in the form of a pathname.

For example, assume your working directory has a directory named nutest under
which you have another directory named samp. Samp, in turn, has a data file
named test. Nutest is the parent directory for the samp directory and samp, in turn,
is the parent for the test data file. In a command, the pathname for the samp
directory would be nutest/samp, where the slash characters separate the individual
hierarchical components of the pathname. The pathname for the test data file
would be:

nutest/samp/test

If the files are contained in your default directory, you can refer to them without
specifying a logical name as a prefix. When you enter this pathname, the HI
automatically appends the prefix :$: to the beginning:

nutest/samp/test

However, if the files are contained in a directory other than your working directory,
you must enter the complete pathname for the file. For example, if the files reside
on a device whose logical name is :AD3:, you must include this logical name as the
prefix portion of the pathname, as follows:

:AD3:nutest/samp/test

If you omit the :AD3: portion, the HI assumes the files reside in your working
directory.

Do not use the :S: logical name as a parameter for a command unless the command
description says it is allowed; most commands will not work properly.

Once you have added files to a specific directory, every subsequent operation
involving those files must specify a preceding directory name and the slash
separator unless you change your default directory.

See also: Logical names, in this chapter

40 Chapter 1 Using Commands

Creating a Directory Within a Directory
To create new directories in other directories, thereby expanding the file hierarchy,
use the createdir command. For instance, if you have a directory named mytest,
and you want to create the subdirectory urtest, enter:

-createdir mytest/urtest <CR>

The HI responds:

mytest/urtest, directory created
-

If the directory resides on a device (for example, :f6:) other than your default
device, you must also specify the logical device in the directory pathname.

Changing Your Working Directory
If there are many levels in your directory structure, the pathnames in your
commands can become inconveniently long. To avoid having to specify long
pathnames, you can use the attachfile command to change your working directory
closer to the level of the files you are using. For example, you could change your
working directory to the urtest directory, as follows:

-attachfile mytest/urtest <CR>

The HI responds:

mytest/urtest attached AS :$:
-

Now you can refer to files in the urtest directory without a preceding pathname.
The HI assumes the files reside in the urtest directory, because you have attached
urtest as your working directory.

You can use the attachfile command to change your working directory to any
directory. To return to your original default directory, called the home directory,
enter:

-attachfile <CR>

or

-af <CR>

The HI responds:

:HOME:, attached AS :$:

Command Reference Chapter 1 41

This command uses the default parameters and has the same effect as:

attachfile :HOME: as :$:

The :home: logical name represents your original default directory; therefore the
command returns :$: to its original value.

If you use several directories at one time, you can also use the attachfile command
to assign short logical names to these directories. By using the logical name in the
pathname, you shorten the length of the pathname you enter each time you specify
a directory.

See also: Logical names, in this chapter

Renaming Directories
A directory can be renamed to a new pathname on the same volume, but not to an
existing pathname. To rename a directory whose pathname is alpha/beta to the
new pathname alpha/bee, enter:

-rename alpha/beta to alpha/bee <CR>

The HI responds:

alpha/beta renamed to alpha/bee

Once you rename a directory, all files listed under that directory will also have
their pathnames changed. If your system has other programs that use data files
listed under the old directory name, those programs will never find the files. In
such a case, you must either rename the directory to its original name or modify the
programs.

Deleting a Directory
You can delete unused directories from secondary storage with the delete
command. Enter:

-delete mytest <CR>

This command only works if there are no files or subdirectories in the mytest
directory. If you previously created the mytest/urtest directory, the HI responds
with an error message; the HI will not delete a directory that is not empty.

42 Chapter 1 Using Commands

However, there is a powerful command called deletedir that you can use to delete
the entire contents of a directory, including all subdirectories, files, and the
directory itself. Deletedir should be used with caution, since this single command
can have far-reaching consequences.

See also: delete and deletedir commands, Chapter 2

Using Commands on Volumes
You can use all HI file-handling commands except rename to manipulate files
across volume boundaries. You can copy files or directories from one diskette or
hard disk to another one mounted on a different drive.

You access a different volume by entering the logical name for the device (the
drive on which the volume is mounted) as the first item in the pathname. To list
the root directory of a volume mounted on a drive whose logical name is :f1:, enter:

-dir :f1: <CR>

The HI might respond with:

01 JAN 90 00:00:00
directory OF :f1: ON VOLUME disk2
able baker chuck

To copy the able file from the volume mounted on :f1: to the mytest directory (if it
resides in your working directory), enter:

-copy :f1:able to mytest <CR>

The HI responds:

:f1:able copied to mytest/able

To delete files able and baker from the :f1: volume, enter:

-delete :f1:able,:f1:baker <CR>

The HI responds:

:f1:able, deleted
:f1:baker, deleted

A volume prefix must be specified for each pathname in any command that crosses
volume boundaries.

Command Reference Chapter 1 43

Formatting a New Volume
To use a new diskette or hard disk volume, you must format the volume before you
can write any information in it. The volume must be attached with attachdevice,
using the physical parameter, and formatted. There are exceptions to this general
rule:

• You cannot format a remote volume (including volumes accessed through
NFS). It must be formatted locally on the remote system.

• Typically, you do not use the format command to format a tape, nor do you
access files on a tape with most commands. Use the backup and restore
commands to format, create files on, and retrieve files from a tape.

After a volume is formatted, you can attach it as a named, remote, or DOS volume
and create files and a directory structure on it.

See also: attachdevice, format , backup, and restore commands, Chapter 2

As an example of formatting, assume that you place a new diskette in a disk drive,
and attach the drive with the logical name :f: , as a named device:

-attachdevice ah as :f: named <CR>

Enter:

-format :f: <CR>

The HI responds:

volume () will be formatted as a NAMED volume
 granularity = 512 map start =301
 interleave = 5 sides = 2
 files = 200 density = double
 extensionsize = 3 disk size = mini
 save area reserved = no
 bad track/sector information written = no
 MSA bootstrap information written = no
 System 120 bootstrap loader chosen = no
 volume size = 318K

volume formatted

This formatting example exercised all the default options. It did not specify a
volume name as a parameter of format . A volume name is not required; however,
for diskettes, a volume name gives you a method of identifying a volume in case
the diskette label gets lost or destroyed.

44 Chapter 1 Using Commands

The granularity, interleave, extensionsize, mapstart, and files parameters tell the
format command how you want the physical space on the volume allocated and
accessed for maximum efficiency. Using the default parameters caused the
example to be formatted with these attributes:

• Since the device is attached as a named device, the named parameter is the
default with format . It specifies that you will be using the volume only to
handle named files and directories. If you specified the physical parameter (in
either attachdevice or format), the entire volume would be treated as a single,
large physical file. Once you format the volume as named or physical, you can
only use it for that purpose. If you specified the DOS parameter, the entire
volume would be formatted with the DOS file system.

• The granularity parameter specifies the minimum number of bytes to be
allocated for each increment of file size on the volume. The default
granularity is the granularity of the physical device. Once the volume
granularity is defined, it is applied to every file you create on the volume.

See also: Uniform and standard granularity diskettes,
Installation and Startup

For example, assume the default volume granularity for your device is 1024
bytes. Each time you create a new file on the volume, the I/O System
automatically allocates 1024 bytes of primary storage to that file, whether or
not the file requires the full 1024 bytes. If the size of your file exceeds 1024
bytes, the I/O System will increment your file size by still another block of
1024 bytes, and so on, until the end-of-file is reached.

• The interleave parameter default specifies that you want an interleave factor of
5. The interleave factor defines the number of physical sectors that occur
between sequential logical sectors. This value maximizes access speed for the
files on a given volume, depending upon the use for the volume and the device
configuration of your system.

The interleave parameter is the only optional parameter that is meaningful for
volumes formatted for physical files; the files, extensionsize, and granularity
options are ignored in format commands that specify a physical file format for
the volume.

• The files parameter default specifies that you wish to create a maximum of 200
user files on the volume. Although the actual number of files you can specify
is 1 through 65,528, at a practical level one of your determining factors will be
the incremental file size you specify in the granularity parameter.

Command Reference Chapter 1 45

• The extensionsize parameter default specifies that you wish to create three
bytes of extension data for each file. The HI requires that at least three bytes
of extension data be available. Other system programs included in your system
may require larger values.

• The mapstart parameter gives the volume block number where the fnode and
map files start. If you do not specify a number, the HI places the fnode and
map files in the center of the volume.

Using TCP/IP and NFS Commands
The Posix, TCP/IP, and NFS commands do not necessarily have the same kind of
syntax as iRMX commands or as TCP/IP commands when used on other OSs.

Executing TCP/IP Commands
The syntax of TCP/IP commands in this manual assumes you have submitted the
/etc/tcpalias.csd file, which sets up aliases for the commands. For example, the ftp
command is an alias for psh ftp .

If you have not submitted this alias file, prefix each Posix-dependent command line
with psh and all other command lines with /etc/ when you invoke these commands.
For example::

psh uname -S intel1 -N intel1

/etc/hostname intel1

Case Sensitivity in TCP/IP and NFS Command Syntax
Unlike other iRMX commands, the syntax for TCP/IP and NFS commands is case-
sensitive. You can invoke the command names in upper- or lowercase since the
commands are utilities invoked by iRMX. However, you must enter the parameters
and internal commands in the case shown, except for items such as iRMX
filenames.

46 Chapter 1 Using Commands

Executing OS Commands From a Posix Shell
You can execute iRMX commands from a Posix program, such as psh, from a shell
escape from ftp , or from your own Posix application. However, do not execute any
iRMX command that does

attachfile :$:

Entering this command does not work under Posix and creates unpredictable
behavior.

Creating and Using Logical Names
Although you can use pathnames to refer to files, you can also create symbolic
names that correspond to files or devices. These symbolic names are called logical
names. You use the attachdevice command to create logical names that represent
devices. You use the attachfile command to create logical names that represent
data files or directories. You may also create logical names when configuring the
system. After creating a logical name, you can refer to the entity it represents by
specifying the logical name. You can use the logicalnames command to view all
the current logical names. The rules for logical names are:

• Each logical name must contain between 1 and 12 ASCII characters, excluding
the colons surrounding the name.

• The characters must be ASCII printable characters (hexadecimal values 021H
to 07EH, inclusive).

• The logical name cannot include a colon (:), slash (/), circumflex (̂), asterisk
(*), question mark (?), or any of these characters:

" ' | , = () [] ;

• When you specify a logical name in a pathname, you must surround it with
colons. Some commands do not require that you specify the colons
surrounding logical names that represent devices.

See also: attachdevice, attachfile, and logicalnames commands, Chapter 2

Command Reference Chapter 1 47

Creating Logical Names for Devices
By using device logical names as the prefix portion of your pathname
specifications, you can refer to any file on any device. For example, suppose your
system contains two diskette drives and you use the attachdevice command to
attach the devices as :f0: and :f1:. If you have a diskette containing the file
/dept2/myfile in drive :f0:, you could access the file with this pathname, using :f0:
as the prefix of the pathname:

:f0:dept2/myfile

If the diskette were in drive :f1:, you would access the file as:

:f1:dept2/myfile

You can use the dir command to list the root directory of the :f1: device as
follows:

dir :f1: <CR>

See also: Using devices, Installation and Startup

Creating Logical Names for Files
The OS establishes a number of logical names for files during system initialization.
These are listed later in this chapter. You may create additional logical names for
files with the attachfile command.

A logical name for a file provides a shorthand way of accessing that file. For
example, suppose you have a file that resides several levels down in the file tree,
such as:

:f1:dept1/tom/test-data/batch-2

In this command, :f1: is the logical name for the device that contains the file. You
can establish a short logical name for this long pathname, such as :batch:, by
attaching the file with the name :batch:. Whenever you want to refer to the file in
a command, you can specify the logical name instead of the pathname.

If a logical name refers to a directory instead of a data file, you can use the logical
name as a prefix of a pathname. For example, consider the same pathname:

:f1:dept1/tom/test-data/batch-2

48 Chapter 1 Using Commands

Suppose you attach the pathname :f1:dept1/tom/test-data as logical name :test:, so
it is a logical name for the directory test-data. To refer to file batch-2, you could
use the pathname :

:test:batch-2

Where Logical Names are Stored
When the OS creates logical names at initialization time, or as a result of the
attachfile or attachdevice commands, it places the logical name into an object
directory, along with a token for a connection to the file or device.

See also: Connections, System Concepts

This process is referred to as cataloging the logical name. The object directory that
receives this information determines the scope of the logical name (that is, who can
use the logical name). Object directories fall into three categories:

Local
object
directory

Some logical names are cataloged in the object directory of a
command's job. When you invoke a command (such as dir), the OS
creates a job for that command and catalogs certain objects in its
object directory. A command that you create and invoke might also
use system calls to catalog logical names in its own object directory.
Logical names cataloged in a local job can only be used in the context
of that job. They remain valid only until the job exits or is deleted.

Global
object
directory

Each interactive job (each user session's job) is called the global job
for that user session. This is the initial job for each user session
created by the HI. When you use attachfile to create logical names
for files, the OS catalogs the logical names in your global job's object
directory. Likewise, if you invoke any commands that issue
attachfile commands (as in a file used by the submit command), the
OS catalogs the logical names in your global job's object directory.
You and the commands you invoke can use the logical names
cataloged in your interactive job. Other users have no access to these
logical names. Logical names in your interactive job remain valid for
the life of your job or until they are detached.

When you invoke the background command, the CLI creates a global
job for commands invoked within the background environment. All
logical names that were valid when the background command was
entered are also valid in the background environment.

Command Reference Chapter 1 49

Root
object
directory

When you use attachdevice to create logical names for devices, the
OS catalogs the logical names in the root directory. Logical names
cataloged in the object directory of the root job can be accessed by
every user. Logical names in the root object directory remain valid
until they are detached or the system is reinitialized.

When you use the system option of the attachfile command, the
logical name is cataloged in the root directory and is available to all
users.

See also: Cataloging, jobs, object directories, System Concepts

Whenever you (or commands you invoke) use a logical name, the OS searches for
the logical name in the local object directory. If the logical name is not defined
there, it looks in the parent job's (global) object directory and finally, if necessary,
in the root object directory. It uses the first such logical name it finds.

Because of this order of search, you can override the system logical names (those
cataloged in the root object directory) by attaching the same logical name,
representing a different file or device, during your interactive job. For example,
suppose you use the attachfile command to attach a file with the logical name
:utils:. Whenever you specify :utils:, the OS refers to your file and not the one
represented by the same logical name in the root object directory.

Logical Names Created by the Operating System
The OS establishes logical names that you can use without first having to create
them. The HI catalogs system-wide logical names in the root object directory.
These logical names are available to all users, and they represent the same file or
device for all users. The number of logical names created and their identities
depend on the system configuration.

These logical names are available on iRMX systems that use the standard software
definition files:

:bb: A device treated as an infinite sink (byte bucket). Anything written to
:bb: disappears, and anything read from :bb: returns an end-of-file.
The :bb: device has the same effect as the DOS NUL device.

:config: A directory in which the HI expects to find user configuration files,
named :sd:rmx386/config.

:lang: A directory used to store language products, such as assemblers,
compilers, and linkers, named :sd:lang286.

50 Chapter 1 Using Commands

:sd: The system device. You should never change the default logical
name for the system device.

:stream: The stream file connection. To create a connection to a stream file,
you must use this logical name as the prefix portion of the pathname.

:system: The directory containing the HI commands, named :sd:sys386.

:utils: A directory used to store 32-bit utility programs , named :sd:util386.

:util286: A directory used only in iRMX III OS and iRMX for Windows to
store 16-bit utility programs, named :sd:util286.

:work: A directory that Intel language translators and utilities use to store
their temporary and work files.

These logical names are available on iRMX III systems only:

:icu: The directory containing the Interactive Configuration Utility files
(not used in iRMX for Windows), named :sd:rmx386/icu.

:lp: A logical name for the line printer.

:rmx: The directory containing the iRMX libraries, plus the configuration
files for iRMX for Windows, named :sd:rmx386.

These logical names are cataloged in each user's global object directory, and are
the same for iRMX for Windows and iRMX III. These names represent different
files or devices for each user.

:$: This represents the path to your current working directory, and is also
called your default prefix. If you do not specify a logical name (a
prefix) or a / at the beginning of a pathname, the OS automatically
uses :$: as the prefix, assuming that the file resides in the directory
corresponding to :$:. You use the attachfile command to change the
directory corresponding to :$:, and hence, your working directory.

:home: This is your default home directory, which you enter when you log on
to the system. Initially, :home: and :$: represent the same directory.
You can re-enter your home directory by issuing the attachfile
command with no parameters; this sets :$: equal to :home:.

:prog: A directory in which to store your programs.

Command Reference Chapter 1 51

These logical names are cataloged in the local object directory of each user and
each command that a user invokes. These logical names can have different
meanings for each user and each command.

:ci: The terminal keyboard, or console input. Each user's :ci: refers to the
terminal associated with that user.

:co: The terminal screen, or console output. Each user's :co: refers to the
terminal associated with that user.

On initialization, the HI may create additional logical names, specified as
configuration parameters. Contact your system manager for more information
about the logical names initially available to you.

See also: logicalnames command, Chapter 2

Error Messages
Each command can generate a number of error messages. The messages that apply
to a specific command are listed with that command. This list includes general HI
and iRMX-NET error messages that may appear with many of the commands. In
addition to a displayed message, condition codes from system calls to parts of the
OS may be reported. Condition codes are typically displayed as a hexadecimal
value and a mnemonic (for example, 0085:E_LIST).

See also: Condition codes, System Call Reference

General HI Error Messages
command not found

There is no command file with the pathname you specified, and the HI cannot find
the file in any of the directories it automatically searches.

<pathname>, delete access required
You do not have delete access to the file. If this is a remote file, a user at the
remote system has removed delete access. You cannot change the delete access
locally; a user at the remote system must grant delete access before this command
succeeds.

<logical name>, device does not belong to you
The specified device was originally attached by a user other than World or you.

<pathname>, file does not exist
The specified pathname does not represent an existing file.

52 Chapter 1 Using Commands

<pathname>, invalid file type
A data file was specified for an operation that required a directory, or vice versa.

<logical name>, invalid logical name
The specified logical name contains unmatched colons, is longer than 12
characters, or contains invalid characters.

<pathname>, invalid pathname
The specified pathname contains invalid characters, or a path component of the
pathname does not exist or does not represent a directory.

*, invalid wildcard specification
A pathname contains an invalid wildcard specification. For example, the
parameter requires one pathname only, but more than one file meets the wildcard
specification. Wildcards cannot be used in the directory path part of the pathname.

<logical name>, is not a device connection
The specified logical name does not represent a connection to a physical device.

<logical name>, logical name does not exist
The specified logical name is not cataloged in a global object directory, either for
your interactive job or for the root job.

parameters required
The command cannot be entered without parameters.

program version incompatible with system
The command cannot run successfully because it is incompatible with this version
of the OS. The command expects to obtain information from internal tables that
are not present.

<parameter>, unrecognized control
The parameter you entered is not valid for the command.

<pathname>, update or add access required
Either you cannot overwrite the file because you do not have update access to it
(for remote files, update and append access is required), or you cannot create a new
file because you do not have add-entry access to the parent directory.

<condition code:mnemonic>, while loading command
The condition code and mnemonic indicate an error encountered when the OS
attempted to load the command into memory from secondary storage.

<parameter>, <condition code:mnemonic>
This condition code was encountered while processing the indicated parameter.

<condition code:mnemonic>
This condition code was encountered while executing the command.

Command Reference Chapter 1 53

004BH : E_PASSWORD_MISMATCH
Your current password and user ID are not valid for the remote access you are
attempting. For example, on the remote system the user ID associated with your
user name has a different password.

02D0H : E_UDF_IO
An error occurred while accessing a remote User Definition File. The UDF must
have World read access.

General iRMX-NET Error Messages
Cannot communicate with iRMX-NET File Server

The File Server does not respond. Either the server was not configured into the
system or the iNA 960 transport software was not loaded successfully.

Communication resources are busy
The iNA 960 transport software is out of resources.

Fatal Error
A fatal unrecoverable error has occurred in MIP. It may be because iNA transport
software is not responding or may be due to hardware failure.

Internal Software Error. Try command later.
All internal tables are currently full; the command may succeed if tried again later.

iRMX-NET does not respond
The iRMX-NET software is not yet running. This error indicates an initialization
problem occurred that prevented the iRMX-NET job from starting. Reboot the
system and look for error messages during initialization.

No user mailboxes are available
The limit for the number of external mailboxes has been reached. The Number of
External Mailboxes option is a configuration parameter in the MIP configuration.
The application could be changed to use fewer external mailboxes, or in
configurable systems the number of external mailboxes could be increased.

Unexpected iRMX error occurred
MIP encountered an unexpected iRMX error; verify the OS configuration.

■■ ■■ ■■

Command Reference Chapter 2 55

Command Descriptions 2
Command Descriptions

This chapter provides a command summary table, in which the commands are
divided into functional groups. Then each command is described in detail, with the
commands arranged in alphabetical order.

Command Summary
Table 2-1 lists the commands described in this chapter. The table is divided into
these sections:

• CLI Commands

• HI Volume Management Commands

• HI File Management Commands

• HI General Utility Commands

• HI System Management Commands

• DOS Utility Commands

• iRMX-NET Commands

• TCP/IP and NFS Commands

See also: Equivalent DOS and iRMX Commands, Quick Reference to
Commands

56 Chapter 2 Command Descriptions

Table 2-1. Command Summary

CLI Commands

! Recalls a specified command line
alias Assigns an alias abbreviation to a command
background Executes a command as a background job
changeid Changes the Super user to a different user ID
dealias Deletes an alias
exit Leaves the Super user mode
history Displays the last 40 command lines
jobs Displays a list of background jobs by their job ID number
kill Cancels a background job
logoff Ends a user session
set Alters CLI environment values (terminal name, memory sizes, prompt)
submit Executes commands listed in a file
super Changes the operator to Super, the system manager

HI File Management Commands

attachfile (af) Associates a logical name with a file (changes the working directory)
case Converts the name of a file from upper- to lower-case
copy Displays or copies one or more files
copydir Copies one or more directory trees
createdir (crdir) Creates one or more new directories
delete Deletes one or more files or empty directories
deletedir Deletes one or more directory trees
detachfile (df) Removes the association of a logical name with a file
dir Lists a directory's filenames and, optionally, file attributes
dump Displays files in hexadecimal format
find Searches for files with names that match a given pattern
grep Searches files for strings matching a pattern, displaying matching lines
paginate Displays or copies files in page-sized pieces
permit Grants or rescinds user access to a file
rename Changes the names of files or directories
skim Displays text files one screenfull at a time
sort Displays or copies a file with lines sorted alphanumerically
touch Changes file time stamps
translate Displays or copies a file, converting upper- or lower-case characters
tree Displays a directory hierarchy
uniq Displays or copies a file with repeated lines removed

continued

Command Reference Chapter 2 57

Table 2-1. Command Summary (continued)

HI General Utility Commands

addloc* Merges information from a located file with a bootloadable file
aedit Invokes the AEDIT text editor
console** Dynamically changes the SDM console device to redirect the I/O

streams
date Displays or sets the system date
debug Transfers control to the SDM monitor to debug an iRMX application
esubmit Executes commands from a file based on conditional statements
help Displays a help file for commands or user-added utilities
keyb Configures the console keyboard for a specific country
locdata* Produces a located file for use with the addloc command
logicalnames Displays the logical names available to the user
memory Displays the memory available to the user
make Automates the creation of large programs
mkdep Assists the make command in creating makefiles or appending

dependencies to a given makefile
modinfo Displays or changes memory pool values in an OMF86 or OMF286

module
path Displays the pathname for a file
pause Displays a message and waits for a carriage return
physname Displays system DUIB names and information
remini Translates an rmx.ini file into iNA 960 load file format
rmextdbg Improves binding efficiency by removing unneeded entries from object

modules and producing a smaller version of the file
rmxloc Converts a segmented .exe or .exp. file into an absolutely-located

binary file
sleep Suspends execution for a given number of seconds
submit Executes commands from a file (for non-CLI users)
sysinfo Displays information about the boot system currently running
time Displays or sets the system time
timer Times the execution of a command and displays elapsed time
traverse Executes a command repetitively in a directory tree
version Displays the version numbers of commands
whoami Displays the current user ID
zscan Lists ZAPs (updates) applied to OS files

*Either not available or not useful in iRMX for Windows and iRMX for PCs continued
**For iRMX for Windows systems only

58 Chapter 2 Command Descriptions

Table 2-1. Command Summary (continued)

HI Volume Management Commands

attachdevice
(ad)

Attaches a new physical device to the system under a logical name

backup Copies named or DOS files to a backup volume
detachdevice
(dd)

Removes a physical device from system use and deletes its logical
name

deviceinfo Displays size and space information about a volume
diskverify Verifies the data structures of named and physical volumes
format Writes format information on an iRMX or DOS volume
mirror Provides disk mirroring operations for managing hard disk mirror sets
pci Sets a threshold at which I/O requests to a PCI server are buffered
rdisk Partitions a PCI hard disk
restore Copies files from a backup volume to a named or DOS volume
retension Retensions a tape

HI System Management Commands

accounting Tracks logon activities at dynamic terminals
bootdos Activates the primary DOS partition and resets systems
cli Invokes a loadable version of the Command Line Interpreter
connect Binds a locked terminal device to a logical name, making it accessible
disconnect Deletes a logical name for a locked terminal, making it inaccessible
ic Reads and modifies interconnect space registers in a Multibus II

system
initstatus Displays initialization status of HI terminals
jobdelete Deletes a running interactive job
lock Prevents the HI from automatically creating an interactive job at a

terminal
logoff Ends a user session (for non-CLI users)
password Changes user passwords or creates new users
pcnet A NetBIOS driver that provides the interface to iNA-based iRMX-NET
shutdown Shuts down the system in an orderly fashion
super Changes the operator to the Super user (for non-CLI users)
sysload Loads loadable device drivers or user jobs
term Displays or modifies terminal attributes
unlock Unlocks a terminal that was locked, and starts the HI logon sequence

continued

Command Reference Chapter 2 59

Table 2-1. Command Summary (continued)

DOS Utility Commands

bootrmx Activates the primary iRMX partition and resets systems
loadrmx Loads the iRMX OS
rdisk Partitions a DOS hard disk
rmxtsr Allows the iRMX OS to obtain DOS and AT ROM BIOS services

iRMX-NET Commands

bcl* Converts an ASCII file into a special binary file for remote booting
deletename Removes server names and addresses from the local Name Server

table
domain Sets the search domain of subnets the iRMX Name Server can access.
findname Finds the server name where a name or address object is cataloged
getaddr Returns the local system's Ethernet address
getname Returns the system name for a specified Ethernet address
inamon Reads and sets NMF objects, performs echo tests, or manages routing
lanstatus An alias for the netinfo command
listname Lists names and values of objects in the local Name Server table
load Downloads boot software and starts the network controller board
loadname Adds names and addresses from a file to the local Name Server table
modcdf Adds or deletes iRMX client systems in the Client Definition File
netinfo Displays the address, subnet ID, and iNA 960 information for network

controllers
offer Extends public directory access to remote users
pcnet A NetBIOS driver that provides the interface to iNA-based iRMX-NET
publicdir Displays pathnames of public directories on the server
remove Denies public directory access to remote users
setname Enters server names and addresses in the local Name Server table
unloadname Removes server names and addresses from the Name Server table
unxlate* Displays information about the format of a file translated with xlate
xlate* Produces a bootloadable image from an object module file

*Either not available or not useful in iRMX for Windows or iRMX for PCs continued

60 Chapter 2 Command Descriptions

Table 2-1. Command Summary (continued)

TCP/IP and NFS Commands

arpbypass Displays or modifies address resolution tables
bootpd Internet Boot Protocol server
enetinfo Displays Ethernet information
ftp User interface to File Transfer Protocol
ftpd File Transfer Protocol server
hostid Displays or sets the host identifier
hostname Displays or sets the host name
ifconfig Configures network interface parameters
netstat Shows network status
ping Tests communication between two hosts
psh Executes commands in a Posix environment
rarp Initiates Reverse Address Resolution Protocol requests
rarpd Reverse Address Resolution Protocol server
rcp Transfers files between network hosts
rlogin Lets you log in to a remote host
rlogind The server for the rlogin program
route Manipulates network routing tables
rpcinfo Reports Remote Call Procedure (RPC) information (NFS command)
rsh Executes commands on a remote host
rshd The server for the rsh program
ruptime Displays status of remote hosts running rwhod on the network
rwho Reports who is logged on remote hosts running rwhod on the network
rwhod The server for the rwho and ruptime programs
share Enables mounting of local NFS resources by remote clients
showmount Reports NFS-shared and mounted devices
slipd Serial Line Internet Protocol server
tcplisten Network listener daemon
telnet User interface to TELNET protocol
telnetd TELNET protocol server
tftp User interface to Trivial File Transfer Protocol
tftpd Trivial File Transfer Protocol server
uname Displays or sets system name
unshare Restricts mounting of local NFS resources by remote clients

✏ Note
There is no mount command for NFS; use the attachdevice
command instead.

CLI command !

Command Reference Chapter 2 61

!
Recalls a previously-entered command line by either its number or the beginning
letter(s) of the command. The CLI searches backward in the history buffer from
the most recently entered command, and displays the first matching command on
the command line. You may edit the line; the command is not executed until you
press <CR> or <Esc>.

Syntax

! variable

Parameter
variable

The command line number (0-999) or the beginning letter(s) of the command to be
recalled. The variable must immediately follow the ! character without a
separating space, unless you are recalling a command line that began with a space.

Additional Information

To display the line numbers associated with previous commands, use the history
command before using !. To recall a command line by its number, for example
line 29, enter:

!29 <CR>

When recalling a command by letter rather than by number, enter enough letters to
specify the line uniquely. The CLI recalls the most recent command line that
begins with the letters you specify. For example, if your previous commands were:

format :d:
ftn286 myfile.f28

and you enter:

!F <CR>

the CLI displays:

ftn286 myfile.f28.

If you want to recall the format command line, enter:

!fo <CR>

! CLI command

62 Chapter 2 Command Descriptions

Error Messages
<prefix>, history line not found

The command prefix you entered does not appear in the history buffer.

<number>, history number not found
The number you entered cannot be found in the history buffer.

<number>, history number out of range
The number you entered is greater than 999.

<number>, illegal history number
Your entry is not a legal number. It may include non-numeric characters.

HI command accounting

Command Reference Chapter 2 63

accounting
Displays, creates, or truncates the :config:account.log file, which contains the
logon and logoff history of dynamic terminals.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

accounting [create] [save = num]

Parameters

create Creates a new accounting file to store the logon and logoff history. You must be
the system manager to use this parameter.

save = num
Reduces the size of the accounting file by saving only the most recent num entries,
where num is a decimal number. All earlier entries are deleted from the file. You
must be the system manager.

Additional Information

For the accounting command to be effective, the system manager must first use the
create parameter to create an empty :config:account.log accounting file. The
create parameter places special information in the file that is used by the
accounting command. You must use this command, not a text editor, to create the
:config:account.log file. If you attempt to create the file and it already exists,
accounting displays this message:

:config:account.log, already exists, overwrite?

Enter Y or R to delete the existing file and create a new, empty file. Enter any
other character to leave the existing file intact.

accounting HI command

64 Chapter 2 Command Descriptions

Once the file exists, the HI records all logon and logoff activities in the file. Any
user may invoke the accounting command with no parameters to display the log,
which begins with the most recent activity.

If the :config:account.log file becomes too large or contains unnecessary
information, the system manager can use the save parameter to save only the most
recent information. When invoked with the save parameter, accounting displays
this message, indicating the decimal number of events saved and discarded. The
command then lists the events still recorded in the accounting file.

<n> events saved; <m> events deleted

To stop the OS from keeping track of logon and logoff activity, delete or rename
the :config:account.log file.

The example below illustrates the format of the accounting display:

user user terminal
 ID name device name date time event

 0 bob .t2. 13 AUG 86 16:22:50 logoff
world newuser .t1. 13 AUG 86 14:45:00 logoff
world newuser .t1. 13 AUG 86 13:01:10 logon
 0 bob .t2. 13 AUG 86 11:05:45 logon
 0 bob .t2. 13 AUG 86 11:05:15 logon error 004B

The columns in the example above contain this information:

user ID ID of the user who logged on or off at a dynamic terminal

user name Logon name used

terminal device name
Physical name of the terminal, as defined during configuration of the
BIOS and as attached by the HI. Periods surround each name.

date Date of the logon or logoff activity

time Time of the logon or logoff activity

HI command accounting

Command Reference Chapter 2 65

event One of these may be listed:

logon The user logged on the terminal.
logon error The user unsuccessfully attempted to log on;

the resulting condition code is also listed.
logoff The user logged off the terminal.
logoff job deleted The user was logged off as a result of the

jobdelete command terminating a job or the
shutdown command stopping the system.

logoff carrier lost A terminal connected to a modem lost the
carrier.

Error Messages
<condition code:mnemonic>, account.log is not available

The :config:account.log file exists but is not currently available for reading or
writing. The accounting command terminates when this occurs.

:config:account.log, file does not exist
The accounting file does not exist.

not a valid accounting log file
The :config:account.log file exists, but it is corrupted, doesn't contain accounting
information, or wasn't created with the create parameter. Use the accounting
command with the create parameter to create a new file.

only the system manager may change the accounting log file
Someone other than the system manager attempted to use the accounting command
with the create or save parameters. Use the super command to become the
system manager.

program version incompatible with accounting log file
The :config:account.log file contains accounting information that is incompatible
with this version of the accounting command.

<condition code:mnemonic>, while attaching accounting log file
The accounting command encountered this condition code while attempting to
attach the existing accounting file.

<condition code:mnemonic>, while creating accounting log file
The accounting command encountered this condition code while attempting to
create a new accounting file.

addloc HI command

66 Chapter 2 Command Descriptions

addloc
Integrates a data file created by the locdata command with an existing
bootloadable application file, to produce a new bootloadable file and a map file.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

addloc datafile , sysfile to|over outpath

Parameters
datafile

Pathname of the located data file produced by the locdata command. Multiple or
wildcard pathnames are not allowed.

sysfile
Pathname of a bootloadable application file in object module format (OMF286 or
OMF386). This must be a file created by the Builder utility (BLD286 or BLD386,
which is invoked by the iRMX ICU). Multiple or wildcard pathnames are not
allowed.

to|over
Specify to create a new file or over to overwrite an existing file.

outpath
The pathname of the file that is to receive the combined information from datafile
and sysfile. This is a new bootloadable file in object module format. Multiple or
wildcard pathnames are not allowed. The base filename (not including a filename
extension) is limited to ten characters because the addloc command creates a print
file of the same name with the extension .mpa.

HI command addloc

Command Reference Chapter 2 67

Additional Information

You can use the locdata and addloc commands together to create an application
that automatically loads part of itself into a RAM disk when the system boots.

Generally, to use a RAM disk you configure a system with an area of RAM
dedicated to the RAM disk. When the system boots, you attach the RAM disk
memory to your system, format it, and move data into and out of it just as you
would with any other secondary storage device.

If you want to use a RAM disk to store part of the application system (for instance,
the HI commands), the stored data must be available in the RAM disk area when
the system boots. This data cannot be copied into the RAM disk until you have
configured the application system into a bootable file, because the RAM disk area
doesn't exist until you define it through the configuration process. Therefore, you
must integrate a copy of a RAM disk data structure into an existing application
system bootfile.

Addloc and locdata can create this new bootloadable version of the application
system, which includes a copy of the RAM disk data structure. A map file is also
produced, giving information about the new bootloadable file and the process that
created it. When this new file is booted, the RAM disk data structure is loaded into
memory in the area defined for the RAM disk during configuration.

See also: locdata command, in this chapter

When you invoke addloc, if the first parameter is a file that has not been processed
by locdata, or if the second parameter is a file that has not been created by the
Builder utility, addloc issues this error message and exits without processing the
data:

usage: addloc <located data file>, <system file> to/over
<outpath>

When processing is complete, addloc displays one of these messages:

<located data file> added to <system file> to <outpath>

<located data file> added to <system file> over <outpath>

Addloc also creates a print file with the filename extension .mpa. Thus if the
bootloadable file produced by addloc is named newsys.386, the print file is named
newsys.mpa. The print file contains a header that includes the name of the input
and output files, the address space used by the system file and the located data file,
and the base address of the located data file. Following the header is a list of any
error messages addloc may have generated.

addloc HI command

68 Chapter 2 Command Descriptions

Error Messages
addloc, two input files only

Addloc requires two input files; you specified more or fewer.

addloc, one output file only
Addloc requires one output file and you specified more.

addloc, missing parameters
In the invocation line you omitted one or more required parameters.

after, is an illegal preposition for addloc
The after preposition in your invocation line, is not a legal addloc preposition.

<string>, illegal preposition
The preposition in the invocation line is not a legal addloc preposition.

<filename> file format is xxx

<filename> file format is yyy
If two input files are used, they must be of the same OMF type. The xxx and
yyy in the message give the OMF type.

<pathname>, output file same as input file
Addloc does not allow the input filename to be used as the output filename.

<pathname>, print file same as output file
The output filename you specified has the same name as the print file with the .mpa
extension.

<pathname>, output pathname too long
The name of the file you specified in the output pathname exceeded ten characters.

<pathname>, write error
A system error caused an incorrect number of bytes to be written to the output file.
Retry the command.

<pathname>, read error
A system error caused an incorrect number of bytes to be read from the input file.
Retry the command.

<pathname>, not a located data file
The file was not processed by locdata.

<pathname>, not a bootloadable file
The system file was not a system image file.

In addition to the error messages listed above, addloc produces the three warning
messages listed below. After each message, addloc lists the file that caused the
warning, the physical address, and the length of the section containing the faulty
parameter.

HI command addloc

Command Reference Chapter 2 69

OVERLAPPING AREAS IN MEMORY
The section read from the system file overlaps memory that was assigned to the
located data stream. Although the process continues, the output is invalid.

BAD SEQUENCE
The located data file contains a section that is not contiguous to the previous
section. Although the process continues, the output is invalid.

BAD CHECKSUM
One of the input files you specified has a bad checksum. Output is invalid.

aedit HI command

70 Chapter 2 Command Descriptions

aedit
Invokes the AEDIT text editor.

Syntax

aedit [first_input_file [,second_input_file]]

Parameters
first_input_file

The file you want to edit. If you do not specify a file, AEDIT creates a new file,
and prompts you for a name when you use the quit command.

,second_input_file
The name of the second input file to edit. You can switch between the files with
the other command.

Additional Information

AEDIT is an interactive, screen-oriented text editor. In addition to performing
basic word-processing operations such as cursor movement and inserting, deleting,
or overtyping text, you can use AEDIT to:

• Find any string of characters

• Substitute one string of characters for another string

• View and edit two files or two portions of the same file simultaneously

• Move or copy sections of text within a file or between files

• Create macros to execute several commands at once, thereby simplifying
repetitive editing tasks

• Perform arithmetic functions

• View lines over 80 characters long

AEDIT also provides a set of commands that you can use in the invocation line to
further control the editor's actions and output.

See also: AEDIT invocation and commands, Programming Techniques and
AEDIT Text Editor

HI command aedit

Command Reference Chapter 2 71

When you invoke AEDIT, the editor displays this prompt at the bottom of the
screen:

 -??- system-id AEDIT V x.y Copyright yyyy Intel Corp.

 Again Block Calc Delete Execute Find -find --more--

The question marks (-??-) at the beginning of the first line indicate that AEDIT is
waiting for input. Exclamation points (-!!-) in the same position indicate that
AEDIT is executing a command. A vertical bar (|) marks the end of the file; it is
initially in the upper left corner of the screen in a new file.

The --more-- at the end of the second line indicates that there are more
commands available. Use the <Tab> key to see additional commands.

These are the basic cursor movement keys:

Arrows The four keys labeled with directional arrows, <Left>, <Right>,
<Up>, and <Down>, are the cursor control keys .

<Home> The <Home> key provides faster cursor movement. Press an
arrow key followed by <Home> to page backward or forward
through a file, or to move rapidly to the beginning or end of a
line. You can also use <Home> to enter the re-edit mode for
line-edit prompts.

<Return> The <Return> key moves the cursor to the beginning of the next
line in insert and xchange modes, and at the main command
level. It also terminates the line-edit prompt.

These are basic AEDIT commands:

I or i Enters insert mode. You must enter insert mode to type text
onto the screen. To exit insert mode and return to the main
command level, press <Esc>.

<Backspace> Deletes the character to the left of the cursor, if you are at the
main command level or in insert mode.

<Tab> Rotates the menu prompt line to display the next line of
commands. In insert or xchange modes, <Tab> inserts the
<Tab> character (or optionally, replaces it with an equivalent
number of blank spaces).

<Esc> The <Esc> (escape) key exits modes, terminates commands, and
returns the editor to the main command level.

aedit HI command

72 Chapter 2 Command Descriptions

To exit from the editor, press Q for quit . This prompt appears at the bottom of the
screen:

-??- no input file
Abort Init Write

W saves the file, and if this is a new file AEDIT will prompt you for an output file
name. A aborts the session without saving.

See also: init command, Programming Techniques and Tools

Error messages

These are some of the more common error messages:

illegal invocation
You attempted to invoke AEDIT with an illegal invocation line, or used an illegal
invocation under quit init .

illegal command
You entered an illegal and/or unknown command, which AEDIT ignores.

insufficient memory
AEDIT does not have enough RAM memory.

See also: Error messages in AEDIT manual, Programming Techniques and
AEDIT Text Editor

▲▲! CAUTION
AEDIT converts filenames to uppercase. This may cause
confusion if you use AEDIT to edit and save a NFS file residing
on an OS that has case sensitive filenames.

CLI command alias

Command Reference Chapter 2 73

alias
Creates an alias for a command string, or displays the definition of an existing
alias.

Syntax

alias [abbreviation] [= command [# parameters]]

Parameters
abbreviation

When defining an alias using the = command syntax, this is the short term that
becomes an alias for the specified command. When displaying alias definitions,
the abbreviation may contain a wildcard (*) as the final character.

= command
A command string that may contain command-line parameters as well as the
command.

#parameters
Up to ten formal parameters, specified as #0 to #9, that are replaced by actual
parameters when you invoke the alias.

Additional Information

You may create an alias for any command or command string, including the alias
command. Once the alias abbreviation has been assigned, the CLI recognizes the
abbreviation as if it were the entire command. The alias stays in effect until you
enter either a dealias or a logoff command.

You may define an alias that refers to another alias. Aliases can be nested in this
fashion up to five times. You may also change an existing alias. For example, if
the alias m=mer is defined, you can change it to m=merrr by entering:

alias M = MERRR <CR>

The CLI changes the alias and issues this message:

<abbreviation>, former alias removed

The default size for the table that stores aliases is 2K bytes. If you need more or
less space to store aliases, use the set command to modify the size of the table.

alias CLI command

74 Chapter 2 Command Descriptions

When you invoke an alias that contains formal parameters, each actual parameter
on the invocation line replaces a formal parameter, in order. You need not enter
the same number of actual parameters as there are formal parameters. For
example, if there are three formal parameters and you enter two actual parameters,
a null string replaces the third formal parameter. If you enter more actual
parameters than there are formal parameters, the extra parameters are considered
another command parameter.

To display all currently defined aliases, enter alias with no parameters. To display
the definition of a single alias, specify the abbreviation on the command line. For
example, to display the definition of the ad alias, enter:

alias ad

You may use the * wildcard character at the end of the abbreviation to display a
group of alias definitions. For example, to display all aliases that begin with the
letter M, enter:

alias m*

If the list of displayed aliases requires more than one screen, the CLI displays one
screen followed by this message:

display more ? ([y] or n)

To see more alias definitions, enter Y or simply <CR>. Otherwise enter N.

Certain aliases are automatically defined for you by the OS. These aliases are in
submit files (refer to the submit command) that run when you log on to the system.
System aliases are the same for all users and are required for all iRMX
configurations. These are defined in the :config:alias.csd file, and should not be
changed. Other aliases are defined in your :prog:alias.csd file. Any alias that you
enter on the command line is no longer defined the next time you log on. To
permanently store an alias, enter it in your :prog:alias.csd file. You may change
any of the default aliases in the :prog:alias.csd file.

Table 2-2 lists the system aliases in the :config:alias.csd file.

CLI command alias

Command Reference Chapter 2 75

Table 2-2. System Aliases in the :config:alias.csd File

Alias Command

ad attachdevice

af attachfile

cd attachfile

crdir createdir

dd detachdevice

del delete #0 q

df detachfile

install submit :config:cmd/instal(#0)

installrmx submit :config:cmd/rmxinstl(#0)

lf dir

tinstall submit :config:cmd/tinstall(#0)

md createdir

mkdir createdir

mksys submit :config:cmd/mksys(#0) (not for iRMX for Windows)

pwd path

Alias DOS-hosted tools iRMX-hosted tools

asm386 run86 /intel/bin/asm386.exe run86 :lang:asm386

bnd386 run86 /intel/bin/bnd386.exe run86 :lang:bnd386

bld386 run86 /intel/bin/bld386.exe run86 :lang:bld386

ic386 run86 /intel/bin/ic386.exe run86 :lang:ic386

lib386 run86 /intel/bin/lib386.exe run86 :lang:lib386

map386 run86 /intel/bin/map386.exe run86 :lang:map386

plm386 run86 -fixplm /intel/bin/plm386.exe run86 -fixplm :lang:plm386

alias CLI command

76 Chapter 2 Command Descriptions

Table 2-3 lists default aliases in the :prog:alias.csd file. To find the aliases for
your system, refer to the section in the table labeled "All Platforms" and the section
for the system bus type. The default aliases for iRMX for Windows are those in the
"PC Bus" section, even if you install iRMX for Windows on a Multibus I or II
platform.

Table 2-3. Default Aliases in the :prog:alias.csd File

ALL PLATFORMS
Alias Command

MULTIBUS I - SPECIFIC
Alias Command

a alias adf attachdevice wmf0 as :f:
aed aedit adv attachdevice g279_0 as :vdi: physical
bk background ddv detachdevice :vdi: force
h history MULTIBUS II - SPECIFIC
logs logicalnames Alias Command
ls dir $ sort agents ic -c agents
lpr bk(100,100) copy #0 to :lp: agentreset ic -c reset #0 local
m skim adf attachdevice wqf0 as :f:
more skim adv attachdevice g279_0 as :vdi: physical
pmw permit #0 drau u=world coldreset ic -c reset 0 cold
s submit d dir $ i l
sh shutdown w=0 ddv detachdevice :vdi: force
trv traverse icread ic -c get #0 #1 #2
iRMX FOR WINDOWS - SPECIFIC icwrite ic -c set #0 #1 #2
Alias Command monitor ic -c reset -p monitor #0 local
ada attachdevice a as :a: myslot ic -c myslot
adah attachdevice ah as :a: nmi ic -c nmi #0 software
adam attachdevice am as :a: nmiforce ic -c nmi -e #0 software
adamh attachdevice amh as :a: offline ic -c kill #0
adb attachdevice b as :b: p path
adbh attachdevice bh as :b: reboot ic -c reset -p bootstrap #0 local
adbm attachdevice bm as :b: sysreset coldreset
adbmh attachdevice bmh as :b: warmreset ic -c reset 0 warm
adf attachdevice a as :f:
dda detachdevice :a:
ddb detachdevice :b:

CLI command alias

Command Reference Chapter 2 77

Examples

1. To assign an alias called PLM, with a formal parameter, enter:

alias PLM = :lang:plm386 #0.p38 nolist <CR>

Then, to compile a file called mine.p38 in the current directory, enter:

plm mine <CR>

The CLI replaces the formal parameter #0 with mine and executes the
command as if you had entered :lang:mine.plm386 p38 nolist .

If you enter:

plm mine pagewidth(132) <CR>

The CLI executes this, adding pagewidth(132) as an additional command
parameter. The CLI does not echo this command on the screen:

:lang:plm386 mine.p38 nolist pagewidth(132)

2. To use the nested alias feature, define these aliases:

alias PLM=:lang:PLM386
alias PNL=PLM #0.P38 nolist

Now when you enter:

PNL source <CR>

The alias command replaces PNL with PLM #0.P38 nolist , assigns source

to #0, replaces PLM with :lang:PLM386 , and executes:

:lang:source.plm386 p38 nolist

Error Messages
alias, wrong alias syntax

The command syntax is not correct.

<parameter>, alias not found
The alias you entered is not in the list of declared aliases.

<parameter>, wildcard is allowed only in the last character
You tried to list aliases with a wildcard character that was not the last character in
the string.

alias CLI command

78 Chapter 2 Command Descriptions

<parameter>, wildcard not allowed in alias abbreviation
You declared an alias with a wildcard. You can use wildcards only to display a list
of aliases, not to define them.

alias, no space in alias table
The alias table is full. No more aliases can be assigned unless you increase the size
of the alias table with the set command or delete some aliases.

TCP/IP command arpbypass

Command Reference Chapter 2 79

arpbypass
Displays and modifies the address resolution tables used by the Address Resolution
Protocol (ARP). These tables translate between the Ethernet addresses used at the
hardware level and the Internet addresses used by TCP/IP software.

Syntax

arpbypass -a
arpbypass <get|del> inet-addr
arpbypass [-f flags] [-t type] set inet-addr phys-addr

Parameters

-a Displays the entire contents of the ARP table.

get Displays a single entry in the ARP table.

del Deletes an entry from the ARP table.

inet-addr
A host name or Internet address.

-f flags
Specifies the status of an entry when setting it. Valid flags are:

0 complete
1 complete and permanent (default)
2 complete and publishable
3 complete, permanent, and publishable

-t type
Identifies the type of physical address mapped to the Internet address. Although
these types are valid for arpbypass, the supplied Data Link drivers only support
Ethernet addresses. The additional types HDLC (DL_HDLC), BISYNC
(DL_CHAR), and IBM/CTC (DL_CTCA) are not fully supported by arpbypass.

0 (DL_CSMACD) IEEE 802.3 (CSMA/CD)
1 (DL_TPB) IEEE 802.4 (Token Bus)
2 (DL_TPR) IEEE 802.5 (Token Ring)
3 (DL_METRO) IEEE 802.6 (Metro Net)
4 (DL_ETHER) Ethernet, the default

set Modifies or adds an entry in the ARP table.

arpbypass TCP/IP command

80 Chapter 2 Command Descriptions

phys-addr The physical address of the network interface. Specify an Ethernet
address in any of these hexadecimal forms:

0xhhhhhh.0xhhhhhh
0xhhhhhh.0xhh.0xhh.0xhh
0xhh.0xhh.0xhh.0xhh.0xhh.0xhh.

Additional Information

At network initialization, arp places a complete and permanent entry in the ARP
table for every configured Ethernet interface. Because permanent entries cannot be
deleted, these entries remain in the table until the network is taken down. Once the
initialization is complete, arp dynamically adds and updates host entries based
upon information received from arp modules on other network hosts. As the table
fills, older entries are deleted and the space is reallocated for more recently used
addresses.

You typically use arpbypass to display the current contents of the table. You
should add and delete entries only for hosts that do not implement the ARP
protocol; modifying the contents of dynamically maintained entries has
unpredictable effects.

The first form of the arpbypass command, using the -a option, displays the entire
contents of the ARP table. For example:

- arpbypass -a

host2.intel.com inet 128.215.12.21: Ethernet 00.aa.00.02.1c.2a {COM,PERM,PUBL}

host1.intel.com inet 128.215.12.20: Ethernet 00.aa.00.02.13.38 {COM,PERM,PUBL}

ayers.intel.com inet 128.215.18.242: Ethernet 00.aa.00.02.29.bb {COM}

-

For each entry, the command displays the official host name, the Internet address
(preceded by the word inet), the Ethernet address (preceded by the word
Ethernet) and the status of the ARP table entry. The Ethernet address is a six-
digit hexadecimal value. The status is a comma-separated list of codes, with these
meanings:

INCOMPLETE Incomplete: contains only an Internet address.

COM Complete: contains both Internet and Ethernet addresses.

PERM Permanent: cannot be deleted from table by arp.

PUBL Publishable: can be published in proxy for a non-ARP host;
it can be used to answer an ARP request from another host.

TCP/IP command arpbypass

Command Reference Chapter 2 81

The second form of the arpbypass command uses the get or del keyword to
display or delete a single ARP table entry, specified by its host name or Internet
address. For example:

- arpbypass get host1

host1.intel.com inet 128.215.12.20: Ethernet 00.aa.00.02.13.38 {COM,PERM,PUBL}

-

The third form of the arpbypass command uses the set option to create or modify
an ARP table entry. This example adds an entry for host name lee . The Internet
address 128.215.18.185 could be substituted for the host name in the command.
When you specify lee , arpbypass gets the Internet address from the name lee in
the /etc/hosts file. The screen display in response to the command indicates that
the entry was successfully added to the table.

- arpbypass -f 3 set lee 0x02.0x07.0x01.0x00.0x10.0x76

lee.intel.com inet 128.215.18.185: Ethernet 02.07.01.00.10.76 {COM,PERM,PUBL}

-

The -f 3 option marks the ARP entry as complete, permanent and publishable.
The -t type option is not specified, since only the default Ethernet type is
supported.

If a host on the network does not implement ARP, choose one or more of the other
network hosts to act as proxy for the non-ARP host. On the ARP host(s), use
arpbypass to add a complete, permanent, and publishable entry for the non-ARP
host. The ARP host can then publish non-ARP host's physical address upon
request.

You can use arpbypass at the command line any time after network initialization.
However, you typically add entries by placing the command in the network startup
script tcpstart.csd, after the command that starts the inetinit daemon. When you
add an ARP entry in this way, also add the official host name and its Internet
address to the /etc/hosts file, so the correct name-to-address translation can be
made during network initialization. Because the entry is permanent, it cannot be
deleted by the arp module when the table is full. The entry remains in the ARP
table until the network is taken down or until you explicitly remove it with an
arpbypass del command.

See also: route command, in this chapter

Diagnostics

Exit status is zero for normal termination or a positive number for error
termination.

arpbypass TCP/IP command

82 Chapter 2 Command Descriptions

arpbypass: cannot get arptab size: error message
The size of the ARP table could not be retrieved for the given reason.

arpbypass: can't get memory for arptab
Could not allocate enough local memory to store the retrieved ARP table.

arpbypass: error reading arptab: error message
The given error occurred while reading the ARP table.

arpbypass: invalid arptab size (size)
The retrieved ARP table size was either less than 0 or greater than 1000.

arpbypass: open failed for DEV_ARP: error message
An arp minor device could not be opened for the given reason.

cmd: error message
The given error occurred while trying to execute the command.

cmd: not in ARP table
The command failed because the specified entry was not in the ARP table.

cmd: must have SYSPRV
The command failed because it requires superuser privileges.

cmd: no interface for internet address
The command failed because the destination network was unreachable.

cmd: No room in ARP table, try later
The ARP table is full; the entry was not added.

Default flags set to ATF_COM and ATF_PERM
An invalid flag was supplied to the set command, the default was used.

Only ethernet/ieee types supported.
An invalid or unsupported type was supplied to the arpbypass set command.

phys_addr : bad format
An invalid physical address was supplied to the arpbypass set command.

inet_addr : bad value
An invalid Internet address was supplied to the arpbypass set command.

HI command attachdevice (ad)

Command Reference Chapter 2 83

attachdevice
Attaches a physical device to the OS and associates a logical name with the device.
Attachdevice catalogs the logical name in the root object directory, making the
logical name accessible to all users. This command dynamically builds a table of
all file drivers in the system. Devices may be attached to the resident file drivers
that are configured into the system, or loadable file drivers that have been loaded
with the sysload command.

Syntax

ad|attachdevice physical_name as logical_name
[file_driver |n|p|r|nfs|e|d] [d(elay)] [w]

Parameters
physical _name

Physical device name of the device to be attached to the system, up to 14
characters long. For file drivers that do not require DUIBs (Device Unit
Information Blocks) such as NFS, this name may be up to 255 characters long.
This name must be the name defined at system configuration time. With NFS, this
name includes the hostname:/symbolic name as defined on the NFS server system.

as Preposition required for the command.

logical _name
A 1- to 12-character name (excluding colons) to be associated with the device.
Colons surrounding the logical name are optional, but if used must be in pairs
(:logical _name:).

file_driver
A 1- to 14-character name of the attached file driver. The file driver may be either
resident or loaded. File driver abbreviations are allowed for loadable file drivers.
The file_driver parameter will match to the first file driver name that it either
matches or is a substring of. The pre-defined abbreviations are:

n(amed)
The volume mounted on the device is already formatted for the iRMX named
file driver. Volumes that can contain named files are diskettes or hard disks.
If named, physical , remote , nfs , edos , or dos is not specified, named is
the default.

p(hysical)
The volume mounted on the logical device is considered to be a single, large
file. Examples include printers, terminals, and tape drives.

attachdevice (ad) HI command

84 Chapter 2 Command Descriptions

r(emote)
The volume mounted on the logical device is an iRMX-NET remote file
server. If you specify remote with the physical name of a remote server, a
logical name is created for the virtual root directory of the server. The logical
name is used to transparently access files residing at the server. The server,
rather than the consumer, associates the appropriate device drivers with the
devices residing at the server system. As a result, client systems do not require
DUIBs attached for remote servers. The world switch is always supported for
consumer-based connections and is supported for server-based connections if
the remote server has defined a user named World with a carriage return
password.

nfs
Specifies the NFS file driver job running on the client. Attaching devices
through this driver allows you to transparently access the remote logical device
as if it were local to the client. The device you are attaching to must be
defined as NFS-shared by the remote host.

e(dos)
For iRMX for Windows only, specifies the encapsulated DOS (EDOS) file
driver, enabling iRMX users to access shared DOS files. The edos parameter
includes the delay and world parameters. Physical device names used with this
parameter include a_dos through z_dos, which are equivalent to DOS drives A:
through Z:.

d(os)
For all iRMX OS versions except iRMX for Windows, specifies the native
DOS file driver, enabling iRMX users to access DOS volumes. Physical
device names used with this parameter include c_dos through z_dos, which are
equivalent to DOS drives C: through Z:.

d(elay)
The device is attached logically, but not physically attached until the first access.

w(orld)
The World user (ID 65535) is the owner of the device. Any user can detach the
device. If you omit this parameter, your user ID is listed as the owner of the
device. In this case, only you and the system manager can detach the device. In
iRMX for Windows, access to all DOS volume is always done as World.

HI command attachdevice (ad)

Command Reference Chapter 2 85

Additional Information

To use a device you must attach it, unless it is attached by the system during
initialization. For example, before you use the format , backup, or restore
commands, you must attach the appropriate device. Likewise, any time you put a
diskette in its drive, you must attach the drive device. For general access of a hard
disk or diskette, such as reading or writing files, you may attach the device under a
generic physical device name. However, to format a hard disk or diskette, you
must attach it under a specific physical (DUIB) name that specifies the device
characteristics.

When you invoke attachdevice with no parameters, it displays a usage message
and the available file drivers. If no file driver is specified on the command line, the
command will attempt to attach the device using in order the named, dos , and
edos file drivers (if available) until a successful attach occurs. It also prints the
name of the file driver it has attached to. If an unformatted device is encountered,
the command will default to the named file driver so that a named format
command can occur.

See also: physname command, in this chapter
supplied drivers and physical device names, Appendix E
format command, in this chapter

Devices must have their characteristics listed as a BIOS DUIB before they can be
attached with the attachdevice command. One frequent use of the attachdevice
command is to attach a new device, such as a disk drive or a printer that was
configured into the boot system but was not attached. DUIBs can be specified
during configuration or with a loadable device driver.

See also: sysload command, in this chapter
Appendix C, Using the ICU to Configure User-written Device
Drivers, ICU User's Guide and Quick Reference

Unless you are the World user (ID 65535) or specify the world parameter, once
you attach a device only you and the system manager can detach it. This prevents
users from detaching devices belonging to other users and prevents you from
accidentally detaching system volumes. However, if you are the World user or
specify the world parameter, any device that you attach can be detached by any
other user.

To see what devices are currently attached, use the logicalnames command.

attachdevice (ad) HI command

86 Chapter 2 Command Descriptions

The named parameter refers to the iRMX named file driver, which maintains the
directory hierarchy of named files on an iRMX-format volume. A remote , edos ,
dos , or nfs volume also contains named files, but not maintained by the iRMX
named file driver on the local system. Volumes maintained by the named file
driver on remote systems must be attached as remote (if accessed through
iRMX-NET) or nfs (if accessed through NFS) from this system.

If you try to attach a device maintained by the named file driver that has not been
shut down properly, you receive this message:

<logical_name>, device was not shut down properly

The number of retries to attach a device is set in the configuration. The command
repeats the attempt to attach the device, and returns either when it has attached the
device or has failed the configured number of attempts.

See also: detachdevice and logicalnames commands, in this chapter

NFS Support

Specifying nfs as the attached file driver allows you to attach a NFS-shared device
on a remote host running NFS. The device will appear as local to your system.
This allows you to access remote files either from the command line or
programmatically. When the NFS client job initializes, many shared devices will
be automatically mounted (attached) through the startup files. To see which
devices are already mounted, use the showmount command.

See also: showmount command, in this chapter
Attaching NFS Devices, TCP/IP and NFS for the iRMX Operating
System

Attaching Diskette Devices

Each time you change a diskette in the drive, you must reattach the drive.
Removing a diskette from the drive destroys any connections that may have existed
to files on that device, and logical names that represent files on the volume are no
longer valid. Detach the files and detach the device before removing the diskette.

▲▲! CAUTION
On volumes managed by the DOS and iRMX named file drivers,
the file structure of the second diskette can be destroyed if you
change diskettes without detaching and reattaching the device.
Avoid attaching remote diskette volumes; a user at the remote
system might change diskettes without your knowledge.

See also: Switching diskettes, Installation and Startup

HI command attachdevice (ad)

Command Reference Chapter 2 87

To transfer files between low-density and high-density 5.25" diskettes in Multibus I
or II systems, use the uniform granularity device name wdf0 , rather than the
standard granularity device wmf0.

In iRMX for Windows, volumes attached with the named parameter are iRMX-
format and managed by the iRMX named file driver. DOS users cannot access the
diskette drive until it is detached.

Volumes attached with the edos parameter are DOS-format and managed by the
DOS file system. After initially attaching the device, you can access DOS-format
diskettes from either DOS or the iRMX OS. You need not detach and reattach the
device when you change diskettes. You should, however, detach any files on the
diskette that you have attached as logical names.

See also: attachfile and detachfile commands, in this chapter

Error Messages
<physical_name>, cannot attach device

There is a hardware problem.

<physical_name>, cannot be attached as <type> device
The specified device cannot support the specified type of files (named, physical,
remote, nfs, EDOS, or DOS). Attachdevice does not attach the device. For
example, the named option is not valid for a device such as a line printer.

<physical_name>, device already attached
The specified device has already been attached; attachdevice does not re-attach it.

<physical_name>, device is already attached as <logical name>
The specified device has already been attached by the EIOS; attachdevice does not
re-attach it.

<physical_name>, device does not exist
The physical device name you specified does not correspond to a name the BIOS
recognizes. The current configuration does not specify the indicated physical name
as the name of a device-unit. Attachdevice does not attach the device.

<logical_name>, logical name already exists
The specified logical name is already cataloged in the root job's object directory.
Attachdevice does not attach the device.

<logical_name>, logical name is already attached to physical device
<physical_name>
The specified logical name refers to an EIOS attached device that is already
cataloged in the root job’s object directory. Attachdevice does not attach the
device.

attachdevice (ad) HI command

88 Chapter 2 Command Descriptions

0085 : E_LIST, too many device names
You tried to attach more than one physical device with a single attachdevice
command. Attachdevice cannot attach more than one device per invocation.

<logical_name>, device was not shut down properly
The named volume device you attached was not previously shut down with a
shutdown or detachdevice command.

<logical_name>, volume is not a named volume
Attachdevice attempted to attach a device as a named device and discovered that a
physical volume (for example, an unformatted diskette) was mounted. However,
attachdevice does attach the device. You can use the device after formatting the
volume as a named volume or after inserting a named format diskette in the device.

<logical_name>, volume not formatted
<logical_name>, <condition code:mnemonic>
Attachdevice attempted to attach a device as a named device and encountered an
I/O error while searching for the volume's root directory. This usually indicates
that the volume is not formatted. However, attachdevice does attach the device.

<logical_name>, volume not mounted
The specified device does not contain a volume. However, attachdevice does
attach the device.

<condition code:mnemonic>, while collecting device name
Attachdevice encountered this condition code while parsing the device name from
the command line. Attachdevice does not attach the device.

<condition code:mnemonic>, while collecting logical name
Attachdevice encountered this condition code while parsing the logical name from
the command line.

HI command attachfile (af)

Command Reference Chapter 2 89

attachfile
Associates a logical name with an existing file or directory; one use is to change
your current working directory. After making this association, you may use the
logical name to refer to the file, instead of the entire pathname.

Syntax

af|attachfile [pathname [as : logical_name : [system]]]

Parameters
pathname

The file or directory with which the HI associates a logical name.

logical _name
The 1- to 12-character name (excluding colons) to be associated with the file.
Colons surrounding the logical name are optional, but if used must be in pairs
(:logical _name:). If you omit this parameter, the default logical name is :$:.

s(ystem)
Creates the logical name and catalogs it in the root job as a system logical name.
System logical names can be used by all users; they are permanent until they are
detached with the detachfile command. If the system logical name already exists,
it is deleted and replaced by a connection to the new pathname. This option can
only be executed by the Super user and is only valid with a logical name. The
system option can be used in either the r?init or the loadinfo system initialization
file to attach system logical names. Without the system option, attachfile
catalogs the logical name in your global object directory.

Additional Information

The uses for this command are to:

• Change your working directory. Attachfile does this by associating the default
logical name :$: with the directory. The syntax is either of these:

af directory _path
af directory _path as $

• Restore your working directory to your home (logon) directory. Attachfile
does this by associating the logical name :$: with the logical name :home:.
The syntax is either of these:

af
af :home: as :$:

attachfile (af) HI command

90 Chapter 2 Command Descriptions

• Create a short logical name that refers to a commonly-used directory or file. If
you use the system option, this logical name is available to all users and valid
until detached with the detachfile command.

• Change the :home: logical name. Each user has a :home: logical name that
points to the user’s home directory. This logical name can be changed with the
attachfile command as shown below:

attachfile /user/world as home
:HOME:, overwrite existing logical name?

If you answer yes, the current path for :home: will be overwritten with the new
one. This option can be used to restore your home directory for any reason; for
example, the home directory is accidentally deleted or the connection is
deleted as a result of a diskverify operation.

• Recover from using the Disk Verification Utility on the system device (:sd:).
The system option can be used to restore system logical names that were
deleted when using the Disk Verification Utility on :sd:. You can accomplish
this by creating a submit file that attaches all of the system logical names.

Example submit file, lognames.csd:

:sd:sys386/attachfile :sd:util286 as util286 system

:sd:sys386/attachfile :sd:intel/include as include system

:sd:sys386/attachfile :sd:lang286 as lang system

:sd:sys386/attachfile :sd:work as work system

:sd:sys386/attachfile :sd:util386 as utils system

:sd:sys386/attachfile :sd:sys386 as system system

:sd:sys386/attachfile :sd:rmx386 as rmx system

:sd:sys386/attachfile :rmx:config as config system

:sd:sys386/attachfile :rmx:icu as icu system

After running the Disk Verification Utility, submit the file using a full
pathname to the file:
submit :sd:user/super/lognames.csd

Normally (without the system option) attachfile associates a file with a logical
name by cataloging a connection to the file in your global object directory (this is
usually the object directory of your interactive job). It catalogs the connection
under the logical name. If another connection is cataloged in the object directory
under the same name, attachfile uncatalogs and deletes the previous connection

HI command attachfile (af)

Command Reference Chapter 2 91

before cataloging the new one. If an object other than a connection is cataloged
under the logical name, attachfile leaves the previous object as is, does not catalog
the new connection, and displays an error message.

Because the file connection is cataloged in your object directory, the logical name
has effect only within your interactive job. Therefore, several users can specify the
same logical name without affecting the others. Background jobs can also attach
files without affecting tasks being run in the foreground, since the background and
foreground environments are independent.

See also: Logical names, Chapter 1

Logical names created with attachfile remain valid until one of these situations
occurs:

• A detachfile command removes the association between file and logical name.

• The interactive session that specified the attachfile command terminates
processing, either because you log off or as a result of the jobdelete command.

• A background job exits or is killed. In this case, only logical names attached
in the background environment are removed.

• A task deletes the file connection with a BIOS or EIOS system call. In this
case, the logical name remains cataloged in the global directory, but the
connection to which it refers does not exist.

• A user forcibly detaches the volume containing the file, using the
detachdevice command.

• A user removes the (diskette) volume from the drive. In this case, the logical
name remains cataloged in the global directory, but the connection to which it
refers does not exist.

Logical names created with attachfile using the system option remain valid until
one of these situations occurs:

• A detachfile command removes the association between file and logical name.

• A task deletes the file connection with a BIOS or EIOS system call. In this
case, the logical name remains cataloged in the global directory, but the
connection to which it refers does not exist.

• A user forcibly detaches the volume containing the file, using the
detachdevice command.

• A user removes the (diskette) volume from the drive. In this case, the logical
name remains cataloged in the global directory, but the connection to which it
refers does not exist.

attachfile (af) HI command

92 Chapter 2 Command Descriptions

You cannot use attachfile to change the meaning of :term:, :ci: , and :co: (default
console input and output).

Error Messages
<logical_name>, list of logical names not allowed

You entered more than one logical name as input to attachfile.

<pathname>, list of pathnames not allowed
You entered more than one pathname as input to attachfile.

<logical_name>, logical name not allowed
You attempted to attach a file using one of the logical names :term:, :ci: , or :co:.
You cannot change the meaning of these logical names.

<logical_name>, not a file connection
The logical name you specified is already cataloged in the object directory of the
session and does not represent a connection object.

<pathname>, not allowed as default prefix
You attempted to attach a physical or stream file as your working directory (:$:).
Only named files (including DOS files) are valid.

<logical_name>, too many logical names
Your global object directory is full; therefore attachfile cannot catalog the logical
name. Delete some logical names you are no longer using.

Must be SUPER user to execute the SYSTEM option
Only the Super user can use the system option.

CLI command background

Command Reference Chapter 2 93

background
Executes the specified command line as a background job, enabling you to
continue entering commands while the job executes.

Syntax

background [([pool_min], pool_max)] command_line [> pathname]

Parameters
pool _min

A decimal number of Kbytes specifying the minimum memory pool size to be
allocated for the background job. If specified, this value overrides the default
minimum value (either 6 Kbytes or as defined with the set command).

pool _max
A decimal number of Kbytes specifying the maximum memory pool size to be
allocated for the background job. This value overrides the default maximum value
(as defined with the set command or the smaller of 384 Kbytes and
user_pool_max - 200 Kbytes). If you specify pool _max less than 384 Kbytes,
the CLI sets it to 0.

command_line
A user command to be executed in the background.

> pathname
A file where command output is written. If you do not specify this parameter, you
are prompted for the name of a file; output from a background job cannot be
written to the screen.

Additional Information

▲▲! CAUTION
Do not put a background command in the r?logon file.

Background jobs are executed as they are submitted and are not queued. Each
background job is assigned a four-digit hexadecimal job ID that you can display by
entering the jobs command. You can cancel background jobs by entering the kill
command.

background CLI command

94 Chapter 2 Command Descriptions

When you invoke background, the active foreground environment is copied to the
background job and becomes its initial environment. This means that the same
logical names and aliases used in the foreground are also available to the
background job. However, after the background job begins, changes made to
logical names and aliases in the background environment do not affect the
foreground, and vice-versa.

You can control the amount of memory allocated for the background job by
entering the pool-min and pool-max parameters. These modifiers are
recommended for large programs such as compilers, ensuring the minimum
memory pool to get acceptable performance for the application, but leaving enough
memory for foreground jobs to also perform at an acceptable level.

Before the background job begins, the CLI checks that the minimum memory pool
size is less than the maximum; if not, the CLI issues this warning:

WARNING: maxbackpool < minbackpool,
use set command to set background memory pools

If pool-max is less than 384 Kbytes, the CLI assigns a value of 0 and issues this
message:

maxbackpool attribute <384K, was set to 0
please set your maxbackpool attribute

Then the background job terminates.

If you don't specify the > pathname parameter, the background command
prompts for a log file to replace the terminal:

the log file is ?

If you enter :co: as the log file, the CLI displays the message:

:co:, not a valid log file
the log file is ?

A background job that tries to send a message to the :co: device causes this
message to appear on your screen:

***8085: E_ERROR_OUTPUT

However, if you have a system with multiple terminals, you can redirect :ci: and
:co: to another terminal that acts as a background terminal.

When the background job begins running, the CLI displays this message:

Background job <job_id> "command" has been started

CLI command background

Command Reference Chapter 2 95

When the background job is complete, the CLI displays:

Background job <job_id> "command" completed

The command given in the above messages is always enclosed in quotation marks
("). Only the first 15 characters of the command are displayed.

Examples

1. This example illustrates using the background command and the I/O
redirection feature to create a background job and send the output to a file
named out.

background copy X.ASM to Y >OUT <CR>
Background job <0168> "copy x.asm to y" has
been started

When the background job is complete, this message is displayed:

Background job <0168> "copy x.asm to y" completed

The out output file contains all the output messages, such as:

x.asm copied to y

2. This example shows how the CLI prompts for an output file if you do not
redirect the output:

background copy X.ASM to Y <CR>
the log file is ? OUT <CR>
Background job <0E78> "copy x.asm to y" has been
started

3. This example changes the default pool sizes of a background job by entering
the pool-min and pool-max parameters:

background (300,500) submit PLM >OUT <CR>
***CLI : background job <0C68> "submit plm" has been
started

Error Messages

Background job <job_id> "<command>" failed

<error message>
The background command failed for the reason given in the error message.

background, parameter required
You entered the command without parameters.

backup HI command

96 Chapter 2 Command Descriptions

backup
Archives named files by copying them to a physical volume serving as a backup
storage device. The source volume may be a named, remote, or DOS volume. In
addition to each file's name and contents, backup saves the file access list and
owner, extension data, and file granularity.

✏ Note
Do not use this command in an esubmit file or an
rq_c_send_command system call, because queries for user input
will not be received.

Syntax

backup [pathname] to|over|after : logical_device :
[date= mm/ dd/ yy] [time= hh: mm: ss] [name= name] [f] [q]

▲▲! CAUTION
While backup is executing, no other activity should be occurring
on the volume you are backing up. If other users access the
volume during a backup operation, the volume's data could
become corrupted, possibly requiring the volume to be
reformatted.

W-2635

backup pathname : :backup-device

date =
/ /mm dd yy

hh:mm:sstime= name = name format query

to

over

after

HI command backup

Command Reference Chapter 2 97

Parameters
pathname

Pathname of a file or directory on the source volume (either a local or remote
device). If you specify a file, only that file is saved. If you specify a directory,
backup saves all the files starting from that point on the file tree. If you don't
specify this parameter, backup saves all files in the current volume, beginning with
the root directory.

▲▲! CAUTION
Backup fails if you use it on a file named $ or a directory
containing a file named $; for a directory, remove the file before
using the backup command.

to Output is sent to a new volume. If possible, backup reads the volume label on
each newly mounted volume to determine the volume type. This ensures that the
volume is compatible with any previously mounted volumes in a backup set. If
backup data exists on the volume you are prompted to overwrite files of the same
name as those being backed up.

over Any previous files or directories on the backup volume are overwritten; backup
begins writing on each fresh volume without checking the label for compatibility.

after Backup searches the mounted volume for the end of a previous backup operation;
the current backup begins at that spot. There must be at least enough space left on
this volume to write header information. If more volumes are needed to complete
the backup operation, backup behaves as if the to preposition had been specified
for subsequent volumes. If you specify format , backup formats any new volumes
required to finish the backup operation.

:logical _device :
The logical name of the device to which backup copies the files. The device must
be local, not remote.

date= Saves only files created or modified on or after the specified date.

mm/ dd/ yy
Numeric designation for the month, day, and year. Specify only as many digits as
needed; for example, 1/1/91 indicates January 1, 1991. The year may be entered in
two or four digits, as follows:

Entry Specifies year
00 through 77 2000 through 2077
78 through 99 1978 through 1999
1978 through 2099 1978 through 2099

backup HI command

98 Chapter 2 Command Descriptions

time= When used with the date parameter, saves only files created or modified on or
after the specified time and date. When used without the date parameter, the date
is the current system date. If time is omitted, the default is 00:00:00. If both
date and time are omitted, the date and time default to 1/1/78 and 00:00:00.

hh:mm:ss
Numeric designation for the hour, minute, and second. Specify only as many digits
as needed: hours in the range 0-23, and minutes and seconds in the range 0-59.

name=name
Specifies a 1- to 9-character name that backup applies to the backup set of data. If
you store multiple data sets on a single backup volume by specifying after , you
must specify a name to be able to restore an individual data set.

f (ormat)
Formats each volume before writing to it. The interleave is set to one on diskette
media. Use this parameter for new, unformatted media or to overwrite media
formatted for a different OS. On a tape device, format also retensions the tape,
ensuring the best conditions for archiving.

q(uery) Prompts for permission to save each file:

<pathname>, backup Data File? or
<pathname>, backup Directory?

Respond as follows:

Y Save the file
E Exit from backup
R Save remaining files without further query
N If a file, don't save it; if a directory, don't save the directory or any files

under it in the tree. Query for the next file.
other Error message and reprompt.

Additional Information

Files can be backed up from a remote device, but not to a remote device. For
backup to save files from either a local or remote named volume, you must have
read access to the files and to the directories that contain them.

Backup can save a large volume (a hard disk, for example) onto a number of
volumes such as diskettes or tape cartridges. You do not have to separately format
the backup volumes; use backup's format parameter.

Depending on the amount of data being backed up, a named data set may be a
portion of a single backup volume or may span multiple volumes. If you store
multiple data sets on a single backup volume, it is important to name each data set.
Only by naming the data sets can you restore them individually with the restore

HI command backup

Command Reference Chapter 2 99

command. To restore a logical volume from a backup volume containing multiple
data sets, you must supply the name of the data sets in the restore command.
There is no way to get a listing of these names from the volume itself. Label the
backup volume with the names of data sets on the volume.

After using the backup command to archive files, you should immediately invoke
the restore command with the verify option to make sure the data has been
recorded correctly. When you use verify , restore only verifies that backup
produced a restorable backup volume; no files are actually restored. Enter:

restore backup-volume to :bb: verify

When you invoke backup, the command displays this sign-on message, where
Vx. y is the version number of the utility:

iRMX Backup Utility, Vx.y
Copyright <year> Intel Corporation
All Rights Reserved

Once the command line has been scanned, one of these messages is displayed,
depending on whether you specified the date and time:

All Files Modified After <date>, <time> Will Be Saved
or
All Files Will Be Saved

Backup then prompts you to mount the backup volume. Whenever backup
requires a new backup volume, the command displays this message:

<device>, Mount Backup Volume (name) #<nn>, Enter Y to
Continue:

Where:

<device> The logical name of the backup device

(name) The name of the physical volume set

<nn> The identifying number of the requested volume.

When you see this message, place a volume in the backup device and respond with
Y or R to continue the backup process or E to exit the backup command. If you
continue the backup process, backup displays this buffer summary message:

I/O Buffer Summary
Buffer Size <number>
Number of Buffers <number>

Backup continues prompting for a backup volume until you supply one that it can
access.

backup HI command

100 Chapter 2 Command Descriptions

Backup displays an error message if you insert a volume with one of these
problems:

• The volume cannot be read

• The volume is a named volume and data would be overwritten

• The volume is a backup volume and data would be overwritten

• The volume is a physical volume containing data

If the situation is appropriate, the command may prompt you with a request to
format or overwrite the mounted volume. Respond to this prompt as described for
responses to the query parameter:

<device>, Enter Y to Overwrite/Format:

When backup fills a backup volume, it prints this message and prompts for
additional volumes if it needs them:

Physical Volume (<name>), #<nn>, Complete

After backup finishes, it displays the number of data files and directories saved:

Summary For Logical Volume (<name>)
<nn> Data File[s] Saved
<nn> Director[y] [ies] Saved

Backup Complete

In some circumstances, when backed-up files are restored the original ownership
rights are not preserved, and restored files are owned by the user who performed
the restore.

See also: restore command, in this chapter

Error Messages

If you encounter an error message that requires a response, enter Y or R to continue
the backup process or E to exit the backup command.

<backup device>, backup not complete
You specified an E to exit backup. This message reminds you the backup
operation is not complete. The last file on the last backup volume may be
incomplete.

HI command backup

Command Reference Chapter 2 101

<backup device>, Backup Volume (<name>), #<nn>, <date>, <time>,

Mounted <backup device>, Enter Y to Overwrite:
The backup volume you supplied already contains backup information. Backup
lists the logical name of the backup device, the volume number, and the date on
which the original backup occurred. It overwrites this volume if you enter Y or R.

<backup device>, Cannot Attach Volume

<backup device>, <condition code:mnemonic>

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
Backup cannot access the backup volume. This could be because there is no
volume in the backup device or because of a hardware problem with the device.
The second line of the message indicates the condition code encountered. Backup
continues to issue this message until you supply a volume that can be accessed.

<pathname>, <condition code:mnemonic>, Cannot Back up File
Backup could not copy this file from the source volume, possibly because you do
not have read access to the file or because there is a faulty area on the volume. The
message lists the condition code encountered. Backup copies as much of the file
as possible and continues with the next file.

<backup device>, Device in Use

<backup device>, <condition code:mnemonic>
The device you specified for the backup device is being used by another job.
Continuing would result in damage to existing files on the output volume.

<backup device>, Error Writing Volume Label

<backup device>, <condition code:mnemonic>

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
When backup attempted to write a label on the backup volume, it encountered the
indicated error condition, possibly because of a faulty area on the volume, or
because the volume is write-protected. Backup reprompts for a different backup
volume.

<backup device>, Input and Output are on Same Device
The device you specified for the backup device is the same device that contains
your input pathname. Continuing would result in damage to the files on the input
volume.

<backup device>, Invalid Input Specification
The logical name you specified for the backup device was not a logical name for a
device. Example invalid names are :ci: , :co:, and :home:.

backup HI command

102 Chapter 2 Command Descriptions

<condition code:mnemonic>, Invalid Date or Time
You entered a date or time parameter that is out of range (such as 31/02/86 or
26:03:62). The message lists the condition code encountered as a result of this
entry.

Invalid Output Specification
You did not supply the logical name of the backup device when you entered the
backup command.

<backup device>, Named Volume <volume name>, Enter Y to Overwrite:
The backup volume you supplied is a named volume. Backup lists the logical
device name and the volume name; it overwrites this volume if you enter Y or R.

<backup device>, Not Correctly Formatted, Enter Y to Format:
The backup volume was not correctly formatted.

Requested Date/Time Later Than System Date/Time
Either the date and time you specified in the backup command are in error or you
did not set the system date and time.

<pathname>, invalid wildcard specification
You entered a list of pathnames or used a wildcard in the input pathname. You can
enter only one input pathname per invocation of backup.

<pathname>, invalid output specification
You entered a list of logical names for the backup device. You can enter only one
output logical name per invocation of backup.

<pathname>, Unable to Complete Directory
Backup encountered an error when accessing a file in the indicated directory. It
skips the rest of the files in the directory and goes on to the next directory. This
error could occur if you do not have list access to the directory.

<backup device>, Unrecognized Volume, Enter Y to Overwrite:
The backup volume you supplied is a formatted volume, but it has a label that is
not readable. Backup will overwrite this volume if you enter Y or R.

<backup device>, Volume Not Formatted

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
The backup volume you supplied was not formatted. Backup continues to issue
this message until you supply a formatted backup volume.

<backup device>, Write Error On Backup Volume

<backup device>, <condition code:mnemonic>
Backup encountered an error condition when writing information to the backup
volume. The second line of the message lists the condition code encountered. This
error is probably the result of a faulty area on the volume.

Name Required If After Is Selected
You must use the name parameter when using the after preposition.

HI command backup

Command Reference Chapter 2 103

cannot attach VOLUME
The destination device of the backup is a remote server.

No Room for Append on Mounted Volume
You specified the after parameter, but there is not enough room left on this
volume to write the header information to begin appending this data set. Use a new
volume.

bcl NET command

104 Chapter 2 Command Descriptions

bcl
Converts an ASCII file into a special binary file understood by the Remote Boot
Server program.

Syntax

bcl input_file output_file

Parameters
input _file

The pathname of an ASCII file containing language input statements, as specified
in the Boot Definition Language section below.

output _file
The pathname of the resulting ccinfo file to be created.

Additional Information

The bcl command is the Boot Configuration Language utility, which produces a
special binary file called the Class Code Information File, or ccinfo file. The
Remote Boot Server uses the ccinfo file to determine which bootable file(s) to send
over the network during a remote boot request. The remote boot request sends a
class code to the Boot Server. Entries in the ccinfo file map the class codes to
bootable files. A bootable file is the kind of file produced by the xlate command.

See also: Remote Booting and ccinfo file, Network User's Guide and Reference
xlate command, in this chapter

The Boot Definition Language

Each statement in the language has this form:

cc [, cc ...] is fn [, fn ...] [for na[, na..]];

Where:

cc One or more hexadecimal values of class codes, in the range 0 to
0FFFFH.

fn One or more pathnames of files to be remotely loaded. The first
directory in the pathname must be a public directory on the Boot
Server system. The string is not case-sensitive.

NET command bcl

Command Reference Chapter 2 105

na One or more Ethernet addresses of Boot Clients.

; Ends each statement.

Each bcl statement defines one or more mappings between class codes and an
ordered list of filenames. When more than one class code is given in a statement,
they act as synonyms to each other; any of the class codes result in exactly the
same image being sent.

The filenames within a single statement can be thought of as being concatenated in
the order given, to form the image that will be sent. Bcl itself makes no restrictions
on the characters used in the filenames, except that they cannot contain space
characters, commas, semicolons or end-of-line characters.

Statements that do not have an Ethernet address specified (no for clause) form the
default mapping for all Boot Consumers not specifically mentioned in any other
statement in the ccinfo file. The default mapping does not apply to Boot
Consumers whose Ethernet address appears in any statement. Ethernet addresses
within a statement qualify the statement as pertaining to only those Boot
Consumers. When a particular Ethernet address appears in a bcl statement, that
Ethernet address must appear with every class code that is to service that Boot
Consumer.

The standard command prepositions to , over , and after are not allowed. If
used, incorrect results can be expected.

Examples

1. This command instructs the bcl utility to read the input statements in the file
ccinfo.bdf. If there are no errors, bcl creates the file ccinfo.

bcl ccinfo.bdf ccinfo

2. These statements are examples of lines that might be in the ccinfo.bdf file.
Together, these statements program the Remote Boot Server to send the
/net/ina961.rem file when class code 1 is received, and the
/rboot32/38612NET.386 file when class code 2 is received.

1 is /NET/INA961.32R;
2 is /RBOOT32/38612NET.386;

3. These lines state that class code 3BF maps to two files, but only for the two
Ethernet addresses given. Unless specified by other statements, all other
addresses are ignored. When more than one file is specified, as above, they are
sent in the order specified.

3BF is /RBOOT32/rem3rd,/RBOOT32/boot2 for 00aa00010203,
00aa00020304;

bcl NET command

106 Chapter 2 Command Descriptions

4. These are examples of other statements that might occur in an input file:

1,7 is /rboot86/boot1 for 00aa00030405, 00aa00020608;

99 is /sd/net/exec.rem for 00aa00030405, 00aa00020608;
abcd is /sd/tx/default;

HI command bootdos

Command Reference Chapter 2 107

bootdos
Activates the primary DOS partition and resets the systems.

Syntax

bootdos

Additional Information

The bootdos command is used primarily with the iRMX for PCs OS. It resets the
system to boot DOS from the primary DOS partition rather than the iRMX OS from
an iRMX partition.

See also: bootrmx command

bootpd TCP/IP command

108 Chapter 2 Command Descriptions

bootpd
bootpd is a server that supports the standard Internet Boot Protocol.

Syntax

sysload :system:psh bootpd [-s -t timeout -d]
 [configfile [dumpfile]]

Parameters

-s Runs bootpd in standalone configuration (for example, at boot time from
/etc/rc.local). For large network installations with many hosts, this is probably the
best mode of operation. In this case, the -t switch has no effect, because bootpd
will never exit.

-t timeout
Specifies a timeout value in minutes (e.g., -t20). Default is 15 minutes; a timeout
of 0 means forever.

-d Each instance of the switch increases the level of debugging output. You can put -
d on the command line more than once.

configfile
Specifies an alternate bootpd configuration file, other than the default,
/etc/bootptab.

dumpfile
Specifies an alternate file to which bootpd will dump its debugging output. The
default is /etc/bootpd.dmp.

Additional Information

You normally run bootpd from the networking initialization file, /etc/tcpd.csd. If
bootpd does not receive another boot request within fifteen minutes of the last one
it received, it exits to conserve system resources. Upon startup, bootpd reads its
configuration file, /etc/bootptab by default, and then begins listening for
BOOTREQUEST packets. If you specify a different configuration file with the
configfile parameter, the contents of that file must be the same as described for
bootptab.

Bootpd looks in /etc/services to find the port numbers it should use. It extracts two
entries: bootps , the bootp server listening port, and bootpc , the destination port
used to reply to clients. If the port numbers cannot be determined this way, they
are assumed to be 67 for the server and 68 for the client.

TCP/IP command bootpd

Command Reference Chapter 2 109

Bootpd rereads its configuration file when it receives a hangup signal, SIGHUP, or
when it receives a bootp request packet and detects that the file has been updated.
Hosts may be added, deleted or modified when the configuration file is reread.

See also: bootptab and services files and Editing the Tcpd.csd File,
TCP/IP and NFS for the iRMX Operating System
DARPA Internet Request For Comments RFC951, RFC1048,
RFC1084, and Assigned Numbers

bootrmx DOS command

110 Chapter 2 Command Descriptions

bootrmx
Activates the primary iRMX partition and resets the systems.

Syntax

bootrmx

Additional Information

The bootrmx command is used primarily with the iRMX for PCs OS. It resets the
system to boot the iRMX OS from an iRMX partition rather than DOS from a DOS
partition.

See also: bootdos command

HI command case

Command Reference Chapter 2 111

case
Converts the name of the specified file from upper- to lower-case.

Syntax

case pathname

Parameters
pathname

The pathname of a file or directory whose name is to be converted to lower-case.
The pathname may contain a wildcard (*) character.

Additional Information

This command is useful when working in a network environment, where some OSs
maintain case-sensitive filenames. The case command lets you convert the case of
iRMX filenames and access them from Unix or Xenix.

✏ Note
The case command works only on local files managed by the
iRMX named file driver. Do not use this command with DOS
files or remote files.

Examples

To convert the case of all files in a directory to lower-case, enter:

case directory_name/*

To convert a single filename to lower-case, enter either a full pathname or the
pathname relative to your current working directory. For example:

case :config:terminals

changeid CLI command

112 Chapter 2 Command Descriptions

changeid
Changes the system manager's current user ID to any value from 0 to 65535. You
can only use this command after invoking the super command, regardless of
whether you logged on as the Super user.

Syntax

changeid [id |world]

Parameters

id A decimal value to which you want to change your user ID, in the range 0 to
65535.

world Changes you to the World user, with ID 65535.

Additional Information

If you omit an ID parameter, you are assigned ID 0, the system manager. If you
change your user ID to any value other than 0, the system prompt changes to this,
indicating the current ID value:

super(id)-

The new user ID is not a verified user; you cannot access files available on the
iRMX-NET network. You are not a verified user until you return to user ID 0.

Error Messages
0084; E_INVALID_NUMERIC

The user ID you specified contained invalid characters or was not in the range 0 to
65535.

changeid, allowed only in super mode
You invoked this command without previously invoking the super command.

<parameter>, unexpected parameter
You entered too many parameters.

<condition code:mnemonic>, while executing changeid
An internal system problem occurred which prevented the CLI from setting the
default user.

HI command cli

Command Reference Chapter 2 113

cli
Invokes a loadable version of the Command Line Interpreter.

Syntax

cli

Additional Information

In a system that uses a different command interface than the CLI, you may invoke
the CLI to take advantage of its interface. The CLI may also be started from a
submit file.

connect HI command

114 Chapter 2 Command Descriptions

connect
Associates a locked terminal device with a logical name. The terminal can then be
used as a physical device, in the same manner as any other terminal attached with
the attachdevice command. The logical name is cataloged in the root job's object
directory.

Syntax

connect physical_name as : logical_name :

Parameters
physical _name

Physical device name of the locked terminal device to be connected. This name
must be in the :config:terminals file, and must be defined as a BIOS DUIB, either
in the system configuration or through a loadable device driver. You can obtain the
terminal device names by invoking the initstatus command.

as Preposition required for the command.

logical _name
The 1- to 12-character name (excluding colons) to be associated with the device.
Colons surrounding the logical name are optional, but if used must be in pairs
(:logical _name:).

Additional Information

When you connect a locked terminal device, the associated serial port can be used
as a physical port, without an HI logon process. You may send data to or receive
data from any physical device that uses a serial stream of data. The connect
command cannot be used for virtual terminals.

After connecting the device and cataloging its logical name in the root job's object
directory, the connect command displays this message:

<physical_name> connected as <logical_name>

If you change the terminal attributes while the terminal is connected, the changes
remain in force after the terminal is disconnected. Note your terminal's attributes
before connecting; you must restore them before the HI can use the terminal.

HI command connect

Command Reference Chapter 2 115

Error Messages
<logical_name>, logical name already in use

The logical name already exists in the root job's object directory.

<physical_name>, device name not found
The physical name is not a terminal device that was defined at system
configuration time.

<physical_name>, has not been locked
The specified terminal device must be locked using the lock command before it
can be connected.

not multi-access system
The connect command does not function if the HI is configured as a single-user
system.

<logical_name>, invalid logical name
The logical name is too long.

<physical_name>, not connected
The device could not be cataloged.

<condition code:mnemonic>, too many device names
The parameters contain too many device names.

<physical_name>, already connected
The specified device has already been connected.

*, invalid wildcard specification
Wildcards are not supported.

no logical name given
You did not specify a logical name.

console HI command

116 Chapter 2 Command Descriptions

console
Dynamically changes the SDM (System Debug Monitor) console device to redirect
the I/O streams on iRMX for Windows systems.

Syntax

console device_name

Parameters
device_name

The name of the device (CON, COM1, or COM2) to which you want to redirect the
SDM I/O. CON is the normal screen and keyboard; COM1 and COM2 are the first two
serial ports. If this parameter is omitted, a usage message is displayed.

Additional Information

Use this command on iRMX for Windows systems, as a tool for debugging your
OS and software. SDM normally defaults to the console device (CON). The
console command redirects the SDM output stream, input stream, and error
message stream to the specified device. If used, console should be set prior to
entering SDM. From the user's perspective, the redirection does not take effect
until SDM starts.

Examples

This command redirects the streams to the COM1 console controller device:

console COM1

Error Messages
<device_name>, device does not exist

The current configuration of the OS does not include the indicated device name.

HI command copy

Command Reference Chapter 2 117

copy
Displays or makes a copy of the specified file(s) and synchronizes the time stamps.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

copy inpath_list [to|over|after outpath_list] [q] [ns]

Parameters
inpath _list

One or more pathnames of files to be copied. Multiple pathnames must be
separated by commas. Wildcards are permitted.

to|over|after outpath _list
If you omit this parameter, the input files are displayed on the screen (:co:). If you
specify this parameter, the input files are written to the specified output, such as a
printer (:lp:) or to new filenames. To copy files on a one-for-one basis, specify the
same number of output files as input files. If you specify multiple input files and a
single output file, copy appends the remaining input files to the end of the output
file. If you specify a single output directory, the input files are copied to that
directory under their current filenames.

q(uery)
Prompts for permission to copy each file. Respond to the prompt with:

Y Copy the file
E Exit the command
R Copy remaining files without further query
N or other Do not copy this file; go to the next file in the inpath-list

ns (nosynchronize)
Disables synchronization of the files' time stamps.

copy HI command

118 Chapter 2 Command Descriptions

Additional Information

When copy copies files, it updates the new file's time stamp to match the original
file (if this is supported on the target file driver). Copy can be aliased so that
nosynchronize is automatically specified.

See also: alias command

When copy creates new files, it sets the access rights and list of accessors as
follows:

• The file has all access (delete, read, append, and change).

• The owner is the only accessor to the file.

The user ID of the person who invokes the copy command is considered the owner
of new files created by copy. The user owns and has full access to remote files
created by copy. Only the owner or the system manager can change the access
rights associated with the file.

See also: permit command, in this chapter
file access, Chapter 1

If you specify multiple output files, and there are more or fewer input files than
output files, copy returns an error message.

If you specify a wildcard character in an output pathname, you must specify the
same wildcard character in the corresponding input pathname. Other combinations
result in error conditions.

See also: Using wildcards in file names, Chapter 1

A file listed under one directory can be copied to another directory. For example:

copy samp/test/A to :f1:alpha/beta

This would copy data file A to a different volume and directory. If beta is a
filename, that is the new name of the copied file. If beta is a directory name, the
copied file retains the name A in the beta directory.

You cannot successfully use copy to copy a directory to a data file or to another
directory. The directory attributes are lost and the copy can no longer be used as a
directory. Use the copydir command instead.

The copy command cannot be used with tape cartridges.

HI command copy

Command Reference Chapter 2 119

To transfer files between low-density and high-density 5.25" diskettes in Multibus I
or II systems, attach the devices with the uniform granularity device name wdf0 ,
rather than the standard granularity device wmf0.

Error Messages
<pathname>, output file same as input file

You attempted to copy a file to itself.

copydir HI command

120 Chapter 2 Command Descriptions

copydir
Copies all files and subdirectories from one or more directory trees.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

copydir inpath_list [to|over outpath_list] [q]
[accessors|noaccessors] [world|noworld] [nodelete]

Parameters
inpath _list

The pathnames of one or more directories to be copied. Use commas to separate
multiple directories.

to|over outpath _list
Either one directory where the input directories are all copied, or the same number
of directories as specified in inpath _list . If you specify to , copydir prompts
for permission to overwrite existing files; a Y response overwrites the file and any
other response skips that file. If you specify over , existing files are overwritten.

HI command copydir

Command Reference Chapter 2 121

q(uery)
Prompts for permission to enter each directory and to copy each file in it. Respond
to the prompt with:
Y Enter the directory or copy the file.
E Exit from the copydir command.

R Continue copying without further query.
S Skip to the end of this (sub)directory and continue prompting for

directories at this level or higher.
A Copy all remaining files and subdirectories in the current

directory without further query, then begin querying before
entering the next (sub)directory.

N or other Do not enter this directory or copy this file.

accessors
Copies access information with the files; this is the default.

noaccessors
Does not copy access information.

world Assigns World read access to all files copied; this is the default.

noworld
Does not assign World read access.

nodelete
Do not overwrite existing files.

Additional Information

If you specify multiple input directories and a single output directory, the output
directory has the combined structure of the input directory trees. For example, this
command copies the directory structures of both dir1 and dir2 into dir3:

copydir dir1, dir2 to dir3

If you specify multiple input and output directories (the number must be same),
each input directory tree is copied to the corresponding output directory, in order.
For example, this command copies dir1 to dir3, and dir2 to dir4:

copydir dir1, dir2 to dir3, dir4

Copydir can also copy individual files. Copydir handles access rights better than
the copy command when copying remote files. From the local system, a remote
file appears to have its delete bit set to off, regardless of how the bit is set on the
remote system. When copying access rights from a remote file to a local file,
copydir sets the delete bit to on if the file has write access. The same is true of the
change bit for directories.

copydir HI command

122 Chapter 2 Command Descriptions

Examples

These examples illustrate how copydir works when copying an entire directory
tree.

1. The directory test1 that has this structure:

test1/dir1
test1/dir1/file1
test1/dir2
test1/dir2/file2
test1/file3

Test1 has this directory listing:

04 APR 89 20:14:52
directory OF $ ON VOLUME rmxll
test1

Enter:

copydir test1 to newdir

In response, this information is written to the screen:

test1/dir1/file1, copied
test1/dir1, directory copied
test1/dir2/file2, copied
test1/dir2, directory copied
test1/file3, copied
test1, directory copied

It creates an identical directory structure as test1 with the name newdir, as
follows:

newdir/dir1
newdir/dir1/file1
newdir/dir2
newdir/dir2/file2
newdir/file3

This is the new directory listing:

04 APR 89 20:14:52
directory OF $ ON VOLUME rmxll
test1 newdir

2. Given the same test1 directory structure as in example 1, enter:

copydir test1

HI command copydir

Command Reference Chapter 2 123

It writes this information to the screen:

test1/dir1/file1, copied
test1/dir1, directory copied
test1/dir2/file2, copied
test1/dir2, directory copied
test1/file3, copied
test1, directory copied

It creates directories in your current directory with this structure:

dir1
dir1/file1
dir2
dir2/file2

The subdirectories and files of test1 are created and placed at the same
directory level as test1. This is the new directory listing:

04 APR 89 20:17:59
directory OF $ ON VOLUME rmxll
test1 dir1 dir2 file3

Error Messages
<pathname>, output file same as input file

You attempted to copy a file to itself.

createdir (crdir) HI command

124 Chapter 2 Command Descriptions

createdir
Creates one or more directories with all access rights available to you as the owner.
You may delete, list, add, and change the contents of the new directory.

Syntax

crdir|createdir path_list [FILES= file_count]

Parameters
path _list

One or more pathnames of directories to be created. Multiple pathnames must be
separated by commas.

FILES= file_count
Reserves space for the specified number of files in the new directory. If this option
is not specified, the default is zero files. This parameter can be used to help control
fragmentation of large directories by allocating space when the directory is created.
Some file systems (e.g., DOS) may always allocate some directory space when a
directory is created.

✏ Note
On some file systems, reserving space for a large number of files
may take a long time.

Additional Information

You can create new directories that are subordinate to other directories. For
example, if the subdirectory ab/dc/ef exists in your current working directory, this
command creates the directory gh under it:

createdir ab/dc/ef/gh

You own and have full access to any new remote directories that you create (list
and add-entry access permissions constitute full access for remote directories). No
other users except the system manager have access to the directory unless you use
the permit command to change the access rights and list of accessors.

In a DOS file system, the directory is owned by the World user.

See also: permit command, in this chapter
creating a new directory, Chapter 1

HI command createdir (crdir)

Command Reference Chapter 2 125

Error Messages
<directory_name>, file already exists

The specified directory already exists.

<file_name>, file does not exist
One of the directories specified in the pathname does not exist.

<directory_name>, invalid file type
One of the directories specified in the pathname is not a valid directory.

<pathname>, 26H: E_FACCESS
The pathname is a remote directory and you do not have add-entry access to the
parent directory of the directory to be created.

date HI command

126 Chapter 2 Command Descriptions

date
Displays the current date and time, or sets the local (OS) or global (battery-backed)
time-of-day clock. Date optionally synchronizes the date of the local clock with
the global system clock.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax
date [date |q] [local|global]
date synchronize

Parameters

date You may specify the day (month and year remain unchanged), the day and month
(year remains unchanged), or the day, month, and year. Use one of these formats:

mm/ dd/ yyyy all numerals
dd month yyyy spell month using enough letters to distinguish it

Specify only the number of digits needed. For example, 12/1/91 , 01 DE 91 , and
1 December 1991 are equivalent. The year may be entered in two or four digits,
as follows:

Entry Specifies year
00 through 77 2000 through 2077
78 through 99 1978 through 1999
1978 through 2099 1978 through 2099

q(uery)
Displays the current date, time and clock type, and prompts for a new date. In
response, enter the date as shown above, or E to exit.

HI command date

Command Reference Chapter 2 127

local Displays or sets the date portion of the local time-of-day clock maintained by the
OS. This is the default if local or global is not specified. Any user may set the
date.

global Applies only to systems with hardware clock/calendar components, typically
backed up by battery power. Specifying global displays or sets the date portion
of this clock. Any user may display the date, but only the Super user can set it. If
you set the global clock, the local clock automatically takes on the same value.

synchronize
For systems with a global clock/calendar, this sets the date portion of the local
clock to the current date of the global clock. If you set the global clock, this
parameter is unnecessary.

Additional Information

The date command displays an error message if you specify global or
synchronize and your system does not have a global clock/calendar.

If you set only one or two date parameters, the omitted parameters are replaced by
their defaults. If you enter only one parameter, it is assumed to be the day. Two
parameters (in either format) represent the day and month. For example, assume
the current date in the system is 9 Sept 91. If you enter:

date 18 <CR>

date displays:

18 Sep 91, <current time>

If you omit the date parameters, date displays the current date and time as follows,
showing only the first three characters of the month and the last two digits of the
year:

dd month yy, hh:mm:ss <local or global clock type>

If you have a system without a global clock/calendar (such as a System 310),
whenever you start up or reset the OS, the date is automatically set to the date you
last accessed the :system: directory. You can reset the date to any acceptable value.

If your system has a global clock/calendar and the OS is configured to recognize it,
the local clock is automatically set to the date maintained in the global clock
whenever you turn on or reset your system.

date HI command

128 Chapter 2 Command Descriptions

Error Messages
<date>, invalid date

You entered an invalid date. This error could result from specifying a day that is
invalid for the month (such as 31 FEB 90), entering characters for the year that do
not fall into a legitimate range, entering a month parameter that does not uniquely
identify the month, or using an invalid format.

<parameter>, invalid syntax
You specified an illegal combination of parameters. For example, you may have
entered a date and also specified the query option.

only the system manager may set the global clock
You specified the global parameter, but you are not the system manager.

<condition code:mnemonic>, getting system time
You specified the global or synchronize parameter, but there is no global clock
in the system.

E_SHARE, global clock busy
You attempted to access the global clock while another job was accessing it. Try
the command again.

E_INVALID_DATE, global date read was invalid
The date returned from the global clock was invalid. This condition usually occurs
when the global clock has never been initialized or when power to the clock has
been interrupted. The BIOS system call get_global_time sets the date to 1 Jan
1978, which the date command then displays.

E_INVALID_TIME, global time read was invalid
The time returned from the global clock was invalid. This condition usually occurs
when the global clock has never been initialized or when power to the clock has
been interrupted. The BIOS system call get_global_time sets the time to a valid
time, which the date command then displays.

E_SUPPORT, attempted to access non-existent global clock
There is no global clock in the system.

CLI command dealias

Command Reference Chapter 2 129

dealias
Deletes one or more aliases defined with the alias command.

Syntax

dealias abbreviation [q]

Parameters
abbreviation

The alias to be deleted. You may delete all aliases with the * wildcard, or delete a
group of aliases by using * as the last character of the abbreviation.

q(uery)
Prompts for permission before deleting an alias. Respond to the prompt with Y to
delete the alias, or any other character to keep it.

Additional Information

If you specify a wildcard in the aliases to be deleted, you may use the query
option to choose which aliases to delete. Assume you have defined the two aliases
s = submit and su = super , and want to delete only the su alias. Enter:

dealias S* Q <CR>

At these prompts, respond as shown:

s = submit delete ? (y or [n]) <CR>
su = super delete ? (y or [n]) Y <CR>

Error Messages
<parameter>, alias not found

You tried to delete an alias that was not defined in the alias table.

<parameter>, wildcard is allowed only in the last character
You tried to delete a number of aliases with a wildcard, but the wildcard was not
the last character.

debug HI command

130 Chapter 2 Command Descriptions

debug
Loads an application program into memory, prints debug information to the screen
or to an output file, and transfers control to the System Debug Monitor (SDM).
The debug command cannot be used to debug CLI-level commands; only HI
commands and application programs.

Syntax

debug [to|over|after outpath] pathname [parameter_string]

Parameters
to|over|after outpath

A pathname for the output file where debug information is to be written, rather than
to the screen.

pathname
The file containing the application program to be debugged.

parameter _string
A string of required and/or optional parameters passed to the application program
being debugged.

Additional Information

When you invoke the debug command with no output file, it displays this message,
including the pathname of the application to be debugged:

debug file, <pathname>

Then it displays a segment map for the loaded program and breaks to the monitor.

If you specify an output file, debug loads the application job and writes the
segment map to the output file. Then it displays a prompt and waits until you
indicate that you're ready to enter SDM by pressing <CR>. This allows you to
access the debug file from a remote system (using iRMX-NET) to aid in the debug
process. The system breaks to SDM immediately after you press <CR>.

HI command debug

Command Reference Chapter 2 131

Use SDM to single-step, display registers, and set breakpoints within the program.
When debug executes, SDM disables interrupts. This causes the time-keeping
function to stop when code is not executing. This slowing of the timing function
has two consequences:

• It affects the ability of the Nucleus to execute time-out tasks that have
provided time limits to system calls, such as receive_units and
receive_message.

• It affects the ability of the BIOS to keep track of the time-of-day and write its
data structures to secondary storage.

This example shows the debug information that is displayed or written to a file.
The first line lists the token for the job that is created. The remaining lines list the
selector portions of all segments (under the heading BASE) assigned by the bind
application when the code was bound. The LDT(n) values are the same as those
that appear on the bind map. You can match the selector values shown in this
display with the offset values shown in the bind map to determine the exact
location of a symbol listed in the bind map.

SEGMENT MAP FOR job: 2250

 NAME BASE NAME BASE NAME BASE NAME BASE

LDT(2) 2E40 LDT(3) 2E30 LDT(4) 2C08 LDT(5) 2CE0
LDT(7) 2220 LDT(8) 2158

Break at xxxx:yyyy
..

See also: Binder, map files, Intel386™ Family Utilities User's Guide

The debug command loads the application program into its own dynamic memory.
As a result, the application program obtains dynamic memory from the memory
pool of debug, not from the memory pool of the user session. Because debug uses
a different set of default values than the CLI, it is possible that the program may
behave differently than when it is run independently.

See also: System Debugger Reference for more details and for commands you
enter at the SDM prompt

If you use an SBX 279(A) graphics subsystem for a terminal, the monitor session
occurs on a different window than the HI window from which you invoke the
debug command. Using two windows allows you to see more debugging context
than with a single window. To return to the HI window, you may use either the
mouse or a previously mapped ALT/Function key.

The command to exit SDM and return to the CLI prompt is g <CR> .

debug HI command

132 Chapter 2 Command Descriptions

Error Message
<condition code:mnemonic> command aborted by EH

This condition code was encountered and the debug command was aborted by the
exception handler.

HI command delete

Command Reference Chapter 2 133

delete
Deletes one or more files and/or empty directories, or marks them for deletion if a
user is currently accessing them.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

delete pathname_list [q]

Parameters
pathname _list

One or more pathnames of files or empty directories to be deleted. Multiple
pathnames must be separated by commas. Wildcards are permitted.

q(uery)
Prompts for permission to delete each file in the list. Respond to the prompt with:
Y Delete the file
E Exit the command
R Delete remaining files without further query
N or other Do not delete this file; query for the next

Additional Information

You don't need to be the owner of a file to delete it, but you must have delete
access. If a user or program is accessing the file (has a connection to it) when you
invoke delete, the file is marked for deletion, and deleted when all connections to
the file are gone.

Directories must be empty to be deleted with this command.

See also: deletedir command, in this chapter

delete HI command

134 Chapter 2 Command Descriptions

To delete a directory with delete, first delete all files and subdirectories contained
in it. For example, to delete a directory named alpha whose entire contents consist
of a directory beta containing a data file samp, you could enter:

delete alpha/beta/samp, alpha/beta, alpha

Delete displays this message as it deletes each file or marks the file for deletion:

<pathname>, deleted

▲▲! CAUTION
Use wildcards carefully with the delete command. For example,
entering delete *,a (with a comma) instead of delete *.a
erases all files in your current directory, instead of just those files
ending in .a.

The DOS file system does not support the delete access bit. DOS files are owned
by the World user and are either read-only (cannot be deleted) or read/write (can be
deleted by any user). DOS directories cannot be made read-only.

The delete access bit is not supported by iRMX-NET. Normally, append and
update access allow you to delete a remote file if you have add-entry access to the
parent directory; and add-entry access allows you to delete an empty remote
directory. However, if a user on the remote system has removed delete access to a
file or directory, you cannot delete it, regardless of other access permissions.

See also: permit command, in this chapter
deleting files, Installation and Startup
deleting directories, Chapter 1

Error Messages
<pathname>, delete access required

You do not have delete access to the file. If this is a remote file, a user at the
remote system has removed delete access. You cannot change the delete access
locally; a user at the remote system must grant delete access before this command
succeeds.

<pathname>, 026H: add access required
The pathname to be deleted is a remote file and you do not have add-entry access
to the parent directory.

HI command deletedir

Command Reference Chapter 2 135

deletedir
Deletes one or more directories, including subsidiary files and subdirectories.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

deletedir pathname_list [q]

Parameters
pathname _list

Names of directories or files to be deleted. Multiple pathnames must be separated
by commas. Wildcards are permitted.

q(uery)
Prompts for permission to enter each directory and to delete each file in it.
Respond to the prompt with:
Y Enter the directory or delete the file.
E Exit from the deletedir command.

R Delete remaining directories without further query.
S Skip to the end of this (sub)directory and continue prompting

for directories at this level or higher.
A Delete all remaining files and subdirectories in the current

directory without further query, then begin querying before
entering the next (sub)directory.

N or other Do not enter this directory or delete this file. If given in
response to the original directory prompt, deletedir exits.

deletedir HI command

136 Chapter 2 Command Descriptions

Additional Information

The deletedir command deletes an entire directory tree or trees. These are
examples of commands:

deletedir dirA
deletedir dirB, dirC

If you specify the query parameter, deletedir displays one of these prompts:

<pathname>, enter directory?
<pathname>, delete?

Deletedir can only delete empty directories; all files and subdirectories must be
deleted first. Thus, if you enter S to skip a queried file or directory, deletedir
cannot delete that directory or those above it on the same branch. For each of these
directories, this prompt is displayed:

<pathname> delete directory?

Any response other than N causes an exception code to be returned.

Error Messages
<pathname>, delete access required

You do not have delete access to the file. If this is a remote file, a user at the
remote system has removed delete access. You cannot change the delete access
locally; a user at the remote system must grant delete access before this command
succeeds.

<pathname>, 026H: add access required
The pathname is a remote file and you do not have add-entry access to the parent
directory.

NET command deletename

Command Reference Chapter 2 137

deletename
Removes specified server names and addresses from the local network Name
Server object table.

Syntax

deletename object_name_list

Parameter
object _name_list

Specifies one or more server names (or other object names) to be deleted. Multiple
names must be separated with commas.

Additional Information

A typical Name Server object is the name and transport address of a server system
on the network. Delete the object by specifying the server name. The deletename
command deletes objects from the table on the local system, but not from remote
systems. If the object table contains more than one entry with the same name but
different property types, all entries of that name are deleted by this command.

See also: Format of names and addresses, setname and loadname commands,
in this chapter

Error Messages
<object_name>, name does not exist locally

The specified object name is not located in the local object table. However, the
name may exist on the network in the object table of another system.

illegal name
The specified object name is more than 16 characters long. Verify the name of the
object being deleted, and invoke the command again.

detachdevice (dd) HI command

138 Chapter 2 Command Descriptions

detachdevice
Detaches the specified devices and deletes their logical names from the root job's
object directory.

Syntax

dd|detachdevice logical_name_list [f]

Parameters
logical _name_list

One or more logical names of physical devices to be detached. Colons surrounding
the logical names are optional, but if used must be in pairs (:logical _name:).
Multiple names must be separated by commas.

f (orce) The device is to be detached even if connections to files on the device currently
exist; the connections are deleted.

Additional Information

After a device is detached, no volume mounted on that device is accessible for
system use until the device is reattached.

The Super user may detach any device. Other users can detach only these devices:

• Devices configured with your user ID as the owner ID

• Devices you originally attached using the attachdevice command

• Devices originally attached using the world parameter of attachdevice

• Devices originally attached by the World user

Detachdevice returns an error message if you attempt to detach devices originally
attached by other users. This prevents non-Super users from detaching devices
belonging to other users and from accidentally detaching system volumes.

If other users are currently accessing a device, there are connections to it and you
can only detach it by specifying the force parameter.

▲▲! CAUTION
If you detach the device containing HI commands, you cannot use
the commands until the system is restarted.

HI command detachdevice (dd)

Command Reference Chapter 2 139

Error Messages

<logical_name>, can't detach device

<logical_name>, <condition code:mnemonic>
The listed condition code shows an error condition that prevented detachdevice
from detaching the device.

<logical_name>, device does not belong to you
The device was originally attached by a user other than you or World; you cannot
detach the device.

<logical_name>, device has outstanding file connections
There are existing connections to files on the device. You did not specify the
force parameter and detachdevice does not detach the device.

<logical_name>, device is in use
Another user or program is accessing the device (has a connection to a file). You
must specify the force parameter in order to detach the device.

<logical_name>, outstanding connections to device have been deleted
There were outstanding connections to files on the volume. You specified the
force parameter and detachdevice deleted the connections. This is a warning
message only; it does not prevent the device from being detached.

device is not a device connection
You attempted to detach a remote server device. Remote devices attached by the
BIOS, such as the system containing the Master UDF, cannot be detached by the
EIOS through the detachdevice command.

detachfile (df) HI command

140 Chapter 2 Command Descriptions

detachfile
Terminates the association between one or more files and their logical names
established with attachfile.

Syntax

df|detachfile logical_name_list [system]

Parameter
logical _name_list

One or more logical names that represent the files to be detached. Colons
surrounding the logical names are optional, but if used must be in pairs
(:logical _name:). Multiple names must be separated by commas.

s(ystem)
This option indicates that the logical names in the list are system logical names.
System logical names are cataloged in the root directory and are, therefore,
available to all users. The system option can only be executed by the Super user.

Additional Information

Detachfile also uncatalogs the detached files' logical names from your interactive
job's global object directory.

You cannot use detachfile to detach logical names that represent devices rather
than files. Detachfile returns an error message if you make such an attempt.

You cannot use detachfile to detach logical names originally created by other
users.

If you do not specify the system option, detachfile searches for logical names only
in the global object directory of your interactive job. However, if you specify the
system option, it searches only in the root job's object directory.

Error Messages
<condition code:mnemonic> invalid global job

The HI encountered an internal system problem when it attempted to remove the
logical name from the global job's object directory. The message lists the resulting
condition code.

<logical_name>, logical name not allowed
You specified one of the logical names :$:, :term:, :ci: , or :co:. You cannot detach
the files associated with these logical names.

HI command detachfile (df)

Command Reference Chapter 2 141

<logical_name>, not a file connection
The logical name you specified is cataloged in the global object directory of your
interactive job, but it is not the logical name of a file.

Must be SUPER user to execute the SYSTEM option
Only the Super user can use the system option.

deviceinfo HI command

142 Chapter 2 Command Descriptions

deviceinfo
Displays information about the size and available space on the specified volume(s).

Syntax

deviceinfo [logical_name_list] [to|over|after outpath]

Parameters
logical _name_list

One or more logical names of volume devices for which information is displayed.
The names must be surrounded by colons (:logical _name:), and multiple names
must be separated by commas. If no logical name is specified, :$: is the default.

to|over|after outpath
Writes the output to the specified file rather than to the screen.

Additional Information

✏ Note
You cannot use this command with a device that you access
through NFS.

This command supports resident file drivers and dynamic loadable file drivers.
This example shows the type of information produced by deviceinfo for a named
file driver:

deviceinfo :A: <CR>
:A:, volume (RMX) on device (AMH), NAMED file driver
 block size = 512 bytes
 total blocks = 2,880 (1.406 Mbytes)
 free blocks = 2,832 (1.382 Mbytes)
 free files = 200
 total files = 207

HI command deviceinfo

Command Reference Chapter 2 143

This example shows the type of information produced by deviceinfo for an EDOS
file driver:

deviceinfo :sd: <CR>
:SD:, volume (MS-DOS) on device (C_DOS), EDOS file driver
 block size = 2,048 bytes
 total blocks = 40,877 (79.83 Mbytes)
 free blocks = 18,967 (37.04 Mbytes)
 free files = unlimited

The total files field includes the internal system files. The number listed may
be up to seven higher than the number of user files that can be created. If
information is not available, the command does not display any information.

dir HI command

144 Chapter 2 Command Descriptions

dir
Lists the names (and optionally, attributes) of files and directories contained in a
given directory.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

dir [inpath_list] [to|over|after outpath_list]
[f[o]|s[o]|l|e] [fr]
[so] [i] [p] [q] [for path_list]

HI command dir

Command Reference Chapter 2 145

Parameters
inpath _list

One or more pathnames of the directories to be listed. Multiple pathnames must be
separated by commas. If no parameters are specified, your current working
directory (:$:) is listed. Wildcards are not permitted.

to|over|after outpath _list
Writes the output to the specified file (or device) rather than to the screen.
Multiple pathnames must be separated by commas and match the number specified
in inpath _list .

f (ast) [one]
Lists only filenames and directory names. This is the default listing format. The
output is in five columns unless you specify one , for a single column.

s(hort) [one]
Lists names, file attributes, your access rights to the files, and sizes. The output is
in two columns unless you specify one .

l (ong) In addition to the information listed for short, lists the volume and file granularity,
the owner, and the date last modified.

e(xtended)
In addition to the information listed for long , lists the date and time of creation,
last access, and last modification; also lists the users who have access to the file
and their access rights.

W-2650

inpath-list to outpath-list fast

short

long

extended

one

dir

free

sort invisible path-listfor

over

after

parent query

dir HI command

146 Chapter 2 Command Descriptions

fr (ee) Lists the amount of free space available on the volume containing the given
directory, including the number of free files, free volume blocks, and free bytes.
This information is automatically displayed for short, long, and extended listings.

so (rt) Sorts the list in alphanumeric order (except on DOS devices).

i (nvisible)
Additionally lists invisible files: those beginning with the characters R? or r?. If
you omit this parameter, invisible files are not listed.

p(arent)
Displays an entry for the directory specified in inpath _list , in addition to the
files contained in the directory. In a list of directories you may specify a file if you
include the parent parameter.

q(uery) Prompts for permission to list a directory. Respond with:
Y List the directory
E Exit the command
R List remaining directories without further query
N or other Do not list the directory; query for the next

for path _list
In the directories specified by inpath _list , lists only those files that match a
name in path _list . Wildcards are permitted.

Additional Information

You do not need to be the owner of a directory to list its contents with dir ;
however, you must have list access to the directory. In iRMX for Windows and
iRMX for PCs, you can list any directory in the DOS file system.

See also: Accessors and access rights, permit command, in this chapter

To list your current working directory in fast format, enter dir without
parameters. However, to use a listing format other than fast , you must specify the
directory name explicitly. The short, long, and extended listings display the
amount of space used by the listed files and the amount of free space on the
volume.

The iRMX dir command does not work exactly like the DOS dir command. In the
iRMX OS, if you just type dir , it displays all files in the current directory (:$:), as
in DOS. If, however, you include command line parameters, you must type $ to
specify the current directory.

HI command dir

Command Reference Chapter 2 147

For example, to display just the file myfile in the current directory, you cannot
enter dir myfile . You must enter dir $ myfile . The dir command always
interprets the first command line parameter as a directory, so when you type dir
myfile , it attempts to display the contents of a subdirectory named myfile under
the current directory. Similarly, if you want to display all invisible files in the
current directory, you cannot enter dir i (the “invisible” switch), you must enter
dir $ i .

Another use of the dir command is to display the names of the HI system
commands, utilities, or development tools available on your system, with the
commands shown below:

dir :system:
dir :utils:
dir :lang:

Examples

The examples are followed by explanations of the fields in the listings, and the
field differences for DOS and remote file listings.

This command displays a long listing for the current directory:

dir $ l

03 JAN 91 21:55:24
directory OF mydir1 ON VOLUME myvol
 GRAN
 NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD
ed -R-- 11 1,057 1,024 1 # 47 02 MAR 90
programs DR DL-- 30 30,185 1,024 1 # 47 03 JAN 91
fmat DRAU 1 39 1,024 1 WORLD 08 NOV 90
OBJfile ---U 3 2,895 1,024 1 # 47 18 DEC 89
alpha1.P28 DLAC 2 1,304 1,024 1 # 50 22 OCT 90
alpha1.MP1 DLAC 6 5,397 1,024 1 # 50 22 OCT 90
manuals DR -L-- 1 304 1,024 1 # 47 02 JUL 90

 7 files 54 BLKS 41,181 BYTES

 33 files 3,000 BLKS 3,072,000 BYTES FREE

dir HI command

148 Chapter 2 Command Descriptions

This command displays an extended listing for the current directory:

dir $ e

03 JAN 91 21:50:24
directory OF mydir ON VOLUME myvol
 GRAN
 NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD
 programs DR DL-- 30 30,185 1,024 1 # 47 03 JAN 91
 CREATION: 01 JAN 91 04:05:44 ACCESSORS ACC
 LAST ACC: 03 JAN 91 05:52:33 # 47 DL--
 LAST MOD: 03 JAN 91 05:52:33 # 50 -LA-
 # 82 -L--
 ed -R-- 11 1,057 1,024 1 # 47 02 MAR 90
 CREATION: 11 NOV 85 12:24:05 ACCESSORS ACC
 LAST ACC: 02 MAR 90 14:22:16 # 47 -R--
 LAST MOD: 02 MAR 90 14:22:16
 fmat DRAU 1 39 1,024 1 WORLD 08 NOV 90
 CREATION: 01 NOV 87 08:54:39 ACCESSORS ACC
 LAST ACC: 03 JAN 91 14:56:59 WORLD DRAU
 LAST MOD: 08 NOV 90 20:44:01

 3 files 42 BLKS 31,281 BYTES

 33 files 3,000 BLKS 3,072,000 BYTES FREE

This is the meaning of fields shown in the listings.

Heading Meaning
NAME Up to 14-character filename (8.3 characters in DOS)
AT File attribute, where:

DR = Directory
MP = Bit map file
blank = Data file

ACC File access rights of the user who entered the dir command
For Directories: DLAC For Data Files: DRAU
D = Delete

D = Delete
L = List

R = Read
A = Add

A = Append
C = Change

U = Update
BLKS 9-digit number (5 digits on short listing, unless the number is

too long) giving the volume-granularity units allocated to the
file

LENGTH 10-digit number (7 digits on short listing, unless the number is
too long) giving the length of the file in bytes

HI command dir

Command Reference Chapter 2 149

VOL 5-digit number giving the volume granularity in bytes
FIL 3-digit number giving the granularity of the file in multiples of

volume granularity
OWNER User ID of the file owner
LAST MOD Date of last file modification
CREATION
LAST ACC
LAST MOD

Dates and times of file creation, last file access, and last file
modification

ACCESSORS User IDs of users who have access to the file, followed by the
access rights of the corresponding user. The format is identical
to ACC, above.

DOS Files

The size of DOS directories is listed as 0. All files are owned by the World user.
The CREATION, LAST ACC, and LAST MOD times are all equal to the DOS last
modified time.

NFS Files

Access rights and user IDs map differently between iRMX and other OSs when you
use NFS.

See also: permit command for information on NFS mapping

Remote iRMX-NET Files

You own and have full access to any new remote output files created by the dir
command. The listing format is identical to that for local directories. However,
some fields of iRMX-NET remote directory listings have different interpretations:

• The ACC field supports the R (read), A (append), and U (update) access controls
for data files, and the L (list) and A (add entry) access controls for directory
files. The D (delete) and C (change entry) values are omitted from the ACC
field.

• Remote directory listings display the number of files, blocks, and bytes used
by the remote directory. The listings omit this information for the entire
volume.

dir HI command

150 Chapter 2 Command Descriptions

• The user IDs in the OWNER and ACCESSORS fields may not be the same as a
listing on the remote system. Your (client) system receives a user name from
the server for these fields. Your system obtains the user ID that corresponds to
that user name from its own User Definition File (UDF). If your system and
the remote system are in different Administrative Units (subnetworks), and if
both systems contain a user by the same name, the user IDs are likely to be
different.

• If the user name received from the server does not exist in the client UDF, the
user ID is displayed as 65534.

• The VOL granularity field is estimated by the Remote File Driver, using the
value returned by a BIOS rq_get_file_status call.

• The BLKS field is calculated by dividing the LENGTH field by the estimated
value of the VOL granularity field.

• The FIL granularity is assigned a value of 1.

Error Messages
no directory files found

None of the files you specified were directories.

<pathname>, READ access required
You do not have read (list) access to the directory.

HI command disconnect

Command Reference Chapter 2 151

disconnect
Removes a terminal connection established with the connect command; cannot be
used for virtual terminals.

Syntax

disconnect : logical_name :

Parameter

:logical _name:
The logical name for the physical terminal device that is to be disconnected.

Additional Information

The specified logical name is deleted from the root job's object directory and the
terminal returns to locked status, under HI control.

The Super user may disconnect any connected terminal. Other users can
disconnect only those terminals connected by themselves or by the World user.
Disconnect returns an error message if you attempt to disconnect a terminal
originally connected by another user.

If you change the terminal attributes while the terminal is connected, the changes
remain in force after the terminal is disconnected. Note your terminals attributes
before connecting; you must restore them before the HI can use the terminal.

Error Messages
<logical_name>, is not a terminal connection

The specified name does not represent a terminal connection.

<logical_name>, has not been connected
The specified name has not been connected using the connect command.

<logical_name>, not found
The terminal connected as <logical name> cannot be found in the terminal
table.

<logical_name>, device does not belong to you
The device was originally connected by a user other than you or World; you cannot
disconnect the device.

*, invalid wildcard specification
Wildcards are not supported.

diskverify HI command

152 Chapter 2 Command Descriptions

diskverify
Invokes the Disk Verification Utility, which inspects, verifies, and corrects the data
structures of iRMX physical and named volumes. Operates as a single command
(described here) or in interactive mode.

See also: Using diskverify in interactive mode, Appendix B

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

diskverify : logical_name : [to|over|after outpath]
[disk|gb|v[options]|fix[options]]

The options for the verify and fix parameters are shown in the diagram on the
next page.

HI command diskverify

Command Reference Chapter 2 153

Parameters
logical _name

Logical name of the secondary storage device containing the volume to be verified.
The colons are not required.

to|over|after outpath
Pathname of the file to receive the output from diskverify . If you omit this
parameter, and/or no preposition is specified, the output goes to the console screen
(:co:). You cannot direct the output to a file on the volume being verified; if you
do, the utility returns an error message.

disk Displays attributes of the volume, such as the type of volume, device granularity,
block size, number of blocks, interleave factor, extension size, volume size, the
root fnode number, and number of fnodes.

W-2652

diskverify

to

outpath

getbadtrackinfo

disk

named

named1

all

named2

physical

list

logical-name

over

after

verify

fix

: :

diskverify HI command

154 Chapter 2 Command Descriptions

gb (or getbadtrackinfo)
Reads and displays the bad track information from the volume. Output redirected
to a file may be used as input to the format command by removing the header
information.

v(erify)
Verifies the volume according to the specified option. If you omit the option, the
utility performs named verification.

fix Verifies and fixes the volume according to the specified option. After performing
the verify functions, the utility tries to fix several types of inconsistencies on the
volume. Using the fix parameter may prove dangerous, since it changes data on
the disk. For example, during N1 verification, fix corrects the checksums on
fnodes with bad checksums. However, an fnode with a bad checksum may indicate
another fnode problem which needs attention.

It is best to use fix in this manner:

1. Use diskverify with the verify option.

2. Examine the output and the problems on the volume to determine the type of
fix needed.

3. If the problems can be fixed using diskverify , invoke diskverify with the fix
option to correct the problem.

n(amed) Performs both the N1 and N2 options described below. If you omit an option to
verify or fix , named is the default.

n1 (or named1)
For named volumes only, checks the fnodes of the volume to ensure that they
match the directories in terms of file type and file hierarchy. This option also
checks the information in each fnode to ensure that it is consistent and displays a
list of files in error, with information about each file. When used with fix , the N1
option corrects bad checksums and attaches orphan fnodes to their parents.

See also: Fnodes, format command, in this chapter

all For named volumes, this option performs the N1, N2, and physical functions.
For physical volumes, only the physical option is done.

list A control you may use with any option that activates N1 verification (named, N1,
or all). When you use this control, the same file information generated by
verify or fix is displayed for every file on the volume, even if the file contains
no errors.

HI command diskverify

Command Reference Chapter 2 155

n2 (or named2)
For named volumes only, checks the allocation of fnodes on the volume, checks the
allocation of space on the volume, and verifies that the fnodes point to the correct
locations on the volume. When used with fix , the N2 option saves on the volume
the correct bit maps constructed during verification. It also removes fnodes with
multiple references from illegal parent directories.

physical
Applies to both named and physical volumes. This option reads all blocks on the
volume and checks for I/O errors. It displays block numbers where errors are
found.

Additional Information

Diskverify is most useful after such occurrences as power irregularities or
accidental reset. Diskverify can be used on only named and physical volumes; it
cannot be used on remote, NFS, EDOS, or DOS volumes. In iRMX for Windows
and iRMX for PCs, use this command only for an iRMX partition, not for a DOS
drive or a partition containing the DOS file system.

Diskverify can be used in two ways:

• As a single command that verifies the structures of a volume and returns
control to the Human Interface; this mode is covered here.

• In interactive mode, which you enter if you don't specify any parameters after
outpath ; interactive mode is covered later in this manual. Using diskverify
in interactive mode requires a more thorough understanding of iRMX volume
structures to avoid damaging the volumes.

See also: diskverify in interactive mode, Appendix B
iRMX volume structures, Appendix C

When you invoke the diskverify command, the utility responds by displaying this
message, where Vx. y is the version number of the utility:

iRMX Disk Verify Utility, Vx.y
Copyright <year> Intel Corporation
All Rights Reserved

In single-command mode, the results of your diskverify command follow
immediately after the sign-on message. If you enter the interactive mode in error,
the sign-on message is followed by a prompt (*). To exit diskverify at the *
prompt, enter quit .

diskverify HI command

156 Chapter 2 Command Descriptions

Unless you are the Super user, you may only invoke diskverify for devices
attached by you or the World user. The diskverify utility reattaches the device as a
physical device before verifying it. When the utility finishes, it reattaches the
device as it was before you invoked the utility.

If you verify the system device (:sd:), the OS deletes all connections to the device;
thus you must reboot the system before entering more commands.

See also: Named and physical volumes, format command, in this chapter

Examples

1. This example uses the verify option:

- diskverify :f1: verify named2 <CR>

iRMX Disk Verify Utility, Vx.y
Copyright <year> Intel Corporation
All Rights Reserved
DEVICE NAME = F1 : DEVICE SIZE = 0003E900 : BLOCK SIZE= 0080
'NAMED2' VERIFICATION
 BIT MAPS O.K.

The DEVICE SIZE is a hexadecimal number of bytes. The BLOCK SIZE is the
volume granularity in hexadecimal; this is the size of a block on this volume.

If there were errors found, they would be reported as shown below. This display
also applies to the n1 option and the fix parameter. If you use the list control,
this type of information is reported for all files, without an error message for files
not in error:

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>: TYPE=<typ>
<error messages>

<fnodenum>
Hexadecimal number of the file's fnode.

<lev> Hexadecimal level of the file in the file hierarchy. The volume's root
directory is the only level 0 file. Files in the root directory are level 1
files. Files in level 1 directories are level 2 files, etc.

<parnt> Hexadecimal fnode number of the directory that contains this file.

<typ> File type, either DATA (data files), DIR (directory files), SMAP (volume
free space map), FMAP (free fnodes map), BMAP (bad blocks map), or
VLAB (volume label file). If diskverify cannot ascertain that the file
is a directory or data file, it displays the characters **** in this field.

HI command diskverify

Command Reference Chapter 2 157

2. This example uses the fix option to perform both named and physical
verification of a named volume and correct the problems on the volume.
Notice the prompt to save the bad block map from the physical verification.

- diskverify :f1: fix ALL <CR>

iRMX Disk Verify Utility, Vx.y
Copyright <year> Intel Corporation
All Rights Reserved
DEVICE NAME = F1 : DEVICE SIZE = 0003E900 : BLOCK SIZE= 0080
'NAMED1' VERIFICATION
'NAMED2' VERIFICATION
 BIT MAPS O.K.
'PHYSICAL' VERIFICATION
 NO ERRORS
 free fnode map saved
 free space map saved
save bad block map? <y>

 bad block map saved

3. This example uses the disk option. This is for a named device; many of these
fields are not displayed for a physical device.

- diskverify :f2: disk <CR>

iRMX Disk Verify Utility, Vx.y
Copyright <year> Intel Corporation
All Rights Reserved
 Device name = WF0
 named disk, volume name = UTILS
 device granularity = 0080
 block size = 0080
 number of blocks = 0000072D
 number of free blocks = 00000408
 volume size = 0003E900
 interleave = 0005
 extension size = 03
 number of fnodes = 0038
 number of free fnodes = 0022
 root fnode = 0006
 save area reserved = no
MSA second stage included = no

diskverify HI command

158 Chapter 2 Command Descriptions

4. This example uses the getbadtrackinfo option. This option may be useful
on a Multibus I system when migrating from a 215G controller to a 214 or 221
controller.

-diskverify :sd: to :f1:WORK/BT GB <CR>

This information is written to the :f1:work/bt file:

Bad track information
cyl head sector
0034 03 00
0043 02 00
0316 00 00

Error Messages

In addition to the errors listed below, the verify and fix options produce error
messages.

See also: diskverify error messages, Appendix B

argument error
The option you specified is not valid.

command syntax error
You made a syntax error when entering the command.

device size inconsistent size in volume label = <value1> : computed

size = <value2>
When diskverify computed the size of the volume based on the physical name used
for attachment, the size it computed did not match the information recorded in the
volume label. It is likely that the volume label contains invalid or corrupted
information. This is not a fatal error, but it indicates that further errors may occur
during verification. You may have to reformat the volume or use the diskverify
utility to modify or restore the volume label.

not a named disk
You tried to perform a named, named1, or named2 verification on a physical
volume.

Can't attach device
Diskverify 's attachdevice system call failed or you specified the logical name of a
remote server.

HI command domain

Command Reference Chapter 2 159

domain
Sets the search domain of all subnets the iRMX-NET Name Server can access. Use
this command when you have set up a network with any subnet IDs except 1, using
routable iNA 960 jobs.

Syntax

domain [-a ID [- range]] [-d ID [- range]]

Parameters

-a Adds a single ID or a range of IDs to the search list.

-d Deletes a single ID or a range of IDs from the search list.

Additional Information

Without any parameters, domain displays the current search domain. With either
parameter, domain displays the current search domain after the addition or
deletion.

When adding or deleting IDs, specify either a single subnet ID or a range of IDs
separated with a dash (-) and no spaces. The ID must be a four-digit hexadecimal
number followed by an H. For example, to add subnet 4 to the current search
domain, enter:

domain -a 0004H

To enable searching of all subnets from 1 to 1AH, enter:

domain -a 0001H-001AH

The maximum number of subnets to be searched is 80. You can specify subnet IDs
not currently in use. However, adding more subnet IDs to the search domain slows
down Name Server operations.

You can add the domain command to the loadinfo file following the sysload
command that loads the iRMX-NET job.

See also: Multibus II Subnet and Multiple Subnets, Network User’s Guide
and Reference

dump HI command

160 Chapter 2 Command Descriptions

dump
Displays one or more files in hexadecimal format.

Syntax

dump inpath_list [to|over|after outpath_list] [b|w] [q] [p= num]

Parameters
inpath _list

One or more filenames separated with commas. Wildcards are permitted.

to|over|after outpath _list
Writes the output to the specified file(s) rather than to the screen. If you specify
multiple input files and one output file, the output is appended.

b(yte) Displays the input files as 2-digit hexadecimal numbers, with the ASCII printable
characters on the right. This is the default format.

w(ord) Displays the input files as 4-digit hexadecimal numbers.

q(uery) Prompts for permission to process each file. Respond to the prompt with:

Y Display the file
R Display remaining files without further query
E Exit the command
N or other Don't display the file; query for the next

p(agewidth)=num
Specifies the width of the output display in number of characters. By default the
number is decimal, but you can specify octal or hexadecimal by appending an O or
H. If this parameter is not entered, the default width for byte displays is 80
characters, and for word displays is 55 characters.

Additional Information

All input files are considered one logical file. Therefore the offsets at the
beginning of each line are not reset to 0 between each file. The default output is in
columns of eight bytes for byte format and columns of four words for word format.

TCP/IP command enetinfo

Command Reference Chapter 2 161

enetinfo
Displays the Ethernet addresses of the local system.

Syntax

enetinfo

Additional Information

The output of the enetinfo command is similar to:

Subsystem ID Ethernet Hardware Address
 0x20 00:aa:00:02:fd:3a
 0x2f a2:a4:a6:a8:aa:00

The Subsystem ID indicates the subsystem being used by iNA 960 network
software. The Ethernet address is encoded on the network controller board. In a
Multibus II system you may have as many as three active network controller boards
by using MIX 560 boards. In this case the enetinfo command displays the
subsystem ID and Ethernet address for each board. iNA 960 assigns subsystem IDs
according to the Data Link subsystem on each board:

Subsystem ID Board
20H first MIX 560
21H SBX 586 board, EWENET module, or EtherExpress 16
22H second MIX 560
23H third MIX 560
24H 82595TX component, EtherExpress PRO/10, SBC P5090 and

P5120 PC-compatible boards, all versions
2FH Multibus II subnet

When configuring TCP/IP, you assign a particular stream to one of the boards in
the inetinit.cf file.

See also: /dev/edlina2x and inetinit.cf, TCP/IP and NFS for the iRMX
Operating System
Subsystem field in request blocks, Network User's Guide and
Reference

esubmit HI command

162 Chapter 2 Command Descriptions

esubmit
Reads and executes a set of commands from a file called an esubmit file. The
esubmit command allows more replaceable parameters than submit, and the
esubmit file may contain programming statements and user-defined variables.

Syntax

esubmit pathname [(param _list)] [to|over|after outpath] [e]

[cc (char)] [mc (char)] [noexecute (ne,e)] [sc (char)]

[set (variable [= value][, variable [= value]...])]

[reset (variable _list)]

over

after

to

esubmit pathname

parameter-list

outpath

echo

set variable()

,

value

char char char

=

W-3469

variable-list

mc ()cc () sc ()

()

reset ()

ne

Parameters
pathname

Name of the file from which esubmit executes commands. This file may contain
nested esubmit commands. Typically the filename has the extension .csd, which
you do not include in the pathname. If no such file is found, the filename is
assumed to be exactly as entered here.

HI command esubmit

Command Reference Chapter 2 163

param _list
As many as 36 actual parameters, separated by commas, that are to replace formal
parameters in the esubmit file. You must surround this parameter list with
parentheses. To omit a parameter in the middle of the list, reserve its position by
entering a comma. If a parameter contains a comma, space, or parenthesis, enclose
the parameter in single or double quotes. The sum of all characters in the
parameter list must not exceed 1024 characters.

to|over|after outpath
Writes the output from each command in the esubmit file to the specified file rather
than to the screen. Commands in the esubmit file may redirect their own output;
that output is not written to this file.

e(cho) Data written to an output file is also echoed to the screen. Nested esubmit
commands do not have their contents echoed to the screen unless they are also
invoked with the echo parameter.

cc (or contchar or continuationchar)
Specifies a character in parentheses to be used as a line continuation character in
esubmit subcommands. By default, the continuation character is & .

mc (or metachar)
Specifies a character in parentheses to be used by esubmit as a metacharacter. By
default, the metacharacter is $. The metacharacter at the beginning of a line in the
esubmit file indicates the line contains an esubmit subcommand, rather than an OS
command.

ne (or noexecute)
Displays the commands without actually sending them to the iRMX Human
Interface.

sc (or subchar or substitutionchar)
Specifies a character in parentheses to be used by esubmit as a substitution
character. By default, the substitution character is % . The substitution character is
used to indicate substitution of formal parameters and esubmit variables.

set variable [= value]
Sets one or more user-defined variable names to the specified numeric value. If the
value is not specified, the default is one. The variable list must be within
parentheses and the variables must be separated with commas. The requirements
for variable names and values are described in a later section.

reset variable _list
Sets one or more user-defined variable names to zero. The variable list must be
within parentheses and the variables must be separated with commas.

See also: Example 6 for this command

esubmit HI command

164 Chapter 2 Command Descriptions

Additional Information

✏ Note
Do not include the following commands in an esubmit file:

backup rsh
pause ruptime
psh rwho
rcp rwhod
restore telenet
rlogin tftp

If you use a form of the following commands that requires user
input in an esubmit file, you must use the eoresponse and
coresponse subcommands with esubmit to access the user
repsonse. Without access to the required user input the
commands will fail.

accounting format
addloc ftp
copy help
copydir locdata
date permit
delete remini
deletedir rename
dir time
diskverify

The esubmit command has these characteristics in common with the submit
command:

• Any program that reads its commands from the console input (:ci:) can be
executed from within an esubmit file. With certain restrictions described at the
end of this section, a submit file may be used with the esubmit command.

• The esubmit command can be nested in an esubmit file to any level, within the
limits of memory.

• If esubmit is operating in the foreground, you may enter a <Ctrl-C> to abort
esubmit processing and return control to the command line.

• You own and have full access to any new files created by the esubmit
command, including files created by the to , over , or after parameters.

HI command esubmit

Command Reference Chapter 2 165

To use the esubmit command, you must first create a text file that defines the
command sequence. Esubmit supports aliases similar to the way in which the
iRMX CLI does for iRMX commands (note that this does not include alias support
for esubmit commands). The alias and dealias commands, and alias expansion are
supported. The difference between the alias support in esubmit and in the iRMX
CLI is that esubmit treats the "?" (question mark) character as a single character
wild card. The iRMX CLI treats the "?" character as a supported ASCII character
for the alias abbreviation and the alias expansion.

Other CLI commands, such as background, cannot be used in the file. Before
submitting commands in the file to the OS, esubmit processes these elements in the
file:

• formal parameters

• esubmit variables

• esubmit subcommands

In most cases, an error within an esubmit subcommand causes esubmit to
terminate. When all commands in the esubmit file have been executed, esubmit
displays:

END esubmit <pathname>

Formal Parameters

Formal parameters in the esubmit file are specified by the characters %n, where %
is the substitution character and n ranges from 0 through 9 and A through Z, in that
order. Letters used as formal parameters are not case-sensitive. When esubmit
executes the file, it replaces the formal parameters with the actual parameter list in
the esubmit command. The first actual parameter replaces all instances of %0, the
second parameter replaces all instances of %1, and so forth. If the actual parameter
is surrounded by quotes (to avoid command-line interpretation of a comma, space,
or parenthesis in the parameter), esubmit removes the quotes before performing the
substitution. If there is no actual parameter that corresponds to a formal parameter,
esubmit replaces the formal parameter with a null string.

Within each line of the esubmit file, substitution of formal parameters occurs
before processing of esubmit subcommands. Therefore, the metacharacter, a
subcommand, or an expression within a subcommand may be passed as an input
parameter.

See also: Example 1 for this command

esubmit HI command

166 Chapter 2 Command Descriptions

Variables

Variables are names defined by the user and set to a numeric or string value on the
command line or in an esubmit file. Numerical and string variable names can be 1
to 32 characters and are not case-sensitive. String variables follow the same
syntactic rules as numerical variables, except that all string variables start with an
underscore (_) followed by either A through Z or a through z. The maximum
length of the value of each string variable is 128 bytes.

There are five new read-only esubmit variables.

• date is a numeric variable that contains the value yymmdd in decimal where
yy is the last two digits of the year, mm is the month, and dd is the day of the
current date.

• time is a numeric variable that contains the value hhmmss in decimal where
hh is the hour, mm is the minute, and ss is the second of the current time.

• _date is a string variable that contains the value mm/dd/yy where yy is the
last two digits of the year, mm is the month, and dd is the day of the current
date.

• _time is a string variable that contains the value hh:mm:ss where hh is the
hour, mm is the minute, and ss is the second of the current time.

• _hostid is a string variable that contains the interconnect board id for the
current board.

Two variable names are reserved:

• Commandexcep always contains the condition code of the last command
executed. This read-only variable cannot be changed with the set or reset
subcommands.

• Inputparameters is a read-only variable that contains the value of the
number of input parameters (within parentheses) that were passed by the CLI
to the command sequence definition file.

Variables can be set to any whole number value in the range 0-0FFFFFFFFH.
When you set a value, the default base is decimal, but you may specify the base by
appending one of these letters to the value: B for binary, O or Q for octal, D or T
for decimal, H or X for hexadecimal, or E for enumerated. Enumerated numbers
range from 0 through 9 and A through Z, with equivalent decimal values of 0
through 9 and 10 through 35. To distinguish between variable names and values,
values must begin with a numeral 0 through 9.

See also: Example 2 for this command

HI command esubmit

Command Reference Chapter 2 167

String variable values are assigned using the set and for subcommands. Set
supports concatenation using the plus (+) character. For supports sets inside braces
({ and }) delimited by commas. All values that are not other string variables must
be enclosed within quotation marks. Both single and double quotation marks are
supported, but they must match within a single assignment statement. An example
of a set command with a string variable is:

$SET _stringvar = "my string's value"

This assigns the value enclosed by the double quotes, including the single quote, to
the string variable _stringvar . An example of a set command with
concatenation is:

$SET _stringvar = _stringvar + ' delimiter ' + _stringvar

An example of a for command with sets is:

$FOR _stringvar = {"one",'two',_stringvar+"three's",'four'}

String variables are maintained in an internal table separate from the one for
numerical variables, and, therefore, do not count against the limit of numerical
variables. The default maximum number of string variables is 32. This is
configurable with the commands allocatestring, clearstring, and initstring , which
are equivalent to the allocate, clear, and init subcommands for numeric variables,
respectively. The maximum allowable number of string variables is 128. Each
entry in the table takes 162 bytes (1 byte for the variable name length, 32 bytes for
the variable name, 1 byte for the string value length, and 128 bytes for the string
value).

Generally, a variable name within esubmit subcommands may be used to represent
the value to which it is set. However, when writing information to a file or issuing
an OS command, you need the actual value as an ASCII string rather than the
variable name that represents the value. To accomplish this, format the variable
name in the esubmit file as a variable substitution string. The esubmit command
replaces the substitution string with an ASCII string corresponding to the current
numeric value. This process is similar to replacing formal parameters.

The esubmit command substitutes the value string for variables preceded by the
substitution character and metacharacter, and followed by the metacharacter. You
may format the way the value string is displayed when substitution takes place by
embedding optional control characters before the variable name. The syntax for
variable substitution is shown below; the characters cannot be separated with
spaces. The closing metacharacter may be replaced with an end-of-line or end-of-
file.

subchar metachar [base digits zerosupp] variable metachar

esubmit HI command

168 Chapter 2 Command Descriptions

Base , digits , and zerosupp are format control characters that may occur in any
order, but each may only be specified once for a given variable. Each control
character is preceded with a backslash (\). Control characters are not case-
sensitive. If no variable name is provided, the value 0 is substituted in the
specified format.

base By default, the value is substituted in decimal. You may specify the
base with a two-character code: \B for binary, \O or \Q for octal, \D
or \T for decimal, \H or \X for hexadecimal, or \E for enumerated.

digits This is a two-character code specifying the number of digits to use: \0
through \9. If the specified number is smaller than the number of
significant digits, this code is ignored (the string %$\2var$ with
var=1234 becomes 1234). If the specified number is greater than
the number of significant digits, the display is padded with leading
zeros (the string %$\4var$ with var=3 becomes 0003).

zerosupp If the value is 0, it is substituted in the number of digits indicated (one
by default), unless you specify 0 suppression with a \S or \Z. Zero
suppression takes precedence over the number of digits (the string
%$\Z\2var$ with var=0 displays nothing). Zero suppression does
not suppress leading 0s in a non-zero value.

Examples of the string substituted for the variable myvar = 165 are shown below:

Variable String Substituted String
%$myvar$ 165
%\Hmyvar A5
%$\z\5myvar$ 00165

Part of a variable name may be formed by embedding a formal parameter or
another variable substitution string. The form is %$variableX $ where variable
is at least one character and X is a formal parameter (%0 through %Z) or a second
variable string. For example, assume the variable myvar2 has the value 7, the first
input parameter (%0) is 2, and the variable index2 has the value 2. During
substitution, the strings %$myvar%0$, %$myvar%$index2$$, and
%$myvar%$index%0$$ become instances of %$myvar2$. Each is replaced
with 7.

When an esubmit command is nested in an esubmit file, the nested esubmit shares
no variables with the parent esubmit. Each invocation of esubmit starts with a
buffer large enough for 80 variables. Refer to the allocate , clear , and init
subcommands for information about manipulating the buffer size.

HI command esubmit

Command Reference Chapter 2 169

Using Esubmit Subcommands

Esubmit subcommands are commands in the esubmit file to control processing.
You indicate a subcommand with a metacharacter ($ by default) at the beginning of
the line in the esubmit file. The metacharacter must be in the first column; if you
indent subcommands, do not indent the metacharacter. Subcommands are not case-
sensitive. A subcommand may be continued on subsequent lines with the
continuation character (& by default). Any text following the continuation
character on the same line is ignored. Subsequent continuation lines may
optionally include a metacharacter in the first column.

Within a subcommand, the semicolon (;) is a comment character. Any text
following a semicolon on a subcommand line is ignored. However, variable
substitution and input parameter substitution occur in a comment.

Some subcommands define programming expression blocks that conditionally
execute OS commands within the block. The subcommands to terminate a block
(endif , endwhile , enduntil , endcase , end , and next) are matched with the
most recent corresponding subcommand (if , ifexist , ifnotexist, dowhile ,
dountil , case , do, and for). Programming expression blocks may be nested up
to 14 deep, in any order. Subcommands may contain mathematical or logical
expressions as arguments. Elements in expressions are not case-sensitive.

Mathematical and Logical Expressions

Mathematical expressions are expressions evaluated to a whole number in the range
0-0FFFFFFFFH. Mathematical expressions have the form:

operand [operator operand]...

An operand may be a numeric constant (optionally followed by a character
indicating the base), a variable, or another mathematical expression enclosed in
parentheses.

Operators are the characters % (modulus), * (multiplication), / (division), +
(addition), and - (subtraction). When the substitution character is %, a space or tab
must follow the % modulus operator on a subcommand line. Otherwise, the
substitution character takes precedence over the modulus operator. This is the
order of precedence for operators:

()

% Evaluated left to right
* and / Evaluated left to right
+ and - Evaluated left to right

esubmit HI command

170 Chapter 2 Command Descriptions

This is an example of a mathematical expression:

(36H / (17 + subtotal)) % 32

Logical expressions are expressions evaluated to TRUE or FALSE. TRUE is
defined as the least significant bit on (all other bits are ignored) and FALSE is
defined as the least significant bit off (all other bits are ignored). Logical
expressions have the form:

[not] variable [relation expression] [logical [not] variable ...]

Relation is one of <, <=, =, <>, >=, or >. Expression is a mathematical
expression enclosed in parentheses, a variable, or a numeric constant (optionally
followed by a character indicating the base). Logical is one of the logical
operators AND, OR, or XOR. This is the order of precedence for elements in a
logical expression:

()

NOT

AND, OR, and XOR Evaluated left to right. (The current order of evaluation
does not follow commonly accepted practice, which is
AND evaluated left to right, then OR and XOR
evaluated left to right.)

This is an example of a logical expression:

myvar = 32T OR NOT myvar = 10H

HI command esubmit

Command Reference Chapter 2 171

Subcommand Descriptions

allocate

clear

init

The allocate , clear , and init subcommands adjust the size of
the variable table buffer. This is a buffer that stores the variable
names and values; when esubmit is invoked the buffer has room for
80 variables. Init and clear are equivalent, and reinitialize the
buffer so no variables are currently stored in it. Allocate
reinitializes the buffer without losing the current contents, unless you
specify a new buffer size smaller than the existing number of
variables. These subcommands can be used to dynamically tune the
esubmit memory requirements and resource availability. It takes 37
bytes to store each variable in the table: 1 byte for the variable name
length, 32 bytes for the name, and 4 bytes for the value. The form of
the subcommand is

$keyword [mathematical expression]

where keyword is allocate , clear , or init , and mathematical
expression is the number of variables to be supported by the new
table. The maximum number of variables is 600H; if more than
600H are requested, the number is reduced to 600H. If you specify
0, or if no mathematical expression is provided, the default number is
80. If you use allocate to make the buffer smaller than the current
number of variables, only the specified number of variables is
preserved. The most recently declared variables are lost.

See also: Example 3 for this command

If an error is encountered trying to change the buffer using one of
these subcommands, esubmit continues and the previous variable
buffer is maintained.

break The break subcommand executes an Interrupt 3 to break to the
debug monitor. When this subcommand is executed, all processing
in the system is halted. To allow pending I/O to complete before the
INT 3, it is prudent to execute a delay subcommand immediately
before the break . The subcommand has the form:

$BREAK

See also: Example 4 for this command

esubmit HI command

172 Chapter 2 Command Descriptions

case...
value...
default...
endcase

These subcommands conditionally execute lines of text between
them, where the text may be other subcommands and/or OS
commands. Case begins the conditional block and endcase
terminates it. Value and, optionally, default define blocks of text
between the case and endcase .

Only one block of text is executed: the block following the first
value expression equivalent to the value in the case subcommand.
If no value expression is equivalent to the case expression, the
block of text following the default subcommand is executed.
(Including value subcommands after the default subcommand is
pointless, since the default or a previous value expression will
have already forced execution of a text block.)

The case...endcase block has the form:

$CASE mathematical expression
$VALUE mathematical expression
text
[$VALUE mathematical expression]
[text]
[$DEFAULT mathematical expression]
[text]
$ENDCASE

This is an example of a case...endcase block:

$CASE 5 - 200 % (myvar * 3)
$VALUE newvar - 1
text
$VALUE (newvar * 2) - 3
text
$DEFAULT
text
$ENDCASE

clear See the allocate , clear , init description.

HI command esubmit

Command Reference Chapter 2 173

coresponse
eoresponse

These commands execute the c_send_co_response and
c_send_eo_response Human Interface calls. They use a
prompt_string as the message parameter, which is sent to :CO:
(for coresponse) or to the operator's terminal (for eoresponse).
Execution will be halted until input is received. An eoresponse
input must come from the operator's terminal. A coresponse input
will come from whatever is attached as :CO: (possibly another
esubmit file that is executing this one). The syntax is:

$CORESPONSE variable [prompt_string]

$EORESPONSE variable [prompt_string]

where variable is a numeric or string variable and the optional
parameter prompt_string is a string constant enclosed in quotes or
a string variable expression.

Examples:

$CORESPONSE _input_string "Enter a string value: "

$CORESPONSE _opt “Enter dir opt: “
dir $ %$_opt$

$EORESPONSE input_var "Please enter a numeric
value: "

$EORESPONSE _opt “Enter dir opt: “
dir $ %$_opt$

continuationchar

contchar

These subcommands are equivalent. Contchar changes the
continuation character from the point where this subcommand
occurs. The continuation character (& by default) specifies that a
subcommand continues on this line. For example, to make @ the
continuation character, use the subcommand:

$CONTCHAR @

esubmit HI command

174 Chapter 2 Command Descriptions

copydependency The copydependency subcommand copies one file over another
under certain conditions. It has this syntax:

$COPYDEPENDENCY target | dependency [access]

where target is a single filename, dependency is a single
filename, and access is an optional parameter listing the World
access rights to be granted to the target file if a copy is performed.
(In the syntax above, you must enter the pipe symbol (|) as part of the
command. It means that the dependency file follows, as in the make
command. In this case, the pipe symbol does not mean enter either
target or dependency as part of the command.) If the target file
does not exist, or if the dependency file has been modified later than
the target file, then the dependency file is copied over the target file.
Choices for access include any permutation of "DRAU" access. If
you do not specify access , the current user will have DRAU access,
and all other non-Super users will have ---- access.

createdirdependency

mkdirdependency

These subcommands are equivalent. They create a directory unless
the specified directory already exists. The syntax is:

$CREATEDIRDEPENDENCY target

$MKDIRDEPENDENCY target

where target is a single directory name. If the target directory
does not exist it is created, with World DLAC access rights.

delay

pause

sleep

wait

These subcommands are equivalent. They delay execution of the
esubmit file for a specified amount of time. The form of the
subcommand is

$keyword delaytime

where keyword is one of delay , pause , sleep , or wait , and
delaytime is a number, variable, or mathematical expression that
indicates the amount of time to delay, in hundredths of seconds.
This list shows the amount of delay time for various commands:

Subcommand Seconds Delayed
$DELAY 100 1
$PAUSE 200 2
$SLEEP 5 * 100 5
$WAIT myvar 10, when myvar = 1000

HI command esubmit

Command Reference Chapter 2 175

dependency...

enddependency

The dependency subcommand conditionally executes any
commands until the enddependency subcommand, depending on
certain conditions. It has this syntax:

$DEPENDENCY target | dependency_list

<esubmit and iRMX commands>

$ENDDEPENDENCY

where target is a single filename and dependency_list is a list
of filenames delimited by spaces or tabs. (In the syntax above, you
must enter the pipe symbol (|) as part of the command. It means that
the dependency file follows, as in the make command. In this case,
the pipe symbol does not mean enter either target or dependency
as part of the command.) If the target file does not exist, or if no
dependency files are specified, or if any of the dependency files have
been modified later than the target file, the commands inside the
dependency/enddependency loop are executed. Otherwise, they will
not be executed.

do...end See the for...next description.

dowhile...

endwhile,

dountil...

enduntil

These subcommands conditionally execute the intermediate block of
text in a loop, based on logical expressions involving variables.
Dowhile...endwhile executes the text as long as the conditional
expression evaluates to TRUE. Dountil...enduntil executes the
text as long as the conditional expression evaluates to FALSE. The
subcommands have the form:

$DOWHILE logical expression
text
$ENDWHILE
$DOUNTIL logical expression
text
$ENDUNTIL

These are examples of subcommands that cause infinite loops:

$DOWHILE 1
text
$ENDWHILE

$DOUNTIL 0
text
$ENDUNTIL

eoresponse See the coresponse , eoresponse description.

esubmit HI command

176 Chapter 2 Command Descriptions

exit

quit

The exit and quit subcommands end the current esubmit
processing. If the current esubmit file was invoked with an include
command from another esubmit file, then processing of that parent
file is also ended. If the current esubmit file was invoked from an
esubmit command in another esubmit file, then processing of that
parent file resumes. The subcommands are equivalent and have the
following syntax:

$EXIT exit_value

$QUIT exit_value

where exit_value is a mathematical expression whose value is
passed to the Human Interface as the command exception when
esubmit exits using the rq_exit_io_job system call.

HI command esubmit

Command Reference Chapter 2 177

for...next,

do...end

These subcommands execute a block of text a specified number of
iterations. Do...end is equivalent to for...next . The
subcommands typically have the form:

$FOR variable = startvalue TO stopvalue [STEP
stepvalue]
text
$NEXT

$DO variable = startvalue TO stopvalue [BY
stepvalue]
text
$END

Startvalue , stopvalue , and stepvalue may be numeric
constants, variables, or mathematical expressions enclosed in
parentheses. Startvalue must be less than or equal to stopvalue
to enter the loop. Stepvalue is always interpreted to be greater
than or equal to 0. Text following the next subcommand on the
same line is ignored. Therefore, next always ends the loop begun
by the last for subcommand. In nested loops, specifying $NEXT
variable_name does not necessarily end the loop begun with a
$FOR variable_name = subcommand.

See also: Example 5 for this command

If the value of the loop variable is modified within the loop (using
the set subcommand), the next iteration increments the modified
value of the variable instead of the previous iterative value. The
same variable should not be used as a loop counter within nested
loops.

The for and next and the do and end subcommands must occur as
pairs. You can not have a for...end or a do...next block.
However, the step and by keywords are interchangeable.

An alternate form of these subcommands is to iteratively assign the
variable to a set of values in a list. The loop executes once for each
value in the list, independently of whether the variable is modified
within the loop. This form of the command is:

$FOR variable = { list }
text
$NEXT

esubmit HI command

178 Chapter 2 Command Descriptions

List is a series of numeric constants, variables, or mathematical
expressions enclosed in parentheses. Surround the list with braces
({ }) and separate each item in the list with commas.

This example would execute five times, once for each value in the
list:

$DO loopvar = & {10,(4*9),myvar,(myvar*2),%$myvar$}
text
$END

gethostid Sets an environment variable to the value of the Multibus II slot ID
of the host CPU board. If an error is encountered, such as not having
the Nucleus Communication System configured, the environment
variable is set to 0FFH. This is the syntax:

$GETHOSTID variable

HI command esubmit

Command Reference Chapter 2 179

if/ifexist...

ifnexist...

ifnotexist...

else...

elseif...

elseifexist...

elseifnexist...

elseifnotexist...

endif

These subcommands conditionally execute blocks of text, based on
logical expressions. If , ifexist , ifnexist or ifnotexist
begin the conditional block and endif terminates it. Else , elseif ,
elseifexist , elseifnexist and elseifnotexist may be used
between the if/ifexist and the endif ; only one block of text
defined by the subcommands is executed. Ifexist ,
elseifexist, ifnexist , ifnotexist , elseifnexist and
elseifnotexist are similar to if and elseif , except that the
conditional expression is a pathname. The positive conditionals
evaluate to TRUE if the file exists (even if it's an empty file) or
FALSE if it doesn't exist. The negative conditionals evaluate to
TRUE if the specified file does not exist, or FALSE if it does exist.

The subcommand block has the form:

$IF logical expression
text
[$ELSEIF logical expression]
[text]
[$ELSEIFEXIST filename]
[text]
[$ELSEIFNEXIST filename]
[text]
[$ELSEIF logical expression]
[text]
[$ELSE]
[text]
$ENDIF

The block shown above could begin with the statement $IFEXIST
filename . This is an example of using these subcommands:

$RESET EOK
$IF r_32 AND NOT (COMMANDEXCEP = EOK)
text to handle error condition
$ELSEIFEXIST a.inc
$INCLUDE a.inc
$ELSE
text to handle default case
$ENDIF

esubmit HI command

180 Chapter 2 Command Descriptions

include This subcommand executes the contents of another file as if the text
existed in the current esubmit file. The scope of variables and input
parameters for the included file is the same as for the including
esubmit file. The nesting limit for include is 6.

The subcommand has the form:

$INCLUDE filename

where filename is either the full pathname of the file or the
pathname relative to the current working directory. Include does
not append any extension to the specified filename. For example, to
include the file test.inc in the csd subdirectory under your current
working directory, the subcommand is:

$INCLUDE csd/test.inc.

init See the allocate , clear , init description.

HI command esubmit

Command Reference Chapter 2 181

log The log subcommand appends a log message to a file. The
subcommand has the form:

$LOG filename [list]

where filename is any valid pathname and list is an optional list
of arguments to be written to the file. Arguments in the list must be
separated with spaces. Arguments can include text strings (quotes
are not required) and variables in substitution format. If the
Universal Development Interface (UDI) is part of the current iRMX
system, the date and time are the first two arguments in the line
written to the file. The arguments in list are appended to the line
in order, separated in the log file by two spaces. Arguments longer
than 12 characters are truncated; arguments shorter than 12
characters are padded in the log file with trailing spaces.

If the file exists, the line is appended to the end of the file. If the file
does not exist, it is created. If an error is encountered while trying to
attach or create the file, an error message is displayed and the log
subcommand is aborted, but esubmit continues executing. Examples
of the log subcommand are:

$LOG
$LOG file.log
$LOG file.log Command_%$\3myvar$ Error_=
 %$commandexcep$

If no parameters are provided in the log subcommand, as in the first
line above, esubmit writes the date and time to :co:. For the $LOG

file.log command, esubmit writes the date and time to the log
file. For the third example above, esubmit writes the date, time, and
"command_002=00" to the log file.

metachar Use this subcommand to change the metacharacter from within the
esubmit file. For example, if the metacharacter has not been
changed on the command line, the subcommand to make # the
metacharacter is:

$METACHAR #

esubmit HI command

182 Chapter 2 Command Descriptions

min

max

The min and max subcommands assign to a variable the minimum or
maximum value from a list of values. The subcommand has the
form:

$keyword variable { list }

where keyword is either min or max and list is a series of
operands separated by commas. The operands may be mathematical
expressions enclosed in parentheses. For example:

$MIN minvalue {10,30,99,%$myvar$,42}
$MAX maxvalue {10,30,99,(myvar% 20),42}

pause See the delay description.

random The random subcommand returns a pseudo-random value. It has
this syntax:

$RANDOM variable maximum_value

where variable is an esubmit numeric variable and
maximum_value is a mathematical expression as defined in the
"Mathematical and Logical Expressions" section under this
command description. Random executes a call to get_time and
returns the value (time MOD maximum_value) . This is not a true
random number function because the variation of the value returned
by consecutive random functions is dependent on the time elapsed
between the calls.

set,

reset

Set sets a variable to a specified value. If no value is specified, the
default is one. Reset sets a variable to 0. These subcommands
have the form:

$SET variable [= mathematical expression]
$RESET variable

Examples are:

$SET r_32
$SET iteration = iteration + 1
$SET execution_cnt = (iteration * loop) / 10H
$RESET a

sleep See the delay description.

HI command esubmit

Command Reference Chapter 2 183

substitutionchar

subchar

These subcommands are equivalent. Subchar changes the
substitution character (% by default) from the point in the esubmit
file where this subcommand occurs. For example, this is the
subcommand to make @ the substitution character:

$SUBCHAR @

wait See the delay description.

Compatibility with Submit Files

A file that works with the submit command may be used as an esubmit file, with
these restrictions:

• A line that begins with $ is assumed to be an esubmit subcommand. If this
occurs in the submit file, change the metacharacter on the command line to a
character that does not occur at the beginning of the line.

• If the two characters %$ occur in sequence, where % is the substitution
character and $ is the metacharacter, the text that follows until a closing
metacharacter is assumed to be an esubmit variable. If this occurs in the
submit file, change the substitution character and/or the metacharacter on the
command line. If you change the substitution character, you must also change
the character used in the submit file for substitution of formal parameters.

• If the two characters %X occur in sequence, where % is the substitution
character and X is any character from A to Z, upper- or lower-case, the
characters are assumed to be a formal parameter. If this occurs in the submit
file, change the substitution character on the command line. You must also
change the character used in the submit file for substitution of formal
parameters.

• The file must use full command names rather than CLI-supported aliases. For
example, use attachdevice instead of ad. CLI commands such as alias,
dealias, and background may not be used in an esubmit file.

Examples

1. This is an esubmit invocation that calls the file test.csd and uses the set

subcommand:

esubmit test (:sd:testdir/test1, :sd: testdir/test2) &
set (decision=1)

esubmit HI command

184 Chapter 2 Command Descriptions

This code is the file test.csd; it uses the if , else , and endif subcommands:

$if decision = 1
%0

$else
%1

$endif

The esubmit invocation will be interpreted as:

$if decision = 1
:sd:testdir/test1

$else
:sd:testdir/test2

$endif

2. This examples use the set subcommand:

$set num = 255
$set bin_num = 11111111b
$set oct_num = 377Q
$set hex_num = 0FFh

3. These examples use the allocate, clear, and init subcommands:

$clear ;clears variable buffer of all variables
$init ;same as clear
$allocate 100 ;creates variable buffer capable &

of having 99 variables
$allocate %0 ;creates a variable buffer the &

size of the first parameter-1

4. This command sets a delay of 2 seconds before the break:

$delay 200
$break

5. This example references all of your input parameters sequentially using the
for and next subcommands:

$for loopvar = 0 to (inputparameters-1)
%%\Eloopvar
$next

Loopvar would take on the values 0,1,...,9,A,...Z depending on how many
parameters you passed in. The substitution %%\Eloopvar would give you
%0, %1,...%9,%A... which in turn would give you your parameters.

HI command esubmit

Command Reference Chapter 2 185

6. These are esubmit invocations of the file test.csd:

esubmit :sd:testdir/test (:amh:,1)

esubmit test (:amh:,1) over log/test.log echo

esubmit test (:amh:,1) cc(\) mc(@) sc(#)&
set (dos_lvl=330,file_driver=1)

esubmit test (:amh:,1) reset (dos_lvl,file_driver)

Error Messages

The error messages listed under the submit command may be returned, as well as:

error creating variable buffer
An error was encountered creating the variable table buffer segment. If this error is
caused by invoking esubmit while trying to create the original variable table
buffer, it is fatal and causes esubmit to exit. If the error is returned because of an
allocate , clear , or init subcommand, it is not fatal. The original variable
buffer is maintained.

illegal ASCII base
The code used to indicate a numeric base is not a valid value.

illegal subcommand
The esubmit file contains a line with the metacharacter in the first column, but it is
not followed by a supported subcommand.

illegal invocation parameter
The esubmit invocation line contains an illegal parameter.

illegal operand
The subcommand did not find a valid operand (%, *, /, +, or -).

illegal relation
The subcommand did not find a valid relation (<, <=, =, <>, >=, or >)

illegal variable name
The esubmit file contains a reference to an illegal variable name.

insufficient input
The subcommand did not contain sufficient input to complete its function.

misplaced logical
The subcommand found a logical keyword (NOT, AND, OR, or XOR) where one is
not allowed.

misplaced parenthesis
The subcommand found a parenthesis where one is not allowed.

missing environment command
The esubmit file contains the metacharacter in the first column of a line, with either
nothing or only a comment character following (regardless of spaces and tabs).

esubmit HI command

186 Chapter 2 Command Descriptions

missing logical
The subcommand did not find a valid logical keyword (NOT, AND, OR, or XOR)
where one was expected.

missing operand
The subcommand did not find a valid operand (%, *, /, +, or -) where one was
expected.

nesting limit exceeded
The include nesting limit of six has been exceeded.

unmatched (
An unmatched open-parenthesis was encountered.

unmatched)
An unmatched close-parenthesis was encountered.

unmatched command
A subcommand was encountered that required a previous subcommand for it to be
valid. This could be caused by:

• An elseif , else , elseifexist , or endif without a preceding if or
ifexist

• A value , default , or endcase without a preceding case

• An endwhile or enduntil without a preceding dowhile or dountil ,
respectively

• A next or end without a preceding for or do, respectively.

variable limit exceeded
More variables have been declared than can be supported in the current table.
Refer to the allocate , clear , and init subcommands.

CLI command exit

Command Reference Chapter 2 187

exit
Exits the system manager mode that was entered with a previous super command.

Syntax

exit

Additional Information

When you enter this command, the CLI changes your user ID back to the ID you
had before entering the last super command. It also changes the system prompt
back to the prompt in effect before the super command.

Error Messages
exit, allowed only in super mode

You invoked this command without previously invoking the super command.

<parameter>, unexpected parameter
You entered a parameter; the exit command does not take any parameters.

<condition code:mnemonic>, during exit execution
An internal system problem occurred which prevented the CLI from setting the
default user.

find HI command

188 Chapter 2 Command Descriptions

find
Searches a directory tree for files with names that match a given pattern. For each
matching filename, the full pathname is displayed.

Syntax

find pattern [directory [to|over|after outpath]]

Parameters
pattern

A pattern filename that may contain wildcards.

directory
The pathname of the directory to search for matching filenames. All subdirectories
are also searched.

to|over|after outpath
Writes the output to the specified file rather than to the screen.

Additional Information

The find command recursively descends a directory hierarchy comparing the
pattern with each data or directory file in the tree. If you do not specify a
directory, find searches the current working directory. However, you must specify
a search directory if you direct the output to a file using the to , over , or after
parameter.

This command finds all files under the current directory that begin with term. It
writes their pathnames to the findlog file in this directory:

find term* $ over findlog

This command displays the pathnames of all files on this volume that end in doc:

find *doc /

NET command findname

Command Reference Chapter 2 189

findname
Finds the spokesman system on the network that has cataloged a specified object
name in its Name Server table.

Syntax

findname object_name [P= property] [R= retries] [L]

Parameters
object _name

The name of the object to locate. This may be the name of a file server or virtual
terminal server, or any other object in the Name Server object tables.

property
The property type of the object to be located; assumed to be a hexadecimal value.
You need not specify an H after the value unless it contains the letters A-F. Any
letters in the hexadecimal value must be entered in upper-case (but the H need not
be). If a property type is not specified, 5H is the default.

retries
A decimal number of times the Name Server should try to find the spokesman
using a different slot ID (necessary only for Multibus II spokesman systems). The
maximum is 21. The default is 8.

L Additionally display the Ethernet address of the spokesman system.

Additional Information

Table 2-4 shows some of the property types defined by Intel. Types with values
8000H and higher are available for user definition.

findname NET command

190 Chapter 2 Command Descriptions

Table 2-4. Property Types Used in Name Server Entries

Type Value Kind of Entry

0000H File server TSAP ID

0001H File client TSAP ID

0002H Name of client

0003H File server transport address

0004H Configuration objects

0005H Host unique ID

0000H-7FFFH Reserved by Intel

8000H-0FFFFH Available for user applications

The findname command provides information about the system whose Name
Server has cataloged the specified object. The findname command returns the
name of the system where the given object is entered. If an object by the same
name is cataloged on multiple systems, only the first system found is listed. You
may specify an object by its name or by name and property type.

The findname command tries up to eight times to find the name of the system
where the given object is entered. This is necessary because in Multibus II
systems, the host can be located in any one of the slots, and the slot ID is used as
part of the unique ID for the object. If the Multibus II system contains more than
eight slots, specify the retries option to increase the number of trials. Repeated
trials are indicated by this message, where n stands for the number of trials:

finding iRMX System name - Trial n

In Multibus I and PC systems, the findname command finds the name of the host
in the first trial.

See also: Format of names and addresses, setname and loadname commands,
in this chapter

Error Messages
<object_name>, illegal name

The name given in the command line is longer than 16 characters. Execute the
findname command again with a valid object name.

<object_name>, illegal property
The property type of the object specified in the command line is longer than four
characters. Execute the findname command again using a valid property type.

NET command findname

Command Reference Chapter 2 191

<object_name>, illegal option
The switch specified in the command line is not correct. Execute the command
again giving the correct switch.

Spokesman name for object not found
The name of the host with the property type 0005H is not entered in the object
table of the spokesman. The findname command could not find the name of the
spokesman; it displays the Ethernet address of the spokesman system.

<name>, name does not exist
The given object does not exist in the network.

format HI command

192 Chapter 2 Command Descriptions

format
Formats an iRMX or DOS volume on an attached device, such as a diskette or hard
disk. The format command cannot format a device across a network.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

format : logical_name :[volume_name] [named|DOS|physical
[options]]

format : logical_name : getbadtracks [> pathname]

format : logical_name : bootstrap [msaboot|pcboot]

Use one of the three forms of the command shown above. The main optional
parameters for formatting named, DOS, and physical devices are shown below.
The options for physical and DOS are a subset of the options for named.

HI command format

Command Reference Chapter 2 193

filename
badtrackfile=

W-2695

format logical-name

volume-name named
num

files =

num
extensionsize=force mapstart=

num

reserveoverwrite

query world msaboot

setbadtracks

filename
btonly=

granularity=
num

pcboot

: :

interleave=
num

Options for Formatting Named Devices

format logical-name

volume-name

query

DOS force

: :

interleave=
num

quick
OM02734

Options for Formatting DOS Devices

format HI command

194 Chapter 2 Command Descriptions

W-2655

format logical-name

volume-name physical

filename
backtrackfile=

filename
btonly=

setbadtracks

overwrite query world

force

: :

interleave=
num

Options for Formatting Physical Devices

Parameters

:logical _name:
Logical name of the physical device-unit to be formatted. You must surround the
name with colons.

volume _name
An optional alphanumeric ASCII name, of up to 6 characters without embedded
spaces, to be assigned to a named volume. You must not leave spaces between the
logical name and the volume name.

na(med) The volume can store only named files; that is, it can hold many files that can be
accessed by individual pathnames. Diskettes and hard disks are typically formatted
for named files.

DOS The volume can store only DOS files.

p(hysical) (or pi)
The volume can be used only as a single, physical file (the files ,
extensionsize , granularity , mapstart , and reserve parameters are not
meaningful). If neither named nor physical is specified, the volume is formatted
for the file type specified when the device was attached.

quick
An option for named and DOS devices that bypasses the normal low-level format
and simply writes the file system to the device.

HI command format

Command Reference Chapter 2 195

fi (les) = num
A decimal number, 1-65528, defining the maximum number of user files that can
be created on a named volume. (The maximum may be limited by different
combinations of granularity and extensionsize .) The default number is
200. The reserve and msaboot parameters each require one of the files
allocated.

force Forcibly deletes any existing connections to files on the volume before formatting
the volume. If connections exist and you do not specify force , you cannot format
the volume.

e(xtensionsize) (or es) = num
A decimal number, 3-255, specifying the number of bytes in the extension data
portion of each file. If not specified, the default extension size is 3 bytes.

g(ranularity) (or gu) = num
A decimal number, 1-65535, specifying the volume granularity. This is the
minimum number of bytes to be allocated for each increment of file size on a
named volume. The value you specify is rounded up to the next multiple of the
device granularity, and becomes the default file granularity for every file created
on the volume. If not specified, the default granularity is the device granularity.

See also: Device tables, Appendix E

m(apstart) (or ms) = num
The block number on the volume where the fnodes file, bit map files, and root
directory should start. The size of the block is set by the granularity parameter.
If no number is given, the OS puts the fnodes file in the center of the volume. If
the number is too low, the OS places the map files at the lowest available space on
the volume.

i (nterleave) (or il) = num
A decimal number, 1-255, specifying the interleave factor for a named or physical
volume. If not specified, the default value is 5. Track 0 is not affected by this
value.

bt (or btfile or badtrackfile)
Names a file containing bad track/sector information to be written to the volume.
Unless you specify overwrite , the information from the file is merged with any
bad track/sector information existing on the disk, and is written to the disk before
the volume is formatted.

btonly Identical to badtrackfile , except that the rest of the volume is not formatted
after the bad track/sector information is written.

s(etbadtracks) (or sbt)
Invokes a user interface that allows you to enter bad track/sector information from
the keyboard.

format HI command

196 Chapter 2 Command Descriptions

o(verwrite) (or ow)
Bad track/sector information existing on the disk is overwritten by information you
provide. This parameter is only meaningful when used with the badtrackfile ,
btonly , or setbadtracks options. If you do not specify overwrite with one of
these options, the default is to merge the bad track/sector data you supply with the
bad track/sector information already on the device.

r (eserve)
Creates the special file r?save at the end of a volume after formatting. The volume
label file and the fnode file are copied to r?save. This file may be used in
conjunction with the diskverify utility to back up the fnodes file on the volume.
The r?save file is not updated when files are altered; you update the file by using
diskverify or by specifying backup in the shutdown command.

q(uery) Issues this prompt for permission to format the volume:
<volume name>, format?

Enter Y or R to format the volume. Any other response is considered to be a no.

world Makes the World user the owner of the formatted disk's root fnode, regardless of
what user issues the format command.

msa(boot)
Writes the Multibus II System Architecture (MSA) second stage bootloader in a file
named r?secondstage and initializes the Bootloader Location Table (BOLT) in the
volume label to point to it. When this parameter is used with bootstrap , the
r?secondstage file is written without formatting the rest of the volume.

pcboot
Writes the second stage bootloader for PC platforms to track 0 of the volume.
When this parameter is used with bootstrap , the second stage is written without
formatting the rest of the volume.

gbt (or getbadtracks)
Existing bad track/sector information is read from the disk and displayed. This
option may be used only on a hard disk that is not the system device (:sd:). If this
option is specified, all other options are ignored. However, you can redirect the
output to a file (> pathname), and use the file when reformatting the disk.

bs (or bootstrap)
Writes the second stage of the Bootstrap Loader onto track 0 without formatting the
volume. When this parameter is specified, the only options that apply are
msaboot or pcboot .

HI command format

Command Reference Chapter 2 197

Additional Information

✏ Note
You cannot use this command with a device that you access
through NFS or through iRMX-NET.

Hard disks, diskettes, and RAM disks must be formatted as named or DOS volumes
before you use them to store and access files. For example, you must format all
previously unused diskettes before storing files on them. Formatting a volume as
named or DOS also includes a physical format, or low-level format.

If you do not specify named , DOS, or physical , the volume is formatted as
appropriate for the file driver attached to the connection specified when the device
was attached. For example:

format :c_rmx3: /*formats a named disk*/
format :c_dos: /*formats a DOS disk*/

Although you could use the format command to format a tape, the proper header
information is not created on the tape for use with the backup and restore
commands. Instead, use the format option of the backup command.

Before formatting a volume, you must attach it with the attachdevice command.
When formatting a diskette, you must attach it by its physical name. The physical
name you specify determines the device characteristics used when you invoke
format .

See also: attachdevice, in this manual

Low-Level Format for Partitioning

A named or DOS format of a complete (non-partitioned) volume includes a low-
level format, unless you also specify the quick option. On a hard disk where you
want to create partitions, you must first do a low-level format, then partition the
volume, and finally format each partition. To do the low-level format, specify
named or DOS, without the quick option. (Do not specify a physical low-level
format as preparation for partitioning.) Then partition the disk with the rdisk
command.

After partitioning, format each partition as a named or DOS volume. The format
command performs only a high-level (file system) format when you format a
partition. You can specify the quick option, but it is not necessary to prevent a
low-level format after partitioning.

format HI command

198 Chapter 2 Command Descriptions

Volume Name

Specifying a volume name makes a convenient volume reference (for example, it
identifies a diskette with a lost or destroyed label). The volume name is displayed
when you list any directory of the volume. Once the volume is formatted, you
don't need to specify the volume name in commands; you only specify the logical
name for the device.

DOS Format Option

This option forces a DOS file system to be installed on the device. It overrides the
file driver that is attached to the logical device. A DOS file system can also be
installed by attaching to the device using the DOS file driver.

These examples illustrate the DOS format option:

attachdevice d_dos as d_dos DOS
format :d_dos:

or

format :d_dos: DOS

This is the output message for DOS volumes:

volume (<volume name>) will be formatted as a DOS volume
device gran = 512 interleave = 5
root dir size = 512 volume size = 30,719 K
volume gran = 2,048 available bytes = 30,656 K
fat type = 16 number of clusters = 15,328
number of fats = 2 sectors/cluster = 4
sectors/fat = 60

Where:

device gran The low-level sector granularity of the device.

interleave The sector interleave factor.

root dir size The number of file slots available in the root directory.

volume size The total volume size.

volume gran The allocation granularity (size of a cluster).

available bytes The free space on the device (total space - file system
overhead).

fat type Either a 12-bit or 16-bit FAT (file allocation table).

HI command format

Command Reference Chapter 2 199

number of clusters
Total number of allocation units in the file system.

number of fats Is always 2.

sectors/cluster The number of disk sectors per each allocation cluster.

sectors/fat The size of each fat, in sectors.

Quick Format Option (Named and DOS Only)

This option causes the format command to bypass the low-level format and simply
write the file system to the device. It is useful for formatting devices that have
been previously formatted, either by the manufacturer, or by a previous use of
either the DOS or iRMX format command. A file system can be quickly changed
from one supported file system to another by using this option. All data on the
device is lost, just as in a full format. The quick option is ignored if you specify a
physical format.

This is an example quick format command:

format :a_dos: QUICK

When performing a quick format, format displays this message:

volume (xyz) will be quick-formatted as a [DOS|NAMED]
volume

Files and Fnodes (Named Only)

The number of fnodes on a volume defines the number of files that can exist on the
volume. Each fnode is a data structure that contains information about a file. Each
time you create a file on the volume, the OS records information about the file in
an unused fnode. Later, it uses the fnode to determine the location of the file on
the volume. You can enter the mapstart option to locate fnodes anywhere on a
volume. If this option is not entered, the OS puts the fnodes in the center of the
volume.

The number of fnodes created during formatting is the number you specify with the
files parameter, plus 7. Six of the additional fnodes are for internal system files
and one is for the root directory. If you specify the reserve or msaboot
parameters, one fnode is used for each parameter. For example, if you use the
default files value of 200, 207 fnodes are established and you may create 200
files on the volume. If you specify reserve and msaboot , you may create 198
files.

Two of the internal system files created during formatting are not listed in a
directory. The other four files (five if you specify reserve) are listed in the root
directory as hidden files. The OS grants World read access to these files.

format HI command

200 Chapter 2 Command Descriptions

The files are listed below; the volume label file is a special file occupying the first
3328 bytes of the volume:

File Description
r?spacemap Volume free space map
r?fnodemap Free fnodes map
r?badblockmap Bad blocks map
r?volumelabel Volume label
r?save Save area for fnodes and volume label (created by the

reserve parameter)

See also: Disk Verification, Appendix B

Owner of the Root Directory (Named Only)

The fnode for the root directory lists the user who formats the volume as the owner,
giving that user all access rights. No other user has access to the root directory
until the owner explicitly grants access. The owner can grant other users access to
the volume with the permit command. However, because the owner has all access
rights to the root directory, the owner can obtain exclusive access to the volume,
and can obtain delete access to any file created on the volume, even files created by
other users.

Extension Data (Named Only)

Each fnode contains a field that stores extension data for its associated file. An OS
extension can access and modify this extension data by invoking the
a_get_extension_data and a_set_extension_data system calls. You can use the
extensionsize parameter to set the size of the extension data field in each
fnode. Although you may specify any size from 0 to 255 bytes, the HI requires all
fnodes to have at least 3 bytes of extension data.

See also: a_get_extension_data and a_set_extension_data system calls,
System Call Reference

Volume Granularity (Named Only)

The volume granularity is the minimum block assigned for files created on the
volume. For example, if the volume granularity is 128 bytes, the I/O System
automatically allocates permanent storage to each new file created on the volume
in multiples of 128 bytes, regardless of whether the file requires the full amount.
The default volume granularity is always the granularity of the physical device.
When you specify the granularity, the value is rounded to the next multiple of
device granularity. That number is written in the header of the volume, where it
becomes the default file granularity when a file is created on the volume.

HI command format

Command Reference Chapter 2 201

Using a volume granularity larger than 1024 might cause users to exceed their
memory limits when executing programs that reside on the volume. This error can
occur because the OS uses the volume granularity as a minimum buffer size when
reading and writing files.

Relationship Between Files, Extension Size , and Granularity (Named
Only)

Although the files , extensionsize , and granularity parameters have the
maximum values listed in the parameter descriptions, the combination of these
parameters must also satisfy this formula:

(87 + extensionsize) * (files + 7) / granularity < 65535

The format command displays an error message if the combination of values you
specify for these parameters exceeds this limit.

Map Files (Named Only)

If you have specified a map-files location (either implied or explicit) in an area
which has a bad track or for which an alternate track was assigned, format
allocates these files to the nearest available area, and then asks for permission to
move the files in one of these ways:

Map files located on a track assigned an alternate

Map files located on a bad track

A response of Y causes the files to be relocated and this message to be displayed:

map start relocated to <hex-location>

This means you do not have to compute the location of the maps.

Interleave Factor (Named and DOS Only)

The interleave factor applies to volumes formatted either for named or physical
files. The interleave factor specifies the logical sector sequence. If the
consecutively-accessed sectors of a disk are staggered (not physically consecutive),
disk access time can decrease considerably. The reason for this decrease is that
although a controller cannot read a sector and issue another read command in the
time it takes for the next sector to be positioned under the head, the controller can
perform this operation in less time than it takes for the disk to revolve once.
Therefore, if consecutively-accessed sectors are correctly interleaved, the next
sector accessed will be positioned under the read head just as the controller
becomes ready to read it. An interleave factor of two means that as the disk
rotates, the controller consecutively accesses every second sector. An interleave
factor of five means that the controller consecutively accesses every fifth sector.

format HI command

202 Chapter 2 Command Descriptions

The interleave factor also implies the number of disk rotations necessary to access
all the sectors on a given track in order. For example, with an interleave factor of
two the controller might access sectors 0, 2, and 4 on the first rotation and sectors
1, 3, and 5 on the second.

How to Select an Interleave Factor (Named and DOS Only)

The interleave factor is important when large transfers of consecutive data take
place at speeds that approach the maximum transfer rate of the disk. For hard
disks, the revolution speed is high enough that the type of application does not
affect the choice of interleave factor. Format hard disks with an interleave factor
optimized for the turn-around speed of the disk controller. Recommended values
for hard disks are shown below.
System Controller Interleave Controller Interleave

iRMX for Windows SCSI 1 non-SCSI 2

Multibus II any 1

Multibus I SBC 221 1 SBC 215G, 5 1/4" 5

For diskettes with a slower revolution speed, the default value 5 is typically used.
The ideal interleave factor depends on the turn-around time of software that
controls I/O operations. The turn-around time is the time between reading a sector
and becoming ready to read the next sector.

In the cases listed below, the turn-around time between sector accesses is different,
indicating a different interleave factor:

• When you bootstrap load the OS, the Bootstrap Loader instructs the disk
controller to read one sector at a time. The turn-around time depends on the
execution overhead of the Bootstrap Loader and is comparatively long. A
large interleave factor is optimum for diskettes used with the Bootstrap Loader.

• When you load an application program, the Application Loader reads several
sectors at a time into its internal buffer, taking a relatively long time to process
the data. The ideal interleave factor for diskettes is somewhat smaller than for
the Bootstrap Loader.

• When you invoke programs that transfer large amounts of consecutive data
(such as the copy command), data transfers can involve many sequential
sectors. The controller accesses sectors on a given track as fast as possible.
Optimize the interleave factor for the turn-around speed of the disk controller.

If you do not know the optimum interleave factor, it is better to specify too large a
value rather than too small. An interleave factor slightly larger than optimum
causes the disk to move only an extra sector or two before reaching the correct

HI command format

Command Reference Chapter 2 203

sector. However, an interleave factor smaller than optimum causes the disk to
make nearly a complete revolution before reaching the sector.

Getting Bad Track Information (Named Only)

When you use the getbadtracks parameter, the bad track information is
displayed (or written to a file) in this form:

cyl head sector
xxx xxx xxx

If you use I/O redirection (> pathname) to write this information to a file, you may
edit the file to remove the header information and add your own data. Then re-
invoke format and specify this file with the badtrackfile or btonly parameter.

Writing Bad Track Information (Named Only)

The badtrackfile , btonly , and setbadtracks parameters allow you to enter
the manufacturer's bad track information before actually formatting the disk. With
the badtrackfile and btonly parameters, bad track information in the file must
be in this format, which constitutes a triplet:

cylinder_number head_number sector_number <CR><LF>

Where:

cylinder_number
The cylinder number of the bad track or sector

head_number
Head number of the bad track or sector

sector_number
The number of the bad sector on the track indicated by the cylinder
and head numbers. On devices that only support bad track
information, this value must be set to 0.

The triplets may be separated by spaces, commas, carriage returns, or line feeds.
Each triplet is terminated with a carriage return-line feed combination.

If you use the setbadtracks parameter to enter bad track information, this
message is displayed:

Enter bad track information in <cylinder_number>, <head_number>,

<sector_number> triplets, one triplet per line. Numbers can

be in decimal or hexadecimal form. Entry of <sector_number>

is optional. An empty line terminates the entry process.

<cylinder>, <head>, <sector> =

format HI command

204 Chapter 2 Command Descriptions

The last line is the prompt line for the utility. Enter the cylinder, head, and sector
number in that order on one line and then enter a <CR>. The prompt is again
displayed; enter either more bad track information or <CR>. A <CR> with no
entries indicates that all the bad track information has been entered. The system
then displays the entries you made, in this form:

n bad track triplets entered.

Entered bad track information:

entry cyl head sector

 1 nnnn nnnn nnnn

 2 nnnn nnnn nnnn and so on

If you want to change or add to your previous input, type the entry, cylinder, and
head numbers (sector number is optional) of the new or existing information and
press <CR>. Repeat this process until all changes have been made. When you
finish entering information, press <CR> on a line by itself. A summary of the bad
track information is again displayed. If the bad track information is correct, press
<CR> again to begin formatting the disk.

Bad track information you enter (in a file or interactively) is not checked for
validity. Only the first 255 triplets are used when writing bad track information to
a non-ESDI drive configuration.

When writing to an ESDI drive on an SBC 221 controller board, the first 202 bad
track entries per head are used. If you have greater than 2048 defect entries, you
must invoke the format command with the btonly parameter and either the
badtrackfile or setbadtracks parameter. Do this multiple times in 2048
defect blocks, until all the bad track information is written to the disk. When
writing multiple defect blocks, use the overwrite parameter the first time you
invoke the format command. This overwrites any old bad track information. Omit
this parameter in subsequent executions of the format command.

Bootstrap Loader and the Format Command (Named Only)

The Bootstrap Loader operates in three stages on a Multibus I system, in two stages
on a Multibus II system, and in three stages on a PC system. On all three buses, the
first stage of the Bootstrap Loader resides in the system firmware and a real mode
second stage resides in a reserved area on Track 0 of the disk. On a Multibus II
system, an additional MSA second stage resides as a named file somewhere on the
hard disk. This MSA second stage is pointed to by an entry in the Bootloader
Location Table (BOLT) located in a reserved area on Track 0 of the disk. The
third stages on Multibus I and PC systems are named files located on the disk.

HI command format

Command Reference Chapter 2 205

To avoid forcing you to reformat entire disks when the second stage of the
Bootstrap Loader changes, you can specify the bootstrap parameter to write the
second stage of the Bootstrap Loader onto track 0 without reformatting the rest of
the volume.

▲▲! CAUTION
If you fail to specify the bootstrap parameter, format will
format the entire volume.

You can also add the MSA second stage to an existing iRMX disk by using the
msaboot parameter with the bootstrap parameter. In this case, both second
stages, (real mode and MSA) are added to the disk. The real mode second stage
overwrites the existing one on track 0, and the MSA second stage replaces any
existing MSA second stage, in the /r?secondstage file.

You can replace the second stage for PC platforms on an existing iRMX disk by
using the pcboot parameter with the bootstrap parameter.

Any of these commands copy the second stage of the Bootstrap Loader onto track 0
of a device that was attached using :f: as the logical name:

-format :f: BS <CR>
-format :f: bootstrap <CR>
-format :f: files= 300 granularity=200 force bootstrap
<CR>
-format :f: BS MSA

The remainder of the files on the volume are unaffected. (In the third example, the
file , granularity , and force switches are ignored because the bootstrap
parameter has precedence over any other format parameter.)

Output Display

The format command displays one of these messages while formatting. This is the
message for physical volumes:

volume (<volume name>) will be formatted as a physical volume
device gran = <number>
interleave = <number>
volume size = <k/m_number>

TTTTTTTTTTTTTTTTTTT...

volume formatted

format HI command

206 Chapter 2 Command Descriptions

This is the message for named volumes:

volume (<volume name>) will be formatted as a named volume
granularity = <number> map start = <block_number>
interleave = <number> sides = <sides>
files = <number> density = <density>
extensionsize = <number> disk size = <d-size>
save area reserved = <yes/no>
bad track/sector information written = <yes/no>
MSA bootstrap information written = <yes/no>
PC Bus bootstrap loader chosen = <yes/no>
volume size = <k/m_number> K (or M)

TTTTTTTTTTTTTTTTTTT...

volume formatted

See also: DOS format option for the DOS output message

Where:

<volume name>
Volume name specified in the format command

<number> Decimal number specified in the command (or the default)

<block_number>
Volume block number where the fnodes file, bit map files, and the
root directory start

<k/m_number>
Volume size in kilobytes (K) or megabytes (M) (the display is in K-
bytes unless the size is greater than 25 MB)

<sides> For diskettes: 1 or 2 indicates the side being formatted (if format can
recognize this characteristic)

<density> For diskettes: single or double indicates the diskette density (if
format can recognize this characteristic)

<d-size> For diskettes: 3.5 or 5.25 indicates the size (if format can
recognize this characteristic)

T One T is displayed for every 100 tracks formatted. These are not
displayed when formatting a SCSI device; SCSI controllers do not
allow individual tracks to be formatted.

HI command format

Command Reference Chapter 2 207

If you format a SCSI hard disk using the PCI driver, the volume size information is
automatically obtained by querying the SCSI device. If the capacity of the device
changes as a result of the format, one of these messages is displayed. The first
message is for a physical format; the second for a named format:

formatted capacity = <size>

formatted capacity = <size> mapstart = <block_number>

If you specify the bootstrap or btonly parameter, one of these messages is
displayed (instead of volume formatted):

Bootstrap Loader written

Bad Track/Sector Block written

If the error code E_IO_ALT_ASSIGNED is returned by a driver when formatting a
track, the track number is entered into a table and displayed when formatting is
complete. There should be an entry in this table for every BTI track specified,
except those that reside in the alternate track area. The cylinder and head numbers
are in hexadecimal.

The following tracks were assigned an alternate:
cyl hd cyl hd cyl hd cyl hd cyl hd
#

If the E_IO_NO_SPARES error code is returned by a driver when formatting a track,
the number of reserved alternate tracks is exhausted. The sectors of that track are
marked in the Bad Block Map File and entered in the Volume Space Map File as
they were assigned. The track is entered into a table and displayed as follows when
formatting is complete:

The following tracks were marked as bad:
cyl hd cyl hd cyl hd cyl hd cyl hd
#

Formatting Uniform Versus Standard Granularity Diskettes

Previously, iRMX OSs supported iNDX-based development. This required a
special diskette format to allow the various systems to read the same diskettes.
Standard granularity diskettes were attached using the wmf0 DUIB and formatted
as follows:

format :f:disk extensionsize = 41 mapstart = 0

These switches provide an iNDX compatible, standard granularity format, which
can be read by SCSI controllers.

format HI command

208 Chapter 2 Command Descriptions

You should use uniform granularity format diskettes with newer Intel products such
as the System 520, and with newer boards. The SCSI interface in the newer Intel
boards reads uniform granularity diskettes using the wdf0 and wqf0 DUIBs. With
these DUIBs, track 0 of a standard granularity diskette is unreadable.

Although the PCI device driver can read standard format diskettes if they were
formatted with the iNDX-compatibility switches, these are not the default values
for the format command. If it is necessary to transfer files to the System 520 from
a system which does not have a high density drive, use the wdf0 DUIB to ensure
creating a uniform format diskette, readable on all iRMX systems.

Error Messages

<logical_name>, can't attach device

<logical_name>, <condition code:mnemonic>
Format cannot attach the device for formatting, or it cannot reattach the device
(that is, restore it to its original condition) after formatting takes place.

<logical_name>, can't detach device

<logical_name>, <condition code:mnemonic>
Format cannot detach the device for formatting, which means that the volume does
not exist, the volume is busy, or the device on which the volume is mounted is not
currently attached to the system.

<logical_name>, device is in use
You cannot format the volume because there are outstanding connections to files
on the volume and you did not specify the force parameter.

<vol_name>, fnode file size exceeds 65535 volume blocks
The combination of values specified for files , granularity , and
extensionsize is too great. See the formula described earlier.

<number>, invalid number
You specified an out-of-range number for any of the files , granularity ,
extensionsize , or interleave parameters.

<logical_name>, map files do not fit
The volume is too small for the map files or the map start block is too high to allow
room for the map files.

map files do not fit with save area
Either the volume is too small for both the map files and the save area, or the map
start block is too high in disk storage memory to allow for the map files and the
save area.

HI command format

Command Reference Chapter 2 209

<logical_name>, outstanding connections to device have been deleted
There were outstanding connections to files on the volume. However, because you
specified the force parameter, format deleted those connections. This is a
warning message that does not prevent formatting the volume.

0023 : E_SUPPORT PCBOOT not supported for standard diskettes
An attempt was made to write the second stage of the bootstrap loader to a standard
format diskette.

0085 : E_LIST, too many values
You entered multiple logical_name/volume_name combinations separated by
commas; format can format only one volume per invocation.

<logical_name>: <condition code:mnemonic>

unit status <unit status code> while writing block number
An I/O error occurred while writing the label, map files, or save area to a named
file.

<logical_name>: <condition code:mnemonic>

unit status <unit status code> while formatting track
An I/O error occurred while physically formatting the volume. If an
E_IO_ALT_ASSIGNED error code is returned, you can consider this message a
warning.

<volume_name>, volume name is too long
The volume name must not be longer than six characters.

Track zero bad, cannot write
The volume label track (track 0) is marked in the Bad Block Map.

cannot relocate
This is a warning message displayed when the map files are located on one or more
sectors which have been assigned an alternate, and a suitable location cannot be
found on the disk.

cannot relocate...aborting
The map files are located on a sector or sectors which have been marked in the Bad
Block Map and an alternate location cannot be found.

Save file located on a bad track, cannot write
The save area is located on a sector or sectors which have been marked in the Bad
Block Map.

<filename>, cannot open bad track/sector information file

<filename>, <condition code:mnemonic>
The file containing the bad track/sector information cannot be opened for reading.

format HI command

210 Chapter 2 Command Descriptions

too many bad track/sector information entries
The file containing the bad track/sector information has too many entries, or the
combination of file entries and information on the volume cannot be merged.

<filename>, illegal bad track/sector information
The file containing the bad track/sector information has the wrong format.

badtrackfile option missing, cannot replace Bad Track/Sector

Information Block
You entered the overwrite option without the badtrackfile parameter.

TCP/IP command ftp

Command Reference Chapter 2 211

ftp
The user interface to the File Transfer Protocol (FTP), which allows you to transfer
files to and from a remote network site.

✏ Note
You can use this command in an esubmit file if the form of the
command does not require user input. If the command requires
user input, you must use the esubmit eoresponse and
coresponse subcommands to get the user input. In either case,
errors from FTP will not percolate to the esubmit variable
commandexcep .

Do not use this command in an rq_c_send_command system
call.

See also: esubmit command, in this chapter

Syntax

ftp [-d] [-g] [-i] [-n] [-t] [-v] [host [port]]

Parameters

-d Enables debugging (see debug).

-g Disables filename globbing (see glob).

-i Turns off interactive prompting during multiple file transfers (see prompt).

-n Disables autologin upon initial connection.

-t Enables packet tracing (see trace).

-v Enables verbose mode (see verbose).

host A host name or Internet address.

port A port number or a port name defined in the /etc/services file.

Most options correspond to an ftp command and are discussed in more detail in the
description of the referenced command.

Additional Information

The ftp client includes a command interpreter which interactively executes file
transfer commands. The command interpreter prompt is ftp> .

ftp TCP/IP command

212 Chapter 2 Command Descriptions

If no host is specified on the command line, ftp enters its command interpreter
and awaits further instructions from the user. If a host is specified, ftp
immediately attempts to establish a connection to an FTP server on that host. If the
host is followed by a port , ftp attempts to contact an FTP server at that port;
otherwise it uses the default FTP port number.

If autologin is enabled (the default), ftp checks the netrc file in the user's home
directory for an entry describing a login on the remote host. If such an entry exists,
ftp automatically logs in to that account. If no entry is found, ftp uses the local
user name as the login on the remote host and prompts for a password (and
account, if appropriate) to complete the login. If autologin is disabled, ftp
establishes the initial connection to the remote host and returns to the command
interpreter. The user command must then be invoked to log in to that host.

Filenames specified as arguments to ftp commands are processed according to
these rules.

1. If the filename is - , stdin is used for reading and stdout is used for writing.

2. If the first character of the filename is a pipe symbol (|), the remainder of the
argument is interpreted as a shell command. Ftp will fork a shell with the
supplied argument, and pipe the output of the ftp command to the shell. If the
shell command includes spaces, the entire argument must be enclosed in
quotation marks (for example, "|ls -lt"). There can be no space between
the pipe symbol and the shell command.

3. If globbing is enabled, local filenames are expanded according to shell
metacharacters (see the glob command).

4. The transformations defined by case, ntrans, and nmap are applied whenever
a destination filename is derived from a source filename. When you use mget
or get with an unspecified local filename, case, ntrans, and nmap are applied.
When you use mput or put with an unspecified remote filename, ntrans and
nmap are applied. These transformations are of particular interest when
connecting to a remote host with different file naming conventions or
practices.

5. If runique or sunique is on, a unique local or remote destination filename is
created by appending a unique numeric extension to the filename.

An FTP command works only if the remote FTP server supports it. Use rhelp to
see which requests the remote server recognizes. Commands may be abbreviated,
so long as they remain unique. Ftp will prompt for required arguments omitted
from a command. Command arguments that have embedded spaces should be
enclosed in double quotation marks.

TCP/IP command ftp

Command Reference Chapter 2 213

▲▲! CAUTION
Use the mget and mdelete commands with caution. You may
overwrite or remove files you did not intend to.

Specifying a directory where a plain filename is expected could
produce unexpected results. For example, the ftp command
ls -l file will put a long directory listing of the current
working directory into file instead of returning a long listing of
that file.

Commands

These commands are recognized by the ftp command interpreter.

account passed
Specify the supplemental password or account name required by some
systems for access to system resources. This command has no
meaning on the iRMX and Unix OSs; they do not implement account
information.

allbinary Toggle the use of binary type for non-file transfer operations.
Normally, these operations are done in ASCII mode regardless of the
file transfer type. If allbinary is on and the file transfer type is
binary, non-file transfer operations will also be done in binary mode.

append local-file [remote-file]
Append local-file to a file on the remote host. If remote-file is not
specified, the remote file will be named local-file. Ftp uses the
current settings for file type, format, transmission mode, and structure.

ascii Set the data representation type to ASCII. This is the default type.

bell Toggle sounding of a bell after each file transfer command is
completed. By default, the bell is turned off.

binary Set the data representation type to binary.

bye Terminate the FTP session with the remote server and exit the ftp
program.

case Toggle case-mapping of remote filenames during a get or mget
command. When case-mapping is enabled, uppercase letters in the
remote filename are changed to lowercase letters in the local
filename. By default, case-mapping is turned off.

cd remote-directory
Change the working directory on the remote host to remote-directory.

ftp TCP/IP command

214 Chapter 2 Command Descriptions

cdup Change the working directory on the remote host to the parent of the
current working directory.

chmod mode remote-file
Change the permission mode on the remote file or directory to mode
(interpreted by the remote server). An iRMX FTP server accepts only
a 3-digit octal value; for example, 777 grants all permissions.

See also: chmod() function, C Library Reference

close Terminate the FTP session with the remote server and return to the
client FTP command interpreter.

cr Toggle stripping of carriage returns during ASCII file retrieval. When
enabled, the carriage return is stripped from each carriage
return/linefeed pair encountered in the file, leaving the linefeed record
delimiter recognized by Unix. By default, carriage return stripping is
off.

debug Toggle debug mode. When debug mode is on, each ftp protocol
command sent to the remote server is displayed, preceded by the
string --> . By default, debug mode is off.

delete remote-file
Delete the file remote-file on the remote host.

dir [remote-file [local-file]

dir [options [local-file]]
List the current remote directory or a specified file or directory on a
remote host. Specified options are supplied to the remote list
command (for example, Unix ls or VMS dir). If a local file is
specified, the list is written to that file. Note that if the first argument
is options, the second argument is assumed to be local-file.

disconnect A synonym for close.

form format Set the vertical format control for ASCII and EBCDIC file transfers to
format. Valid formats are carriage-control , non-print (the
default), and telnet . Only the non-print format is supported.

get remote-file [local-file]
Retrieve the specified remote-file and store it on the local host. If
local-file is not specified, the local file will be named remote-file.
Ftp uses the current settings for file type, format, transmission mode,
and structure.

TCP/IP command ftp

Command Reference Chapter 2 215

glob Toggle local filename globbing. With globbing disabled, all local
files and pathnames are treated literally. With filename globbing
enabled, each local file or pathname is processed for the shell
metacharacters * ? [] and ~. An additional pair of metacharacters,
{ and }, may enclose several comma-separated strings, for each of
which a match is sought. Globbing is always on with reference to
remote files; it is on by default with reference to local files.

hash Toggle hash mark (#) printing for each data block transferred. The
size of a data block is 4096 bytes. By default, hash mark printing is
off.

help [command]
Display a list of the ftp commands (no argument) or information
about the specified command.

idle [seconds]
Display the current inactivity timer on the remote host or set it to
seconds.

image Same as binary .

lcd [directory]
Change the working directory on the local host to the user's home
directory (no arguments) or to the specified directory.

ls [remote-file [local-file]]

ls [options [local-file]]
Same as dir . Note that if the first argument is options, the second
argument is assumed to be local-file.

macdef mname
Define a macro that will be invoked by using the name mname.
Subsequent lines will be stored as the macro definition. A null line
(consecutive newlines or carriage returns) ends the macro definition.
Within the macro definition, a dollar sign specifies substitution of
arguments from the macro invocation line. The sequence $n, where n
is a number, will be replaced by the n argument (for example, $1 is
the first argument). The sequence $i will cause the macro to loop
automatically, executing once with each argument. Escape the dollar
sign with a backslash (\$) to prevent this special treatment. The
maximum number of macros is 16. The maximum definition length is
4096 characters. A macro definition is valid only for the duration of a
connection to a remote host; all macros are automatically deleted
when the connection is closed.

ftp TCP/IP command

216 Chapter 2 Command Descriptions

macdel mname
Delete the macro mname.

macls [mname]
List the names of defined macros or list the definition of the macro
mname.

mdelete remote-file ...
Delete the specified files on the remote host. If globbing is enabled,
each filename is first expanded.

mdir remote-file ... local-file
Obtain an extended directory listing of multiple files on the remote
host and place the result in local-file. Globbing must be turned off
when using this command. Note that the specification of local-file is
mandatory.

mget remote-file ...
Retrieve the specified files from the remote host and place them in the
current local directory. If globbing is enabled, the specification of
each remote file will first be expanded.

mkdir directory-name
Make a directory on the remote host.

mls remote-file ... local-file
Obtain an abbreviated listing of multiple files on the remote host and
place the result in local-file. Globbing must be turned off when using
this command. You must specify a local file.

mode [mode-name]
Set the file transmission mode to mode-name. Valid modes are
block , compressed , and stream (the default). Only the stream
mode is supported.

modtime remote-file
Display the last modification time of the remote file.

mput local-file ...
Transfer multiple files from the current local working directory to the
current working directory on the remote host.

newer remote-file
Get the specified remote file if a local file of that name does not exist
or if the remote file has a later modification date than the local file of
the same name.

nlist [remote-file [local-file]]

TCP/IP command ftp

Command Reference Chapter 2 217

nlist [options [local-file]]
List name(s) of the current directory or a specified file or directory on
a remote host. Specified options are supplied to the remote list
command (for example, Unix ls or VMS dir). If a local file is
specified, the list is written to that file. Note that if the first argument
is options, the second argument is assumed to be local-file.

nmap [inpattern outpattern]
Remove (no arguments) or set the filename mapping mechanism.
Filename mapping automatically derives a destination filename from
the source filename during get, mget, put, and mput commands.
This is of particular interest when connecting to a non-Unix remote
host with different file naming conventions or practices.

The input pattern consists of the variables $1 through $9 and literals.
This pattern is matched against a source filename to extract the
portions of interest. The input pattern cannot contain spaces.

The output pattern specifies the manner in which the variables derived
by the input pattern are used to create the destination filename. The
variables $1 through $9 are replaced by their derived values. The
variable $0 is replaced by the original source filename. The pattern
[str1,str2] is replaced by str1 if str1 is not a null string or by str2 if
str1 is a null string. All other spaces and characters are treated as
literals.

For example, the command nmap $1;$2 $1.$2 can be used to create a
Unix equivalent of the VMS version number extension by replacing
the semicolon with a period.

ntrans [inchars [outchars]]
Remove (no arguments) or set the filename character translation
mechanism. Character translation automatically derives a destination
filename from the source filename during get, mget, put, and mput
commands. This is of particular interest when connecting to a remote
host with different file naming conventions or practices.

If a character in the source filename matches the n character in
inchars, it is replaced by the corresponding character from outchars to
create the destination filename. If the inchars string is longer than the
outchars string, the characters without a corresponding output
character are ignored in the source filename.

For example, the command ntrans ;$-% . will translate semicolons to
periods wherever they appear and ignore all dollar signs, hyphens, and
percent signs.

ftp TCP/IP command

218 Chapter 2 Command Descriptions

open host [port]
Establish a connection to the FTP server on the specified remote host.
Port is used to specify an alternate FTP server; it can be the actual
port number or the service name. If autologin is enabled (the default),
ftp will also attempt to automatically log the user in.

prompt Toggle interactive prompting, which is turned on by default.
Interactive prompts occur during multiple file transfers, to allow the
user to selectively retrieve or store files. If prompting is turned off,
mget and mput transfer all specified files.

proxy ftp-cmd
Execute an FTP command on a secondary control connection. This
command enables you to open simultaneous connections to two FTP
servers and transfer files between them instead of between the local
client and a server. The original FTP connection is called the primary
control connection; the connection made through the proxy command
is called the secondary control connection. The server on the
secondary connection must support the FTP protocol command
PASV.

The first proxy command should be open, to establish the secondary
connection. The proxy command ? displays the list of commands
that can be used on the secondary connection. These FTP commands
behave differently when executed as proxy commands:

Command Difference
open will not define new macros during autologin
close will not erase existing macro definitions
get, mget transfer files from the primary server to the secondary

server instead of to the local host
put, mput,
append

transfer files to the primary server from the secondary
server instead of from the local host

put local-file [remote-file]
Copy the local file to the remote host. If remote-file is not specified,
the remote file will be named local-file. Ftp uses the current settings
for file type, format, transmission mode, and structure.

pwd Display the pathname of the current remote working directory.

quit A synonym for bye.

TCP/IP command ftp

Command Reference Chapter 2 219

quote arg ... The specified arguments are sent, verbatim, to the remote FTP server.
A single FTP reply code is expected in return. This command is used
to avoid processing of a command by the local FTP client, and
facilitates the sending of an explicit FTP protocol command to the
remote server when the client does not implement the related
command.

recv remote-file [local-file]
A synonym for get.

reget remote-file [local-file]
Similar to get, but if local-file already exists and is smaller than
remote-file, it is assumed to be a partially transferred copy of the file.
The transfer is resumed from an offset into the remote file equal to the
byte count of the local file.

rename remote-file new-name
Rename the remote file to new-name.

reset Clear the reply queue to resynchronize the command/reply
mechanism between the FTP client and server.

restart marker
Restart the file transfer immediately following get or put at the
indicated marker, which is a byte offset into the file.

rhelp [command]
Request a list of the FTP protocol commands implemented by the
remote server (no arguments) or an explanation of the specified
protocol command.

rmdir directory-name
Delete a directory on the remote host.

rstatus [file] Show the status of the remote host or of the specified file on the
remote host.

runique (receive unique) Toggle the creation of unique local filenames when
using get and mget; receive unique is turned off by default. If
runique is on and the destination filename already exists, a numeric
extension is added to the name, incrementing the number sequentially
until a unique name is created. For example, if the target local
filename is fortune and that file already exists, the target name
becomes fortune.1. If fortune.1 already exists, the target name
becomes fortune.2, and so on with extensions 1 through 99. If all
versions of the file already exist, the transfer fails. If the transfer
succeeds, the unique filename will be displayed.

ftp TCP/IP command

220 Chapter 2 Command Descriptions

send local-file [remote-file]
A synonym for put.

sendport Toggle the use of the FTP protocol PORT command when
establishing a data connection. When enabled (the default), ftp sends
a PORT command to inform the server which local port the client
uses to listen for the data connection. The server will then connect to
that port. When disabled, ftp listens for all data connections on the
default port. This command is particularly useful when connecting to
FTP implementations that do not support the PORT command.

site arg ... Send the arguments, verbatim, to the remote server as a SITE
command. These SITE commands are supported by the iRMX FTP
server; the CHMOD , ULIMIT , and UMASK commands operate like
the corresponding Unix commands:

CHMOD mode file Change the permission mode on the remote
file.

HELP List the SITE commands supported by the
server.

IDLE [secs] Display (no arguments) or set the current idle
time limit.

ULIMIT [blocks] Display (no arguments) or set the current file
size limit.

UMASK [mask] Display (no arguments) or set the current file-
creation mode mask.

size remote-file
Display the size of the remote file.

status Show the current status of ftp .

struct [struct-name]
Set the structure of the file to be transferred to struct-name. Valid
formats are file (the default), page , and record . Only the file
structure is supported.

sunique (send unique) Toggle the creation of unique remote filenames when
using put and mput; send unique is turned off by default. This
operates the same as runique.

system Display the type of OS running on the remote host.

TCP/IP command ftp

Command Reference Chapter 2 221

tenex Set the data representation type to tenex , which corresponds to the
local logical byte size. The only byte size supported is 8 bits, making
this data type virtually the same as binary.

trace Toggle packet tracing. Packet tracing is turned off by default.

type [type-name]
Display the data representation type of the file to be transferred (no
arguments), or set it to type-name. Valid types are ASCII (default),
binary , EBCDIC, image , and tenex (local byte size). The binary
and image types are identical. The EBCDIC type is not supported.
The tenex type, in which the logical byte size is 8, is virtually the
same as binary.

umask [mask]
Display (no arguments) or set the user file-creation mode mask on the
remote host.

user login [password [account]]
Log in to the remote FTP server as user login. Ftp will prompt for the
password and account if they are required and not specified.

verbose Toggle verbose mode. When enabled, all responses from the FTP
server are displayed along with statistics regarding the efficiency of
each file transfer. By default, verbose mode is enabled for an
interactive session and disabled for a background or batch session.

? [command]
A synonym for help.

$ mname [arg ...]
Invoke the macro mname with the specified arguments.

! [command] Invoke a shell on the local host. To return to ftp , exit from the shell
with an EOF (in the iRMX OS, a <Ctrl-Z>). If an argument is
specified, that command is executed and the shell exits automatically.
Do not execute any iRMX command that does an attachfile : $:.

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

ftpd TCP/IP command

222 Chapter 2 Command Descriptions

ftpd
The server process for FTP.

Additional Information

The tcplisten server listens for incoming ftp connections at the well-known port
assigned to FTP, and starts the ftpd daemon to service each such request.

See also: services file, TCP/IP and NFS for the iRMX Operating System

Ftpd interprets filenames according to the same globbing conventions used by ftp .
This allows you to use the shell metacharacters * ? [] and ~.

Ftpd authenticates users according to two rules:

• The user name must be in the system password database, :config:udf. Users
cannot have a null password.

• The user name must not appear in the file /etc/ftpusers.

Ftpd can be set up to maintain a log file, /tmp/ftpd.log, where it records the
originating host name, date, and time of each incoming FTP request. All requests
are logged, including those where user authentication fails and service is denied.
To enable logging, modify the /etc/tcpd.csd network initialization script to create
the /tmp/ftpd.log log file at startup. To disable logging, remove the /tmp/ftpd.log
file if it exists and comment out the command to create the file in the initialization
script. Logging information is appended to /tmp/ftpd.log only if the file exists and
is a regular file; the ftpd server will not create the file.

See also: tcplisten, in this chapter
ftp and tcplisten commands, in this chapter

Commands

The ftpd server supports these FTP protocol commands:

Request Description
ABOR abort previous command
ACCT specify user account
ALLO allocate storage for a new file
APPE append the transferred data to a file
CDUP,XCUP change to parent of current working directory
CWD,XCWD change working directory
DELE delete a file
HELP give help information
LIST give long list of file or directory (ls -lg)

TCP/IP command ftpd

Command Reference Chapter 2 223

Request Description
MDTM show last modification time of file
MKD,XMKD make a directory
MODE specify the data transfer mode
NLST give names of files in directory
NOOP do nothing
PASS send password
PASV set server to passive mode
PORT specify data connection port
PWD,XPWD print current working directory
QUIT terminate session
REST restart incomplete transfer
RETR retrieve a file
RMD,XRMD remove a directory
RNFR specify file to be renamed
RNTO specify new filename
SITE get/set site parameters
SIZE get file size
STAT get server status
STOR store a file
STOU store a file with a unique name
STRU specify data transfer file structure
SYST show server's OS type
TYPE specify data transfer representation type
USER specify user name

The remaining FTP protocol commands specified in Internet RFC 765 are
recognized but not implemented.

Invoking the FTP SITE command on an FTP client host causes a second command
to be executed on the FTP server. Even though the server runs the iRMX OS, these
non-standard or Unix-specific commands are supported by SITE:

Command Description
chmod set access mode of file
help get list of supported SITE commands
idle set/get current idle timer
umask set/get current file umask

SITE also supports the ulimit command, but it has no effect on iRMX hosts.
ULIMIT sets or gets the current file size limit, and there is no limit for iRMX files.

See also: Unix documentation for more details about these commands

The FTP server will abort an active file transfer only when the ABOR command is
preceded by a TELNET Interrupt Process signal and a TELNET Synch signal in the
command stream, as described in RFC 959.

ftpd TCP/IP command

224 Chapter 2 Command Descriptions

The FTP server will return the transfer status when the STAT command is
preceded by the TELNET IP and Synch signals.

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

NET command getaddr

Command Reference Chapter 2 225

getaddr
Returns the local system's Ethernet address.

Syntax

getaddr

Additional Information

The getaddr command displays the Ethernet address of the local system. The
command looks up the value for the local object named myhostid and returns it.
iRMX-NET enters the myhostid object with the Name Server during initialization.
The address is reported as shown below:

Ethernet address : 00 AA 00 02 5A 70

getname NET command

226 Chapter 2 Command Descriptions

getname
Returns the network name of the local system or of any iRMX-NET system
specified by its Ethernet address.

Syntax

getname [A= net_addr] [R= retries]

Parameters
A=net _addr

A 12-digit ASCII string representing the hexadecimal Ethernet address of a system.
Spaces are not allowed. If this parameter is omitted, the name of the local system
is returned. This is an example address:

00AA00025A70

R=retries
A decimal number of times the Name Server tries to find the system, using a
different Multibus II slot ID. The maximum is 21. The default is 8.

Additional Information

The getname command displays the name of the specified host, if the name is
cataloged under property type 5H in any Name Server object table. If no object
with the specified Ethernet address is found cataloged under property type 5H,
getname displays an error message.

If an input parameter is not specified, the local host name is returned. This is the
type of name cataloged with the loadname command from the :sd:net/data file
(assuming it is entered as property type 5H in that file). The name could also be
cataloged with a setname command.

In Multibus I and PC systems, the getname command finds the name in the first
trial.

In Multibus II systems, a host can be in any one of the Multibus II slots. To
identify different hosts in the system, the Name Server appends the slot ID with the
Ethernet address for the host-unique ID (property type 5H). For example, if a host
CPU is in slot 4 of a Multibus II system, the host-unique ID might be as follows,
where 04 is appended to the Ethernet address:

Name Type Value
SLOT4SYS 0005H 00AA00025A7004

NET command getname

Command Reference Chapter 2 227

To obtain the names of Multibus II hosts with getname, you may specify the slot
ID as part of the address, as follows:

getname A=00AA00025A7004

If the slot ID is not known, it need not be specified. In this case, getname attempts
to find the host name up to 21 times (depending on the number of retries specified),
each time with a different slot ID. For example, this command contains no slot ID:

getname A=00AA00025A70

The getname command tries five times with different appended slot numbers
before it finds the name, as shown below:

Getting iRMX System name ... Trial 01 (slot0)
Getting iRMX System name ... Trial 02 (slot1)
Getting iRMX System name ... Trial 03 (slot2)
Getting iRMX System name ... Trial 04 (slot3)
Getting iRMX System name ... Trial 05 (slot4)

Host name is: SLOT4SYS

See also: findname command, in this chapter

Error Messages
<net_addr>, illegal Ethernet address

The Ethernet address specified in the command line is invalid. Execute the
getname command again using the correct Ethernet address.

<net_addr>, name does not exist
An object with the property type 0005H matching the given Ethernet address is not
found in the entire network.

<net_addr>, maximum responses received
More than one name is found to match the given Ethernet address. This happens if
the setname command is executed more than once and different names are used.
In this case, the number of such duplicate names found by the Name Server can be
too large to handle. The maximum number of responses that can be handled by the
Name Server is a configurable option.

grep HI command

228 Chapter 2 Command Descriptions

grep
Searches the specified file(s) for a string matching the given pattern. For each
matching string, grep displays the lines and/or filenames.

Syntax

grep pattern pathname [to|over|after outpath] [nofile]
[line] [exact] [unique] [plm]

Parameters
pattern

The pattern for which a match is desired.

pathname
The file to search. Wildcards are permitted.

to|over|after outpath
Writes the output to the specified file instead of to the screen.

nofile Don't display the filename when a match is found. The default is to always display
the filename.

line Display the line number when a match is found.

exact Searches for the pattern as entered with regard to upper- and lower-case. The
default is to search without case-sensitivity.

unique When a match is found, displays only the filename, and only once for each file.

plm Ignores $ characters in the file when searching for a match.

Additional Information

Unless you specify the exact parameter, the search is caseless; all occurrences of
the matching string, in any combination of case, are reported.

HI command grep

Command Reference Chapter 2 229

Examples

To find all occurrences of rq$send$message in all files ending with p38, regardless
of PLM coding style, enter:

grep rqsendmessage *p38 plm

To find all occurrences of a distinctly spelled variable in the same files, enter:

grep SillyVar *p38 exact

help HI command

230 Chapter 2 Command Descriptions

help
Displays information about one or more commands. If no parameters are given,
information about the help command is displayed.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

help command_list [to|over|after outpath_list] [q] [p = num]

Parameters
command_list

One or more command names for which you want help. Separate multiple names
with commas. Wildcards are permitted. Only utilities added to the OS have help
screens available.

to|over|after outpath _list
Writes the output to the specified file(s) rather than to the screen. If you specify
multiple input files and one output file, the output is appended.

q(uery) Prompts for permission to display each help file. Respond to the prompt with:

Y Display the file
R Display remaining files without further query
E Exit the command
N or other Don't display the file; query for the next

p(agelength)=num
The maximum number of lines in the output page; the default is 66. A formfeed
(0CH) is inserted in the output every n lines, where n = pagelength-3 . If the
output is not directed to a file, this parameter is ignored. The default value is
decimal, but you can specify octal or hexadecimal by appending an O or H.

HI command help

Command Reference Chapter 2 231

Additional Information

If no output pathnames are given, the output is sent to the screen using the skim
command. For help on commands used by skim, type H or ? at the more? prompt.

See also: skim command, in this chapter

The help command displays the contents of a help file with the same name as a
command. Each help file has the extension .hlp. If the filename becomes too long
the excess part of the .hlp extension is truncated.

Not all commands have help files. The help command is used primarily to give
information about utilities added by users; many of these utilities are now shipped
with the OS and described in this manual.

The help command determines the location of the help files by entries in a
help.mac file, which is in the same directory as the help command. The help.mac
file contains the names of directories to search for help files. The directories
should be on separate lines or separated by commas. If you add directories, use
these types of entries; note the trailing slashes on the directory pathnames:

:prog:
:sd:helps/system/
:sd:helps/utils/
:sd:helps/uprocs/
:sd:util286/
:$:

If no help file for a command is found in any of the directories listed in help.mac,
an error message to that effect is displayed.

Indirect help files may be created by using an at sign (@) as the first character in the
help file, followed by the indirect command name. To use this capability, there
must be an actual help file referenced by the indirect command name. For
example, if there is an actual skim.hlp file, and you want to provide help for an
alias m=skim , create a file named m.hlp that contains only this line:

@skim

history CLI command

232 Chapter 2 Command Descriptions

history
Displays the last 40 command lines in chronological order. You can use the
associated number with the ! command to recall one of the displayed command
lines.

Syntax

history

Additional Information

The command lines are displayed a screenful at a time, including the history
command, and are numbered from 1 to 999. After 999, the numbers start over at 1.
When displaying the command lines, the CLI lists the first page (20 lines) of
commands followed by the query:

display more ? ([y] or n)

The default is Y. If you enter anything other than N, the CLI displays the next page
of command lines (assuming there are more command lines in the history buffer).

You can use the history command with the ! command to recall a specific line
number or command line. For example, you might enter the history command to
see the last 20 command lines. To recall line 10 so you can modify and execute it,
you would enter:

!10 <CR>

This would display line 10 as the current line. You can then edit the line; however,
the original line 10 remains unchanged in the history buffer. The edited line
becomes the last (newest) line in the history record.

If you have entered a command line that includes continuation lines, history
displays it as shown for command 2 below:

 1 copy x to y
 2 copy z &
** to &
** t.asm
 3 dir
 4 history

CLI command history

Command Reference Chapter 2 233

Examples

Assume that you enter these commands:

- copy X to Y.PLM <CR>
- dir <CR>
- AEDIT Y.PLM <CR>
- history <CR>

The response to the history command would be:

1 copy X to Y.PLM
2 dir
3 AEDIT Y.PLM
4 history

To edit line 1, use the ! command. Line 1 is displayed with the cursor at the end:

- !1 <CR>

- copy X to Y.PLM

If you edit the line to read copy NEW.PLM to Y.PLM and execute the command,
the line is entered into the history buffer as line 5. Now if you enter the history
command you see:

1 copy X to Y.PLM
2 dir
3 AEDIT Y.PLM
4 history
5 copy NEW.PLM to Y.PLM
6 history

Error Messages
<parameter>, unexpected parameter

You entered a parameter; history does not accept parameters. If you want to recall
a specific line, enter the ! command.

<condition code:mnemonic>, while history displayed
An error occurred when the CLI tried to write the history buffer to the screen.

hostid TCP/IP command

234 Chapter 2 Command Descriptions

hostid
Displays or sets the identifier of the current host, normally the Internet address.

Syntax

hostid [identifier]

Parameter
identifier

A numeric value for the current host. It is expected to be unique across all hosts
and should correspond to the host's Internet address. The value may be
hexadecimal or dotted-decimal format.

Additional Information

The command sets the address if you specify one on the command line; otherwise it
displays the current address. Only the Super user can set the host’s Internet
address. Below is an example of how hostid displays the address.

- hostid
128.215.12.21 80d70c15
-

See also: gethostid and sethostid functions, TCP/IP and NFS for the iRMX
Operating System

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

TCP/IP command hostname

Command Reference Chapter 2 235

hostname
Displays or sets the name of the current host.

Syntax

hostname [name]

Parameter

name The fully-qualified host name, constructed by appending the local domain to the
host's node name.

Additional Information

The command sets the name if you specify one on the command line; otherwise it
displays the current name. Below is an example of how hostname displays the
name; the current host is host2 in the domain intel.com. Only the Super user can
set the name of the host.

- hostname
host2.intel.com
-

See also: uname command, in this chapter
gethostname and sethostname functions, TCP/IP and NFS for the
iRMX Operating System

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

ic HI command

236 Chapter 2 Command Descriptions

ic
Reads or writes interconnect space to perform one of several functions on a
Multibus II system. The ic command must be invoked separately for each
subcommand function.

Syntax
ic -c agents [-s]
ic -c fpi [-s] arm|disarm
ic -c get [-s] slot register count
ic -c help
ic -c kill [-s] slot
ic -c myslot [-s]
ic -c nmi [-s] [-e] slot nmitype
ic -c record [-s] [-o occurrence] slot record
ic -c reset [-s] [-p monitor|bootstrap| index] slot type
ic -c set [-s] slot register value

Parameters

The parameters after -c are in alphabetical order, with hyphens ignored.

-c Specifies that one of the ic subcommands follows.

a(gents)
Displays the slot ID and product code for each board (agent) in the system,
including add-on (extension) boards. With the -s switch, the slot ID is repeated
for extensions.

count A decimal number specifying the number of registers to display.

-e Enables the NMI source specified by nmitype . The -e is unnecessary if the NMI
source is already enabled.

f(pi) arm|disarm
Arms or disarms notification from the Front Panel Interrupt (FPI) server. This
server notifies when you turn the front panel keyswitch to Interrupt. By default, all
boards are disarmed when the system starts, and the interrupt switch has no effect.
If you arm the server, the board where you issue the command is given a non-
maskable interrupt (NMI) when you turn the keyswitch.

g(et) Displays the contents of one or more interconnect registers on the board in the
specified slot.

h(elp) Displays ic syntax.

HI command ic

Command Reference Chapter 2 237

k(ill) Disables the board in the specified slot by applying a local reset. To re-enable the
board it must be reset with the ic command or the reset switch.

m(yslot)
Displays the slot ID of the board where ic is executing.

n(mi) Issues an NMI on the board in the specified slot.

nmitype
The following; to specify the whole string, use underscores (_) not spaces:

diagnostics (_request)
debugger (_entry)
software (_nmi_source)

-o occurrence
A decimal number specifying which occurrence of the record to display, where
there are multiple occurrences. The default is 1, the first record.

-p monitor|bootstrap| index
For a local or warm reset, specifies a program to run after the reset:

monitor invokes the firmware debug monitor

bootstrap invokes the firmware bootstrap loader

index is a number in the range 0-7, invoking a program in the Program
Table Index Register (PTIR)

rec (ord)
Displays the contents of an interconnect space function record on the board in the
specified slot, or displays information about extension boards on it.

record A decimal number specifying the interconnect space record, or, to indicate
extension boards, the literal 20 or HW.

register
A decimal number specifying the (beginning) interconnect register.

res (et) Resets the board in the specified slot.

-s Shortens output to the value requested, not a message, except for error messages.

s(et) Writes a value into an interconnect register on the board in the specified slot. The
value written is verified and displayed.

type The type of reset: cold , recovery , warm, or local . Local causes a processor
reset if the specified slot is where ic is executing.

slot A decimal slot number specifying which board to act upon.

value A one-byte hexadecimal value to write (don't specify the H).

ic HI command

238 Chapter 2 Command Descriptions

Additional Information

Interconnect registers and the logical records that comprise a group of registers are
defined differently for different boards. Refer to the hardware reference manuals
for the boards you use.

See also: Records, reset, program table index register, NMI, Multibus II
Interconnect Interface Specification

The table below shows default aliases defined for the ic command in Multibus II
systems. These are not defined for iRMX for Windows installed in a Multibus II
system.
Subcommand Aliases
agents agents = ic -c agents
myslot myslot = ic -c myslot
reset agentreset = ic -c reset #0 local

coldreset = ic -c reset 0 cold
sysreset = coldreset
monitor = ic -c reset -p monitor #0 local
reboot = ic -c reset -p bootstrap
warmreset = ic -c reset 0 warm

nmi nmi = ic -c nmi #0 software
nmiforce = ic -c nmi -e #0 software

get icread = ic -c get #0 #1 #2
set icwrite = ic -c set #0 #1 #2
kill offline = ic -c kill #0

Values written to a register with the set subcommand are hexadecimal. All other
numeric values you specify in the ic command are decimal. Values displayed by ic
follow the same convention. If you enter an invalid command, ic displays the
syntax of ic commands.

HI command ic

Command Reference Chapter 2 239

Examples

agents In this example the commands are for a system that includes an SBC 386/258 board
in slot 1, with a CSM/002 module attached.

ic -c agents <CR> or agents <CR>

AGENTS COMMAND -
SLOT:00 386/258
 - CSM/002
SLOT:02 186/410
SLOT:03 386/116
SLOT:07 186/530

ic -c agents -s <CR> or agents -s <CR>

00
00
02
03
07

myslot In this example the command is issued from the board in slot 1.

ic -c myslot <CR> or myslot <CR>

MYSLOT COMMAND - SLOT:01

ic -c myslot -s <CR> or myslot -s <CR>

01

get This example returns the value from the board in slot 1, interconnect register 100,
with the contents of two registers returned.

ic -c get 1 100 2 <CR> or icread 1 100 2 <CR>

GET COMMAND - SLOT:01
100 - 03H 101 - 00H

ic -c get -s 1 100 2 <CR> or icread -s 1 100 2 <CR>

03
00

set This example writes to the board in slot 2, interconnect register 0, value 1.

ic -c set 2 0 1 <CR> or icwrite 2 0 1 <CR>

SET COMMAND - SLOT:02, REGISTER: 0, VALUE:01H

ic -c set -s 2 0 1 <CR> or icwrite -s 2 0 1 <CR>

01

ic HI command

240 Chapter 2 Command Descriptions

record
This example returns information from the board in slot 1, record 1. The
corresponding interconnect register numbers are shown in parentheses.

ic -c record 1 1 <CR>
RECORD COMMAND - SLOT:01, NAME:MEMORY, TYPE:001, LENGTH:05

2(038)-3fH 3(039)-00H 4(040)01H 5(041)-a1H
6(042)-f1H

ic -c record -s 1 1 <CR>
01
05
3f
00
01
a1
f1

record
This example returns information about the hardware extension board attached to
the board in slot 0. The literals 20 or HW, used as a record number, specify
hardware extensions. Notice the prompts to display more information between
each record.

- ic -c rec 0 20 <CR>

RECORD COMMAND - SLOT:00, NAME:HW_EXTENSION, LENGTH:20

02(103) - 00H 03(104) - 00H 04(105) - 01H 05(106) - 00H
06(107) - 43H 07(108) - 53H 08(109) - 4dH 09(110) - 2fH
10(111) - 30H 11(112) - 30H 12(113) - 32H 13(114) - 00H
14(115) - 00H 15(116) - 00H 16(117) - 01H 17(118) - 00H
18(119) - 00H 19(120) - 00H 20(121) - 00H

-MORE ([Y]/N) ? <CR>
RECORD COMMAND - SLOT:00, NAME:CSM, TYPE:008, LENGTH:02

02(124) - 00H 03(125) - 23H

-MORE ([Y]/N) ? <CR>
RECORD COMMAND - SLOT:00, NAME:TIME_DATE, TYPE:009, LENGTH:10

02(128) - 40H 03(129) - 10H 04(130) - 27H 05(131) - 16H
06(132) - 15H 07(133) - 31H 08(134) - 01H 09(135) - 90H
10(136) - 00H 11(137) - 03H

-MORE ([Y]/N) ? <CR>
RECORD COMMAND - SLOT:00, NAME:ALARM, TYPE:032, LENGTH:07

02(140) - 00H 03(141) - 00H 04(142) - 00H 05(143) - 00H
06(144) - 00H 07(145) - 00H 08(146) - 00H

HI command ic

Command Reference Chapter 2 241

-MORE ([Y]/N) ? <CR>

RECORD COMMAND - SLOT:00, NAME:NVRAM, TYPE:033, LENGTH:28

02(149) - 00H 03(150) - 00H 04(151) - 00H 05(152) - 00H
06(153) - 00H 07(154) - 00H 08(155) - 00H 09(156) - 00H
10(157) - 00H 11(158) - 00H 12(159) - 00H 13(160) - 00H
14(161) - 00H 15(162) - 00H 16(163) - 00H 17(164) - 00H
18(165) - 00H 19(166) - 00H 20(167) - 00H 21(168) - 00H
22(169) - 00H 23(170) - 00H 24(171) - 00H 25(172) - 00H
26(173) - 00H 27(174) - 00H 28(175) - 00H 29(176) - 00H

-MORE ([Y]/N) ? <CR>
RECORD COMMAND - SLOT:00, NAME:CHASSIS_ID, TYPE:034, LENGTH:02

02(179) - 00H 03(180) - 00H

Error Messages
GET COMMAND - Invalid count argument

The count value entered is invalid.

GET COMMAND - Invalid register argument
The register offset is invalid.

SET COMMAND - Interconnect write error
The value written to interconnect space could not be read back to validate it.

RECORD COMMAND - Invalid record type
The record value entered is invalid.

<slot>: Invalid slot ID argument
The slot value is not a valid Multibus II slot.

<slot>: Interconnect not initialized
The specified Multibus II host had not initialized its interconnect space.

<slot>: Invalid command argument
The major option entered was not a valid ic subcommand.

E_NOT_CONFIGURED
The system on which the ic command was invoked is not a Multibus II system.

ifconfig TCP/IP command

242 Chapter 2 Command Descriptions

ifconfig
Displays or modifies the configuration of a local TCP/IP Ethernet or SLIP
interface.

Syntax

ifconfig interface [address_family] [address] [parameters]

Parameters
interface

The name assigned to the interface in the /etc/inetinit.cf file. If no other parameters
are supplied, ifconfig displays the current configuration of the specified interface.

address_family
Specify inet ; the only address family supported is the DARPA Internet family.

address
Specify a host name or Internet address to set a new address for the interface.

parameters
One or more of these:

broadcast addr
(Internet Address family only.) The address to be used for broadcasts
to the network. The default broadcast address is the interface address
with a host part (as identified by the netmask) of all 1s. This setting
affects only the broadcast address for transmitted packets; addresses
of all 0s and all 1s are both recognized as broadcasts on incoming
packets.

down Mark an interface as being disabled; no messages will be transmitted
through the interface. If possible, the interface will be reset to disable
reception as well. This action does not automatically disable routes
using the interface.

netmask mask
(Internet Address family only.) Identifies the part of the Internet
address to be used for the network and subnetwork specification; the
remainder is the host specification. It is strongly recommended that
the network and subnetwork fields be contiguous. Specify a 32-bit
address mask containing 1s for the bit positions in the network and
subnet parts, and 0s for the host part. The mask can be a single
hexadecimal number (for example, 0xffffff00), a dot notation Internet
address (for example, 255.255.255.0), or a pseudo-network name
listed in the /etc/networks database.

TCP/IP command ifconfig

Command Reference Chapter 2 243

up Mark an interface as being enabled. This re-enables an interface after
marking it down. An interface is automatically marked up when its
address is first set. If the interface was reset when previously marked
down, this command re-initializes the hardware.

Additional Information

To display information about an existing interface configuration, specify only the
interface name; for example, interface en0 :

- ifconfig en0

en0: flags=3<UP,BROADCAST>
inet 128.215.12.21 netmask ffff0000 broadcast 128.215.255.255

The display reiterates the interface name and shows the flags pertaining to the
interface's state. The state is a combination of these flags:

Flag Description
DOWN Interface is down (disabled).
UP Interface is up (enabled).
BROADCAST Interface supports broadcast.
LOOPBACK Interface is to the loopback network.

The mutually exclusive flags UP and DOWN provide a basic state. If the interface is
down, no other flags apply. The mutually exclusive flags BROADCAST and
LOOPBACK describe the type of network to which the interface connects. Ethernet
networks support broadcast.

The next line displays these items:

inet 128.215.12.21
The address family and the actual address assigned to the interface.

netmask ffff0000
A hexadecimal value identifying which part of the Internet address
applies to the network and which applies to the host. In this example,
the network address is 128.215 and the host on that network is 12.21.

broadcast 128.215.255.255
The broadcast address, formed by setting all the bits in the host part of
the Internet address.

ifconfig TCP/IP command

244 Chapter 2 Command Descriptions

Most of the interface characteristics described above are configurable using the
ifconfig command. In some cases, you need to change the configuration in
response to a temporary condition, such as a physical link going down. However,
in many cases you set the configuration to support the normal networking
environment, such as a netmask or broadcast address configuration. For these
normal settings, place the configuration commands in the network startup script
tcpstart.csd, where they will be executed automatically. Such commands should
immediately follow the command that invokes the inetinit daemon.

In a command where you specify an address, you can substitute the official host
name or an alias for the actual Internet address. The name and address must be in
the /etc/hosts file.

Disabling and Re-enabling an Interface

The only state changes you can make are to mark the interface as being down or
up. The remaining flags are set automatically by the software when the interface is
enabled. Normally an interface is brought up when the network is initialized and
remains enabled until the network is brought down. Use the down parameter to
disable a particular interface without affecting the operation of the rest of the
network. For example:

ifconfig en0 down

No packets will be sent or received through a disabled interface as long as it
remains disabled. You can re-enable the interface with an up parameter in the
ifconfig command.

Setting the Interface Family and Address

You can configure the address family in an ifconfig command. However, because
only the Internet address family is supported, this configuration option has no real
effect.

When the network is initialized, the interface is assigned the Internet address that
corresponds to the host name given to the interface in the inetinit.cf file. The
address is taken from the /etc/hosts file. You can change an interface's address; for
example, to change the address of interface en0 to 89.0.0.9, enter:

ifconfig en0 89.0.0.9

The netmask and broadcast address associated with the interface are automatically
changed to correspond to the new interface address, as follows:

Class Netmask Broadcast Address
A (first octet 1-127) ff000000 Last three octets = 255
B (first octet 128-191) ffff0000 Last two octets = 255
C (first octet 192-254) ffffff00 Last octet = 255

TCP/IP command ifconfig

Command Reference Chapter 2 245

Configuring a Point-to-point Interface

To properly configure a point-to-point interface, such as slip, you use the ifconfig
command as follows:

ifconfig interface address destination

where interface is the official designation for the interface, address is the
Internet address or host name of the interface, and destination is the Internet
address or host name of the other end of the link.

Below is an example of using the ifconfig command to configure the point-to-point
interface between interface sl0 at address 89.0.0.9 and address 89.0.0.7.
Commands of this type are generally executed from the network initialization script
tcpstart.csd.

ifconfig sl0 89.0.0.9 89.0.0.7

The command to configure a point-to-point interface will reset the netmask and
broadcast address to default values based on the source address, as described
previously. Changes to the netmask and broadcast address for this interface can be
made by adding a netmask clause (as described below) to this command line or
through subsequent ifconfig commands.

Setting a Subnet Mask

If the local network is divided into subnets, you must use the ifconfig command to
reconfigure the netmask for the associated interface. This properly identifies the
network part of the Internet address.

The example below sets the netmask so that network 89 is treated as subnetworks
89.1, 89.2, and so on. You typically execute a command of this type from the
network initialization script tcpstart.csd.

ifconfig en0 89.4.0.9 netmask 0xffff0000

You could include the Internet address or host name in the command; this would
automatically modify the broadcast address for the interface to reflect the new
netmask. In the previous example, the broadcast address would be changed from
89.255.255.255 to 89.4.255.255.

ifconfig TCP/IP command

246 Chapter 2 Command Descriptions

Setting the Broadcast Address

There are two styles of broadcast addresses in use. Network implementations
based on 4.2BSD use a host address of 0s while network implementations based on
4.3BSD use a host address of 1s. The TCP/IP software recognizes and correctly
accepts either style of broadcast address. By default, it uses the 4.3BSD style when
formulating a broadcast packet. To broadcast packets to other hosts on 4.2BSD-
style networks, you must use the ifconfig command to set the broadcast address for
the interface. You could add the example below to the tcpstart.csd script:

ifconfig en0 broadcast 89.0.0.0

If the local network is divided into subnets, the broadcast address should take into
account the subnet mask and should be set on the same command line as the
netmask. For the host 89.4.0.9 described earlier under subnet masks, you would set
the broadcast address explicitly to 89.4.0.0.

See also: netstat command, in this chapter
inetinit.cf file, TCP/IP and NFS for the iRMX Operating System

✏ Note
Trailer protocol (placing the header at the end of the packet) is
not supported.

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

Error messages may indicate that the specified interface does not exist or the
requested address is unknown.

NET command inamon

Command Reference Chapter 2 247

inamon
Performs several network functions chosen from a menu, including reading and
setting Network Management Facility (NMF) objects, performing echo tests, and
managing network routing.

Syntax

inamon

Additional Information
Inamon is a menu-driven utility that provides these functions:

• Determines and changes the iNA 960 configuration through NMF objects and
monitors Remote Boot Server activity. If the NMF is configured for remote
object support, you can use inamon to monitor NMF objects on a remote
system. Except for the ina961.31L download file, the default NMF
configuration for iNA 960 files shipped with iRMX-NET allows remote object
manipulation.

• Performs echo tests of the Data Link Layer to determine if the physical link
between two systems is in place and if the iNA Data Link Layers are
functioning. A remote system's Ethernet address and a Data Link Layer LSAP
ID of 08 are used to reach the remote Data Link Layer.

• Attaches to iNA 960 on a remote system to determine whether the iNA
Transport software is functional on the two systems. You must provide the
transport address for the remote system.

• Notifies the user of a local event.

• Provides routing management for both static IP and ES-IS dynamic routing.

See also: NMF objects, Network User's Guide and Reference

When you invoke inamon, this menu is displayed:

TYPE 0 FOR : READ/SET/CLEAR OBJECTS
TYPE 1 FOR : ECHO TESTING
TYPE 2 FOR : EVENT NOTIFICATION
TYPE 3 FOR : ROUTER MANAGEMENT
TYPE 4 FOR : ATTACH REMOTE AGENT
TYPE 5 FOR : DETACH REMOTE AGENT
Enter Option (TYPE H FOR HELP, E FOR EXIT) -->

At this menu, enter H for help information about the command. Once you enter the
help screens, you must page through (using <CR>) to the end.

initstatus HI command

248 Chapter 2 Command Descriptions

initstatus
Displays the initialization status of all HI-managed terminals.

Syntax

initstatus

Additional Information

This is the format of the initstatus display:

 terminal config device init term job user user user

 device name excep excep excep state ID ID POOL name

 .T0. 0000 0000 0000 D-E 1 0 1,400K rmx

 .T1. 0000 0000 0000 SLE 2 65535 1,400K rmx

 .T3. 0000 0002 D--

 .T4. 0021 D--

Where

terminal
device
name

The physical name of the terminal, as defined during the
configuration of the Basic I/O System and as attached by the HI.
Periods surround each name.

config
excep

Hexadecimal condition code that the HI received when it attempted
to interpret the terminal definition and user definition files. A 0
value indicates a normal condition. Nonzero values indicate
exceptional conditions.

device
excep

Hexadecimal condition code that the HI received when it originally
attached the terminal as a physical device.

init
excep

Hexadecimal condition code that the HI received when it created a
job for the interactive session.

HI command initstatus

Command Reference Chapter 2 249

term
state

Three characters that indicate the current state of the terminal. The
first character can be either:

D a dynamic logon terminal
S a static logon terminal

The second character can be either:
L the terminal is locked
- the terminal is unlocked

See also: lock and unlock commands, in this chapter
dynamic and static terminals, System
Configuration and Administration

The third character can be either:
E the HI interactive job associated with this terminal

exists
- the interactive job does not exist

job
ID

A sequential number that the HI assigns to the interactive job during
initialization. You specify this number as the parameter in the
jobdelete command to delete the corresponding interactive job.

user
ID

The user ID that the HI associates with the interactive job when the
user begins a HI session.

user
POOL

The maximum size of the memory pool associated with the
interactive job.

user
name

The logon name of the user who is accessing this terminal.

See also: Logon names and terminals, System Configuration and Administration

Error Message
not a multi-user system

The HI cannot return information about terminals because it is not configured as a
multi-user system.

jobdelete HI command

250 Chapter 2 Command Descriptions

jobdelete
Deletes one or more running interactive jobs, which are the HI jobs that manage
user sessions. The Super user can delete any interactive job. Other users can
delete only those jobs with the same user ID as their own.

Syntax

jobdelete job_id_list

Parameter
job _id _list

One or more job ID numbers separated by commas, specifying the interactive jobs
to be deleted. Use the initstatus command to display the current job IDs.

Additional Information

Deleting an interactive job causes the HI to terminate the corresponding user
session. The jobdelete command cannot be used to delete background jobs; for
those, use the kill command.

When you invoke jobdelete, it first attempts to delete the interactive job's offspring
jobs (for example, a submit file or a program invoked as a result of an
rqe_create_io_job system call). It deletes multiple levels of offspring jobs.
However, jobdelete cannot delete any interactive or offspring job that contains
extension objects.

See also: Deleting offspring jobs, System Concepts

Normally, when a user's interactive job is deleted, the HI logs the user off the
system and issues a new logon prompt. If the job is on a static terminal, the HI
automatically re-creates the interactive job, with no logon prompt. However, if the
lock command has been invoked for the terminal, the HI does not reissue a prompt
or re-create interactive jobs after a jobdelete command. The system manager can
use the combination of lock and jobdelete to remove users from the system before
a system shutdown.

Unless you delete your own interactive job, jobdelete displays this message as it
deletes each job:

<job_ID>, deleted

If you delete your own interactive job, the logon prompt is displayed (for dynamic
terminals) or your interactive job is restarted (for static terminals).

HI command jobdelete

Command Reference Chapter 2 251

Error Messages
<job_ID>, does not exist

The interactive job associated with this job ID does not exist. It has already been
deleted or never existed.

<job_ID>, invalid job id
The specified job ID is not associated with any terminal managed by the HI.

<job_ID>, job does not belong to you
You do not have the same user ID as the interactive job, or you are not the system
manager.

<job_ID>, not deleted

<job_ID>, <condition code:mnemonic>
The indicated condition code was encountered, preventing jobdelete from deleting
the job.

jobs CLI command

252 Chapter 2 Command Descriptions

jobs
Displays the current background jobs and their job ID numbers, in last-in first-out
order.

Syntax

jobs

Additional Information

The job IDs are displayed in a list of four-digit hexadecimal ID numbers. These
are the job IDs assigned when the background command was invoked. To cancel
a background job, use the kill command.

This is the type of display produced by the jobs command, where <job> is a
truncated copy of the command line running in the background:

Background Jobs:
 9B08 "<job>"
 1FF0 "<job>"
 10A8 "<job>"

Error Message
<parameter>, unexpected parameter

You entered a parameter; jobs does not accept any parameters.

HI command keyb

Command Reference Chapter 2 253

keyb
Configures the console keyboard for a specific country, in iRMX for PCs and
iRMX for Windows. The default keyboard setting is US.

Syntax

keyb [country-abbreviation]

Parameters
country-abbreviation

Two-character abbreviation of the country indicating which keyboard is being used,
as follows:

Abbreviation Country
FR France
GR Germany
IT Italy
LA Latin America
SV Sweden/Finland
UK United Kingdom
US United States

Additional Information

Without a country abbreviation, keyb displays the syntax and list of countries
supported.

For keyboards with keys that support three characters, you can type the third
character only by pressing the <Ctrl+Alt+key> combination.

Currently, <Alt+Shift+key> and the <Alt Gr> key are not supported by the
keyboard command.

Error Messages
Invalid Language Abbreviation

You did not enter a correct country abbreviation as listed above.

Invalid Command Tail
You entered a single letter instead of a two-letter country abbreviation.

kill CLI command

254 Chapter 2 Command Descriptions

kill
Cancels the specified background job or all background jobs.

Syntax

kill [job_id |*]

Parameters

job _id The hexadecimal job ID number established when the background job was invoked.

* Cancels all background jobs.

Additional Information

The Super user can cancel any job. Other users can cancel only background jobs
started by themselves or by the World user.

If you cancel several background jobs at once and then immediately issue the jobs
command, some of the canceled jobs may be listed. Even though these jobs are
displayed, they have been canceled. Verify this with another jobs command.

When a job has been canceled, this message is displayed:

Background job <job_id> canceled

If you use the asterisk (*) parameter with the kill command, all background jobs
are canceled and this message is displayed:

All background jobs were canceled

Error Messages
kill, the job parameter is not a valid background job of the caller

You tried to kill a background job that is not in your list of background jobs.

kill, a job parameter is required
The command you entered has a syntax error.

NET command lanstatus

Command Reference Chapter 2 255

lanstatus
An alias for the netinfo command. The features of the former lanstatus command
are included in the netinfo command.

See also: netinfo command, in this chapter

listname NET command

256 Chapter 2 Command Descriptions

listname
Lists the names and values of objects in the local network Name Server object
table.

Syntax

listname [to|over|after outpath]

Parameters
to|over|after outpath

Writes the output to the specified file rather than to the screen.

Additional Information

This command lists only objects cataloged on the local system, not on remote
systems. The output can be directed to a terminal, a file, or a printer. The output
has the form:

Name Property Unique PV_Type Value

FSTSAP 00000H NO SIMPLE 10 00H

FCTSAP 00001H NO SIMPLE 11 00H

INARELNUM 00004H NO SIMPLE 03H

INANLNUM 00004H NO SIMPLE 01H

NSCOMMENGINE 00004H NO SIMPLE FFH

TLCOMMENGINE 00004H NO SIMPLE 00H

The following entries depend on the number of subnets in the iNA 960 job. For
example, there can be up to 4 MYHOSTID entries, 1 for each subnet, where xx
varies from 01 to 03.

MYHOSTID 00004H NO SIMPLE 00 AA 00 02 57 86H

MYHOSTIDxx 00004H NO SIMPLE 00 AA 00 02 57 86H

INASUBNET 00004H NO SIMPLE 00 01H

INASUBNETxx 00004H NO SIMPLE 00 01H

The following entries are added by file servers from the /net/data file. The BSMB2
entry is for the server in slot 0 and the BSSLOT2 entry is needed by the client in
slot 2 (note that the last two digits of addresses in the Value column are the slot
number for these entries).

NET command listname

Command Reference Chapter 2 257

RNETSRV 00004H NO SIMPLE 52 4E 45 54 53 52 56 00 AA 00H

02 57 86H

BSMB2 00003H YES SIMPLE 0B 49 00 00 00 AA 00 02 57 86 FEH

00 02 10 00H

BSMB2 00005H YES SIMPLE 00 AA 00 02 57 86 00H

BSMB2 00006H YES SIMPLE 0B 49 00 00 00 AA 00 02 57 86 FEH

00 02 30 00H

BSSLOT2 00005H YES SIMPLE 00 01 00 AA 00 02 57 86 02H

NSDONE 00004H NO SIMPLE 52 4D 58 00 AA 00 02 57 86H

The following entry is for the client (file consumer), taken from the /net/data file.

MYNAME00 00002H NO SIMPLE 72 6D 78H

In the object table, Name means the name of the object, such as the server name
BSMB2 in this example.

The Property column lists the property type, a numeric code that tells what kind
of information is represented by the property value in the last column.

See also: Name Server property types, Network User’s and Reference Guide

Unique indicates whether this combination of object name and property type are
unique on the network. The fixed entries are not unique; the object table on every
node in the network includes these objects. Other non-unique objects can be added
to the object table through the programmatic interface. Non-unique objects are, in
effect, local objects. Each computer can read the value of the object in its own
object table, but it cannot access the object with that name on a remote node. The
Name Server guarantees the uniqueness of any object entered through the Human
Interface. Before it accepts a new object, it checks all the other object tables on the
network for objects with the same name and property type.

SIMPLE in the PV_Type column means that the property value in the last column
is a simple string, rather than a complex structure in which each element is an
object, such as a mail list made up of network users. Structured property types are
not supported in iNA 960/iRMX-NET.

The Value column is the property value, a field containing specific information
about this object, usually based on the network address. For objects of property
types 3, 6 and 8, the Value column contains the server's transport address. For
objects of property type 5, that column contains the host-unique ID, combining the
Ethernet address and a slot ID.

See also: findname and setname commands, in this chapter

listname NET command

258 Chapter 2 Command Descriptions

Error Messages
illegal option

The option specified in the command must be to , over , or after .

<pathname>, illegal path
The pathname specified in the command line is longer than 255 characters.

NET command load

Command Reference Chapter 2 259

load
Loads iNA 960 network software into memory on the network controller board and
starts the controller running.

Syntax

load pathname

Parameter
pathname

The name of the file containing iNA bootable network software.

Additional Information

The iRMX-NET software loads the iNA boot software onto the network controller
board during initialization, so the load utility is generally not needed on iRMX III
systems. However, if iRMX-NET is unable to find the iNA file and cannot load the
software, iRMX-NET initialization stops. iRMX continues to initialize, and you
may then invoke the load command to load iNA and resume iRMX-NET operation.

The iNA file being loaded must be in a format as processed by the xlate utility. In
previous releases of iNA 960, the load utility had the capability that xlate has; it
could be used for translating an OMF86 file to the iNA boot file format. However,
the xlate utility should now be used to perform the translating function, and the
load utility should be used to load the LAN controller. Attempting to use the load
utility to perform the translation function produces unpredictable results.

See also: Remote Booting and ccinfo file, Network User's Guide and Reference

loadname NET command

260 Chapter 2 Command Descriptions

loadname
Adds the names and addresses of network servers listed in a specified file to the
local Name Server object table.

Syntax

loadname [pathname]

Parameter
pathname

The name of the file containing the list of network servers. The default file is
:sd:net/data. If you specify another file, it must use the format defined for the
/net/data file.

Additional Information

The loadname command reads the names and addresses of objects from a file and
enters them into the Name Server object table. A template file, /net/data.ex, is
provided with the iRMX-NET software. Copy the template file to :sd:net/data and
edit it. You may instead copy the /net/data file from a Unix or Xenix system that
has an edited file containing required servers. To do this, use the setname
command to specify the network address for the Unix system, then establish a
connection to the system and copy the file.

See also: Chapter 11, Network User’s Guide and Reference, for the format and
syntax of the /net/data file

When you invoke loadname, a message is displayed indicating the success or
failure of loading each object. If a failure occurs, the message indicates the name
of the object and the cause of the failure. After failing to enter an object,
loadname continues entering other objects from the file. File lines that are invalid
are ignored.

A server object only needs to be entered in the object table of one iRMX system to
be accessible to the entire subnetwork. The system that contains the names and
addresses of other systems is called the spokesman for those systems. If the system
that executed the loadname command is shut down, the command must be
reinvoked. The number of objects that can be loaded into a single system’s Name
Server object table is configurable; the default is 50.

NET command loadname

Command Reference Chapter 2 261

Changes to the /net/data file are not reflected on the network until the file is
reloaded using the loadname command. If you intend to change a file loaded with
loadname, you should first invoke the unloadname command to remove the
objects from the name table. Then edit the file and reinvoke loadname. This
ensures that only the current entries in the file are cataloged with the Name Server.

To display the entries loaded after invoking loadname, use the listname command.

See also: setname command, in this chapter

Error Messages
<pathname>, illegal input file format

The input format of the file is not correct. Check the contents of the input file and
correct the format.

<object_name>, syntax error. TYPE not found
The entry in the input file for this object does not contain the keyword TYPE=.
The entry is ignored and loadname processes the next entry.

<object_name>, property type too long
The property type or the system type field for this object is not in the correct
format.

<object_name>, not valid property type
The system type field for this object does not contain a valid value for the property
or system type.

<object_name>, syntax error. ADDRESS not found
The entry for this object does not contain the keyword ADDRESS.

<object_name>, value too long
The transport address specified for this object is too long.

<object_name>, illegal property value
The transport address specified for this object contains invalid characters.

<object_name>, name already exists
The object name in the input file is already present on the network.

<object_name>, illegal name
The object name specified in the input file is more than 16 characters long.

<object_name>, name table full
The local object table is full. Each server specified in the input file occupies one
entry in the object table. You can delete some objects from the object table or
reconfigure the Name Server to increase the size of the table.

loadrmx DOS command

262 Chapter 2 Command Descriptions

loadrmx
Loads the iRMX OS after DOS has booted. Use only with the iRMX for Windows
OS. Invoke rmxtsr before loadrmx.

Syntax

loadrmx -n bootfile_name -s system_device [-f d|n|r]
[-i init_file_name] [-w]

Parameters
-n Specifies the bootfile name; insert a space between -n and the name.

bootfile_name
Name of the iRMX bootfile.

-s Specifies the iRMX system device; insert a space between -s and the name.

system_device
Name of the iRMX system device. The system device may be a DOS-formatted
drive (C_DOS, E_DOS, etc.), an iRMX-formatted drive (C_RMX or D_RMX), or a
remote iRMX-NET file server. The device must have been set up correctly at
installation time, with the correct iRMX OS directories and system files; otherwise
the iRMX OS will not initialize properly.

See also: Device names, Appendix E

-f Specifies the file system type. Values and corresponding file system types are:

d DOS partitions such as C_DOS
n named iRMX partitions such as C_RMX
r remote file systems using iRMX-NET

The r option invokes network remote load operations and requires the
EtherExpress 16 or EWENET module. The bootfile name parameter then
specifies the remote load class code (hexadecimal class code nnnn encoded
as CC_nnnn). See examples.

Insert a space between -f and the value. If you do not specify a file system, EDOS
is the default.

-i Specifies the iRMX initialization file name; insert a space between -i and the
name. If you do not specify -i , the default is \rmx386\config\rmx.ini.

init_file_name
Name of the iRMX initialization file. If not specified, the default is :config:r?init.

-w Wait for iRMX initialization to complete.

DOS command loadrmx

Command Reference Chapter 2 263

Additional Information
During the iRMX installation process, iRMX files are copied from the installation
diskettes to the hard disk. That hard disk is known to the iRMX OS as the System
Device and has the logical name :sd:. To load the iRMX OS, specify the physical
device name of the system device.

Loadrmx delays DOS execution until RMX is fully initialized.

Any DOS application that requires resetting the system (such as Windows setup.exe
or fdisk) or reconfiguring CMOS RAM must be run prior to loading iRMX for
Windows. Even if you have shut down iRMX for Windows, reset the system
before running such software.

Load the iRMX OS before starting large applications, such as word processors, so
that memory allocation, which is done by the iRMX OS, is adequate for the
application. If you load the iRMX OS from within an application, the encapsulated
DOS task will have only that amount of memory available at load time, even if you
quit the DOS application.

Examples
1. To load the iRMX bootfile located in the DOS subdirectory c:\dosrmx, and to

use the first iRMX partition on the first hard drive as the iRMX system device,
enter:

loadrmx -n C:\DOSRMX\bootfile_name -s C_RMX -f n <CR>

2. To load the iRMX bootfile located in the DOS subdirectory c:\dosrmx, and to
use the primary DOS partition on the first hard drive as the iRMX system
device, enter:

loadrmx -n C:\DOSRMX\bootfile_name -s C_DOS -f DOS <CR>

The two batch files in the \dosrmx directory, rmx.bat and rmxnet.bat, use the
mechanism in this example. You can modify these batch files if you need to.

3. If you are in the \dosrmx directory, this command will default to loading the
file dosrmx with the current DOS drive as the system device, and using the
EDOS file driver:

loadrmx <CR>

4. This command provides an example of a remote load invocation, where the
name of the remote file system is filesrv and the remote load class code is
4003H:

loadrmx -n CC_4003 -s FILESRV -f r <CR>

loadrmx DOS command

264 Chapter 2 Command Descriptions

Error Messages
ERROR -->Boot file is not OMF-386 type, loading aborted.

The Object Module Format (OMF) of the specified bootfile is not valid. The file's
OMF header is not present or not correct. You specified the wrong file or the file
has become corrupted.

ERROR -->Exception interrupt error, loading aborted!
BIOS error.

ERROR -->file -n is empty
The specified bootfile is empty (0 bytes). Use the DOS command chkdsk to scan
your disk, then reinstall your iRMX bootfile.

ERROR -->file -n is too short!!
The specified bootfile must be greater than 75 bytes to be a valid OMF bootfile.
You specified the wrong file or the file has become corrupted.

ERROR -->Gate Address A20 Failed, cannot run iRMX.
Cannot access memory above 1 Megabyte, or BIOS error.

ERROR -->iRMX Interface TSR is not present.
Invoke rmxtsr before using loadrmx.

ERROR -->iRMX Operating System is present in memory, cannot
overload.
The iRMX OS is already loaded. You cannot load more than one bootfile at any
one time. Reboot the system, then invoke rmxtsr before using loadrmx.

ERROR -->Memory configuration error; cannot load iRMX.
The reported memory size was either less than 0 or greater than 640K.

ERROR -->No extended memory present; cannot load iRMX.
Loadrmx loads the specified bootfile into extended memory and requires at least
1.5 Megabytes. If insufficient extended memory is present, the iRMX OS cannot
load.

ERROR -->Can't allow iRMX to load below 1MB, loading aborted
The specified bootfile does not contain code to load the iRMX OS in extended
memory. The bootfile is probably a regular iRMX III bootfile without the iRMX
for Windows enhancement.

ERROR -->Protected mode software already loaded.
Loadrmx has detected that the microprocessor is running in Protected mode.
Products that use Protected mode services cannot be used with iRMX for Windows.

Determine what DOS application program or utility is using Protected mode
services, remove it from config.sys (or wherever it is being invoked), reboot the
system, then invoke loadrmx.

ERROR -->RAM parity error, loading aborted!
BIOS reported a parity error.

DOS command loadrmx

Command Reference Chapter 2 265

ERROR -->Target file read error.
The file may have been corrupted.

ERROR -->Unable to open file: <filename>
The specified bootfile is not in the specified directory. Invoke loadrmx again and
specify the correct drive, directory, filename, and extension of the bootfile.

ERROR -->Unknown error from BIOS, loading aborted!
Run the system tests for your system.

WARNINGAvailable Extended memory is less than 2 megabytes.
There is less than 2 Mbytes of extended memory in your system. The requested
bootfile will load and the iRMX OS may run, depending upon how much memory
is available. Some tools, application programs, compilers, etc. may not execute
because insufficient memory is available.

WARNINGPC junior Not supported.
The platform is a PC Junior. Loadrmx will attempt to load the bootfile but will
return an error and abort.

WARNINGPC Not supported.
The platform is not a supported PC. Loadrmx will not attempt to load the bootfile.

WARNINGPC/XT 8088 base Not supported.
The platform is an 8088-based PC. Loadrmx will not attempt to load the bootfile.

WARNINGPS/2 Model 30 Not supported.
The platform is a PS/2 Model 30. Loadrmx will not attempt to load the bootfile.

WARNINGUnknown PC Not supported.
The platform is not an Intel386, Intel486™, or Pentium microprocessor-based PC.
Loadrmx will not attempt to load the bootfile.

WARNINGUnknown system type, loading aborted.
The platform is not compatible. Loadrmx will not attempt to load the bootfile.

locdata HI command

266 Chapter 2 Command Descriptions

locdata
Transforms a data stream, such as a physically attached RAM disk, into a located
data file (a file that identifies the absolute memory address where the Bootstrap
Loader loads the file). You then use the addloc command to integrate the located
data into an existing application system.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

locdata inpath to|over outpath address= value

Parameters
inpath

The logical name of the physically attached RAM disk. Multiple or wildcard
pathnames are not allowed.

to|over outpath
Pathname of the file to receive the output of locdata. Multiple or wildcard
pathnames are not allowed. Specifying to guards against overwriting an existing
file. If you receive a message that the file exists, enter Y or R to overwrite the file,
or N or E (exit) to exit the locdata command and preserve the existing file.

address= value
The address at which the Bootstrap Loader is to load the data stream (for example,
the address of a RAM disk). The address must specify a WORD boundary. Be
careful not to assign an address that overlays any part of the system or the third
stage of the Bootstrap Loader. By default, the value is decimal, but you may
specify octal or hexadecimal by appending an O or H.

HI command locdata

Command Reference Chapter 2 267

Additional Information

The locdata and addloc commands can be used together to create an application
that automatically loads part of itself into a RAM disk when the system boots.
Generally, to use a RAM disk you configure a system with an area of RAM
dedicated to the RAM disk. When the system boots, you attach the RAM disk
memory to your system, format it, and move data into and out of it just as you
would with any other secondary storage device.

If you want to use a RAM disk to store part of the application system (for instance,
the HI commands), the stored data must be available in the RAM disk area when
the system boots. This data cannot be copied into the RAM disk until you have
configured the application system into a bootable file, because the RAM disk area
doesn't exist until you define it through the configuration process. Therefore, you
must integrate a copy of a RAM disk data structure into an existing application
system boot file.

Using the address assigned to the RAM disk during the configuration process,
locdata creates a located data file containing the image of the RAM disk. (A
located file is a file that specifies the starting address at which it is to be loaded by
the Bootstrap Loader.) Addloc integrates the located data file with an existing
application boot file, creating a file that contains a new bootloadable version of the
application system. When this new file is booted, the RAM disk data structure is
loaded into memory in the area defined for the RAM disk during configuration.

You own and have full access to any remote files created by the locdata command.
(Read, append, and update access permissions constitute full access for remote
files.)

Example

To create an application system with a RAM disk that is initialized by the
Bootstrap Loader, perform these steps:

1. Configure a version of the OS that includes a RAM disk. Make a special note
of the starting address you specify for the device.

See also: ICU User's Guide

2. Bootstrap load this new version of the OS.

3. Attach the RAM disk as a named device. For example:

attachdevice RAM AS :r: <CR>

4. Format the RAM disk as a named file. For example:

format :r: <CR>

locdata HI command

268 Chapter 2 Command Descriptions

5. Create a directory structure on the RAM disk and copy the files that you need,
such as the HI commands, to the appropriate directory. An error message is
displayed if you run out of room on the RAM disk.

6. Detach the RAM disk. For example:

detachdevice :r: <CR>

7. Attach the RAM disk as a physical device. This allows you to access all the
data in the device, including the formatting information. For example:

attachdevice RAM AS :r: physical <CR>

8. Use the locdata command to process the information from the RAM disk and
place the output in a file on the hard disk. Use the RAM disk starting address
(specified during configuration) as the value for the address parameter. If you
configured the RAM disk to have a base address of 0100000H, this example
applies:

locdata :r: to commands address = 0100000H <CR>

9. Use the addloc command to add the processed output (the commands file) to
the file that contains the bootstrap loadable version of the OS. For example:

addloc commands, RMX86.286 to /boot/RAMdisk.286 <CR>

The processed output file of the locdata command (the commands file) is
combined with a bootloadable file (RMX86.286) to produce a new
bootloadable file (RAMdisk.286). The addloc process generates a print file
(RAMdisk.mpa).

10. Create a Bootstrap Loader third stage for the new bootable file. For example:

copy /system/RMX86 to /boot/RAMdisk <CR>

When you bootstrap load this new version of the OS, the RAM disk contains the
commands and files copied to it during Step 5.

HI command locdata

Command Reference Chapter 2 269

Error Messages
<pathname>, is a keyword not a file name

One of the pathnames you specified was a command keyword, not a file.

locdata, one input file only
Locdata requires one input file; you specified more than one.

locdata, one output file only
Locdata requires one output file; you specified more than one.

after, is an illegal preposition for locdata
The after preposition is not a legal locdata parameter.

<string>, illegal preposition
The preposition you entered is not a legal locdata parameter.

locdata, address parameter is missing
You omitted the address parameter in the invocation line.

locdata address value is missing
You omitted the address value in the invocation line.

locdata, no more than one address value
You entered more than one address value in the invocation line.

locdata, illegal address value
The address value you specified is not within the range of 0 to 0FFFFFFH.

<pathname>, output file same as input file
Locdata does not allow the same name for both the input and output files.

<pathname>, write error
A system error caused an incorrect number of bytes to be written to the output file.
Retry the command.

<pathname>, physical address exceeded 16M bytes
The base address added to the size of the input file you specified exceeds
16 Mbytes (this is for iRMX II systems only).

<pathname>, read error
A system error caused an incorrect number of bytes to be read from the input file.
Retry the command.

lock HI command

270 Chapter 2 Command Descriptions

lock
Locks the terminal(s) after the current interactive job is deleted; cannot be used for
virtual terminals.

Syntax

lock [terminal_name_list |*]

Parameters
terminal _name_list

One or more physical device names of the terminals to be locked. Multiple names
must be separated with commas. To display the terminal device names, invoke the
initstatus command.

* Specifies that all configured terminals should be locked.

Additional Information

The lock takes effect as soon as there is no interactive job on the terminal. Lock
prevents the HI from re-creating an interactive job or issuing a logon prompt once
the current interactive job is deleted. As a result, users cannot access the HI
through that terminal.

One use of the lock command (in conjunction with connect) is to take the terminal
off-line for use with a modem. Note your terminal's attributes before changing
them for modem use; you must restore them before the HI can use the terminal.

The Super user can lock any terminal; other users can lock only those terminals
whose interactive jobs have the same user ID as their own.

The system manager can use the lock command followed by a jobdelete command
either to selectively delete users from the system or to shut down the entire system.
Interactive jobs are deleted with the jobdelete or the logoff command.

This message is displayed on each locked terminal as the lock takes effect:

Terminal is now locked and unavailable for use

As each terminal is locked, this message is displayed at the terminal where lock
was invoked:

locked
<terminal_name>, locked

See also: Terminals, System Configuration and Administration

HI command lock

Command Reference Chapter 2 271

Error Messages
lock not allowed

You attempted to lock your own terminal, which can only be done by the Super
user.

<terminal_name>, not found
No terminal with the indicated name is configured into your application system.

<terminal_name>, already locked
The indicated terminal is already locked.

not a multi-user system
The lock command does not function if the HI is configured as a single-user
system.

logicalnames HI command

272 Chapter 2 Command Descriptions

logicalnames
Lists all the current logical names available to the user, including local and remote
names.

Syntax

logicalnames [to|over|after outpath] [f|s|l[r]] [u|sy]

Parameters
to|over|after outpath

Writes the output to the specified file rather than to the screen.

f (ast) Lists the logical names without any additional information. This is the default.

s(hort) Lists logical names along with their type, the physical device name, the current
connections, and the owner.

l (ong) In addition to the information displayed by short , lists the complete pathname
associated with each logical name.

r (oot) If specified with long , displays the pathname beginning at the root device.

u(ser) Lists only the logical names associated with the current user.

sy (stem)
Lists only the logical names of system-defined files and devices.

Additional Information

You own and have full access to output files created by the logicalnames
command, including any remote files.

When invoked with the long or short parameter, logicalnames displays these
abbreviations for the standard file driver names:

Named file driver: NAM
DOS file driver DOS
EDOS file driver EDOS
Physical file driver PHYS
Stream file driver STR
iRMX-NET Remote file driver REM
NFS file driver NFS

Logicalnames also displays the loadable file driver names.

HI command logicalnames

Command Reference Chapter 2 273

Without any parameters, logicalnames displays the logical names defined by the
user and by the system. In this (fast) type of display, asterisks are shown beside
logical names that refer to a device. Logical names without an asterisk refer to
files.

Example

This example shows the output listing when you use the long parameter. Items in
the example are described below it. This listing is the same as a short listing,
with the addition of the pathname column.

User Logical Names:
 name type fdvr con dev name owner pathname
PROG dir EDOS 2 C_DOS WORLD :$:PROG
TERM file PHYS 5 T1 :TERM:
$ dir NAM 3 scw_0p2 WORLD :$:
CI file PHYS 5 T1 :CI:
CO file PHYS 5 T1 :CO:
HOME dir EDOS 3 C_DOS WORLD :SD:user/world
REMOTE1 file REM 0 server1 WORLD :REMSYS:SD/remote1

System Logical Names:
 name type fdvr con dev name owner pathname
SYSTEM dir EDOS 1 C_DOS #0 :SD:sys386
WORK dir EDOS 1 C_DOS WORLD :SD:work
SD ldev EDOS 1 C_DOS #0 :SD:
BB ldev PHYS BB #0 :BB:
STREAM ldev STR 1 STREAM #0 :STREAM:
REMSYS ldev REM 0 server1 WORLD :REMSYS:
W ldev NAM 1 scw_0p2 #0 :w:

Where:

type Specifies the kind of logical name: file , dir (directory), map
(system file), or ldev (logical device).

fdvr File driver: Specifies the abbreviation for the named, physical,
stream, remote, EDOS, DOS, NFS, or loaded file driver.

con The number of connections a file or device has. For remote files the
con field always contains a 0.

dev name The physical device name associated with the logical name. In the
case of a directory or file, the name shows on what device the file or
directory exists.

owner The originator of the connection to the logical name.

logicalnames HI command

274 Chapter 2 Command Descriptions

pathname The pathname of the logical name.

When you specify the root parameter with the long parameter, the pathname is
displayed beginning from the root device. If the displayed pathname has ellipses
before it (.../user/dir1/dir2/dir3/filename), logicalnames truncates the pathname
because it is too long to fit in its column; only the last elements are shown.

CLI or HI command logoff

Command Reference Chapter 2 275

logoff
Logs the user off of a dynamic terminal and frees the terminal for use by other
operators.

Syntax

logoff

Additional Information

Logoff also deletes the user's interactive job, executes the :prog:r?logoff file, and
issues a new logon prompt (if the terminal has not been locked). If there are any
active background jobs when you invoke logoff, you receive the message:

background jobs are running, do you want to exit ?
([n] or y)

If you respond with Y, your background jobs are canceled and you are logged off.

If you use the CLI, this is an internal CLI command. It is also supplied as an HI
command for systems that use a custom interface. Regardless of whether you use
the CLI, invoking :system:logoff invokes the HI command. The HI version of
the command does not check for the existence of background jobs.

On static terminals, logoff simply terminates the session and restarts a new session
for the same user, unless the terminal has been locked.

See also: Dynamic and Static Terminals, System Configuration and
Administration

Error Messages
:prog:r?logoff, file does not exist

The CLI could not find the logoff file. This message is only a warning, not an
error; logoff completes successfully.

<parameter>, unexpected parameter
You entered a parameter; logoff does not accept any parameters.

make (mk) HI command

276 Chapter 2 Command Descriptions

make (mk)
Automates the creation of large programs.

Syntax

make [option] [macdef] [target]

Parameters
option

One or more switches that modify program operation.

✏ Note
Many of these switches produce status codes, warnings, or errors:
• Status codes provide useful information.
• Warnings provide vital information that may affect
 programming decisions. However, warnings will not stop the
 creation of object files.
• Errors are fatal to the compilation process and stop the creation
 of object files.

-i Ignores iRMX errors.

-w System exits when it receives a warning from iRMX tools.

-n Displays commands but does not execute them.

-p Prints the complete set of macro definitions and dependency lines in a
makefile.

-q Returns an iRMX status code based on the updated file.

-r Ignores the built-in rules.

-e Specifies that environment variables override makefile assignments.

-f filename
Specifies the name of the makefile. For filenames, you must supply a
full path name if the file is not in the current directory.

-s Executes makefile commands without displaying them.

-t Changes the modification date of each target file without recreating
the files. This is similar to the touch command, where the date is
made current so that the object files are not unnecessarily created
again.

HI command make (mk)

Command Reference Chapter 2 277

-u Forces an update.

-? Requests help messages for various switches and version information
for this command.

-d[dd] DEBUG makefile. Each d (up to three) provides more information.

See also: Additional Information section of this command for information on
macros, dependencies, built-in rules, environment variables, and
commands

macdef
A macro definition that provides value or meaning to a macro.

See also: Using Macros section of this command

target
Name of a file to be updated. Must correspond to one of the target names in the
makefile. Make processes target names from the command line from left to right.

Additional Information

The make command helps you to quickly create makefiles and object files without
leaving the iRMX OS. Make reads commands from a user-defined makefile that
lists the files to be created, the commands that create the files, and the files from
which they are created. This command is similar to the Unix make command.

When you use the make command to create a program, it ensures that each file on
which the program depends is up-to-date. If necessary, it then creates the program
by executing the given commands in the makefile. If a file is not up-to-date, make
updates it before creating the program by executing explicitly given commands or
one of the many built-in commands.

See also: Using Built-in Rules section of this command

Creating a Makefile

A makefile contains dependency lines, command lines, and comments. A
dependency line shows how a given file depends on other files and what commands
are required to bring a file up-to-date. You can add comments as notes for the
programmer or anyone reading the makefile.

Keep the makefile in the same directory as the given source files. The filename
makefile is provided as the default filename if you do not give an explicit name at
invocation.

make (mk) HI command

278 Chapter 2 Command Descriptions

Dependencies

A dependency line lists the filename, its dependencies, and commands using this
form:

 target ... :[dependent ...]
[command ...]

where target is the name of a file to be updated, dependent is the name of a file
on which the target depends, and command is the iRMX command needed to create
the target file. The command line(s) should be on a newline, and should begin at
the first tab stop. If a dependency line is too long, you can continue it by typing a
backslash (\) immediately followed by a newline.

You can give more than one target name or dependent name if desired. Separate
each name from the next by at least one space. Separate the target names from the
dependent names by a colon (:). Filenames must follow iRMX naming
conventions.

See also: iRMX file-naming conventions, in Chapter 1

✏ Note
Names are case-sensitive within a makefile.

Commands

You can give a sequence of commands on lines following the target by beginning
each line with a tab character. Specify commands exactly as they would appear on
an iRMX command line. Use the ampersand character (&) in front of a command
to prevent make from displaying the command before executing it.

Comments

You can add a comment to a makefile by starting the comment with a pound sign
(#) and ending it with a newline. All characters after the pound sign are ignored.

Example

A program named test is made by linking three object files, x.obj, y.obj and z.obj.
These object files are created by compiling the C language source files x.c, y.c, and
z.c. Furthermore, the files x.c and y.c contain the line:

 #include <defs>

This means test depends on the three object files, the object files depend on the C
source files, and two of the source files depend on the include file defs .

HI command make (mk)

Command Reference Chapter 2 279

Here is a makefile representing these relationships:

test: x.obj y.obj z.obj
$(BND) $(CSTART), &
x.obj, y.obj, z.obj, &
$(SD)intel/lib/cifc32.lib, &
$(SD)RMX386/lib/rmxifc32.lib &
renameseg(code32 to code) &
segsize(stack(+8192)) rc(dm(10000,5000000)) &
object($@) $(DEBUG) $(TYPE)

x.obj: x.c defs
$(CC) $*.C $(CFLAGS)

y.obj: y.c defs
$(CC) $*.C $(CFLAGS)

z.obj: z.c
$(CC) $*.C $(CFLAGS)

In the first dependency line, test is the target file and x.obj, y.obj, and z.obj are its
dependents. This is the command sequence:

$(BND) $(CSTART), &
x.obj, y.obj, z.obj, &
$(SD)intel/lib/cifcf32.lib, &
$(SD)RMX386/lib/rmxifc32.lib &
renameseg(code32 to code) &
segsize(stack(+8192)) rc(dm(10000,5000000)) &
object($@) $(DEBUG) $(TYPE)

The next line tells how to create test if it is out-of-date. The program is out-of-date
if any one of its dependents has been modified since test was last created.

The second, third, and fourth dependency lines have the same form, with the x.obj,
y.obj, and z.obj files as targets and x.c, y.c, z.c, and defs files as dependents. Each
dependency line has one command sequence that defines how to update the given
target file.

Specifying a Makefile

This example make command reads the dependency lines of the makefile named
maketest found in the current directory:

mk -f maketest

make (mk) HI command

280 Chapter 2 Command Descriptions

You can direct make to read dependency lines from the standard input by giving a
hyphen (-) as the filename. Make will read the stdin until an end-of-file is
encountered (Ctrl-Z if stdin is the console).

If you specify only a target on the command line and no makefile is present, make
will attempt to create the target using only built-in rules. This is especially useful
for small, single-module programs.

Updating Makefiles

When you invoke make, you can update and modify one or more target files in the
directory. You can also direct make to update the first target file in the makefile
by typing just the command make. In this case, make searches for the makefile in
the current directory.

For example, assume that the current makefile contains the dependency lines given
in the last section. This command compares the modification dates of the test
program and each of the object files x.obj, y.obj, and z.obj and recreates test if any
changes have been made to any object files since test was last created:

 mk

It also compares the modified dates of the object files with those of the four source
files, x.c, y.c, z.c, and defs, and recreates the object files if the source files have
changed. It does this before recreating test so that the recreated object files can be
used to recreate test. If none of the source or object files has been altered since the
last time test was made, make stops and all files are unchanged.

You can direct make to update a given target file by giving the filename of the
target. For example, this command causes make to recompile, creating the x.obj
files if the x.c or defs files have changed since the object file was last created:

 mk x.obj

Similarly, this command causes make to recompile, creating x.obj and z.obj if the
corresponding dependents have been modified:

 mk x.obj z.obj

HI command make (mk)

Command Reference Chapter 2 281

Using Pseudo-target Names

You can include dependency lines that have pseudo-target names, i.e., names for
which no files actually exist or are produced. Pseudo-target names allow make to
perform tasks and execute iRMX commands not directly connected with the
creation of a program, such as deleting old files or printing copies of source files.
For example, this dependency line removes old copies of the given object files
when the pseudo-target name cleanup is given in the invocation of make.

cleanup:
delete x.obj
delete y.obj
delete z.obj

Since no file exists for a given pseudo-target name, the target is always assumed to
be out-of-date. Thus the associated series of commands are always executed.

This command causes the creation of makefile.new which will have a dynamically
created dependency section formed by the mkdep command:

depend:
copy makefile over makefile.new
mkdep -p -f makefile.new -i $(CDIR) \
mkdep.c $(SRC)

See also: mkdep command

Make also has built-in pseudo-target names that modify its operation.

The pseudo-target name .IGNORE causes make to ignore errors during execution
of commands, allowing make to continue after an error. This is the same as the -i

option. Make also ignores errors for a given command if the command string
begins with a hyphen (-). To cause make to stop on warnings, the pseudo-target
name .WARNING has the same effect as the -w option.

The pseudo-target name .PRECIOUS prevents dependents of the current target from
being deleted when make is terminated by an error condition or user-input
<Ctrl-C>.

The pseudo-target name .SILENT has the same effect as the -s option.

Using Macros

A makefile can contain macros. A macro is a short name that represents a filename
or command option. The macros can be defined when you invoke make or in the
makefile itself.

make (mk) HI command

282 Chapter 2 Command Descriptions

In a macro, the name (a string of letters and digits) to the left of the equal sign is
assigned the string of characters following the equal sign. Except where noted
under concatenated macro definitions, leading blanks and tabs on both sides of the
operator are ignored (on both sides of the equal sign, leading blanks and tabs are
stripped).

The macro definition templates shown differ only in the operator they contain
(=,+= or :=). The operator distinguishes these three types of make macros:

NAME = [value] #standard macro definition
Defines a standard macro, where the value of the macro is the value string,
which can contain other macros.

NAME += [value] #concatenated macro definition
Defines a concatenated macro, where the value of the macro is the
concatenation of its current value and value . If you omit whitespace after the
operator in the definition, make pastes the concatenated value immediately
after the current value; otherwise make converts any whitespace to a single
space between current and concatenated values.

NAME := [value] #immediate macro definition
Defines an immediate macro, where all macros in value are expanded and the
expanded line is the value of the macro.

These examples are valid macro definitions:

CFLAGS = optimize(3) debug
LIBS =

The last definition assigns LIBS the null string. A macro that is never explicitly
defined has the null string as its value.

Invoking Macros

Invoke a macro by preceding the name with a dollar sign $; place macro names
longer than one character in parentheses () or braces {}. The name of the macro is
either the single character after the dollar sign or a name inside parentheses or
braces. These are valid macro invocations:

$(CFLAGS) $(xy) $Z ${Z}

The invocations $Z and ${Z} are identical.

HI command make (mk)

Command Reference Chapter 2 283

Including a Standard Macro Definition in a Command Line

A macro definition argument has the same form as a macro definition in a
makefile. Macros in a command line override corresponding definitions found in
the makefile. For example, this command assigns the value internal to
RELEASE:

mk RELEASE=internal

All environment variables are preloaded as macros before reading the makefile. If
the -e switch is set, the environment variables override the makefile.

Using Built-in Macros

Make has built-in macros that you can use when writing dependency lines:

$@ Contains the full pathname of the current target. It may be used in
dependency lines with user-defined target names.

$* Contains the name of the current target with the suffix removed. Thus
if the current target is test.obj, $* contains test. It may be used in
dependency lines that redefine the built-in rules.

$? The value is the list of prerequisites newer than the target.

$- Contains the filename of the dependent that is more recent than the
given target.

$(@D), $(@F) , $(<D) , $(<F) , $(*D) , $(*F) , $(-D) , $(-F)
These macros get directory and file portions of the respective macros
above.

$(MAKE) By default, the value of this macro is the name with which make was
invoked, but you can change it. Using this macro on any operation
line overrides the /n no execute control. This is useful in debugging
makefiles that invoke make recursively.

$(MAKEVERSION)
This macro is the version of make.

$(MFLAGS) $(MAKEFLAGS)
This macro specifies the options that make starts with. Make fills
this macro with all options supplied, so you can use them to pass
along options when invoking make recursively.

$(STATUS) Make fills this macro with the return code of operation lines that
contain the ignore prefix (-).

Make supports a macro substitution feature:

$(macro:old_suffix=new_suffix)

make (mk) HI command

284 Chapter 2 Command Descriptions

This is used as follows:

SRC = x.c y.c z.c
OBJS = $(SRC:.c=.obj) OBJS is now x.obj y.obj z.obj
OBJLIST = $(SRC:.c=.obj,) OBJLIST is now x.obj,y.obj,z.obj

vpath: Search Path for All Dependencies

The value of the make variable vpath specifies a list of directories that make
should search. Dependency files are usually in the current directory, but if a file
that is listed as a dependency does not exist in the current directory, make searches
the directories listed in vpath for a file with that name. The first occurrence of
that file is then used as the dependency.

The vpath variable is a list of directory paths separated by colons. Because the
paths are colon-separated, iRMX logical names cannot be used.

For example, this command specifies two directory paths that make sequentially
searches if it cannot find dependency files in the current directory:

vpath = intel/ic386/inc:/rmx386/demo/c/intro

Using Environment Variables

Make provides access to current values of the environment variables. Make
automatically assigns the value of each environment variable to a macro of the
same name. You can access a variable's value in the same way that you access the
value of explicitly defined macros. For example, in this dependency line,
$(SOURCE) will have the same value as the user's SOURCE variable (assuming the
user has defined the variable SOURCE):

test:
$(CC) $(SOURCE)/x.c

Make assigns the environment variable before it assigns values to the user-
specified macros. Thus, you can override the value of an environment variable by
explicitly assigning a value to the corresponding macro. For example, this macro
definition causes make to ignore the current value of the SOURCE variable and use
/usr/pub instead:

SOURCE=/usr/pub

For another example of changing environment variables, if you add this line to the
:config:r?env file, make will break to an AEDIT window if an error occurs during
compilation:

EDITOR = AEDIT

HI command make (mk)

Command Reference Chapter 2 285

The precedence of make macros is determined by where they are defined. You can
redefine an existing macro (i.e., change its value) if the redefinition has precedence
at least as high as the existing definition. This is the default precedence of macro
definitions:

• Invocation command definition (highest)

• Description file definition

• Macros predefined by make

• Environment definition (lowest)

The -e environment control causes environment definitions to have higher
precedence than makefile definitions (but lower precedence than make invocation
command definitions) for a particular invocation of make.

✏ Note
Some systems upper-case the name of an environment variable
while the value of the variable retains its case as specified in the
variable's definition. It is therefore recommended that all macro
names be in uppercase.

Using the Built-in Rules

Make provides a set of built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile and create up-
to-date versions of these files if necessary. The built-in rules are identical to user-
defined dependency lines except that they use the suffix of the filename as the
target or dependent instead of the filename itself. For example, make can
automatically assume that all files with the suffix .obj have dependent files with the
suffix .c.

When no explicit dependency line is given in a makefile for a given file, make
automatically checks the default dependents of the file, forming the name of the
dependents by removing the suffix of the given file and appending the pre-defined
dependent suffixes. If the given file is out-of-date with respect to these default
dependents, make searches for a built-in rule that defines how to create an up-to-
date version of the file and executes it.

make (mk) HI command

286 Chapter 2 Command Descriptions

There are built-in rules for these files:

.obj Object file

.c C source file

.p38 PLM386 source file

.plm PLM386 source file

.a38 ASM386 source file

.asm ASM386 source file

For example, if the file x.obj is needed and there is an x.c in the description or
directory, x.c is compiled.

The built-in rules are designed to reduce the size of your makefile. They provide
the rules for creating common files from typical dependents.

Reconsider the example given in Creating a Makefile. In this example, the
program test depended on three object files, x.obj, y.obj, and z.obj. The files x.c
and y.c also depended on the include file defs. In the original example, each
dependency and corresponding command sequence was explicitly given. Many of
these dependency and command lines were unnecessary, since the built-in rules
could have been used instead.

This is all that is needed to show the relationships between these files:

test: x.obj y.obj z.obj
$(BND) $(CSTART), $(@).obj, &
$(SD)intel/lib/cifc32.lib, &
$(SD)RMX386/lib/rmxifc32.lib &
renameseg(code32 to code) $(TYPE) &
segsize(stack(+8192))
rc(dm(10000,500000)) object($@) $(DEBUG)

x.obj y.obj: defs

In this makefile, test depends on three object files, and an explicit command is
given showing how to update test. However, the second line merely shows that two
object files depend on the include file defs. No explicit command sequence is
given on how to update these files if necessary. Instead, make uses the built-in
rules to locate the desired C source files, compile these files, and create the
necessary object files.

HI command make (mk)

Command Reference Chapter 2 287

Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these lines. You
can display a complete list of the built-in rules and the macros used in the rules by
typing:

mk -p

The macros of the built-in dependency lines define the names and options of the
compilers, assemblers, and other programs invoked by the built-in commands.
Make automatically assigns a default value to these macros when you start the
program. You can change the values by redefining the macro in your makefile.
For example, this built-in rule contains two macros, CC and CFLAGS.

.c.obj:
$(CC) $*.C $(CFLAGS)

You can redefine any of these macros by placing the appropriate macro definition
at the beginning of the makefile. You may create your own built-in rule in your
makefile. A built-in rule has the form:

suffix-rule :
command

where suffix-rule is a combination of suffixes showing the relationships of the
implied target and dependent, and command is the iRMX command required to
carry our the rule. If more than one command is needed, they are given on separate
lines.

For a complete list of built-in rules, check:

:lang:builtins.mk

A pair of suffixes indicates a rule that makes one file from the other. For example,
.c.obj is the rule that creates an object file (.obj) from a corresponding C source file
(.c).

If necessary, you can create new suffix-rules by adding a list of new suffixes
to a makefile with .SUFFIXES: this pseudo-target name defines the suffixes that
may be used to make suffix-rules for the built-in rules. The line has the form:

.SUFFIXES: suffix ...

where suffix is usually a lower-case letter preceded by a dot (.). If more than one
suffix is given, you must use spaces to separate them.

make (mk) HI command

288 Chapter 2 Command Descriptions

The order of the suffixes is significant. Each suffix is a dependent of the suffixes
preceding it. For example, this suffix list causes test.c to be a dependent of
test.obj, and test.plm to be a dependent of test.c:

.SUFFIXES: .obj .c .p38 .plm .a38 .asm

You can create new suffix-rules by combining dependent suffixes with the
suffix of the intended target. The dependent suffix must appear first. If a
SUFFIXES list appears more than once in a makefile, the suffixes are combined
into a single list. If SUFFIXES is given but has no list, all suffixes are ignored.

Troubleshooting

Most difficulties in using make arise from its specific meaning of dependency. If
the file x.c has the line:

#include <defs>

then the object file x.obj depends on defs; the source file x.c does not. If defs is
changed, it is not necessary to do anything to the file x.c, while it is necessary to
recreate x.obj. To determine which commands make will execute, without actually
executing them, use the -n option. For example, this command prints out the
commands make would normally execute without actually executing them:

mk -n

If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include file), the -t touch option can save a lot of time. Instead of issuing a
large number of superfluous recompilations, make updates the modification times
on the affected file. Thus, this command, which stands for touch silently, causes
the relevant files to appear up-to-date:

mk -ts

HI command make (mk)

Command Reference Chapter 2 289

here Documents

Make understands Unix-style here documents. This enables you to include data in
the makefile that would normally need to be placed in a separate file, and makes
the data available as the standard input of the command. <<- (strip leading tabs)
and <<\word (quoting) modes are both supported. If quoting is not specified, then
the data is subject to macro expansion, at the time of command execution.

date
EOF
/sys286/submit heredoc.000 to :bb: <<-\EOF
ed today.h
v/local/d
s/ local//
s/.*/static char xxxtime[] = "@(\#) Compiled: &";/
w
q
EOF

Error Messages

Make does not generate error messages. However, it does pass through any error
messages generated by the iRMX tools it invokes.

memory HI command

290 Chapter 2 Command Descriptions

memory
Displays the amount of memory currently allocated to the user, and the total system
memory available to the user.

Syntax

memory [e]

Parameters

e Also displays the total amount of initial and currently available system memory.

Additional Information

This is an example of the listing produced when you use the e parameter:

- memory e <CR>

User Private Memory (pool minimum) : 300 k Bytes
Available Memory (Private + Shared): 1.545 M Bytes
Initial Available Shared System Memory: 13.99 M Bytes
Current Available Shared System Memory: 7.650 M Bytes

Where:

User Private Memory
The amount of memory currently allocated to the user

Available Memory
The amount of memory available for the user; that is, the private
memory and the amount of memory the user job can borrow from
parent jobs. For example, if the private memory is 300 Kbytes and
the total memory is 1.545 Mbytes, as shown above, your interactive
job can still borrow 1.245 Mbytes.

Initial Available Shared System Memory
The amount of memory initially assigned to the Free Space Manager
after the root job allocates its memory.

Current Available Shared System Memory
The amount of memory currently available in the root job from the
Free Space Manager.

HI command mirror

Command Reference Chapter 2 291

mirror
Manages disk mirroring on a pair of matched hard disks. The mirror command
provides several distinct functions and must be invoked once for each function
desired. This command is supported in:

• iRMX III systems using Multibus I and II
• iRMX for Windows and iRMX for PCs systems using Multibus II
• iRMX for Windows and iRMX for PCs systems using a PC bus with an

Adaptec 1542/1742 host adapter

Syntax
mirror create primary secondary
mirror setopt primary read alt|prim|sec
mirror resync primary p2s|s2p
mirror waitevent primary
mirror getstat primary
mirror attstat primary
mirror disable primary

Parameters
create

Creates a mirror set with a primary and secondary hard disk.

primary
Primary hard disk's logical name (for example, :w:).

secondary
Secondary hard disk's DUIB name (for example, M4380_3)

See also: physname command, in this chapter
device names, Appendix E

setopt Sets special options for the mirror set.

read Sets the read policy for the mirror set to one of the following:

alt Reads are performed alternately from the primary and secondary hard
disks. If setopt is not specified, this is the default.

prim Reads are performed only from the primary hard disk.

sec Reads are performed only from the secondary hard disk.

mirror HI command

292 Chapter 2 Command Descriptions

resync Enables disk mirroring on a mirror set and resynchronizes the set's hard disks while
on-line. The direction of resynchronization is one of these:

p2s Primary to secondary.

s2p Secondary to primary.

waitevent
Waits for a disk mirroring event and returns when an event occurs.

getstat
Reports the mirroring status of a mirror set.

attstat
Reports the attachment status of a hard disk.

disable
Disables disk mirroring on a mirror set.

Additional Information

✏ Note
You cannot use this command with a device that you access
through NFS.

Disk mirroring is a hard disk configuration that maintains identical copies (mirrors)
of data on two disks for increased reliability. Disk mirroring requires you to create
a mirror set: a pair of hard disks configured to write the same data to both disks,
read data from alternate disks (by default), and perform error checking for read and
write operations on the set.

A mirror set has a primary and secondary hard disk. The mirror set takes its name
from the primary hard disk, and disk mirroring operations are directed at that disk.
The primary hard disk must be already attached and is identified by a logical name,
for example, :sd: or :m:. The secondary hard disk works together with the primary
hard disk to do disk mirroring operations. The secondary hard disk is identified by
its physical (DUIB) name. The secondary hard disk should be formatted, but
detached.

To create a mirror set, use the mirror command with the create parameter. This
creates a mirror set and specifies the primary and secondary hard disks in the set.

✏ Note
The two hard disks must have the same formatted capacity,
device granularity and should be the same model type to ensure
the same formatted disk capacity.

HI command mirror

Command Reference Chapter 2 293

To set the read policy for a mirror set, use the mirror command with the setopt

and read parameters. This determines whether data is read from one or both disks.
By default, data is read alternately from the primary and secondary disk; this gives
the best performance for multiple I/O requests.

To enable disk mirroring on a mirror set, use the mirror command with the
resync parameter. This enables disk mirroring and causes on-line
resynchronization to occur. The primary parameter specifies the mirror set name.
Resynchronizing a mirror set involves copying data from one hard disk of the set to
the other. The resynchronization direction is specified in the command. This
command must be used only after a mirror set is created or after a rollover event
(described later). During execution, the command ensures that the destination hard
disk is a good hard disk. The resynchronization operation runs in the background
and is done one track at a time. I/O system read and write operations are allowed
on the mirror set while resynchronization is in progress. If an I/O system write is
directed at the same disk address where the resynchronization is being performed,
the driver delays the write operation. The write operation is resumed when the disk
address no longer conflicts with the resynchronization address.

The mirror resync command returns with either a completion or abort status.
Use the mirror command with the waitevent parameter to get the
resynchronization status. Issue this command as a background job.

To get mirroring status for a mirror set, use the mirror command with the
getstat parameter. The status information includes the state of the mirror set, the
names of disks in the set, the name of the good hard disk after a rollover event, the
error status, the error's address, whether resynchronization is in progress, and the
percentage of resynchronization completed. This example shows a display of disk
mirroring status:

State = Mirroring Enabled
Primary Unit = M4380_2
Secondary Unit = M4380_3
Read Policy = Alternate Read

For a mirror set to be operational, the I/O system must successfully have attached
the hard disk. To get the attachment status for a disk, use the mirror command
with the attstat parameter. The status report contains such information as the
name of the mirror set and the state of the disk when it was last detached. The
incarnation number is a unique 9-digit number assigned at shutdown. This example
shows a display during a shutdown when you request attachment status:

Mirror Attach Status = Mirror Set Valid
Other Unit Name = M4380_3
Incarnation Number = XXXXXXXXX
Disk Status = Marked Good

mirror HI command

294 Chapter 2 Command Descriptions

These events can occur for a mirror set: rollover, resynchronization complete, and
resynchronization abort.

A rollover is an operation done by the device driver when a failure occurs on one
disk in the set. All I/O is automatically directed to the surviving disk. After fixing
the problem that caused the rollover, you must resynchronize the disks.

To get notification of an event, invoke the mirror command with the waitevent

parameter, as a background job. The command returns only when an event occurs.
After the command returns, you must reissue the command to continue event
notification. An example of the message returned by waitevent is:

Mirror Event Status = rollover

When the command returns, use the mirror command with the getstat

parameter to get more information about the mirror event.

To disable a mirror set, use the mirror command with the disable parameter. If
resynchronization is in progress on the set, the resynchronization is aborted. All
pending I/O operations on the mirror set are completed before mirroring is
disabled.

See also: Disk mirroring, Appendix A, for more detailed information and a
tutorial

DOS command mkdep

Command Reference Chapter 2 295

mkdep
Assists the make command in creating makefiles or appending dependencies to a
given makefile.

Syntax

mkdep -?

mkdep [-s] [-i include_path] [-f filename] file ...

Parameters

-? Displays the correct format of the command.

-s Short form. Lists the dependencies from files in the current directory.

-i include_path
The path to the include files.

-f filename
Name of the output file (default is makefile).

file ... Files that contain dependencies.

Additional Information

This mkdep example:

mkdep -f mkfile x.c y.c

will either create a makefile named mkfile or it will append to a current filename
mkfile these dependencies:

#DO NOT DELETE THIS LINE
#These dependencies came from mkdep
#If you place information here, it will go away
x.obj: x.c
y.obj: y.c

If the name mkfile is used in another mkdep call, the dependencies below the three
comment lines will be deleted and replaced with the new dependency lines. To
avoid this condition and append further dependency lines, either delete the
comment lines or move the dependencies above the comment lines.

mkdep DOS command

296 Chapter 2 Command Descriptions

To use mkdep with a makefile, set up this structure in your makefile. If you call
your makefile anything other than the default name makefile, be sure to include the
-f filename in the mkdep line.

depend:
mkdep -i $(INC)\
$(SRCDIR)check.c &

$(SRCDIR)error.c

Then, running make depend will append this to the makefile:

#DO NOT DELETE THIS LINE
#These dependencies came from mkdep
#If you place information here, it will go away
src/check.obj:\

src/check.c\
:INCLUDE:stdio.h\

:INCLUDE:reent.h\
:INCLUDE:locale.h\

:INCLUDE:stdlib.h\
h.h
src/error.obj:\

src/error.c\
:INCLUDE:stdio.h\

:INCLUDE:reent.h\
:INCLUDE:locale.h\

:INCLUDE:stdlib.h\
:INCLUDE:stdlib.h\
:INCLUDE:rmxerr.h\

NET command modcdf

Command Reference Chapter 2 297

modcdf
A menu-driven utility that displays, adds, or deletes information about network
client systems in the Client Definition File (CDF). Only the Super user can use
modcdf.

Syntax

modcdf

Additional Information

The modcdf utility allows the system manager of an Administrative Unit (AU, or
subnetwork) to add and delete iRMX client systems from the Client Definition File
(CDF) of a server. The name and password of an iRMX client are defined in the
User Administration configuration source file or the CDF screen of ICU. The
client name is limited to eight characters.

When you invoke modcdf, this message is displayed:

The following commands are available

A - Add a client
D - Delete a client
L - List the CDF
Q - Quit
E - Exit

Enter the command:

To add a client system, enter A. The utility prompts for the client's name and
password. The name and password are both case-sensitive. The name of the client
must be unique within the CDF; a client with the same name must not be already
defined. The password you enter is not echoed to the screen.

To delete a client system, enter D. The modcdf utility prompts for the name of the
client to be deleted from the CDF. The name is case-sensitive.

Enter L to display the contents of the CDF.

Enter Q to quit without updating the CDF. Any changes made during the current
session are lost.

Enter E to exit the utility and save changes made during the current session.

modcdf NET command

298 Chapter 2 Command Descriptions

Error Messages
invalid command

The command is not recognized.

cannot add a client name to the CDF which exceeds 8 characters

in length.
The specified client name exceeds the maximum length of eight characters.

invalid password
The second password entered while adding a client does not match the first.

client <name> is not defined in the CDF
The name specified for deletion does not exist in the CDF.

CDF is not in the proper format. Delete the CDF and start again.
Improper format for the CDF file was used. This might be a line terminated by a
carriage-return/line-feed rather than just with a line-feed.

The CDF is too big to add a new client.
The CDF has a 5000-byte buffer maximum. Adding the specified new client would
exceed the buffer maximum.

client <name> is already defined in the CDF
The client being added already exists in the CDF.

CDF is too big to handle
The CDF already contains 5000 bytes of information. The CDF buffer is full.

cannot attach :config:CDF
An error was encountered while attempting to access the CDF.

Only the System Manager can access the CDF.
Access is only permitted to user ID 0. Enter the super command, then invoke
modcdf again.

HI command modinfo

Command Reference Chapter 2 299

modinfo
Displays or changes the sizes of memory pool values in OMF86 or OMF286 object
modules.

Syntax

modinfo inpath_list [to|over|after outpath_list]
[mempool = min , max] [a] [q]

Parameters
inpath_list

Pathname(s) of one or more OMF86 or OMF286 object modules, separated by
commas. Wildcards are permitted.

to|over|after outpath_list
Writes the modifications in the output file(s) rather than in the original file(s). If
multiple pathnames with separating commas are specified in the inpath_list ,
use the same number of pathnames in the outpath_list . If you do not specify
this parameter, but do specify changed values, the input files are modified.

mempool
New minimum and maximum values to be established for the dynamic memory
pool parameters in the object module. By default the values are decimal, but you
may specify octal or hexadecimal by appending an O or H.

a(sk) After displaying current pool values, prompts for new values.

q(uery) Prompts for permission to process each file. Enter Y or R to process the file, E to
exit the command, or any other letter to indicate a no.

Additional Information

If ask or mempool is not specified, the current static and dynamic segment sizes of
the given object module are displayed, rather than modified. If an output pathname
is specified, the values are changed in the output file, not in the input file. If no
output pathname is specified, the input file is changed.

▲▲! CAUTION
Avoid using wildcards to specify input files, especially if you
don't specify corresponding output files. You might modify files
you did not intend to change.

netinfo NET command

300 Chapter 2 Command Descriptions

netinfo
Displays the Ethernet address, subnet ID, and iNA 960 information for each
network controller in a system.

Syntax

netinfo

Additional Information

Netinfo does not indicate if iNA 960 software is running properly. Use the inamon
command to get the status of iNA960. Netinfo displays a message similar to this
for each network controller board in the system:

iRMX II/III NIA Board NETINFO Utility Version x.x
Copyright Intel Corporation 1995

 INA 960 OSI-Transport COMMputer Configuration
 INA 960 OSI-Network Layer : NULL2
 INA 960 Running On : Local Board - 486/166SE
 Subnet (1)
 ID : 0001
 Name: SBx586
 Address: 00 AA 00 06 A4 9E

iNA 960 OSI-Transport
Lists the type of hardware environment iNA 960 is running in. This
entry is either COMMputer Configuration or COMMengine
Configuration .

iNA 960 OSI-Network Layer
The network layer addressing scheme. This entry is either NULL2 or
ES-IS .

See also: ES-IS and Null2 addressing, Network User’s Guide and
Reference
i*.job , ES-IS and Null2 jobs, System Configuration and
Administration

iNA Running ON
The type of board iNA 960 is running on.

Subnet Lists the subnet ID and Ethernet address of each subnet. In the case
the ES-IS network layer, the subnet name also is listed.

TCP/IP command netstat

Command Reference Chapter 2 301

netstat
Symbolically displays the contents of TCP/IP network-related data structures. The
command can show the status of active connections (the default), configured
interfaces, routing tables, network statistics, Streams buffer allocation failures, and
packet traffic.

Syntax

netstat [-A] [-a] [-n] [-p protocol]
netstat -i [-n]
netstat -r [-n]
netstat -s [-r|-p protocol]
netstat -S netstat interval

Parameters

-A Adds the associated protocol control block (PCB) to the connection display.

-a Includes the inactive connections (listening servers).

-n Disables the symbolic translation of local and remote addresses, causing both to be
displayed in their Internet dot notation.

-p protocol
Limits the display to the specified protocol.

-i Shows the status of configured network interfaces. The display includes the
interface name, the maximum transfer unit (MTU) in bytes, the network and
interface addresses, the number of packets received and sent, and the number of
send and receive errors.

-r Shows the status of the configured routes.

-s Displays network statistics for the ip, icmp, tcp, and udp protocols.

-S Shows the Streams display.

interval
Displays packet traffic at given intervals, in units of seconds. Interrupt the display
with a <Ctrl-C>.

netstat TCP/IP command

302 Chapter 2 Command Descriptions

Additional Information

The netstat command symbolically displays the contents of a number of
TCP/IP-related data structures. Although netstat is an administrative command, it
can be used by anyone to check on the status of the network. If several options are
used, they can be concatenated with one leading hyphen; for example, netstat -an.

Where local and remote addresses are part of the display, they are shown as
host.port or network.port. The latter format is used if a transport endpoint's address
specifies a network but no specific host address. The port designates a network
service, either well-known or local, as defined in the /etc/services file.

The symbolic names of host, network, and port are displayed where they are
available from the network databases (hosts, networks, and services). The domain
names are stripped from the host and network names. If the symbolic name for an
address cannot be determined, the address is displayed in the Internet dot notation.
Where applicable, the -n option to netstat disables the symbolic translation of the
address fields. Unspecified or wildcard addresses and ports are identified by an
asterisk (*).

The Connection Display

The connection display shows the status of active Internet connections. For this
display, invoke netstat with no parameters or with any combination of the -A , -a ,
-n , or -p parameters. With no parameters, the display is similar to:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 napalm.telnet flamex1.1817 ESTABLISHED
tcp 0 0 *.telnet *.* LISTEN
tcp 0 0 *.ftp *.* LISTEN
udp 0 0 *.tftp *.*
udp 0 0 *.bootps *.*

The first column identifies the protocol through which the connection was made.
The second and third columns show the number of bytes of data currently in the
local receive and send queues, respectively. The fourth and fifth columns identify
the local and remote transport endpoints of the connection, showing the host and
port addresses. An asterisk (*) in either part of the endpoint address is a wild-card
character. The sixth column shows the state of the connection.

The effect of the parameters is described above. The -A option displays a PCB,
which is an address in kernel space not generally useful except for debugging
purposes. When listening servers are displayed with the -a option, the local
transport endpoint has a wildcard address and the port assigned to the server. Both
parts of the remote transport endpoint are wildcards.

TCP/IP command netstat

Command Reference Chapter 2 303

The Interface Display

Specify the interface display with the -i parameter. The display is similar to:

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs
en0 1500 129.84.25 129.84.25.13 179843 0 122361 0
lo0 4096 127 127 12 0 10 0

One line is displayed for each interface configured in the inetinit.cf file. The first
column is the interface name as specified in that file. The second column is the
maximum transfer unit (MTU) for the interface. The MTU is the largest number of
bytes that can be delivered to the device driver from the ip module. It should be
equal to or evenly divisible by the maximum size of the actual physical
transmission unit to minimize the amount of packet fragmentation in the driver and
maximize the throughput. This number is generally 4096 for the loopback
interface and 1500 for an Ethernet interface.

The third and fourth columns show the network and interface Internet addresses.
The fifth and sixth columns show the number of packets received through the
interface and the input errors, while the seventh and eighth columns show packets
sent and output errors.

The Routing Table Display

When the network is brought up, a direct route for each configured interface is
automatically added to the routing table. Routes can also be added with the route
command. You display the routing table with a netstat -r command. The display
is similar to:

Routing tables
Destination Gateway Flags Refcnt Use Interface
default 129.84.25.4 UG 0 1964 en0
129.84.25 129.84.25.13 U 0 120422 en0
127 127 UH 0 10 lo0

One line is displayed for each route in the routing table. The first column contains
the address of the destination host or network, or the word default . The second
column is the address of the gateway through which packets for that destination are
routed. The third column shows flags that indicate the status and type of the route.
The flags have this meaning:

Flag Description
U Route is up and usable
G Route is a gateway to another network
H Destination of the route is a host

netstat TCP/IP command

304 Chapter 2 Command Descriptions

The fourth and fifth columns are the number of active connections using the route
(Refcnt) and the number of packets that have been sent (Use). The Refcnt value
is always shown as 0. The sixth column shows the name of the local interface
through which the packets are sent, as assigned in the inetinit.cf file.

See also: route command, in this chapter, for information about the default
route

The Statistics Display

The network statistics display shows the current values of the statistics maintained
by the kernel for each protocol. Specify this display with the -s parameter. The
default display includes statistics for the ip, icmp, tcp, and udp protocols. The full
display scrolls off a typical monitor screen; redirect it to a file that you can view
with the skim command. Use the -p protocol parameter to limit the display to
statistics for a specified protocol.

This command displays statistics about the ip protocol:

- netstat -sp ip

ip:
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length

The Streams Display

The Streams display shows the number of failed requests for Streams buffers.
There is one line for each TCP/IP kernel Streams module or driver. Modules and
drivers that are not configured into the TCP/IP kernel, such as the SLIP driver in
the example, are identified by messages like can't open /dev/slip . Such a
message does not necessarily indicate an error; it means that the indicated driver or
module could not be accessed by netstat to retrieve the statistics.

The columns in the display represent the size in bytes of the requested buffers,
rounded to the next higher power of two. A counter is incremented each time a
buffer of a defined size is requested and cannot be obtained. For example, if the ip
module requests a Streams buffer of 1500 bytes and that request is refused, the ip
module counter for buffers of 2048 bytes is incremented.

The counters are reset only when the system is shut down and rebooted. They are
not reset when you stop and restart the network jobs without rebooting.

TCP/IP command netstat

Command Reference Chapter 2 305

Specify the Streams display with a -S parameter. The output is similar to:

Module 0 2 4 8 16 32 64 ... 1024 2048 Other
arp 0 0 0 0 0 0 0 ... 0 0 0
ip 0 0 0 0 0 0 0 ... 0 0 0
loop 0 0 0 0 0 0 0 ... 0 0 0
raw 0 0 0 0 0 0 0 ... 0 0 0
can't open /dev/slip
somod 0 0 0 0 0 0 0 ... 0 0 0
tcp 0 0 0 0 0 0 0 ... 0 0 0
telnet 0 0 0 0 0 0 0 ... 0 0 0
udp 0 0 0 0 0 0 0 ... 0 0 0

If any entry in the Streams display contains a number other than 0, adjust the
allocation of Streams buffers in the kernel to prevent future failures. The failure of
even one or two buffer requests can have a very noticeable effect on the overall
performance of the network. You can change the available number of buffers of
each size with tunable parameters in the stune.ini file.

See also: Streams tunable parameters, TCP/IP and NFS for the iRMX Operating
System

The Packet Traffic Display

The packet traffic display is a running summary of packet transmission statistics.
Specify this display by invoking netstat with a single numeric argument
(interval), indicating the number of seconds between updates to the display. No
options can be used with this command. The display is similar to:

input (en0) output input (Total) output
packets errs packets errs packets errs packets errs
180212 0 122496 0 180224 0 122506 0
1 0 2 0 1 0 2 0
1 0 1 0 1 0 1 0

The first line of each screen of information is a summary of activity since the
network was last started. Subsequent lines show values accumulated over the
preceding interval . The first four columns show the input and output statistics
for the primary interface (in this example, the first Ethernet interface, en0). The
columns show the number of packets sent and received and the number of input
and output errors. The second set of four columns shows the total statistics for all
configured interfaces.

netstat TCP/IP command

306 Chapter 2 Command Descriptions

The heading for the packet traffic display is repeated approximately every 24 lines
of output, as the monitor screen scrolls. The first line under the heading always
contains cumulative totals since the network was last initialized. The display
continues until you interrupt the command with a <Ctrl-C>.

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

The message can't open device in the Streams display indicates that netstat
cannot open the device to obtain the requested statistics, either because the module
or device has not been configured into the kernel or because all of the allocated
minor devices are already in use.

NET command offer

Command Reference Chapter 2 307

offer
Gives remote iRMX-NET users public network access to a local directory.

Syntax

offer pathname as public _name

Parameters
pathname

The actual pathname of the local directory.

public_name
The pathname assigned for use by remote users.

Additional Information

The number of public directories that may be offered at any one time is
configurable, in the Public Directory Screen (PDIR) of the ICU.

See also: publicdir and remove commands, in this chapter

Example

These commands make available the :sd:utils directory, your :bb: device, and a
diskette installed in your machine. Remote users can access these as files named
utilities, byte_bkt, and floppy.

offer :sd:utils as utilities
offer :bb: as byte_bkt

attachdevice a as :f:
offer :f: as floppy

Error Messages
missing parameter

The actual-name or public-name parameter was omitted.

<name>, unrecognized control
The keyword as in the command was omitted, or extra information was supplied
after public-name .

illegal public name
Colons are not permitted in the syntax when specifying the public name.

offer NET command

308 Chapter 2 Command Descriptions

<name>, invalid pathname
The specified pathname does not exist as given in the actual-name parameter.

<name>, cannot look up prefix
The prefix (logical name) part of the pathname is invalid.

cannot offer <actual_name> as <public_name>
Select another public name.

cannot offer <actual_name> as <public_name> <condition
code:mnemonic>
A typical example of the condition code is E_LIMIT, which means the limit for
public directories has been reached.

HI command paginate

Command Reference Chapter 2 309

paginate
Displays or copies the input file(s) in page-sized parts, optionally putting a title,
date and time, and page number on each page.

Syntax

paginate inpath_list [to|over|after outpath_list] [q]
[n] [ti= text] [pw= num] [pl= num] [ta= num]

Parameters
inpath _list

One or more pathnames of text files, separated with commas. Wildcards are
permitted.

to|over|after outpath_list
Writes the output to the specified file(s) rather than to the screen. If you specify
multiple input files and one output file, the output is appended.

q(uery) Prompts for permission to process each file. Respond to the prompt with:

Y Display the file
R Display remaining files without further query
E Exit the command
N or other Don't display the file; query for the next

n(otitle)
Do not display the title, date or page number.

ti(tle)= text
Specifies text to be used as the page heading. The default title is the filename.

pw (or pagewidth)= num
Maximum number of characters in the output line, 132 by default.

pl (or pagelength)= num
Maximum number of lines on the output page, 66 by default.

ta(bwidth) (or lg)= num
Number of spaces to print for a tab character, 4 by default.

paginate HI command

310 Chapter 2 Command Descriptions

Additional Information

The command inserts formfeeds (0CH) into the output so it can be printed in pages.
Several lines are added to each page as header information; adjust the
pagelength parameter accordingly. If the input file contains a formfeed, a new
page is started. The values you specify for page width, page length, and tab width
are decimal by default. You can specify an octal or hexadecimal number by
appending an O or H.

HI command password

Command Reference Chapter 2 311

password
A menu-driven utility that only the Super user can invoke to add or delete users or
to change a logon password. Other users invoke password to change their own
passwords, assuming the User Definition File (UDF) has World read access.

Syntax

password

Additional Information

If you are not the Super user, you can invoke the password command to change the
password you enter when logging onto the HI from a dynamic terminal. However,
if your system's UDF resides on a remote system, the Super user must change your
password for you, or allow you to do it while logged on as Super. When you
invoke the command, these messages are displayed:

Enter your user name -
Enter the old password -

In response, enter your logon name and your current password. The password is
case-sensitive. For security reasons, the password you enter is not echoed on the
screen. The command then prompts you for the new password and asks you to
repeat it:

Enter the new password -
Repeat the new password -

Enter your new password at each prompt. The password must be no longer than
eight characters (more will be ignored). After confirming that both entries of the
new password are identical, the command associates the new password with your
logon name and displays the messages:

Password change successful
Updating the master UDF Done

The next time you log on to the system, you must use the new password. Continue
using it until you change your password again with the password command.

If you are the Super user, the password command performs a variety of functions,
including maintaining the User Definition File (UDF). The UDF contains the
logon name, user ID, and password of all users who can access the HI using a
dynamic terminal. Because this file is also used to validate user access to the
network, the file is a nonstandard format; do not use an ordinary text editor to
maintain the file. The passwords listed in the UDF are encrypted to prevent

password HI command

312 Chapter 2 Command Descriptions

unauthorized access. The password command is the sole mechanism for
maintaining the UDF, and only the Super user can access it. The password
command maintains the format of the file and automatically encrypts the
passwords.

When you invoke the password command as Super, this menu is displayed. Enter
the letter corresponding to the operation you want to perform:

The following commands are available:

A - Add a user
D - Delete a user
L - List the UDF
C - Change password
Q - Quit
E - Exit

Enter the command:

Adding a User to the UDF

Choose the A option to add a new user; password prompts you to enter information
about the new user. The prompts and valid answers are as follows:

Enter the user name -

Enter the logon name of the new user. This name must be three to eight characters
long, and is not case-sensitive. If you respond with more than eight characters, the
command ignores the extra characters.

Enter the new password -

Enter the password for the new user. The password must be eight characters or less
(additional characters are ignored), and it is case-sensitive. The password is not
displayed. If you enter <CR> at the prompt, the new user's password is a carriage
return. You may enter, in upper or lower case:

NO LOGIN

This entry prevents the user from logging onto the system using a dynamic
terminal. This can be useful for restricting a user to a static logon terminal.

Repeat the new password -

Enter the password again. This validates the password and ensures that you spelled
it correctly. Password returns an error message if the two passwords don't match
and re-prompts for the new password. This continues until you enter the new
password the same way twice.

Enter the user ID -

HI command password

Command Reference Chapter 2 313

Enter a decimal number in the range 0 to 65535 as an ID to associate with this user.
If you enter <CR>, password assigns the next higher unassigned user ID and
responds with:

Assigned user ID of <ID>

Assigning a user ID that is not unique can cause problems in a network
environment. If there are no unique user IDs available or the ID you enter is not
unique, password displays:

Warning - Not a unique user ID

Entering any other value causes the command to display an error message and
repeat the prompt. This continues until you enter a valid user ID, <CR>, or a Q (to
abort this session of adding a user).

Enter the group ID -

If your system is part of the OpenNET network and includes Unix workstations,
assign a group ID consistent with the group access you want for this user (refer to
the Unix documentation for more information). Otherwise, enter a second user ID
which will be added to this user's iRMX user object. If neither user ID is 65535
(World), the HI automatically adds a third ID of 65535 to the user object when this
user logs on, providing World access.

Enter the comment -

Respond with <CR> unless your system is an OpenNET workstation. The
iRMX OS does not use this field. It is typically used for a name or other
information; refer to the Unix documentation.

Enter the default UNIX directory -

For OpenNET workstations, enter the complete pathname of the user's home
directory on Unix systems. Otherwise, respond with <CR>.

Enter the default UNIX shell -

For OpenNET workstations, supply the new user's default Unix shell (for example,
/bin/sh; refer to the Unix documentation). Otherwise, respond with <CR>.

Once you have responded to all the prompts, password summarizes and displays
your answers. At the bottom of the summary is this prompt:

Do you want to add this user to UDF?

If the summary is correct, respond with a Y to add the user. If you respond with
any character other than Y, password disregards your previous input and returns to
the initial menu.

password HI command

314 Chapter 2 Command Descriptions

If you enter Y, password updates the copy of the UDF it maintains in memory (the
permanent copy will be updated when you invoke the Exit command), and displays
this message:

Do you want to create the user directories?

A No response means you must manually create the user's home directories. In this
case, password only creates the user configuration file :config:user/<username>
(unless it already exists).

If you enter Y, password creates user directories, copies the alias.csd and r?logon
files from the :config:default directory, and creates an empty r?logoff file in the
new user's prog directory. (You can modify the default files so that each time you
create a new user, the user gets the initial configuration you want.) After the files
are created, you are prompted for the pathname of the initial program:

Initial-program pathname =

Enter <CR> to give the new user the standard CLI interface. If you do not use the
standard CLI, enter the full pathname of the command interface you use. After
adding the new user, password displays:

Default Initial Program is RMX HI CLI
Added user <user name>

Then the main menu is displayed. You may add another user or start another
operation, but the UDF is not updated until you enter the Exit (E) option.

Deleting a User from the UDF

Choose the D option to delete a user from the UDF. Password displays:

Enter the user name -

Enter the logon name of the user to be deleted. If the name you enter is currently
listed in the UDF, password deletes the entry from the copy of the UDF it
maintains in memory and responds with this message:

Deleted user <logon name>

The permanent copy of the UDF will be updated when you invoke the Exit option.
You must manually delete the user's logon directory and :config:user/<username>
file.

HI command password

Command Reference Chapter 2 315

Listing the Contents of the UDF

Choose the L option to list the contents of the UDF. Password displays a table of
entries containing this information:

<logon name>:<password>:<user id>:<group
id>:<comment>:<dir>:<shell>

Where:

<logon name>
The name that the user enters to log on to the system.

<password>
The encrypted password. No entry indicates that the user does not
require a password to log onto the system. The characters NO LOGIN
indicate that the user is prohibited from logging on.

<user id> A decimal number representing the user ID. Value 0 is Super, the
system manager, and value 65535 is the World user.

<group id>
A second ID that can be implemented as a group convention, and
corresponds to Unix group file access in OpenNET systems.

<comment> The comment field, used only in OpenNET systems.

<dir> The Unix home directory, used only in OpenNET systems.

<shell> The Unix shell, used only in OpenNET systems.

Changing Passwords

Choose the C option to change the logon password for yourself or for another user.
The instructions for changing the password are the same as shown at the beginning
of this description. However, as Super you have the option of entering:

NO LOGIN

as the new password for another user. This prevents the user from logging onto the
system.

Quitting the Password Command

To abort the password command without saving any of the changes you made
during this session, choose the Q option. If you have made changes that will be
lost, password displays:

Do you really want to quit without saving your changes?

password HI command

316 Chapter 2 Command Descriptions

If you want to abort the session and lose the changes you made, enter Y. Entering
any other character returns you to the main menu without discarding your changes.
If you quit a session where you have added a user, you must manually delete the
logon directory and the :config:user <username> file (the logon directory is
created if you answer Yes to the create user directories? prompt).

Exiting the Password Command

To leave the password command and save all of the changes you made during this
session, choose the E option. Password writes the changes to the UDF.

Error Messages
Cannot attach to the UDF

The OS encountered an error, either when attempting to read the password you
entered or when attempting to access the UDF.

Illegal name
The logon name you specified is invalid. The name must be between three and
eight characters long, contain no embedded spaces, and contain no unprintable
characters.

Invalid command
You entered an invalid command at the password menu. The valid commands are
A, D, L, C, Q, and E.

Invalid Password
Either the password you entered was longer than eight characters, or you made a
typing error when you confirmed the password by entering it again.

Invalid response
Your response to a prompt was invalid. For example, you might have entered
alphabetic characters when a numeric value was expected.

Maximum size of UDF reached
The UDF can grow to a maximum of 32 Kbytes. It has reached this limit, and no
more new users can be added.

<Master/Local> UDF is not available
An error occurred while password was attempting to attach the UDF. If your
system is part of an iRMX-NET environment, the error occurred while attaching
the remote master UDF. Otherwise, the error occurred while attaching the local
UDF. In either case, password does not change the UDF.

Old Password is incorrect
The password you entered did not match the password listed in the UDF.

UDF does not exist.
Your system is not configured to support nonresident users; therefore, the UDF
does not exist.

HI command password

Command Reference Chapter 2 317

UDF does not exist. Creating new UDF.
The UDF did not exist on your system before, because your system is not
configured to support nonresident users. As the system manager, you can add a
UDF. The password command creates a UDF to contain your additions.

UDF is corrupted
The UDF has an invalid format that must be fixed. This might have been caused
by editing the file with a text editor. To correct this problem, the system manager
might need to delete the UDF (with the delete command) and use the password
command to rebuild it. A copy of the original UDF is in the :config:default/udf
file.

UDF is not available
The UDF can be written by only one user at a time. Someone else is using the
password command now and has exclusive write access to the UDF. Try again in
a few seconds.

User <logon name> is already defined in the UDF
The user you attempted to add is already listed in the UDF.

User <logon name> is not defined in the UDF
The user you attempted to delete is not listed in the UDF.

path HI command

318 Chapter 2 Command Descriptions

path
Lists the full pathname of a data file or directory on local or remote systems.

Syntax

path [inpath_list] [to|over|after outpath_list] [r]

Parameters
inpath _list

One or more filenames, separated by commas, whose pathnames you want to list.
Wildcards are permitted.

to|over|after outpath _list
Writes the output to the specified files rather than to the screen. If you specify
multiple input files and a single output file, path appends the remaining input file
pathnames to the end of the output file.

r (oot) Specifies that the pathname should start from the root directory of whatever device
holds the file or directory.

Additional Information

This command is useful for finding where you are located within the file structure.
The output is similar to this when invoked with no input file list:

-path <CR>

:sd:user/world

HI command pause

Command Reference Chapter 2 319

pause
Displays an optional message and waits for you to enter a <CR>.

Syntax

pause [message]

Parameter
message

The text that appears on the console when the pause command is executed.

Additional Information

This command works ideally when executed from within a submit or esubmit file.
You cannot use pause as part of a background job. Invoking pause without a
message causes the console to display a blank line before waiting for the carriage
return.

The message is restricted to the length of the command line, but you may enter
command continuation lines, using the & character.

pci HI command

320 Chapter 2 Command Descriptions

pci
Displays or sets a threshold size for disk I/O read and write requests to be made
without Peripheral Controller Interface (PCI) server buffering, when the PCI client
and server are on the same host board.

Syntax

pci direct : logical_name : [threshold]

Parameters
direct

Specifies that this board will make direct I/O requests to the PCI server.

: logical _name:
The logical name of the PCI device, surrounded by colons; for example, :sd:.

threshold
A number specifying the size in bytes of I/O read or write requests to be made as
direct requests. The value is decimal by default, but you may specify hexadecimal
with a 0x prefix or by appending an H. If threshold is not specified, the current
threshold value is displayed. The default value is the maximum, 0FFFFFFFFH,
which causes all read and write requests to use PCI buffering. A value of 0 causes
all read and write requests to be direct.

Additional Information

A PCI client and server may be on the same host board or on separate hosts. The
default communication method between the client and server assumes they are on
separate hosts. This method uses a buffer on the server host to hold the read and
write data associated with I/O requests. When a PCI client and server are on the
same host, it can be more efficient for the client to bypass the I/O request buffer
and make direct requests to the PCI server. Direct requests copy data directly
between the peripheral device and the user's buffer, and avoid buffering on the PCI
server.

An I/O request for an equal or greater number of bytes than the threshold value is
made as a direct request. A request for fewer bytes than the threshold value is
buffered by the PCI server.

Direct requests can only be made to hard disk devices. The device cannot be part
of a mirrored disk drive set. If you specify direct I/O requests for a hard disk that
becomes part of a mirrored set, the PCI server uses the default method for I/O
requests while the disk is part of the mirrored set.

HI command pci

Command Reference Chapter 2 321

Generally, you should not do direct requests for all I/O requests. Bypassing the
buffers can be detrimental to performance for small I/O operations. It is better to
set the threshold value close to the size of a cache line in the PCI server; 16 Kbytes
or 18 Kbytes are reasonable threshold values.

See also: How to Use the Peripheral Controller Interface (PCI) Server

pcnet DOS command

322 Chapter 2 Command Descriptions

pcnet
A NetBIOS driver that provides the interface to iNA960-based iRMX-NET.

Syntax

pcnet [/s sessions][/c commands]

Parameters
/s sessions

The number of NetBIOS sessions supported. The default is 6, and the maximum
is 32.

/c commands
The number of NetBIOS commands that can be queued to the NetBIOS driver
simultaneously. The default is 12, and the maximum is 32.

Additional Information

When you set up network access from DOS, this command is used in the process of
redirecting the MS-NET server and client through iRMX-NET, usually as part of a
batch file.

The option indicators, s and c , are not case-sensitive. If you enter invalid options,
a usage message is displayed.

See also: pcnet command, Network User's Guide and Reference

HI command permit

Command Reference Chapter 2 323

permit
Grants or revokes user access to files that you own or files in directories for which
you have change access.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

permit pathname_list access [value][, ...] [u= id_list |world|*]
[data] [dir] [map] [q]

Parameters
pathname _list

One or more pathnames, separated by commas, of files to have their access rights
or list of accessors changed. Wildcards are permitted.

access One or more access characters that grant or cancel the corresponding access to the
file(s), depending on a following value parameter. If specified with no value,
each access character grants the specified access. (The interpretation for DOS,
NFS, and remote file access is somewhat different; these are described later.) From
the list below, you may use L or R for data files and directories; likewise C and U.
Access Meaning
D Delete
L or R List (for directories); Read (for data files)
A Add entry (for directories); Append (for data files)
C or U Change (for directories); Update (for data files)
N With no other characters, cancels all access. With other

characters, cancels access not explicitly granted.

permit HI command

324 Chapter 2 Command Descriptions

value A value that specifies whether to grant or revoke the associated access right.
Value Meaning
0 Cancel the access right
1 (default) Grant the access right. Specifying an access character without a

value grants the corresponding access.

u(ser) = id _list
A list of decimal or hexadecimal user IDs for which the access rights apply,
separated with commas. Each file is limited to three user IDs in the access list. If
you omit the user parameter, the default is your user ID (the ID associated with
your interactive job).

= world
Specifies user ID 65535, giving all users access to the file.

= * The access rights apply to all users currently in the file's access list.

data The access information applies to data files in the pathname list. If you omit both
the data and directory parameters, permit assumes both.

dir (ectory)
The access information applies to directories in the list.

map The access information also applies to map files and volume label files in the
pathname list. If you use the map parameter, you must specify the full pathname of
map or volume label files in the list.

q(uery) Prompts for permission to modify the access rights associated with each file.
Respond to the prompt with:
Y Change the access

R Change access for remaining files without further query

E Exit the command

N or other Don't change access; query for the next

HI command permit

Command Reference Chapter 2 325

Additional Information

Table 2-5 shows the possible access rights for files and directories, and describes
how they relate to each other.

Table 2-5. How Access Rights Apply to Files and Directories

File Access Directory Access

Delete Delete or rename the file Delete Delete or rename the directory

Read Read the file (if the parent
directory has list access)

List List the contents of the directory
and read files in it (if they have
read access)

Append Add information at the end of the
file, but no permission to overwrite
existing data

Add Add files or subdirectories to the
directory, but no permission to
change existing files in it

Update Overwrite information in the file or
truncate it, but no permission to
append data to the file

Change Change the access rights or
accessors of files and
subdirectories in the directory, but
not of the directory itself; no
permission to add or delete files
in the directory

You can use permit to perform one or both of these functions:

• Add or subtract users from a file's list of accessors. This list determines which
users have access to the file. Only three user IDs may be listed as accessors,
but one of these can be the World ID, which grants access to all users.

• Set which access rights are granted or revoked for the users in the accessor list.

When you change the list of accessors for a file, specify the appropriate access for
an added user or N access for a user to be deleted. To change the access rights but
not the list of accessors, specify user=* .

The Super user can change accessors and access rights for any file. Other users can
only change access information for files owned by themselves or World, or for files
in directories where the user or World has change access. You can display the
access rights for files and directories with the dir command.

permit HI command

326 Chapter 2 Command Descriptions

Specifying Access Rights

If specified without an accompanying value, each access character grants the
specified access. You can concatenate access characters and values together or you
can use commas to separate individual access/value specifications. For example, if
you want to grant delete access and cancel add and update access, you could enter
any of these combinations; the order in which you specify access characters is not
important:

A0DU0
A0,D,U0
A0D1U0
A0,D1,U0

If there are multiple occurrences of an access character, permit uses the last such
character to determine the access. For example, these specifications are equivalent;
in the first list, D1 overrides D0:

D0,A1,R1,D1
A1,R1,D1

Specifying N by itself revokes all access for the specified users and removes the
users from the file's access list. However, the N character can also be useful when
changing access rights, if you don't remember the user's current access rights. In
this case, specify the N character first, to clear all access rights, and follow it with
other characters to grant the desired access. For example, if you want to grant list
access only, you could specify NL instead of D0A0C0L.

When changing access information for volume map files and volume label files,
always specify the full pathnames. For example, this command changes the access
rights for all map files and volume label files on the volume, except for r?save,
which is unaffected by the map parameter. In this instance the HI does not
interpret the ? as a wildcard character:

permit :f0:r?* DLAU map

See also: Map files and volume label files, format command, in this chapter

HI command permit

Command Reference Chapter 2 327

Access to Remote iRMX-NET Files

File access rights for remote iRMX-NET files are treated somewhat differently than
for local files. You may grant or revoke access by other users to remote files you
or World own, but change access for directories does not apply. This list shows
how access characters apply when you invoke permit for remote files.

Value For Directories For Files

D Delete: The value of the delete
bit is always 0. Attempts to
change the value to 1 are ignored.
Add-entry access is required to
delete a directory.

The value of the delete bit is always 0.
Attempts to change the bit to 1 are ignored.
Users must have both append and update
access to delete a file.

L or R List directories Read files (if the directory has list access)

A Add entry: if set to 1, the user
may add entries to the directory or
delete the directory

Append: must be set the same as Update

C or U Change: the value of the change
bit is always 0. Attempts to
change the bit to 1 are ignored.

Update: when both Append and Update
bits are 1, the user can append, update, or
delete a file. If you attempt to set different
values for the append and update bits, an
error is returned.

N Cancels access not explicitly
granted by a value.

Cancels access not explicitly granted by a
value.

Accessor Fields in Remote iRMX-NET Files

When you access files on a remote system with iRMX-NET, your system obtains
from the remote system the user name associated with the accessor IDs for the
files. Your system gets the user ID that matches the name it receives from its own
User Definition File (UDF).

In one Administrative Unit (subnetwork), all the user names match the same user
IDs. However, different subnetworks may associate different user IDs with the
same user name. Therefore, the user ID displayed in the accessor fields of a remote
permit display may be different from the user ID that the server would display
locally for the same file. If the user name that is received from the remote server
does not exist in the client UDF, the user ID is displayed as 65534.

permit HI command

328 Chapter 2 Command Descriptions

The rules governing the N access character, multiple occurrences of the same
access character, access value defaults, and the interchangeability of access
characters apply to remote files in the same manner as local files.

See also: Remote files, Network User's Guide and Reference

Access to NFS Files

File access rights are mapped between different operating systems when accessing
remote files through NFS. When you change access from an iRMX client, access
rights map as follows:

Setting any of these bits
on an iRMX client

Results in all of these bits being set on
iRMX, Unix, and DOS servers

iRMX iRMX Unix DOS

Files D-AU
-R--

D-AU
-R--

-w-
r-x

read/write
read-only

Directories D-AC
-L--

D-AC
-L--

-w-
r-x

read/write
read-only

For example, setting just the D access from an iRMX client results in D-AU access
on the iRMX server.

When you change access rights from another OS through NFS, the access
permissions on an iRMX server are set as follows:

Setting any of these bits on Unix and
DOS clients

Results in all of these
bits being set on an
iRMX server

Unix DOS iRMX

Files -w-
r-x

read/write
read-only

D-AU
-R--

Directories -w-
r-x

read/write
read-only

D-AC
-L--

If, for example, you set the read (r) or the execute (x) bit from Unix, it results in a
file with -R-- access on the iRMX server.

HI command permit

Command Reference Chapter 2 329

File Ownership with NFS

File ownership mapping occurs between iRMX, DOS, and Unix files when using
NFS. The following list describes the mapping:

• When you use NFS between two iRMX systems, file owners are maintained on
a one-to-one basis.

• When you use NFS between an iRMX system and a Unix system the following
mapping occurs regardless of which OS is the NFS client:

iRMX Unix

First owner in access list “owner”
Second owner in access list “group”
Third owner in access list (ignored)
World owner is user ID 60000 and

group is user ID 1 (other)
Super owner and group user IDs are 0 (root)

✏ Note
You can modify iRMX to Unix file ownership mapping values for
the World user by setting parameters in the /etc/stune.ini file.

See also: Tunable Parameters, TCP/IP and NFS for the iRMX Operating
System

• When you use NFS between an iRMX system and a DOS system file
ownership mapping does not apply. This is because DOS has no concept of
file owners. The NFS package you use on a DOS system may make certain
assumptions. For example, a DOS-based NFS product might translate a file
owned by user ID 0 (Super) as read-only from the DOS side. See the
documentation for your non-iRMX NFS product for such details.

User ID Translation with NFS

User IDs map one-to-one across NFS except as noted for the Super and World users
between iRMX and Unix systems described in the previous section.

When you use NFS between two machines that happen to have different user login
names with the same user ID number, the file’s ownership is determined by the
client’s account. For example, assume that a file on an NFS server is owned by
Sam with the login sam and user ID of 33. User Sarah on an NFS client also has a
user ID of 33 but her login is sarah. If Sarah accesses the file on the NFS server
through NFS, the user IDs map one-to-one. However, Sarah’s access rights to the
file will be whatever rights Sam has for the file on the server machine. Also, if

permit HI command

330 Chapter 2 Command Descriptions

Sarah lists the directory that contains the file, the owner will appear as Sarah, not
Sam.

This user ID mechanism works similarly between iRMX systems or between iRMX
and Unix systems.

See also: Accessing NFS Files, File Ownership, and User ID Translation,
System Concepts

iRMX for Windows Systems

The DOS file system does not support users other than World, and supports limited
access rights. For preconfigured iRMX for Windows systems, iRMX users and
tasks can change their DOS file access to correspond to the DOS read-only and
read/write attributes. DOS directories cannot be made read-only. Use these values
with the permit command (read and list access are not used):

Access Character Value Access Granted

D, A, or U (any) NOT 0 Read and Write (including permission to delete)

D, A, and U (all) 0 Read only

For example, these commands make a file read-only:

permit file1 d0a0c0
permit file2 nr

iRMX for PCs Systems

If you are using the DOS file driver, you can use DOS access rights only. If you
are using the iRMX named file driver, you can use all iRMX access rights.

Output

After changing the access information for a file, permit displays a list of changed
files, containing this information:

<pathname>, accessor = <accessor ID>, <access>

Where:

<pathname>
The name of the file.

<accessor ID>
The user ID of one of the file's accessors.

HI command permit

Command Reference Chapter 2 331

<access> That user's access rights, displayed as DLAC for directories and
DRAU for data files. If a particular access right is not allowed, the
display replaces the corresponding character with a dash (-). For
example, the display -L-C indicates that the corresponding user has
list and change access, but not delete and add-entry access.

Error Messages
<pathname>, accessor limit reached

The OS permits only three user IDs in the accessor list of a file. Before you can
add another accessor, you must remove one of the current accessors by setting its
access rights to N.

<pathname>, directory CHANGE access required
Either you are not the owner of the specified file or you do not have change access
to the file's parent directory. You must satisfy one of these two conditions in order
to use the permit command.

<user ID>, duplicate user control
You must specify the keyword and parameter combination user= user-list only
once during the permit command. However, you can specify multiple user IDs by
separating them with commas in the user list. Permit exits without updating the
access rights.

<character>, invalid access switch
The character you entered to indicate the access rights for the file was not a valid
access character; permit exits without updating the access rights.

<invalid id>, invalid user id
The user IDs you supply with the user parameter must consist of decimal or
hexadecimal characters, the characters world , or the * character. Permit exits if
you supply other characters.

missing access switches
You must specify one or more access characters with the permit command; permit
exits without updating the access rights.

no files found
There were no files of the type you specified (data, directory, or both) in the
pathname list.

pathname, E_NAME_NEXIST
The pathname is a remote file. The accessor whose access is to be changed is not
defined either at the Administrative Unit containing the local client or at the AU
containing the file server where the remote file resides.

physname HI command

332 Chapter 2 Command Descriptions

physname
Displays system DUIB names and information.

Syntax

physname *| target_device_name [-e]

Parameters

* Lists all of the DUIBs in the system.

target_device_name
Displays DUIBs associated with the physical device name specified.

-e Displays extended information.

Additional Information

Use physname to obtain information about your system's available DUIBs.

If you specify a target_device_name that has more than one match in the
system physname lists the DUIBs that include the specified name. Do not use a *
within a target_device_name parameter.

See also: Physical Device Names, Appendix E

HI command physname

Command Reference Chapter 2 333

Examples

1. To view a list of the DUIBs in the system, enter:

physname *

The DUIBs are displayed as shown below. The names of loadable devices are
listed first, followed by the names of standard devices:

Dynamic DUIB Cluster 1

D_CONS

Intel's Standard DUIB Cluster

BB STREAM COM1 COM2 B

BH BM BMH A AH

AM AMH C_RMX C_RMX0 C_RMX1

C_RMX2 C_RMX3 C_RMX4 D_RMX D_RMX0

D_RMX1 D_RMX2 D_RMX3 D_RMX4 A_DOS

B_DOS C_DOS D_DOS E_DOS F_DOS

G_DOS H_DOS I_DOS J_DOS K_DOS

L_DOS M_DOS N_DOS O_DOS P_DOS

Q_DOS R_DOS S_DOS T_DOS U_DOS

V_DOS W_DOS X_DOS Y_DOS Z_DOS

2. If more than one DUIB name matches the name you specify, physname
displays a list of fully or partially matching DUIB names. For example:

physname c_rmx

This command displays:

Searching Dynamic DUIB Cluster 1

Searching Intel's Standard DUIB Cluster

C_RMX C_RMX0 C_RMX1 C_RMX2 C_RMX3 C_RMX4

physname HI command

334 Chapter 2 Command Descriptions

3. This command returns extended information about the specified device:

physname c_rmx3 -e

This information is displayed:

Searching Dynamic DUIB Cluster 1

Searching Intel's Standard DUIB Cluster

Device Name: C_RMX3

Functions: ff DUIB address: 09b8:000133af

Device Granularity: 0200 Max Buffers: ff

Device Size: 00000200 Device: 04

Unit: 03 Device Unit: 000a

Device$Info$P: 09c8:000000bd Unit$Info$P: 09c8:000000e8

Update Timeout: 0064 Num Buffers: 0008

Priority: 82 Fixed Update: ff

Flags: 31

Init$IO: 09c8:000031b4 Finish$IO: 09c8:00003564

Queue$IO: 09c8:00002c0f Cancel$IO: 09c8:000030b4

File Drivers: 0009

 Physical TRUE Named TRUE

 EDOS FALSE Stream FALSE

See also: DUIB structure and fields, Driver Programming Concepts

TCP/IP command ping

Command Reference Chapter 2 335

ping
Tests communication between two hosts, at the lowest level of TCP/IP
communications, to determine whether a connection can be made and to assess its
reliability. Used primarily to manually isolate faults.

Syntax

ping [-r] [-v] host [packetsize [count]]

Parameters

-r Bypass the normal routing tables and send datagrams directly to a host. An error is
returned if the host is not on a directly attached network. Use this option to ping a
local host through an interface that has no route.

-v Display a message any time an ICMP packet other than an ECHO_RESPONSE is
received.

host Name or Internet address of a host or gateway.

packetsize
The size in bytes of data for the packet; the default is 56 (for a 64-byte packet).

count Send the specified number of ECHO_REQUESTS and exit when all responses have
been either received or assumed lost. If count is not specified, the command
sends datagrams until it is interrupted. The value 0 is the same as no parameter.

Additional Information

The Internet is a large and complex group of network hardware connected by
gateways. Tracking a single-point hardware or software failure can often be
difficult. Ping uses the Internet Control Message Protocol (ICMP) mandatory
ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host or
gateway. The command sends datagrams at one-second intervals until it is
interrupted or until it has sent and received count datagrams.

As each ECHO_RESPONSE is received from the target host, the packet number
(icmp_seq) and round trip time is displayed. If ping cannot reach the target host,
nothing is displayed. Similarly, a gap in the sequence numbers of the packet
display indicates the ECHO_REQUEST failed to reach the target or the
ECHO_RESPONSE failed to make it back to this host. When ping ends or is
interrupted, it summarizes the packet loss and round trip timing statistics for the
session.

ping TCP/IP command

336 Chapter 2 Command Descriptions

The only mandatory parameter in the command is the host . However, if you don't
specify a count parameter, ping continues until interrupted. This can significantly
increase the load on the network and prevent automated scripts from functioning as
intended. It is safer to supply ping with a packet size and iteration count. If you
don't specify count , interrupt the command with a <Ctrl-C>. This command
specifies 1024 bytes of data and 3 iterations.

- ping sophocles 1024 3

PING sophocles.intel.com: 1024 data bytes
1032 bytes from 128.215.12.22: icmp_seq=0. time=2 100th of sec
1032 bytes from 128.215.12.22: icmp_seq=1. time=2 100th of sec
1032 bytes from 128.215.12.22: icmp_seq=2. time=2 100th of sec
----sophocles.intel.com PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss
round-trip (100th of sec) min/avg/max = 2/2/2
-

When using ping for fault isolation, first ping the local host to verify that the local
network interface is up and running. Then ping hosts and gateways farther and
farther away to determine where a fault occurs.

ECHO_REQUEST datagrams (pings) consist of IP and ICMP headers followed by
a struct timeval and an arbitrary number of bytes to fill out the packet.
Determine the maximum packetsize by subtracting 48 bytes (for the UDP and IP
headers with options) from the value of the tunable parameter SOMOD_MSGSZ.

See also: netstat and ifconfig commands, in this chapter
Tunable parameters, TCP/IP and NFS for the iRMX Operating System

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

TCP/IP Command psh

Command Reference Chapter 2 337

psh
Executes commands in a Posix environment; the Posix job must be loaded to use
this command.

▲▲! CAUTION
Do not use this command in an esubmit file or an
rq_c_send_command to invoke the interactive version of the
Posix shell because queries for user input will not be received.

Syntax

psh [command]

Parameter
command

Any command that requires a Posix environment; for example, a TCP/IP command
like ftp .

Additional Information

This shell command builds a minimal Posix environment necessary to execute
TCP/IP commands. You can invoke the shell in two ways:

• With a command argument, for example,
psh ftp

Psh runs the command and returns you to the iRMX prompt when the
command exits.

• Without a command argument, psh enters the Posix shell and displays the
prompt

psh>
At this prompt you can invoke a TCP/IP command such as ftp or can invoke a
psh internal command. When the command is done executing it returns you to
the psh> prompt. To return to the iRMX prompt, enter

exit

Psh builds its environment by reading the Posix section of the /etc/stune.ini file
when it begins execution. Environment variables in the stune.ini file have the
syntax variable =value .

psh TCP/IP command

338 Chapter 2 Command Descriptions

The following environment variables are set in the Posix section of the
/etc/stune.ini file:

HOME

SHELL

U_NODENAME

U_SYSNAME

Psh internal commands include:

? Display help about using these psh commands.

env Display the current environment variable settings.

exit Exit the Posix shell and return to the iRMX CLI prompt.

setenv variable value
Add an environment variable and value. Note that there is no equal
sign (=) in this syntax, unlike variables set in the stune.ini file.

unsetenv variable
Remove an environment variable.

In addition to TCP/IP commands, psh will correctly execute an iRMX command if
you invoke it at the psh> prompt. However, do not use psh to execute any iRMX
command that does an

attachfile :$:

This command cannot be handled by Posix and creates unpredictable behavior.

Psh uses its PATH environment variable to search for commands. If you want it to
search other than the default directories, edit the PATH= statement in the Posix
section of the /etc/stune.ini file.

You do not have to specifically invoke psh for TCP/IP commands if you submit the
file /etc/tcpalias.csd. This file sets up command aliases that invoke psh. For
example, the alias for ftp is

psh ftp

When you invoke psh from a submit file with output directed to a log file, terminal
escape sequences are written to the log file. This is harmless. It happens because
psh assumes that stdout is a terminal.

NET command publicdir

Command Reference Chapter 2 339

publicdir
Displays pathnames of public iRMX-NET network directories on this system.

Syntax

publicdir [l]

Parameter

l (ong) Lists the directory including the full pathname and the device name where the
directories reside.

Additional Information

Invoking publicdir without parameters lists the server's public directories, but does
not list the pathnames and the device names. If you specify the long parameter,
the display is similar to:

PUBLIC DIRECTORIES OF THE SERVER
Offered Name Dev Name Pathname

WORK QMA0 /WORK
LANG QMA0 /LANG286
SYSTEM QMA0 /SYS386
WORLD QMA0 /USER/WORLD
SD QMA0 /
BB BB
F A /

See also: offer and remove commands, in this chapter

Error Messages
cannot show public Directories

An I/O error occurred while executing the command.

not enough user memory
The system does not have enough user memory to satisfy the request.

rarp TCP/IP command

340 Chapter 2 Command Descriptions

rarp
Used to test a RARP daemon (rarpd). Rarp broadcasts Reverse Address
Resolution Protocol (Reverse ARP) requests containing the Ethernet address of its
host, and waits for rarpd to reply with the rarp host's Internet address.

Syntax

rarp [-ieee | -ether | -any][-d n][-t ether-addr] if

Parameters

-ieee Use CSMA/CD format for packets; -802 also specifies this format.

-ether Use Ethernet (DIX style) format for packets.

-any Use data link driver's default format, -ether , for packets; this is the default.

-d n Set debug output level to n.

-t ether-addr
Attempt to resolve the IP address associated with ether-addr .

if Interface identifier, in the form defined in inetinit.cf and shown by the netstat
command (e.g., en0).

Additional Information

This command requires Super privileges.

Use rarp to isolate the problem when a diskless workstation is unable to boot. If
rarpd replies correctly to rarp , you know the RARP daemon is working, and the
problem is elsewhere.

Rarp simulates a booting host that knows its own Ethernet address but needs to
find out its Internet address. Like a booting host, rarp broadcasts its Reverse ARP
request containing its Ethernet address. When rarpd on any node receives the
request, it looks up the address in its ethers file, finds the matching Internet address
and responds with it.

✏ Note
You cannot run rarp and rarpd simultaneously on the same host.

See also: rarpd , in this chapter
ethers file, TCP/IP and NFS for the iRMX Operating System

TCP/IP command rarpd

Command Reference Chapter 2 341

rarpd
RARP daemon, responds to Reverse Address Resolution Protocol (Reverse ARP)
requests.

Syntax

sysload :system:psh rarpd [-ieee | -ether | -any] if ...

Parameters

-ieee Use CSMA/CD format for packets; -802 also specifies this format.802.3 (MAC)

-ether Use Ethernet (DIX style) format for packets.

-any Use data link driver's default format, -ether , for packets; this is the default.

if One or more interface identifiers, in the form defined in inetinit.cf and shown by
the netstat command (e.g., en0).

Additional Information

You normally run rarpd from the network initialization file, /etc/tcpd.csd. The
daemon, which forks a copy of itself, requires Super privileges.

A diskless host or X terminal uses the Reverse ARP protocol at boot time to
discover its 32-bit Internet address, given its 48-bit Ethernet address. The booting
host broadcasts a RARP request containing its Ethernet address and waits for a
reply. If multiple network hosts reply to the RARP request, the booting host uses
the information in the first reply and ignores the rest.

Rarpd receives the request from the booting host and searches in its ethers file for
an entry with a matching Ethernet address. If no such entry is found, the RARP
daemon disregards the request. If a matching entry is found, rarpd constructs a
RARP reply with the booting host's Internet address. If the ethers contains the
Internet address of the booting host, rarpd uses that address directly in the reply.
If the ethers contains the name of the booting host, rarpd gets the Internet address
from the local hosts file.

The optional argument requests that the data link driver use a particular packet
format. This argument can be upper- or lower-case: -ether or -ETHER.

See also: ethers and hosts files and inetinit configuration, TCP/IP and NFS for
the iRMX Operating System
rarp , in this chapter
RFC 903

rcp TCP/IP command

342 Chapter 2 Command Descriptions

rcp
Transfers files between any two network hosts.

✏ Note
You can use this command in an esubmit file but errors will not
percolate to the esubmit variable commandexcep .

Do not use this command in an rq_c_send_command system
call.

Syntax

rcp [-p] [host :] file1 [host :] file2

rcp [-p] [-r] [host :] file ... [host :] directory

Parameters

-p Preserves the last access time, last modification time, and access mode of the file
being transferred.

-r Causes a recursive copy of any subdirectory whose root appears in the list of files.
With this form of the command, the source may be either a file or a directory and
the destination must be a directory.

Additional Information

Rcp depends on the autologin capability and performs the automatic user
validation described in rshd before any file transfer takes place. You must have a
valid account on each remote host involved in the transfer. By default, your local
login name is used as the account name on all remote hosts. To use an alternate
login name on a particular host, prepend that name to the host name using the
format login@host .

Both absolute and relative pathnames can be used with rcp. A local relative
pathname is interpreted relative to the current directory. A remote relative
pathname is interpreted relative to the home directory of the login account being
used. Pathnames can be enclosed in quotation marks so that shell metacharacters
are not interpreted locally. Metacharacters can also be escaped with a backslash.

TCP/IP command rcp

Command Reference Chapter 2 343

Rcp supports third-party copies. Third-party copies are file transfers where neither
the source nor the target file is on the local host.

See also: ftp, rsh, rlogin, rshd in this chapter

Diagnostics

Exit status is zero for normal termination, a positive number for error termination.

rdisk DOS or HI command

344 Chapter 2 Command Descriptions

rdisk
Configures partitions on a DOS hard disk or an iRMX SCSI hard disk managed by
PCI. The DOS version of rdisk uses ROM BIOS functions to access hard disks to
retrieve disk configuration information and for reading and writing the partition
table.

The DOS rdisk command runs on DOS Version 3.3 or later. In addition to
standard ROM BIOS-supported drives, you can set logical partition information for
Logical Block Address (LBA) drives that use Enhanced IDE. The DOS rdisk
command is used with the iRMX for Windows and iRMX for PCs OSs.

The iRMX rdisk command runs on iRMX Version 2.2 or later and can be used
with the iRMX III OS. Rdisk supports both primary and extended iRMX
partitions. You must include the physical name (DUIB) of the hard disk drive
being partitioned on the command line with the iRMX rdisk command.

▲▲! CAUTION
If a hard disk drive is partitioned with the DOS version of rdisk ,
use only the DOS version of rdisk to view or modify the partition
table. The different OS versions of rdisk get the CHS (cylinder,
head, sector) information in two different ways. The two ways
are not consistent and trying to use the two different versions of
rdisk interchangeably will corrupt the hard disk drive.

See also: Appendix F, Partitioning PCI Hard Disk Drives, in this manual

Syntax

rdisk (at the DOS prompt)

rdisk physical_name (at the iRMX prompt)

Parameter
physical_name

The DUIB name for the disk to be partitioned. The DUIB must be for the entire
disk, not a partition. The DUIB name is required for the iRMX version of rdisk.

DOS or HI command rdisk

Command Reference Chapter 2 345

Options

This is the main rdisk menu:

 RDISK Version Vx.y

 (1) Display partition table

 (2) Modify partition table

 (3) Set active partition

 (4) Check partition table

 (5) Reinitialize partition table

 (6) Select next fixed disk

 (7) LBA physical configuration

 Enter Selection: 1

Option 1: Display Partition Table

This option displays the main partition table and any extended partitions. For
example, in the display of Extended Partition 4 below, there are three logical drives
defined. In other words, there are four master partitions, and in the fourth one,
there are three extended partitions defined. Note that the “Usage” column in the
Extended partition lists the percentage of the main partition used by each extended
partition, not the percentage of the total hard disk used.

 Disk 1 LOGICAL Configuration: 518 cylinders 128 heads 63 sec/track

 -- Partition Table For Fixed Disk 1 --

 System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head Sect

 1 DOS No 394 19% 0 1 1 99 127 63

 2 DOS EXT No 394 19% 100 0 1 199 127 63

 3 iRMX Yes 394 19% 200 0 1 299 127 63

 4 iRMX EXT No 854 42% 300 0 1 516 127 63

 -- Partition Table For Extended Partition 2 --

 System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head Sect

-->Note: No logical drives defined...

 -- Partition Table For Extended Partition 4 --

 System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head Sect

 1 DOS No 197 23% 300 1 1 349 127 63

 2 iRMX No 197 23% 350 1 1 399 127 63

 3 iRMX No 394 46% 400 1 1 499 127 63

rdisk DOS or HI command

346 Chapter 2 Command Descriptions

Option 2: Modify Partition Table

▲▲! CAUTION
Creating or deleting a partition or logical drive will make existing
files on the entire hard disk inaccessible.

When you choose option 2 from the main menu, you are presented with the menu
below. The “Display” choice is the same as Option 1 above.

Enter selection: 2

 (1) Display partition table

 (2) Create a partition

 (3) Delete a partition

 (4) Create or delete logical drives

 <CR> Return to previous menu

Enter selection: 2

If you choose item 2 or 3 to create or delete a partition or logical drive, the current
partition table is displayed and you choose the partition number to create or delete:

 Disk 1 LOGICAL Configuration: 518 cylinders 128 heads 63 sec/track

 -- Partition Table For Fixed Disk 1 --

 System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head Sect

 1 DOS No 394 19% 0 1 1 99 127 63

 2 DOS EXT No 394 19% 100 0 1 199 127 63

 3 None No 0 0% 0 0 0 0 0 0

 4 None No 0 0% 0 0 0 0 0 0

Enter partition (<CR> for previous menu): 3

Then, if you are creating a partition, you choose which type of partition to create,
as shown below. Choices 1 and 3 are primary partitions; choices 2 and 4 let you
create Extended partitions, which can hold one or more logical drives.

 (1) DOS partition

 (2) DOS EXT partition

 (3) iRMX partition

 (4) iRMX EXT partition

 <CR> previous menu

Enter selection: 3

DOS or HI command rdisk

Command Reference Chapter 2 347

▲▲! CAUTION
Do not create more than one DOS primary partition or more than
one DOS Extended partition.

You can create DOS or iRMX Extended partitions on partition
numbers 2 - 4 of the partition table, but not on partition number 1.

You can use the “Create” option to change the OS on the partition or to change the
starting and the last cylinder number for the partition. Any new partition tables or
logical drives that you create are not written to disk until you exit rdisk .

At the prompt, enter the starting and the last cylinder number for the partition you
are creating. DOS Version 3.3 has a 32-Mbyte size restriction; DOS Versions 4.01
and later have no size restriction.

If the starting cylinder is 0, and the last cylinder is non-zero, the starting head will
be head one to avoid overwriting the master boot record. The last cylinder must
be greater than or equal to the starting cylinder and less than the total cylinders
configured for this disk. The ending head and sector will always be the maximum
values supported by this disk's configuration. The last cylinder is reserved by
rdisk .

Selected partition type: iRMX EXT

Enter starting cylinder: 300

Enter ending cylinder: 516

✏ Note
If you define partitions with overlapping cylinder numbers, you
will be notified at either of these points:

• When you check the partition table (option 4 on the main
menu)

• When you try to exit rdisk , before the partition information
is written

rdisk DOS or HI command

348 Chapter 2 Command Descriptions

If you choose item 4 to create or delete a logical drive, the main partition table
must already hold at least one Extended partition. Specify which Extended
partition on which you want to create or delete the logical drive, as shown in the
next set of menus. You are prompted whether to create or delete a logical drive.

 (1) Display partition table

 (2) Create a partition

 (3) Delete a partition

 (4) Create or delete logical drives

 <CR> Return to previous menu

Enter selection: 4

 Disk 1 LOGICAL Configuration: 518 cylinders 128 heads 63 sec/track

 -- Partition Table For Fixed Disk 1 --

 System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head Sect

 1 DOS No 394 19% 0 1 1 99 127 63

 2 DOS EXT No 394 19% 100 0 1 199 127 63

 3 iRMX No 394 19% 200 0 1 299 127 63

 4 iRMX EXT No 854 42% 300 0 1 516 127 63

 -- Partition Table For Extended Partition 2 --

 System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head Sect

-->Note: No logical drives defined...

 -- Partition Table For Extended Partition 4 --

 System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head Sect

-->Note: No logical drives defined...

Enter partition (<CR> for previous menu): 4

 (1) Create logical drive

 (2) Delete logical drive

 <CR> Return to previous menu

Enter selection: 1

You then have the choice of creating a DOS or iRMX logical drive.

 Disk 1 LOGICAL Configuration: 518 cylinders 128 heads 63 sec/track

 -- Partition Table For Extended Partition 4 --

 System Active Mbytes Usage START:Cyl Head Sect END:Cyl Head Sect

 Extended Partition Table Empty

 (1) DOS logical drive

 <CR> RMX logical drive

Enter selection: 1

DOS or HI command rdisk

Command Reference Chapter 2 349

✏ Note
On an iRMX Extended partition you can create either or both
DOS and iRMX logical drives. However, on a DOS Extended
partition, you can create only DOS logical drives.

 A logical drive is simply another partition within an Extended partition. As when
creating a main partition, specify the starting and ending cylinders to define the
extent of the logical drive:

Enter starting cylinder: 300

Enter ending cylinder: 349

Option 3: Set Active Partition

Select this option from the main menu to specify which partition number is
activated for booting. Since only one partition can be active at a time, activating a
new partition automatically deactivates the last one. For iRMX for Windows,
always make the DOS primary partition active. After you activate a partition, the
partition table is displayed, similar to the display above for Option 1.

You can make a primary partition active. You cannot make an Extended partition
active.

Option 4: Check Partition Table

Select this option to verify that the partition table is valid, including checks for:

• Overwriting the master boot record

• Partitions that have an ending address less than the starting address

• Overlapping partitions

• Partition addresses greater than disk size

Option 5: Reinitialize Partition Table

Select this option to read the partition table contents from the selected hard disk. If
the current contents of the partition table have been modified, a query asks if the
modifications should be saved.

rdisk DOS or HI command

350 Chapter 2 Command Descriptions

Option 6: Select Next Fixed Disk

✏ Note
The Select Next Fixed Disk option is not implemented for the
iRMX version of rdisk . To change disks from the iRMX OS,
invoke rdisk with the appropriate DUIB name for the disk drive.

Select this option in the DOS version of rdisk to switch between the two hard
disks. The rdisk utility defaults to hard disk one.

If the current partition table has been modified, a query asks if the modifications
should be saved. If the current disk is disk one and no second disk is configured,
the warning message shown below appears and the partition table for hard disk one
is reestablished as it was before the option was selected.

 Enter Selection: 6

 Fixed disk 2 not configured in ROM BIOS data area
 Press any key to continue

Option 7: LBA Physical Configuration

✏ Note
The LBA Physical Configuration option is not implemented for
the iRMX version of rdisk .

Rdisk shows the logical configuration of the drive, which is the data maintained in
the partition table. If you use an LBA (Logical Block Address) drive, the
Enhanced IDE management sets up logical parameters appropriate for DOS, and
hides the actual physical drive parameters from DOS. However, the PC’s setup
program for CMOS memory displays physical parameters for an LBA drive. To
display the physical parameters within rdisk , enter option 7.

✏ Note
When configuring the partition table, you must enter logical
parameters, not physical parameters.

DOS or HI command rdisk

Command Reference Chapter 2 351

If the drive is an LBA drive, the display is similar to the following:

 Enter Selection: 7

 Disk 1 PHYSICAL Configuration: 1024 cylinders 32 heads 63 sec/track

 NOTE: PARTITION TABLE ACCEPTS ONLY THE LOGICAL DRIVE CONFIGURATION

 Press any key to continue

If the drive is not an LBA drive, this message is displayed:

 Enter Selection : 7

 Sorry, but disk 1 is NOT an LBA (Enhanced IDE) drive
 Press any key to continue

Exit

Press <CR> at the main menu to exit rdisk . At this point, if you have made
partitioning changes, rdisk writes the partition table to the hard disk. The partition
table is first validated. If any errors occur, a warning message appears, and the
write/exit is aborted. If no errors occur, the partition table is written to the master
boot record on the hard disk and rdisk exits.

rdisk DOS or HI command

352 Chapter 2 Command Descriptions

Additional Information

✏ Note
You cannot use this command with a device that you access
through NFS.

DOS-based rdisk provides the full functionality of DOS-based fdisk for examining
and modifying a PC-based hard drive partition table.

See also: fdisk, in your DOS documentation

Rdisk uses the ROM BIOS is used to acquire the hard disk parameters. Since
ROM BIOS supports only two hard disks, hard disk one and hard disk two are the
only disks supported. These disks must be configured in the CMOS RAM data
storage area of the ROM BIOS prior to invoking rdisk . Use the ROM BIOS setup
utility.

Use the fdisk utility to assign DOS logical drives.

If your version of DOS is older than Version 3.0, rdisk exits with a warning
message before executing any other functions.

Since the Version 3.3 or older DOS utility fdisk allows only two partitions, fdisk
displays partition numbers 3 and 4 as partition number 2.

Setting up a Partition

DOS and the iRMX for PCs OS each require their own partitions.

Set up the partition table using the rdisk utility. Each OS to be installed requires a
partition; no partition can share disk cylinders with another partition or overlap any
other partition. If you intend to install DOS, you must leave disk space for a DOS
partition when installing iRMX for PCs. See your DOS manual for information on
the size for this partition.

✏ Note
Systems with versions earlier than 2.2 of the iRMX OS contain an
incompatible bootstrap loader. To install disks on these systems,
you must invoke the rdisk utility and update the partition table,
even if you do not make changes.

If you are installing your own hard disk drive, you must perform a low-level format
before partitioning.

DOS or HI command rdisk

Command Reference Chapter 2 353

To start the partitioning, invoke rdisk . When the rdisk screen appears, write down
the number of cylinders shown at the top of the screen; this number is the
maximum number of cylinders in your system. For example, if rdisk displays 518
cylinders, they are numbered 0 through 517. Rdisk always reserves the last
cylinder, so the highest number you can specify during partitioning would be
number 516.

Four partitions are available; their locations cannot overlap. Enter the next unused
number for your partition number at the prompt. For example, if DOS is in
partition 1, partition 2 is the next available partition. Multiple iRMX partitions can
exist on a single hard disk.

The first track of cylinder 0 is reserved for the partition table and the master boot
record. Rdisk reserves the last cylinder. To decide how many cylinders to give to
each OS partition, you can use an approximation:

Total Number of Cylinders/3 = one third of the disk for a
given partition

Or you can make a more exact determination using:

cylinders * heads * sectors * 512 = bytes in a given partition

If bad sectors are encountered at the start of a partition, rdisk decreases the size of
that partition by mapping out the bad sectors. This may result in a partition that is
smaller than you anticipated.

After you select the partition number, the system asks you to select the OS: enter
82 to indicate that this new partition will run the iRMX OS. The system prompts
you for the starting cylinder. This prompt and the next prompt define the size of
the new partition. If your system runs only the iRMX OS, the starting cylinder is 0
and the ending cylinder is (maximum cylinders - 1).

If you also have a partition for DOS, the Starting Cylinder Number for the iRMX
partition depends on the location of the DOS partition. Be certain that the cylinder
numbers do not overlap.

✏ Note
If your system contains both an iRMX partition and a DOS
partition, you should leave one track between the ending of one
partition and the beginning of the next.

At the Enter Last Cylinder prompt, enter the last cylinder in the iRMX partition. If
the iRMX partition fills the rest of the disk, this number is the number of cylinders
displayed on the first line of the rdisk main menu screen.

rdisk DOS or HI command

354 Chapter 2 Command Descriptions

This description assumes only one iRMX partition; to create more you must repeat
the process.

The main screen is displayed again and now contains the information that you just
entered for the iRMX partition. You must now activate the iRMX partition. Select
3 from the main menu to activate one of the partitions. This causes the system to
bootstrap load the OS resident in that partition upon system reset.

Enter the number of your iRMX partition at the prompt. This marks the iRMX
partition as active. The main screen is displayed again. To complete the process,
at the main menu press <CR> to exit and write the information back to the table.

If any errors are displayed on the screen, the partition table information you entered
may not be valid. Rdisk does not exit; reenter your information, making certain
that partitions do not overlap.

Once the partition table has been successfully written, you are ready to format the
iRMX partition.

See also: format , in this chapter

Error Messages
Disk X is NOT an LBA

This disk drive is not controlled by the LBA mechanism.

Duplicate DOS EXT partition;
You can define only one DOS Extended partition.

Error during ROM BIOS function execution
The ROM BIOS returned the indicated error.

Extended Partition #X, Bad Partition Signature Detected
Invalid information was detected.

Extended partition X address greater than extended partition
cylinders
The specified cylinder number for a logical drive is greater than the highest defined
cylinder for the extended partition in which you are creating the logical drive.

Extended partition X contains logical device address greater than
the maximum number of free disk cylinders

Partition x address greater than maximum number of disk cylinders
The starting and/or ending address for partition x is greater than the maximum
address supported by this disk.

I/O error while reading disk drive parameters
The disk could not be read.

Illegal partition table read from fixed disk
The invalid table is displayed and you can choose to modify it to correct the
partition table.

DOS or HI command rdisk

Command Reference Chapter 2 355

Illegal Partition: x
The starting address in partition x is greater than the ending address, or the ending
address is greater than the disk size.

Initialization Failed
The iRMX version of rdisk could not get the partition table from the device
specified by this DUIB.

Invalid partition table, table not saved
Rdisk found an error in the changes you attempted to make and has not written the
partition table.

No logical drives to delete.
You attempted to delete a logical drive, but there are none defined in this extended
partition.

Not a bootable partition
You attempted to make an extended partition active; you can only make a primary
partition active.

Not allowed to start at cylinder=0, head=0, sector=1 in extended
partition x

Not allowed to start at cylinder=0, head=0, sector=1 in partition x
The specified partition address would overwrite the master boot record.

Not allowed to start at cylinder=0, head=0, sector=1 in partition
The specified partition address would overwrite the master boot record.

Not an extended partition.
You attempted to create a logical drive on a primary partition, not an extended
partition.

Overlapping extended partitions
Overlapping partitions --> x : y

Partition number x overlaps with partition number y .

Partition exists
You attempted to create a partition that already exists. You must first delete the
existing partition.

Specified start_cylinder less than extended partition start
cylinder.
The specified start address for a logical drive is lower than the specified starting
address for the extended partition.

remini HI command

356 Chapter 2 Command Descriptions

remini
Translates the rmx.ini file into the iNA 960 load file format (also known as remote
file format).

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

remini rmxinifile to|over remfile

Parameters
rmxinifile

Name of the file to translate.

to|over
Specify to create a new file or over to overwrite an existing file.

remfile
Name for the file produced.

Additional Information

You can use this command to create an rmx.ini remote load file for use in the
remote booting of iRMX for PCs.

Example:

remini rmx.ini to rmxini.rem

NET command remove

Command Reference Chapter 2 357

remove
Revokes iRMX-NET public network access to one or more local directories.

Syntax

remove public_name_list

Parameter
public _name_list

One or more public names, separated by commas, which were previously assigned
to local directories for access by remote users.

Additional Information

The remove command revokes public access to a directory that was previously
defined as public, either by configuration of the File Server or with the offer
command. Specify the public name, not the local directory name, if they are
different.

Error Messages
missing parameters

The public name of the directory must be entered as part of the command syntax.

cannot remove <name>
The first public directory configured in the File Server is used for a work file, and
cannot be removed. The default for the first public directory is :sd:work.

rename HI command

358 Chapter 2 Command Descriptions

rename
Changes the pathname of one or more data files or directories. The rename
command may be used to move a file to a different directory on the same volume.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax

rename inpath_list to|over outpath_list [q]

Parameters
inpath _list

One or more pathnames, separated by commas, of files or directories that are to be
renamed.

to|over outpath _list
A list of new pathnames for the files, separated by commas. The number of
pathnames must be the same as in the inpath _list . If you specify to , you are
prompted to overwrite existing files of the same name. If you specify over ,
existing files by these names are replaced by the input files. You cannot use over
to rename a directory over an existing directory unless it is empty.

q(uery) Prompts for permission to rename each file in the list. Respond to the prompt with:

Y Rename the file
R Rename remaining files without further query
E Exit the command
N or other Don't rename this file; query for the next

HI command rename

Command Reference Chapter 2 359

Additional Information

To use rename, you must have delete access to the current file and add-entry
access to the destination directory. If you rename a file over an existing file, you
must also have delete access to the second file.

The rename command cannot be used across volume boundaries; that is, you
cannot rename a file to move data from a volume located on one secondary storage
device to a volume located on another device (for example, from one diskette to
another). Attempting to do so causes an E_NOT_SAME_DEVICE error message.
Use the copy command or a combination of copy and delete commands to rename
files or move data across volume boundaries.

You can rename an existing directory pathname to a new, nonexistent pathname
anywhere in the directory tree. You cannot rename an existing directory over
another existing directory unless the destination directory is empty (an
E_DIR_NOT_EMPTY condition code is returned).

✏ Note
Changing the name of a directory also changes the pathnames of
all files listed in that directory. All subsequent access to those
files must specify the new pathnames for the files.

With the EDOS file driver, you can use rename to assign a different name to a
directory, but you cannot rename the directory to a different spot in the directory
hierarchy. If there is a directory structure /dir1/dir2/file_a, you cannot rename dir2
as /dir3 to place it under the root directory.

You cannot rename a server's virtual root directory or public directories. Also, you
cannot rename a file into a server's virtual root directory.

Error Messages
<old pathname>, delete access required

You cannot rename a file unless you have delete access to that file.

<new pathname>, directory add ENTRY access required
You cannot rename a file unless you have add-entry access to the destination
directory.

<new pathname>, new pathname same as old pathname
You specified the same name for the input pathname as you did for the output
pathname.

to or over preposition expected
Either you used the after preposition with the rename command or the number of
files in the inpath_list did not match the number in the outpath_list .

rename HI command

360 Chapter 2 Command Descriptions

pathname, invalid access to remote file or directory
The pathname is either a remote file to be renamed or a remote output filename.
One of three conditions caused this error:

• You do not have add-entry access to the file's parent directory.

• You do not have append and update access to the file.

• A user at the server system has removed delete access to a file; you cannot
change delete access on a remote file. A user at the server system must grant
delete access before this command will succeed.

<pathname>, 0023:E_SUPPORT
You attempted to rename a DOS directory to a different spot in the directory tree,
which is not supported by the EDOS file driver.

HI command restore

Command Reference Chapter 2 361

restore
Transfers files from a backup volume to a named, remote, NFS, or DOS volume.

✏ Note
Do not use this command in an esubmit file or an
rq_c_send_command system call, because queries for user input
will not be received.

Syntax

restore : backup_device : to|over pathname [name= name] [verify]
[q] [select= (pathname_list)]

W-2674

select = ()pathname-list

pathnamerestore : :

over

queryverifynamename =

backup-device

to

▲▲! CAUTION
While the restore command is executing, no other activity should
be occurring on the volume you are restoring. If other users
access the volume during a restore operation, the volume's data
could become corrupted, possibly requiring the volume to be
reformatted.

restore HI command

362 Chapter 2 Command Descriptions

Parameters

:backup _device :
Logical name of the backup device from which restore retrieves files. The backup
device must always be a local device; it cannot be a remote device.

to|over pathname
Pathname of a file to receive a single restored file, or of a directory to receive
multiple files. If you specify a logical name for a device, restore places the files
under the root directory for that device. To restore files to the directory in which
they originated, specify the same pathname as you used with the backup
command. Specify over to overwrite existing files on the volume. If you specify
to , and files being restored already exist on the volume, restore prompts:

<pathname>, already exists, overwrite?

Enter one of these in response:

Y or R Delete the file and replace it from the backup volume.
E Exit from the restore command.
N or other Do not restore the file; continue with the next file.

name=name
Specifies a particular named data set from the backup device. If no name is given,
only the first logical volume encountered is restored.

verify
No files are restored; use this parameter to verify that backup has produced a
restorable set of volumes. When you specify this parameter, use :bb: (byte bucket)
as the output pathname. The data on the volume is validated and restore displays:

<pathname>, Verified or
<pathname>, Directory Verified

q(uery) Prompts for permission to restore each file or directory. Respond to the prompt
with:
Y Restore the file

R Restore remaining files without further query

E Exit the command

N or other If a data file, do not restore the file; if a directory, do not
restore the directory or any file in that portion of the
directory tree. Query for the next file, if any.

HI command restore

Command Reference Chapter 2 363

select = (pathname _list)
A list of pathnames, separated by commas, designating specific files or directories
to be restored. The complete list must be enclosed in parentheses. The pathnames
cannot include the logical volume name and must be the exact pathnames used in
the backup command. If you don't know the pathnames, use restore with the
verify parameter to display them.

Additional Information

The restore utility copies files from backup volumes to target volumes in either
local or remote directories. Restore copies the files to any directory you specify,
maintaining the hierarchical relationships of the backed-up files. Restore allows
the transfer operation to begin at any named data set or at any physical volume in a
backup volume set. By using the select parameter you can specify individual
files or directories to be restored.

Each backup volume used as input to the restore command must contain files
placed there by the backup command. If the backup operation required multiple
backup volumes, you must restore these volumes in the same order as they were
backed up.

You must have sufficient access rights in the target volume to allow restore to
operate. To create new files, you must have add-entry access to the parent
directories. To restore files over existing files, you must have add-entry and
change access to directories; and delete, append, and update access to data files.
Normally, when restore copies files, it copies only those files to which you have
access. It establishes your user ID as the owner ID, regardless of the file's previous
owner ID. However, if you are the Super user, all files from the backup volume are
restored with the owner ID and access rights intact.

When copying files, restore reconstructs the filename, access list, extension data,
file granularity, and the contents of the file. However, when the destination is a
remote or a DOS volume, the extension data is not copied and file ownership is not
preserved. Restored files will be owned by the user who performed the restore.

When you invoke the restore command, it displays this sign-on message, where
Vx. y is the version number of the utility:

iRMX Restore Utility V x. y
Copyright <years> Intel Corporation
All Rights Reserved

restore HI command

364 Chapter 2 Command Descriptions

Then the command prompts you for a backup volume. Whenever restore requires
a new backup volume, it issues this message:

<backup device>, Mount Backup Volume #<nn>, Enter Y to
Continue:

Where <nn> is the number of the requested volume. (In some cases restore
displays additional information to indicate problems with the current volume.) In
response to this message, place the indicated backup volume in the backup device
and enter one of these:

Y or R Continue the restore process.
E Exit from the restore command.
N Reprompt for a new volume.
any other Invalid entry; reprompt for entry.

If you supply the requested volume, restore starts restoring files from that volume
and, if necessary, requests additional backup volumes. Once you supply the first
backup volume, you must supply all the other backup volumes in the data set, in
numerical order, when restore requests them.

However, when restore requests the first backup volume, you can supply a higher-
numbered backup volume, if you know that all the files you want to restore reside
on higher-numbered volumes. Restore starts copying files from the higher-
numbered volume and maintains the proper directory structure for the files it
restores. Once you supply the first volume, you must supply all the remaining
backup volumes in numerical order when restore requests them.

As it restores each file, restore displays one of these messages:

<pathname>, Restored/Verified

<pathname>, Directory Restored/Verified

If a not restored message is displayed, a more detailed error message is
displayed.

HI command restore

Command Reference Chapter 2 365

Error Messages
<pathname>, access to directory or file denied

Restore could not restore a file; either you do not have add-entry access to the
parent directory or you do not have update access to the file. Restore continues
with the next file.

<backup device>, Backup Volume #<nn>, <date>, Mounted

<backup device>, Backup Volume #<nn>, <date>, Required

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
Restore cannot continue because the backup volume you supplied is not the one
that restore expected. Either you supplied a volume out of order or you supplied a
volume from a different backup session. Restore reprompts for the correct
volume.

<backup device>, Cannot Attach Volume

<backup device>, <condition code:mnemonic>

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
Restore cannot access the backup volume. This could be because there is no
volume in the backup device or because of a hardware problem with the device.
The second line of the message indicates the condition code encountered. Restore
continues to issue this message until you supply a volume that restore can access.

<pathname>, <condition code:mnemonic>, error during backup, file not
restored
The backup utility encountered this condition code while attempting to save this
file. Restore is unable to restore this file.

<pathname>, <condition code:mnemonic>, error during backup, restore
incomplete
The backup utility encountered this condition code while attempting to save this
file. Restore restores as much of the file as possible to the target volume.

<backup device>, error reading backup volume

<backup device>, <condition code:mnemonic>
Restore tried to read the backup volume but encountered an error condition,
possibly because of a faulty area on the volume. The second line of the message
indicates the condition code encountered.

<pathname>, <condition code:mnemonic>, error writing output file,
restore incomplete
Restore encountered this condition code while writing a file to the named volume.
Restore writes as much of the file as possible to the named volume.

restore HI command

366 Chapter 2 Command Descriptions

<pathname>, extension data not restored, <nn> bytes required
The amount of space available on the named volume for extension data is not
sufficient to contain all the extension data associated with the specified file. The
value <nn> indicates the number of bytes required to contain all the extension data.
This message indicates that the target volume to which files are being restored is
formatted differently than the source volume which originally contained the files.
To ensure that you restore all the extension data from the backup volume, you
should restore the files to a volume formatted with an extension size set equal to
the largest value reported in any message of this kind.

See also: Setting the extension size, format command, in this chapter

<backup device>, Invalid Input Specification
The logical name you specified for the backup device was not a logical name for a
device. Example invalid names are :ci: , :co:, and :home:.

<backup device>, logical name does not exist
The logical name specified for the backup device does not exist.

<backup device>, Not a Backup Volume

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:
The volume you supplied on the backup device was not a backup volume. Restore
continues to issue this message until you supply a backup volume.

<pathname>, E_IFDR Not Restored
For some reason, restore was unable to restore a file from the backup volume; it
continues with the next file. Another message usually precedes this message to
indicate the reason for not restoring the file.

output specification missing
You did not specify a pathname to indicate the destination of the restored files.

<pathname>, READ access required
You do not have read access to a file on the backup volume; restore cannot restore
the file.

<pathname>, too many input pathnames
You entered a list of logical names for backup devices. You can enter only one
input logical name per invocation of restore.

Select List Too Long
The pathname list you supplied with the select parameter exceeded 255 bytes.
Invoke restore again with a shorter list of pathnames.

Invalid Select : select = (filename [, filelist])
The pathname supplied with the select parameter was not enclosed in
parentheses.

HI command restore

Command Reference Chapter 2 367

select, unrecognized control
You supplied a list of pathnames with the select parameter and the list was not
enclosed in parentheses.

cannot attach VOLUME
The backup device is a remote device.

retension HI command

368 Chapter 2 Command Descriptions

retension
Retensions a tape, which winds the tape evenly on the spool. This can eliminate
potential problems when reading or writing the tape.

Syntax

retension : logical_name :

Parameter

:logical _name:
Logical name of a tape device.

Additional Information

✏ Note
You cannot use this command with a remote devices such as
those that you access through iRMX-NET or NFS.

Invoking this command does a fast-forward to the end of the tape, then rewinds the
tape back to the load point. This winds the tape evenly. The command displays
this message:

Starting retension operation

Error Messages
Invalid logical name

The logical name does not exist.

Device does not support retension
The specified logical name refers to a file (condition code E_IFDR) or to a device
other than a tape drive (condition code E_IDDR).

TCP/IP command rlogin

Command Reference Chapter 2 369

rlogin
Enables you to log in to a remote host using TCP/IP as if your terminal were
directly connected to that host.

▲▲! CAUTION
Do not use this command in an esubmit file or an
rq_c_send_command because queries for user input will not be
received.

Syntax

rlogin [-e c] [-8] [-l login] host

Parameters

-e c Specifies an alternate escape character. The default escape character is the tilde
(~).

-8 Enables the transmission of 8-bit data to facilitate communication with hosts using
an 8-bit character set, such as the Asian and European character sets. If this option
is not used, parity bits are stripped from the data.

-l login
Specifies a login name on the remote host. If you do not specify this option, the
remote login name used is the same as your local login name.

Additional Information

Rlogin attempts to use the autologin capability to log in to the remote host without
having to enter a user name or password. (The autologin validation process is
described in rshd). By default, your local login name is used as the account name
on the remote host. If the autologin fails, you are prompted for a login name and
password.

Rlogin sets your remote terminal type to be the same as your local terminal type, as
given in the TERM environment variable. Rlogin also attempts to send window
size updates (rows and columns) to the remote server. All echoing of input
characters takes place at the remote site, so that, except for delays, the remote login
is transparent. Flow control via <Ctrl-S> and <Ctrl-Q>, and flushing of input and
output on interrupts, are handled properly.

rlogin TCP/IP command

370 Chapter 2 Command Descriptions

To suspend the rlogin session and spawn a local shell, enter the rlogin escape
character followed by a z . Exiting the local shell resumes the suspended rlogin
session.

To terminate the rlogin session, either log out normally or enter the rlogin escape
character followed by a period at the system prompt.

See also: rlogind, rshd in this chapter
rhosts, TCP/IP and NFS for the iRMX Operating System

Diagnostics

Exit status is zero for normal termination, a positive number for error termination.

TCP/IP command rlogind

Command Reference Chapter 2 371

rlogind
The server for the rlogin program. The server provides a remote login facility with
authentication based on privileged port numbers.

✏ Note
The iRMX rlogin program server does not support autologin.
You must always enter your password.

Additional Information

The tcplisten server listens for incoming rlogin connections at the well-known port
assigned to rlogin (see /etc/services), and starts the rlogind daemon to service each
such request.

The following protocol is used to service each request:

1. The server checks the client's source port. If the port is not privileged (in the
range 0-1023), the server aborts the connection.

2. The server checks the client's source address. If the address is associated with
a host for which no corresponding entry exists in the host name database (see
/etc/hosts), the server aborts the connection.

Once the source port and address have been validated, rlogind propagates the
client terminal's baud rate and terminal type to the local process and provides an
iRMX login screen.

See also: rlogin command, in this chapter
hosts, services, TCP/IP and NFS for the iRMX Operating System

rlogind TCP/IP command

372 Chapter 2 Command Descriptions

Diagnostics

Exit status is zero for normal termination, a positive number for error termination.

All diagnostic messages are returned on the connection associated with the stderr,
after which any network connections are closed. An error is indicated by a leading
byte with a value of 1.

Hostname for your address unknown
No entry in the host name database existed for the client's machine.

Try again
A fork by the server failed.

No ptty devices available at this time, try later
There no more ptty device available for login.

Terminal type is too long for iRMX, try another
iRMX supports terminal names of up to only six characters.

No :config:terminals devices available at this time
There are no ptty terminals enabled (configured) in the :config:terminals file.

HI command rmextdbg

Command Reference Chapter 2 373

rmextdbg
Improves binding (linking) efficiency by removing SRCLINES entries
from OMF-386 linkable modules and producing a smaller version of
the file.

Syntax

rmextdbg filename.obj [filename.obj] [filename.obj]

Parameters
filename.obj

Object files to be processed.

Additional Information

SRCLINES are debug information segments in linkable modules (.obj files). They
contain the full pathname to the source code file that the object code came from.
Normally, there is one SRCLINES entry for every line of code, which uses a lot of
disk space and is not needed by iRMX debugging tools.

Removing this unneeded information improves binding speed while leaving in all
other debug information. Use this command on output from the PL/M compiler.

Rmextdbg processes the object files you enter on the command line, one at a time.
Memory is reserved to load the entire file. If there isn't enough memory for the
entire object file to be loaded, the program exits with an error. Otherwise,
rmextdbg scans for SRCLINES debug segments, removes them, and thus shrinks
the file.

When rmextdbg is finished, it writes the object file back out to disk.

See also: Example of a modified submit file using rmextdbg, in the PL/M
directory under /rmx386/demo
For C programs, use the nosourcelines compiler switch

rmxloc HI command

374 Chapter 2 Command Descriptions

rmxloc
Converts a segmented DOS .exe or a Windows .exp file and converts it to an
absolutely-located binary file.

Syntax

rmxloc def_file_name input_file -binary

Parameters
def_file_name

Directive file generated in the (TPUJ) screen of the ICU.

input_file
The .exe or .exp file generated by your third-party C/C++ compiler.

Additional Information

You can use the rmxloc command along with locdata and addloc to create an
application that is part of an iRMX-application system boot image. This enables
you to support first-level jobs generated using third-party tools.

See also: locdata, addloc commands, in this chapter,
C Compiler-specific Information, Programming Techniques and
AEDIT Text Editor

DOS command rmxtsr

Command Reference Chapter 2 375

rmxtsr
Provides the interface between DOS, ROM BIOS services, and the iRMX OS.

Syntax

rmxtsr

Additional Information
Invoke rmxtsr before using loadrmx. This utility performs all DOS and ROM
BIOS calls on behalf of the iRMX OS.

✏ Note
Rmxtsr runs at INT 85H; do not install other TSRs that chain
themselves to this interrupt level.

Rmxtsr is a DOS terminate and stay resident (TSR) program which runs in the
background, allowing other DOS programs to run. When the iRMX OS invokes
rmxtsr , the current DOS application program is halted and rmxtsr services the
iRMX request.

Rmxtsr must load in conventional DOS memory, the first 640 Kbytes, so your
system must not use DOS extended memory managers. These memory managers
put the microprocessor into Protected Mode, which interferes with iRMX for
Windows.

The rmxtsr program is divided into two parts:

Transient part
Executes when invoked. It reserves a portion of DOS conventional
memory for the resident part of the utility, sets up software interrupt
vectors to allow the iRMX OS to invoke the resident part of the
utility, and then terminates and removes itself from memory.

Resident part
Provides the DOS and ROM BIOS extension to the iRMX OS by
interpreting iRMX requests, issuing DOS or ROM BIOS calls and
sending the results back to the iRMX OS.

rmxtsr DOS command

376 Chapter 2 Command Descriptions

Rmxtsr handles requests as follows:

1. An application program makes an rqe_dos_request system call.

2. Rqe_dos_request sends the request to the TSR.

3. The TSR performs the appropriate DOS/ROM BIOS function and returns the
results to rqe_dos_request.

When rmxtsr runs, and no errors occurred, this message is generated:

iRMX Interface TSR Version x.x Installed

Error Messages
iRMX Interface TSR requires DOS V3.0 or later

Unknown DOS version
You are running the wrong version of DOS: rmxtsr will not work on systems
running DOS earlier than Version 3.3. Use ver at the DOS prompt to determine
the DOS version.

To reinstall a later version of DOS, first back up the DOS partition, and then
reformat the primary DOS partition. If you use the earlier version DOS backup
utility to do this, use the earlier version DOS restore utility; the later version of
restore will not work.

Alternatively, you can boot from a DOS System diskette and then run rmxtsr . You
may have problems invoking some DOS utilities on your hard disk, as these
utilities are an earlier version than the DOS utilities provided with the DOS version
you booted.

iRMX Interface TSR is already installed
Rmxtsr has already been invoked and cannot be invoked again. To reload the
utility, reboot the system.

TCP/IP command route

Command Reference Chapter 2 377

route
Manipulates the TCP/IP network routing tables. These are the tables used by the ip
module to determine which local network interface is used to transmit a packet.

Syntax

route -f
route [-f] [-n] add [net|host] destination gateway metric
route [-f] [-n] del [net|host] destination gateway

Parameters

-f Removes all gateway routes from the tables. When used with an add or del
parameter, this option removes gateway routes from the tables prior to making the
requested modification.

-n Prevents route from attempting to display symbolic names for hosts and networks
when reporting actions. The Internet address is displayed instead.

add Adds this route to the tables.

del Deletes this route from the tables.

net|host
Forces the destination of the route to be interpreted as a network or as a host. If
neither option is specified, the Internet address of the destination determines the
type. The destination is interpreted as a network if the host part of the Internet
address is 0 (INADDR_ANY) or if the address matches an entry in the networks
database. Otherwise, the destination is assumed to be a host.

destination
The name or Internet address of the host or network to which the route leads. To
construct a default route, specify default as the destination.

gateway
The name or Internet address of the gateway through which packets for this
destination should be routed.

metric The number of hops from the local host to the destination. This is used as a
weighting factor to select the best route in cases where multiple routes exist. The
metric between the local host and another host on the local network is 0. If the
destination is connected through a gateway, the metric is greater than 0.

route TCP/IP command

378 Chapter 2 Command Descriptions

Additional Information

If you use a symbolic name for the destination or gateway parameters, address
translation for that name must be available. For host names, the name and address
must be in the /etc/hosts file or on the D?NS server if you are using a DNS client..
For a network destination, the name and address must be in the /etc/networks file.

✏ Note
The only iRMX systems can be gateway routers are Multibus II
boards that run an iNA 960 job with multiple subnets.

See also: Multibus II subnets, Network User’s Guide and
Reference
i*.job , System Configuration and Administration

To display the current routing tables use the command netstat -r. Routing tables
are the software complement to the hardware gateway. A route is added
automatically to the tables during network initialization for each network interface
on the local host. You must add routes to hosts on subnets or on interconnected
networks. These new routes enable the ip module to forward packets through
gateways connecting the subnets or internets. You typically put the appropriate
route command(s) in the tcpstart.csd script, somewhere after the command that
invokes the inetinit daemon.

The simplest network configuration consists of multiple hosts on a single network.
Each such host has two interfaces, a software loopback interface and a network
interface. The routing table for each host is automatically initialized with an entry
for each interface when the network is brought up. This initial configuration is
sufficient to support communications and you need not use the route command.
The example below is a routing table automatically constructed for host 89.0.0.1,
which has an Ethernet interface (en0) and a software loopback interface (lo0).

Routing tables
Destination Gateway Flags Refcnt Use Interface
89.0.0 89.0.0.1 U 0 293685 en0
127.0.0.1 127.0.0.1 UH 0 1771 lo0

In this example, the first route, through interface en0, is to the network 89.0.0.
Packets sent to any host on that network will be routed through this interface. The
second route, through interface lo0, is to the host 127.0.0.1. Only packets sent to
the loopback host will be routed through this interface. Packets with any other
destination, whether to another host on network 127 or to a network other than 89
or 127, cannot be forwarded by the ip module. Attempts to send such packets
result in the error messages Host is unreachable and Network is
unreachable .

TCP/IP command route

Command Reference Chapter 2 379

Figure 2-1 shows an example of a gateway connecting two networks, 11 and 89.
The gateway host has two interfaces, one to each network. The other hosts have an
interface to one of the two networks. The Internet address is assigned to the
network interface, not to the actual host. You can address the gateway as host 3 on
network 11 and as host 8 on network 89.

(One method of simplifying the administration of an internetwork is to assign each
host a unique address and differentiate the interfaces only in the network portion of
the address. In Figure 2-1, the gateway interface addresses would then be changed
to either 11.0.0.3 and 89.0.0.3 or 11.0.0.8 and 89.0.0.8. That method is not used in
the description of this example.)

W-3400

11.0.0.311.0.0.5

A Gateway B

89.0.0.8 89.0.0.7

Network 11

Network 89

Figure 2-1. Gateways

On the gateway host, the initial routing table will have three entries: one to
network 11 through interface 11.0.0.3, one to network 89 through interface
89.0.0.8, and one to the loopback host 127.0.0.1 through interface 127.0.0.1. With
this table, the gateway host can talk to any host on either network. No additional
entries need to be added to the gateway's routing table.

On the non-gateway hosts in both networks, the initial routing table will have two
entries: one to the network to which they are directly connected and one to the
loopback host. These hosts can talk to any other host on their own network.
However, none of them knows that a gateway to another network exists. Without
additional routing table entries to identify the gateway, no communication can take
place between non-gateway hosts on different networks.

route TCP/IP command

380 Chapter 2 Command Descriptions

Adding a Route Between Two Hosts

To enable hosts A and B of Figure 2-1 to communicate, you would use the route
command to modify the routing tables on both hosts. On host A, add a route
through the gateway to host B with the command:

route add host 89.0.0.7 11.0.0.3 1

In this example, the route command tells the ip module to forward all packets for
host 89.0.0.7 through the interface with address 11.0.0.5 to the gateway at address
11.0.0.3. The keyword host identifies the destination as a host address. It is an
optional entry in this case because the address 89.0.0.7 cannot be misinterpreted as
a network address. The metric of 1 in the last field of the command indicates that
only one gateway lies between the source 11.0.0.5 and destination 89.0.0.7.

On host B add a route to host A with the command:

route add host 11.0.0.5 89.0.0.8 1

If only one of the two routes is installed, packets can be sent in only one direction,
and the networking commands will not function properly.

Adding a Route to Another Network

To enable hosts A and B of Figure 2-1 to communicate through the gateway to any
host on the other host's network, you would modify the routing tables differently.
The example below is a route command to execute on host A that adds a route
from host A through the gateway to any host on network 89.

route add net 89 11.0.0.3 1

In this example, the route command tells the ip module to forward all packets for
network 89 through the interface with address 11.0.0.5 to the gateway at address
11.0.0.3. The keyword net identifies the destination as a network address. If this
keyword had been omitted from the command line, the address 89 could have been
misinterpreted by route. The metric of 1 indicates that only one gateway lies
between the source (11.0.0.5) and destination (89.0.0.7).

To add a matching route back through the gateway, execute the command below on
host B and on every host on network 89. The return routes can be either host-to-
host, as described previously, or host-to-network, as shown below. In this example,
the route command tells the ip module to forward all packets for network 11 to the
gateway at address 89.0.0.8.

route add net 11 89.0.0.8 1

TCP/IP command route

Command Reference Chapter 2 381

Adding a Default Route

The most general use of the route command is to establish a default route for all
outgoing remote traffic that does not have a specific route. Again using the
example of Figure 2-1, this command executed on host A adds a default route from
host A through the gateway to any remote destination.

route add default 11.0.0.3 1

In this example, the route command tells the ip module to forward packets for
remote destinations to the gateway at address 11.0.0.3. No net or host keyword
is required because the destination default cannot be misinterpreted. The metric
of 1 is the minimum number of gateways between the source and any nonlocal
destination.

On each remote host, you must also add a matching default route back to this host
before communications can take place.

Subnet Routing

You use the route command to construct routes for subnets in the same manner
that you construct interconnected networks. You must add routes to each host to
identify how packets are to be forwarded to hosts on the other subnetworks.
Figure 2-2 shows a network with address 128.1, which consists of five hosts on
three subnetworks. In this figure, hosts A, C, and E are individual hosts on
different subnets. Hosts B and D are gateways between subnets. The subnets are
named lab, research, and support.

Figure 2-2 lists the ifconfig and route commands that should be executed on each
host during the network initialization. In the ifconfig commands, the host name
assigned to an interface can be substituted for the Internet address. Netmasks in
these commands can be specified as a hexadecimal number (0xffffff00) or as a
four-octet address (255.255.255.0).

The route commands specify the destination network with a subnet name. You
could use the network address instead. If you use the keyword net in the
command, the network address can be specified either with or without the trailing
zero octet. For example, the research network address can be given as either
128.1.1 or 128.1.1.0. If you don't include the net keyword in the route command,
you must specify the trailing zero octet in the network address to prevent the
address from being misinterpreted as 128.1.0.1.

A single default route, similar to the one installed on host E, can be installed on
host A instead of the two network routes shown in Figure 2-2.

route TCP/IP command

382 Chapter 2 Command Descriptions

W-3401

A

B

C

ifconfig en0 128.1.2.3 netmask 255.255.255.0
route add net research 128.1.2.1 1

route add net lab 128.1.2.1 2

Subnetwork
128.1.2
(support)

ifconfig en0 128.1.2.1 netmask 0xffffff00
ifconfig en1 128.1.1.1 netmask 0xffffff00

route add net lab 128.1.1.2 1

Subnetwork
128.1.1

(research)

ifconfig en0 128.1.1.3 netmask 255.255.255.0
route add net support 128.1.1.1 1
route add net lab 128.1.1.2 1

ifconfig en0 128.1.3.1 netmask 0xffffff00
route add default 128.1.3.2 1

Subnetwork
128.1.3
(lab)

ifconfig en0 128.1.1.2 netmask 255.255.255.0
ifconfig en1 128.1.3.2 netmask 255.255.255.0

route add net support 128.1.1.1 1

E

D

en0

128.1.2.3

en0

128.1.2.1

en1

128.1.1.1

en0

128.1.1.3

en0

128.1.1.2

en1

128.1.3.2

en0

128.1.3.1

Figure 2-2. Subnet Routing

The basic principles described above can be applied to more complex network
topologies. In all cases, the key is to clearly understand the relationships to be
established before attempting manual maintenance of the routing tables.

See also: Setting Up TCP/IP with IP Routers, TCP/IP and NFS for the iRMX
Operating System

TCP/IP command route

Command Reference Chapter 2 383

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.
These messages may be returned:

add host destination : gateway gateway flags flags

add network destination : gateway gateway flags flags
The specified route was successfully added to the route table.

del host destination : gateway gateway flags flags

del network destination : gateway gateway flags flags
The specified route was successfully deleted from the route table.

destination gateway done
This message is displayed for each route deleted by the -f option.

not in table
A delete operation was attempted for an entry that wasn't present in
the tables.

routing table overflow
The entry was not added to the table because the table was full.

rpcinfo NFS command

384 Chapter 2 Command Descriptions

rpcinfo
Reports information about RPC services running on hosts, and reports RPC
statistics for the local host.

Syntax

rpcinfo -p host

rpcinfo -t host program [version]

rpcinfo -u host program [version]

Parameters

-p Specifies the port mapper option. Specifying this option causes rpcinfo to call the
RPC server and return a list of all the RPC services registered with the port mapper
on the specified host.

host Indicates the machine for which information is returned.

-t Specifies the TCP transport option. Specifying this option causes rpcinfo to list a
specific RPC service by program number and version on a specific host under the
TCP protocol.

-u Specifies the UDP transport option. Specifying this option causes rpcinfo to list a
specific RPC service by program number and version on a specific host under the
UDP protocol.

program
The program name or number for a specific RPC service.

version
The version number for program for a specific RPC service.

Additional Information

In general, the rpcinfo command calls the RPC server and reports what it finds.
The rpcinfo command is useful in troubleshooting NFS problems such as
mounting. For example, if the attachdevice command to a remote device fails,
issuing rpcinfo to the involved server can report if the mount and NFS services are
available.

NFS command rpcinfo

Command Reference Chapter 2 385

You can use rpcinfo to report information as follows:

• List all the RPC services registered with the port mapper on a specific or local
host (Port mapper option: -p).

• List a specific RPC service by program number and version for a particular
host under either UDP or TCP transport protocols (TCP transport option: -t or
UDP transport option: -u).

Listing RPC Services Registered with the Port Mapper

To list the RPC services registered with any host use the port mapper option:

rpcinfo -p host

For example, entering this command returns the RPC services registered with the
port mapper on the local host:

- rpcinfo -p

The output produced is similar to the following:

get registered programs on localhost ...
program vers proto port service
100000 2 tcp 111 rpcbind
100000 2 udp 111 rpcbind
100003 2 udp 2049 nfs
100005 1 tcp 977 mountd
100005 1 udp 976 mountd

Checking for a Particular RPC Service

To ensure that a specific RPC service is available on a specific host under UDP
transport protocol use the UDP transport option:

rpcinfo -u host program [version]

For example, entering this command checks to see if the RPC service named nfs
and version 2 is registered on the host named “jedi” under the UDP transport
protocol:

- rpcinfo -u jedi nfs 2

The output produced is similar to the following:

ping jedi for nfs (#100003, ver 2) using udp port 2049 ...
program 100003 version 2 ready and waiting

See also: rpc file, TCP/IP and NFS for the iRMX Operating System

rsh TCP/IP command

386 Chapter 2 Command Descriptions

rsh
Executes the specified command on a remote host running TCP/IP; rsh terminates
when the remote command does. If you omit a command, rsh logs you in to the
remote host using rlogin .

✏ Note
You can use this command in an esubmit file but errors will not
percolate to the esubmit variable commandexcep .

Do not use this command with an rq_c_send_command system
call.

Syntax

rsh host [-l login] command

Parameter
-l login

Specifies a login name on the remote host if it is different from your local login
name.

Additional Information

Rsh depends on the autologin capability and performs the automatic user validation
described in rshd before executing the command. You must have a valid account
on the remote host. By default, your local login name is used as the account name
on the remote hosts. Use the -l login option to specify an alternate login name
on the remote host.

Rsh maps its local standard input, output, and error to that of the command being
executed on the remote host. Interrupt, quit, and terminate signals are propagated
to the remote command along with any keyboard input. Interactive commands that
do not require tty support, such as skim and dir , are supported by rsh. Commands
that require tty support, such as aedit, cannot be executed using rsh.

TCP/IP command rsh

Command Reference Chapter 2 387

Shell metacharacters that are not quoted are interpreted on the local machine, while
quoted metacharacters are interpreted on the remote machine. Thus, the command

rsh otherhost cat remotefile > localfile

copies the remote file remotefile to the local file localfile, while

rsh otherhost "cat remfile1 > remfile2 "

copies the remote file remfile1 to the remote file remfile2.

See also: rlogind , rshd in this chapter
rhosts, TCP/IP and NFS for the iRMX Operating System

Diagnostics

Exit status is zero for normal termination, a positive number for error termination.

rshd TCP/IP command

388 Chapter 2 Command Descriptions

rshd
The server for the rsh and rcp programs. The server provides remote execution
facilities with authentication based on privileged port numbers.

Additional Information

The tcplisten server listens for incoming rsh connections at the well-known port
assigned to rsh (see /etc/services), and starts the rshd daemon to service each such
request. When a service request is received the following protocol is initiated:

1. The server checks the client's source port. If the port is not a privileged port
(in the range 0-1023), the server aborts the connection.

2. The server reads characters from the transport endpoint up to a null byte. The
resultant string is interpreted as an ASCII number, base 10. If this number
received is non-zero, it is interpreted as the port number of a secondary stream
to be used for the stderr. A second connection is then created to that port on
the client's machine. The port number of this second connection must also be
in the range 0-1023.

3. The server checks the client's source address. If the address is associated with
a host for which no corresponding entry exists in the host name data base (see
/etc/hosts), the server aborts the connection.

4. The server reads, at most, eight characters from the initial transport endpoint
up to a null byte. This string is used as the remote login name (on the server's
host).

5. The server reads, at most, eight characters from the initial transport endpoint
up to a null byte. This string is interpreted as the local login name (on the
client's host).

6. The server reads a null-terminated string from the initial transport endpoint.
This string is interpreted as a command to be passed to a shell on the server's
host. The length of the command is limited by the upper bound on the size of
the host's argument list.

TCP/IP command rshd

Command Reference Chapter 2 389

7. Rshd then validates the user according to the following steps.

a. The system password file (/rmx386/config/udf) is searched for an entry for
the local login name. If the search fails, the connection is terminated.

b. Rshd then changes (chdir) to the home directory of that login. If the chdir
fails, the connection is terminated.

c. If the remote user is not the Super user (user ID 0), the /etc/hosts.equiv file
is searched for the client's host name. If the search succeeds, the remote
login is authenticated (proceed to step 8).

d. If the search fails, the rhosts file in the remote user's home directory is
searched for an entry containing the client's host name and the local user
name. If this search fails, the connection is terminated.

8. A null byte is returned on the stderr connection and the command line is
passed to the normal login shell of the user. The shell inherits the network
connections established by rshd.

See also: tcplisten, in this chapter
hosts, host.equiv file, TCP/IP and NFS for the iRMX Operating
System

Diagnostics

Exit status is zero for normal termination, a positive number for error termination.

All diagnostic messages are returned on the stderr connection, after which the
initial network connection is closed. An error is indicated by a leading byte with a
value of 1 (0 is returned in step 8 above upon successful completion of the
autologin validation process).

locuser too long
The name of the user on the client's machine is longer than eight characters.

remuser too long
The name of the user on the remote machine is longer than eight characters.

command too long
The command line passed exceeds the size of the argument list as configured into
the system.

Hostname for your address unknown
No entry existed in the host name database for the client's host name.

Login incorrect
No password file entry for the user name existed.

No remote directory
The chdir to the user's home directory failed.

rshd TCP/IP command

390 Chapter 2 Command Descriptions

Permission denied
The authentication procedure described above failed.

Can't make pipe
The creation of the stderr connection failed.

Try again
A fork by the server failed.

TCP/IP command ruptime

Command Reference Chapter 2 391

ruptime
Displays the status of the remote hosts on the network that are running the rwhod
daemon.

✏ Note
You can use this command in an esubmit file but errors will not
percolate to the esubmit variable commandexcep .

Do not use this command with an rq_c_send_command system
call.

Syntax

ruptime [-ar [lut]]

Parameters

-a Report on all users, including those idle for an hour or more.

-r Reverse the sort order (the default sorting is by host name).

-l Sort by load average.

-u Sort by number of users.

-t Sort by uptime.

Additional Information

The ruptime display includes:

• host name
• host state (up or down)
• length of time the host has been in that state (days+hours:minutes)
• number of users currently logged in
• average number of processes over the last one, five, and fifteen minutes

(processes running on the iRMX OS will not be displayed)

ruptime TCP/IP command

392 Chapter 2 Command Descriptions

Hosts for which no status report has been received for eleven minutes are shown as
being down. Users idle an hour or more are not counted unless the -a parameter is
specified. Normally, the listing is sorted by host name.

See also: rwho, rwhod
/tmp/rwho.dir/*.who data files

Diagnostics

Exit status is zero for normal termination, a positive number for error termination.

TCP/IP command rwho

Command Reference Chapter 2 393

rwho
Reports who is logged on hosts in the local network running the rwhod server.

✏ Note
You can use this command in an esubmit file but errors will not
percolate to the esubmit variable commandexcep .

Do not use this command with an rq_c_send_command system
call.

Syntax

rwho [-a]

Parameter

-a Report on all users, including those idle for an hour or more.

Additional Information

The information for this display is sent and received by the rwho daemon rwhod;
only hosts running this daemon are included in the status display. The display
includes:

• user name
• host and terminal names
• date and time the user logged in

• amount of time, in minutes, the terminal has been idle (this field is not
supported by the iRMX OS)

If no report has been received from a machine for five minutes, rwho assumes that
the machine is down and does not report its users. Users who have been idle for an
hour or more are omitted from the display unless the -a parameter is specified.

See also: ruptime , rwhod
/tmp/rwho.dir/*.who file for information about other machines

Diagnostics

Exit status is zero for normal termination, a positive number for error termination.

rwhod TCP/IP command

394 Chapter 2 Command Descriptions

rwhod
The daemon that maintains the database used by the rwho and ruptime commands.
Its operation depends on the ability to broadcast messages on a network.

Syntax

sysload :system:psh rwhod

Additional Information

Rwhod operates as both a producer and consumer of status information. As a
producer, it periodically determines the state of the system and constructs status
messages, which it broadcasts. Rwhod reads the :config:accounting.log file to get
the local host status information. You normally run rwhod from the network
initialization file, /etc/tcpd.csd. Before running rwhod, enable system account
logging with the accounting command. As a consumer, rwhod listens for status
messages from other rwhod daemons, validates them, and records the data in a
collection of files located in the directory /tmp/rwho.dir.

The rwhod daemon transmits and receives messages at the well-known port
assigned to rwho (see the /etc/services file).

Rwhod generates status messages approximately once every three minutes. All
data is converted to network byte order prior to transmission. Load averages are
the load averages over the 1, 5, and 15 minute intervals prior to a daemon's
transmission. The host name included is that returned by gethostname. The
message also contains information about the users logged in to the sending
machine. This information includes the ttyname, userid, hostname (if remote), and
login time for each non-idle terminal line, and a value indicating the time since a
character was last received on the terminal line.

Messages received by the rwhod daemon are discarded if they originated at a port
other than that assigned to rwho, or if the host name in the message contains any
unprintable ASCII characters. Valid messages received by rwhod are stored in a
file constructed from the host name. These files contain only the most recent
message, in the format described above.

See also: rwho, ruptime, accounting in this chapter

Diagnostics

Exit status is zero for normal termination, a positive number for error termination.

CLI command set

Command Reference Chapter 2 395

set
Displays or changes CLI environment values. Only one value may be set at a time.

Syntax

set [terminal|minbackpool|maxbackpool|aliastable|prompt
[= value |myslot]]

Parameters
terminal

The terminal type for which CLI line-editing features are set.

minbackpool
The minimum memory pool size for background jobs.

maxbackpool
The maximum memory pool size for background jobs.

aliastable
The size of the table used to store aliases.

prompt The prompt displayed by the CLI.

= value
The corresponding string or numeric value for each keyword. Values for
minbackpool , maxbackpool , and aliastable are a decimal number of Kbytes.
The prompt string can be up to 14 characters. If you omit the value parameter,
values are displayed rather than set.

myslot An option only for the prompt that sets the prompt to the slot number of the board
in a Multibus II system.

Additional Information

If you enter this command with no parameters, the CLI displays the current values,
similar to:

CLI PARAMETERS are:
terminal = ANY
prompt = -
minbackpool = 6K
maxbackpool = 384K
alias table size = 2K

If you enter the command with a parameter name but no value, the current value
for that parameter is displayed.

set CLI command

396 Chapter 2 Command Descriptions

Options

Set terminal

Your initial terminal name is defined in the :config:terminals file. The set
terminal command changes how the CLI supports line-editing by specifying a new
terminal type. The terminal command has the format:

set terminal=<terminal name>

In the command above, <terminal name> is the name of a terminal defined in
the :config:termcap file. This file contains several default terminal definitions. If
the name is not defined in this file, the CLI displays this error message and sets the
terminal name to the default ANSI standard:

<terminal name> is not found in :config:termcap
default ANSI standard assumed

You can add terminal definitions to the :config:termcap file. This file also contains
additional configuration commands for AEDIT Version 2.2, Inamon Version 1.8,
and the Virtual Terminal Consumer V3.1 or later versions.

See also: termcap file, System Configuration and Administration

Assignments made with the set command are only valid for the current logon
session. To change the terminal definition permanently, change the terminal name
in the :config:terminals file.

See also: Terminal configuration files, System Configuration and
Administration

Set minbackpool and set maxbackpool

The minbackpool and maxbackpool parameters establish new default values for
the minimum and maximum memory pool sizes used in background jobs. (The
default values can be overridden for a specific background job with an entry in the
background command.) The initial minimum default is 6 Kbytes. The initial
maximum default is 384 Kbytes, unless you have a maximum memory partition
less than 384 Kbytes; then the default is 0. The default values provide enough
memory for most ordinary jobs. The commands have the format:

set minbackpool=<size>
set maxbackpool=<size>

CLI command set

Command Reference Chapter 2 397

Enter a decimal number of Kbytes (do not enter the K). Use a minimum value
large enough to accommodate the background stack and a maximum value less
than (user_pool_max - 200 Kbytes). If the maximum value is greater than
(user_pool_max - 200 Kbytes), you may not have enough memory to execute
foreground jobs. The values are set as you entered them, but you may want to set
different values. If this occurs, the CLI displays this warning:

WARNING: maxbackpool attribute can avoid foreground
execution due to memory limits

If the maximum value you enter is less than the minimum value, this message is
displayed:

WARNING: maxbackpool < minbackpool, value was assigned use

set command to set background memory pools

Set aliastable

The default size of the memory table used to store aliases is 2 Kbytes. The
aliastable parameter establishes a new size, either smaller or larger. The
format of the command is as follows, where <size > is a decimal number of
Kbytes (do not enter the K).

set aliastable = < size>

Set prompt

The default CLI prompt is - (a hyphen). In iRMX for Windows it is RMX>. The
prompt parameter sets a new prompt string. The format of the command is as
follows, where <string> is a string of up to 14 characters:

set prompt = <string>

On a Multibus II system or on a Multibus I system using the Multibus II Nucleus
communication system, you may set the prompt to the string myslot . This causes
the CLI to include the Multibus II host ID in the prompt. If the Multibus II board is
in slot 2, the new prompt would be:

[2]-

Multibus I and PC bus boards are considered to be in slot 0.

set CLI command

398 Chapter 2 Command Descriptions

Error Messages

terminal name is not found in :config:termcap:

default ANSI standard assumed
The terminal name you entered is not defined in the terminal definition file. The
default ANSI standard is assumed to be the terminal name until you redefine it
using the set command.

<alias size>, new alias table is not enough to hold user aliases
The new value you entered is too small to contain all the aliases you have assigned.
The actual table size is not changed. This message does not appear if you reduce
the size of the alias table and the new size is still large enough for the current
aliases you have assigned.

set, wrong syntax
You entered the command incorrectly.

set illegal parameter, parameters are:
terminal prompt aliastable
minbackpool maxbackpool
You entered the command with an illegal parameter.

NET command setname

Command Reference Chapter 2 399

setname
Enters iRMX-NET server names and addresses in the local Name Server object
table.

Syntax

setname server_name [SNIDx|n etwork_address] [nfs|hid|rls] [r1]

Parameters
server _name

The name of a local or remote server system. The maximum length is 16
characters and the name must be unique within the network. If the network address
is omitted, the name is assigned to the local server.

SNIDx The configured subnet in the iNA 960 job. The number x can be in the range 1-4.
The transport address is built using the xth subnet configured in the iNA 960 job.

network _address
A transport address that includes the Ethernet address of the system specified by
server _name. This is the same format as the 34-character transport address
entries in the :sd:net/data file.

See also: /net/data.ex file, Chapter 11, Network User’s Guide and Reference,
for the other addresses you can set

nfs The entry is to be made only under property type 3H, which specifies that this
name and address represent a file server. (This parameter has no relationship to the
TCP/IP-based NFS.)

hid The entry is to be made only under property type 5H, which specifies that the
address is the host-unique ID. When you use this parameter, the Name Server
catalogs the address for use by the getname command. Specify this parameter for
systems acting only as clients.

rls The entry is to be made only under property type 6H, which specifies that the
address is the iRMX load server.

If neither nfs , rls , nor hid is specified, the network _address is cataloged in
different forms under property types 3H (file server), 6H (iRMX load server), and
5H (host-unique ID).

r1 The address is to be entered in iNA Release 1.0 format rather than the current
format. This option is not available if a subnet ID is specified.

setname NET command

400 Chapter 2 Command Descriptions

Additional Information

If a system is configured as an iRMX-NET server only, or as both a server and
client, it must be given a server name before it can respond to client requests. If
the name is not set during system initialization, the system manager must invoke
the setname command at least once to catalog the local server name with the
network Name Server.

The first command shown below catalogs the local system under the property type
file server; the second catalogs the host-unique ID, making the local system name
available to users who invoke the getname command. The third command
catalogs both entries.

setname server_name nfs
setname server_name hid
setname server_name

If the local name and address exists in the :sd:net/data file, the name is
automatically cataloged when the system initializes, or if network initialization
fails you can catalog the file's contents with the loadname command. In this case,
you do not need to use setname to catalog the local name. However, you may
want to catalog the name and address of a system that is not in the :sd:net/data file.
To do this, specify the remote system address in the setname command.

The format of the transport address is shown above, where you insert a TSAP ID
and an Ethernet address. If you invoke setname from a Multibus II system and
catalog the address under property type 5H (using the hid parameter or using
neither nfs nor hid), setname catalogs the Ethernet address and appends the slot
number of the board where it is invoked.

An example Ethernet address has the form 00AA00025A70 . A TSAP ID indicates
the type of system and its purpose. Table 2-6 shows TSAP IDs for various types of
systems.

Table 2-6. TSAP IDs Used in Transport Addresses

TSAP ID Type of System

0001 Any MS-DOS system

1000 iRMX-NET file server

1100 iRMX-NET file consumer

8000 Unix (and other OS) file server

8100 Unix (and other OS) file consumer

NET command setname

Command Reference Chapter 2 401

✏ Note
In Multibus II systems, use the slot number of the host board in
the last two digits of the TSAP ID. This allows multiple hosts in
one system to share a single network controller board.

You can invoke the setname command multiple times, giving different names for
local and remote servers. Use the same name to catalog a server with the nfs and
hid parameters. Use unique names to catalog different systems. The names are
cataloged with the Name Server only as long as the local system is running; if you
reboot the system, invoke setname to catalog them again.

See also: deletename, getname, and listname commands, in this chapter

The format of the transport address shown here is for iNA 960 Release 3.0 or later.
The format is different if you specify the R1 parameter. This switch is used for
compatibility with systems running iNA Release 1.0 software.

See also: Network User's Guide and Reference

Error Messages
illegal option

The option specified for the command is not correct. Choose nfs , hid , or r1 as
the command option.

<server>, name table full
The local object table is full. Each server specified with setname occupies two
entries in the object table. You can increase the table size (it is configurable) or
delete some objects from the object table. Use the listname command to display
entries in the table.

<server>, name already exists
The specified server name is already defined on the network. Select a different
server name.

illegal name
The specified server name is more than 16 characters long. Select a shorter name.

illegal value
The specified network address is in the wrong format. Re-enter the address.

share NFS command

402 Chapter 2 Command Descriptions

share
Makes local file systems mountable by remote NFS clients (defines them as NFS-
shared). This command can also display the local NFS-shared file systems. The
NFS server jobs must be loaded to use this command.

Syntax

share

share [-o specific_options] [- s symbolic_name] pathname

Parameters
-o specific_options

Specifies options for the file system. These options define how remote clients can
access the NFS resource. The argument specific_options must be specified as
follows:

rw The file system can be read or written by all clients.

rw= client [: client] ...
The file system can be read or written by listed clients.
This access overrides the ro option for any clients in the list.

ro The file system can be read but not written by all clients.

ro= client [: client] ...
The file system can be read but not written by the listed clients.
This access overrides the rw option for any clients in the list.

anon= uid Sets the user identification for unknown (anonymous)
users. By default, unknown users are given world
access to the file system. Setting uid to -1 denies access
to the file system by anonymous users.

root= host [: host] ...
Specifies which hosts can have Super user (root) access.
By default, no remote host is allowed Super user access.

-s symbolic_name
Specifies the symbolic name of the local file system that can be mounted by remote
NFS clients. This is the name that the clients use when attaching or mounting the
file system.

pathname
Specifies the local pathname of the file system being defined as NFS-shared. The
pathname must include the logical drive name; such as :sd:user/bill.

NFS command share

Command Reference Chapter 2 403

Additional Information

The share command makes local file systems available for attaching or mounting
by remote NFS clients by adding an entry in /etc/sharetab.cf. If no argument is
specified, then share displays all NFS-shared resources for the local host. You can
use combinations of specific_options to define exactly how remote clients can
access the shared file system.

Once a directory is defined as NFS-shared with the share command, the directory
remains shared until you unshare it with the unshare command.

See also: unshare command
sharetab.cf file, TCP/IP and NFS for the iRMX Operating System

Displaying NFS-Shared File Systems for the Local Host

To show the NFS-shared resources for the local host enter the share command
without any arguments:

-share

The output produced is similar to the following:

:sd:user/bill /bill rw my directory
:sd:rmx386 /sd/rmx386 ro rmx config

Items are listed in order of pathname, symbolic name, specific options, and
description

Example of Defining a File System as NFS-Shared

This command defines the local resource :sd:/user/bob/project as NFS-shared. All
NFS clients are given read-only access and anonymous users are denied access.
The symbolic name by which remote clients can attach (mount) the file system is
“bobproj”:

- share -o ro,anon=-1 -s bobproj :sd:/user/bob/project

share NFS command

404 Chapter 2 Command Descriptions

Special Options Restrictions

You can enter any combination of the special options on the command line.
However, be aware of these restrictions:

• If the same client exists in both the rw= client [: client] ... and the
ro= client [: client] ... option, the client will have read/write privileges.

• The root= host [: host] ... option is independent of the rw , ro ,
rw= client [: client] ... , and ro= client [: client] ... options.

• When entering more than one special option, no whitespace can exist between
the options.

Here are some examples:

- share :sd:tmp Gives read/write access to all hosts.

- share -o rw :sd:tmp Gives read/write access to all hosts.

- share -o rw=hosta :sd:tmp Gives read/write access to hosta, but
denies access to all other hosts.

- share -o ro :sd:tmp Gives read-only access to all hosts.

- share -o ro=hosta :sd:tmp Gives read-only access to hosta, but
denies access to all other hosts.

- share -o rw,ro=hosta :sd:tmp Gives read-only access to hosta, and
read/write access to all other hosts.

- share -o root=hostb -s /var :sd:/user/top/variables
Gives read/write access to all hosts.
Specifies hostb as having Super user
access. And, defines a symbolic /var
for the shared file system.

- share -o anon=-1 :sd:tmp Gives read/write access to all hosts.
Denies access to any anonymous users.

NFS command showmount

Command Reference Chapter 2 405

showmount
Reports information on mounted and shared NFS resources.

Syntax

showmount [-a | -d | -e] [host]

Parameters

-a Lists directories that have been mounted by each client.

-d Lists directories on the host hat have been mounted.

-e Lists shared resources (exports) on the host.

host Specifies the host for which information is to be returned. Omitting this parameter
causes showmount to return information on the local server only.

Additional Information

The showmount command returns information about NFS-shared file systems
within a Network File System. It lists the NFS resources shared by the specified
host or lists clients that have mounted the host’s resources. Entering showmount
without a list parameter (-a , -d , or -e) displays a list of clients that have mounted
resources from the host.

Here are some examples:

This example lists the exports on host ds9:
-showmount -e ds9

export list for ds9:
/home/jeff (everyone)
/usr (everyone)
/var jedi, vader

This example lists the directories on host ds9 that been mounted:
-showmount -d ds9

directory mount list for ds9:
/home/jeff
/usr

showmount NFS command

406 Chapter 2 Command Descriptions

This example lists the clients that have mounted from host ds9:
-showmount ds9

client mount list for ds9:
jedi
vader

This example lists each directory a client has mounted from host ds9:
-showmount -a ds9

client/directory mount list for ds9:
jedi:/home/jeff
jedi:/usr
luke:/home/jeff

See also: share, unshare, in this chapter

HI command shutdown

Command Reference Chapter 2 407

shutdown
Shuts the system down in an orderly fashion; can only be invoked by the Super
user. All HI users are warned at fixed intervals of an impending shutdown, until
the shutdown takes place.

Syntax

shutdown [p] [w = num] [sd=: device_name :]
[b [d= list |all]]

Parameters

p(artial)
Requests a partial shutdown. HI terminals are locked and all HI jobs except this
operator's are aborted.

w(ait) = num
The delay period in minutes (0 to 30) before shutdown procedures begin. The
default value is 10. A value of 0 indicates no delay.

sd = :device_name :
A logical name for the system device containing the system directory and the
volume master files. Colons are required. The device name must be a named
volume that is currently attached. The default value is :sd:. Although the system
device may be different than the default, do not change it unless you have a
specific reason to do so.

b(ackup)
The shutdown utility creates a backup of the system device volume master files
and any other devices specified in the devices parameter.

d(evices) = list |all
Backs up the fnode files on the specified devices and marks the devices as shut
down. List is a list of logical device names surrounded by colons and separated
by commas. All specifies all attached EIOS logical named devices.

Additional Information

This command indicates a 10 minute wait, a backup of the fnode file, and the
marking of :dev1: and :dev2: as shut down on the volumes.

shutdown W=10 B D=:dev1:,:dev2:,:sd: <CR>

shutdown HI command

408 Chapter 2 Command Descriptions

You may use the partial option to delete only a limited number of HI users, such
as when backing up a disk. When the system is ready to return to general use,
invoke the unlock command to reinitialize all users.

The logical operations defined in the shutdown utility are shown below:

Operation Function
Terminal locking Locks all HI terminals.
Warnings Issues a warning every 5 minutes until 5 minutes before

shutdown, then issues a warning every minute.
Job deletion Deletes all HI user jobs, excluding the caller's job.
Time stamping Time-stamps the system directory.
Backup Backs up all fnode files.
Detaching Detaches all EIOS named and remote devices.
Marking Marks the volume as shutdown.
Delete job tree Deletes the caller's job tree.

All HI terminals are locked and the associated HI User Job Tree is deleted.

The default delay period of 10 minutes allows time to complete any cleanup
procedures; you may specify a different delay. When you invoke shutdown, this
message is issued to all terminals except your own at 5 minute intervals. When
less than 5 minutes remain, this message is issued at one minute intervals:

*** system WILL BE shutdown IN nn MINUTE(S)

All terminals remain active during the delay period, except the terminal from
which shutdown is invoked. This terminal becomes locked and cannot be used. If
the partial option is specified, the terminal used to invoke shutdown unlocks
after the delay period and can be used.

If shutdown is unable to delete one of the HI users for a period of five minutes, it
displays this, specifying the user name as defined by the HI:

**** unable to delete user, <HI-user>
**** Continue? (Y/N)

The user has the choice of proceeding with the shutdown or aborting it.

During the shutdown process, shutdown catalogs the r?shutdown object in the root
directory to ensure that first-level jobs are able to close down and exit in an orderly
fashion. If shutdown is aborted the r?shutdown object is uncataloged.

The system directory on the system device volume is stamped, enabling HI
initialization to set the system clock the next time the system is booted. This
ensures that the system clock, which is used to time-stamp files, moves forward
chronologically.

HI command shutdown

Command Reference Chapter 2 409

You can request that the system volume fnode file be copied to its duplicate file
r?save, by specifying the backup parameter. If the devices parameter is also
specified, the fnode files of those device are also backed up. When a successful
backup has been made, the HI displays this, where the first message indicates any
devices specified with the devices parameter :

****backup OF VOLUME files ON <logical_device> COMPLETED
****backup OF VOLUME files ON (system-device> COMPLETED

Any errors detected while trying to back up the files are displayed immediately.
For instance:

*** error in device fnode <number>
*** shutdown COMPLETED

Shutdown detaches all target devices, including the system device, that have been
logically attached using the EIOS. This closes all file connections on the devices
and flushes all EIOS and BIOS buffers associated with the devices.

Regardless of whether you specify a backup of specific devices, all EIOS logical
named and remote devices are marked as shut down. If an error is detected while
detaching a device or while marking a volume as shut down, one of these messages
is displayed:

*** error detaching device, <logical_name>
*** error marking shutdown device, <device>

When an error is detected during the backup and marking process of a logical
named device, as opposed to the system device, the processing continues. After
named volumes are marked as properly shut down, this message is displayed and
the system manager job tree is deleted:

:sd:, outstanding connections to device have been deleted
***shutdown COMPLETED

Any errors detected during the shutdown process cause the utility to abort and
display:

*** shutdown ABORTED

If a syntax error is encountered in the invocation of shutdown, the proper syntax is
displayed. The utility then aborts and returns control to the system command level.

Shutdown cannot be called from a program because shutdown removes logical
names, but cannot do so before the program terminates.

shutdown HI command

410 Chapter 2 Command Descriptions

Aborting the Shutdown Utility

During operation of the shutdown utility, the system manager can enter <Ctrl-C>
to abort the procedure. Shutdown can be aborted only at the completion of a
logical operation; that is, only after all the terminals have been locked, but not
during the terminal-locking process. If you use <Ctrl-C> to abort shutdown, you
must invoke unlock to free each terminal.

Failure to Issue Shutdown

If the system manager does not invoke shutdown before powering down or
rebooting the system, a warning message is displayed when the system is next
powered on. This is the default warning message:

*** WARNING: The System Device was not shutdown properly.

You may establish a different message in a file named :config:shutdown.msg. To
eliminate any message, create a 0 length :config:shutdown.msg file.

✏ Note
If you use iRMX-NET on a system with a local hard disk, any
previous shutdown message is removed. Therefore, if there was a
problem with the previous shutdown procedure, the system
cannot detect it and notify the system manager.

Error Messages

This list contains only syntax errors not previously explained in the Additional
Information section.

<keyword>, unknown keyword or switch
A keyword other than partial , wait , sd , backup or devices was encountered.

illegal keyword
A switch was used as a keyword.

illegal value
A keyword was assigned an illegal value.

<system_device>, not a logical device name
The name you entered is not cataloged as a logical device.

<system_device>, not a named device
The logical device name entered is not a named device.

HI command skim

Command Reference Chapter 2 411

skim
Displays one or more text files one screenful at a time, enabling you to page up and
down within the file.

Syntax

skim pathname [q] [tabwidth = num]

Parameters
pathname

The path name of the file to display. Specify more than one file by using
wildcards.

q(uery) Prompts for permission to display each file. Respond to the prompt with:

Y Display the file
R Display remaining files without further query
E Exit the command
N or other Don't display this file; query for the next

tabwidth = num
The number of spaces to display for each horizontal tab character.

Additional Information

As each page is displayed, this prompt appears at the bottom of the screen:

more?

To scroll the text one line, press <CR>. To display the next screen, press the
spacebar. Press ? or H to see this display of other command characters used by
skim:

A - repeat the last command
B - back one page
D - next half page
cr - display next line
E or Q - exit
N - next file
P - current path name
T - top of file
W - window
Z - last page of file
? or H - this display
space - next page

skim HI command

412 Chapter 2 Command Descriptions

When the end of the file is reached, skim displays:

--(EOF)--more?

At this point, pressing <CR> or the spacebar terminates skim (unless you specified
multiple files), but other commands may be used to continue displaying the current
file.

If terminal translation is not enabled, the screen commands for clear screen and
clear line are simulated. Long lines are wrapped to subsequent lines and
unprintable characters are displayed in hexadecimal.

HI command sleep

Command Reference Chapter 2 413

sleep
Suspends execution for a given number of seconds.

Syntax

sleep seconds

Parameter
seconds

The number of seconds to suspend execution.

Additional Information

The time needed to load the sleep command is not counted in the delay.

slipd TCP/IP command

414 Chapter 2 Command Descriptions

slipd
The implementation of the Serial Line Internet Protocol (SLIP) that communicates
with the slip device.

Syntax

sysload :system:psh slipd [-d] [altconfigfile]

Parameters

-d Turns on packet dumping to /dev/console.

altconfigfile
Specifies a configuration file other than the default /etc/slipd.cf.

Additional Information

You normally run slipd from the networking initialization file, /etc/tcpd.csd. Slipd
supports both point-to-point and dedicated line connections across a cable attached
to an asynchronous tty port.

The SLIP driver requires entries in two configuration files:

• inetinit.cf, the network configuration file, must have an entry for the SLIP
interface

• slipd.cf, the SLIP daemon configuration file, must identify the physical tty
device and define the attributes of the connection

See also: slipd.cf and inetinit.cf files and Slipd Configuration and Inetinit
Configuration, TCP/IP and NFS for the iRMX Operating System
RFC 1055

HI command sort

Command Reference Chapter 2 415

sort
Sorts lines alphanumerically in a text file and displays the output or writes it to
another file.

Syntax

sort inpath_list [to|over|after outpath_list] [q]

Parameters
inpath _list

One or more pathnames, separated by commas, of text files to sort.

to|over|after outpath _list
One or more output files where sorted data is to be written rather than to the screen.
Multiple pathnames must be separated with commas.

q(uery) Prompts for permission to sort each file in the list. Respond to the prompt with:

Y Sort the file
R Sort remaining files without further query
E Exit the command
N or other Don't sort this file; query for the next

Additional Information

If the input file contains these lines:

field1
FIELD1
FIELD2
field2
field10
This is a long line without a carriage return at the edge of
the screen, allowing the line to wrap if possible.
New line.

This is the sorted output:

FIELD1
FIELD2
New line.
This is a long line without a carriage return at the edge of
the screen, allowing the line to wrap if possible.
field1
field10
field2

submit CLI or HI command

416 Chapter 2 Command Descriptions

submit
Reads and executes a set of commands from a file rather than from the keyboard.

Syntax

submit pathname [(param_list)] [to|over|after outpath] [e]

Parameters
pathname

Name of the file from which the commands are executed. This file may contain
nested submit commands. Typically the filename has the extension .csd, which
you do not include in the pathname. If no such file is found, the filename is
assumed to be exactly as entered here.

param _list
One to ten actual parameters, separated by commas, that are to replace formal
parameters in the submit file. You must surround this parameter list with
parentheses. To omit a parameter in the middle of the list, reserve its position by
entering a comma. If a parameter contains a comma, space, or parenthesis, enclose
the parameter in single or double quotes. The sum of all characters in the
parameter list must not exceed 512 characters.

to|over|after outpath
Writes the output from each command in the submit file to the specified file rather
than to the screen. Commands in the submit file may redirect their own output, in
which case the output is not written to this file.

e(cho) Data written to an output file is also echoed to the screen. Nested submit
commands do not have their contents echoed to the screen unless they are also
invoked with the echo parameter.

Additional Information

If you use the CLI, this is an internal CLI command. It is also supplied as an HI
command for systems that use a custom interface. Invoke :system:submit for
the HI version of the command. The HI command does not support CLI features;
you cannot include such commands as alias and background in the submit file, nor
can you use an alias for a command.

To use the submit command, you must first create a data file that defines the
command sequence and formal parameters (if any). Any program that reads its
commands from the console input (:ci:) can be executed from a submit file.

CLI or HI command submit

Command Reference Chapter 2 417

If the submit file itself contains a submit command, another submit file is invoked.
You can nest submit files to any level until memory is exhausted. When a nested
submit file completes execution, it returns control to the next higher level of submit
file.

Indicate formal parameters in the submit file by specifying the characters %n,
where n ranges from 0 through 9. When submit executes the file, it replaces the
formal parameters with the actual parameters listed on the invocation line. The
first actual parameter replaces all instances of %0, the second parameter replaces
all instances of %1, and so forth. If the actual parameter is surrounded by quotes
(to avoid command-line interpretation of a comma, space, or parenthesis in the
parameter), submit removes the quotes before performing the substitution. If there
is no actual parameter that corresponds to a formal parameter, submit replaces the
formal parameter with a null string.

If you specify an output file and do not specify the echo parameter in the submit
command, only your submit command entry is echoed on the console screen;
command entries in the submit file are not displayed as they are loaded and
executed. You own and have full access to output files created by the submit
command and to new files created by commands within the submit file.

If your command interface is the CLI, you may invoke the submit command as a
background job to execute large tasks while you continue entering data from the
terminal. If you invoke submit as a foreground job and enter <Ctrl-C> to abort
processing, all submit processing ends (including any nested submit commands),
and control returns to you.

When all commands in the submit file have been executed, this message is
displayed:

END submit <pathname>

Examples

Following are two examples showing the use of submit files. The first uses the
BND386 utility; the second uses the MAP386 utility.

1. This example of the submit file invokes the BND386 utility. This utility
creates a bound object module (the & characters are syntax required by the
Binder). The example uses the file, bind.csd. It is located in the /intel/gen
directory.

bnd386 &
/intel/lib/cstrmx3c.obj , & C startup module
%0.obj , & User module - include other

 modules here

submit CLI or HI command

418 Chapter 2 Command Descriptions

/intel/lib/crmx3c.lib , & iRMX III Floating-point
 C-library

/intel/ndp387/cl387n.lib , & Floating point support
 libraries

/intel/ndp387/80387n.lib , &
/rmx386/lib/rmxifc32.lib & iRMX III System Call

 Interface library &
 bind controls

renameseg (code32 to code) &
segsize (stack(2400h)) &
nodebug & Change to 'debug' if debug

 info desired
object(%0) &
rc(dm(4000h,0FFFFFh))
;

Execute the submit file by issuing this command:

- submit /intel/gen/bind file.c echo

The file variable is the name of any C program which will be compiled
under the iC-386 compiler. The command executes as a foreground job. The
submit command substitutes the actual parameter of the file name in place of
the formal parameter %0 in the submit file. When the binding process starts,
the CLI displays the bind.csd file as it processes each line.

This system message shows that processing has begun:

iRMX III 386(TM) BINDER, < version >
Intel Corporation Proprietary Software

When the job is complete, the CLI displays:

- END SUBMIT bind.CSD

See also: Using the 80386 Binder, Intel386 Family Utilities User's Guide

2. This example of the submit file, titled map.csd, invokes the MAP386 utility.
This utility generates informational maps, such as table, segment, and cross-
reference maps, about any input object module (the & characters are syntax
required by the Binder).

The map.csd submit file contains this command sequence:

map386 %0 printcontrols(tables) &

Execute the submit file by issuing this command:

- submit map (file.obj) printcontrols(tables)

CLI or HI command submit

Command Reference Chapter 2 419

The file variable is the name of any object file created by a compatible 32-bit
compiler, such as the iC-386 compiler. The submit command substitutes the
actual parameter of the file name in place of the formal parameter %0 in the
submit file. The printcontrols option specifies Global Descriptor, Local
Descriptor, and Interrupt Descriptor tables.

This system message shows that the job has begun:

iRMX III 386(TM) MAPPER, < vers >
Copyright 1986,1989,1990 Intel Corporation

When the job is complete, the CLI displays:

- END SUBMIT map.CSD

See also: Using the 80386 Mapper, Intel386 Family Utilities User's Guide

Error Messages
<pathname>, end of file reached before end of command

The last command in the input file was not specified completely. For example, the
last line might contain a continuation character.

<parameter>, incorrectly formed parameter
You separated parameters in the parameter list with a character other than a
comma.

<pathname>, output file same as input file
You attempted to place the output from submit into the input file.

<pathname>, too many input files
You specified more than one pathname as input to submit; only one file can be
processed per invocation.

<parameter>, too many parameters
You specified more than ten actual parameters in the parameter list.

<condition code:mnemonic>, during submit execution
The commands in the submit file produced the error indicated by this condition
code.

super CLI or HI command

420 Chapter 2 Command Descriptions

super
Makes you the system manager (Super user), with user ID 0. You must know the
password (the default is passme).

Syntax

super

Additional Information

If you use the CLI, this is an internal CLI command. It is also supplied as an HI
command for systems that use a custom interface, in the :system:super file. The HI
command does not recognize any of the CLI features such as line-editing and
aliasing.

If you logged on as Super, you are already the system manager. You only need to
invoke super if you want to issue the changeid command to take on another user
ID. In this case the super command doesn't require you to enter the password.

If you logged on as any user other than Super, invoke the super command to
become the system manager; your user ID is changed to 0. In this case the super
command prompts you to enter the password. Although you have the privileges of
the system manager, the Super user logon files are not executed. For example, if
Super has different aliases defined than in your logon files, those aliases are not
defined when you invoke the super command.

After invoking the command, your prompt changes to super- . You can enter any
commands and access any files available to the system manager. You become a
verified user, which allows you to access any files with iRMX-NET. If you create
new files, they are listed as owned by user ID 0, unless you previously invoke
changeid to become another user.

The super command can be used only in the foreground. If you try to invoke it as
a background job, you receive a failure message. To return to your logon user ID
after invoking super, use the exit command.

See also: changeid and exit commands, in this chapter

CLI or HI command super

Command Reference Chapter 2 421

Error Messages
<condition code:mnemonic> cannot set default user

A problem prevented the CLI from changing your user ID. The user definition file
(UDF) may be corrupted.

<condition code:mnemonic>
An internal system problem occurred. For example, the CLI could not find the
default user.

<condition code:mnemonic>, super is unavailable
The CLI encountered an error while reading the password you entered or while
accessing the UDF (to determine if the password is correct).

<parameter>, unexpected parameter
You entered a parameter; the super command does not accept any parameters.

sysinfo HI command

422 Chapter 2 Command Descriptions

sysinfo
Displays information about the boot system that is currently running.

Syntax

sysinfo [l]

Parameter

l(ong) Displays an iRMX Job Tree which lists the jobs currently running and their
memory usage.

Additional Information

The displayed information varies, depending on the boot system and the associated
CPU board. The output has the general format:

The System Device DUIB Name is <duib_name>
The System Boot File Name is <boot_system>
The System Performance Index is <delay_constant>
The currently specified Time Zone is <time_zone>
The System Bus is <bus_type>
The CPU Type is <cpu_type> <cpu_model>
The System Board Type is <board_type>

The System Comments are:
<contents of ICU Comment Screen >

Where:

<duib_name>
The DUIB name of the physical device that is currently attached as
the system device (:SD:).

<boot_system>
The name of the boot device and file which was booted and is
currently executing.

HI command sysinfo

Command Reference Chapter 2 423

<delay_constant>
A value computed by the Nucleus during initialization which is used
by the OS for timing purposes. All iRMX device drivers use this
value for timing loops so that the actual delay reflects the hardware's
requirements. This avoids having to increase the timing loop values
when faster hardware is available. It also avoids penalizing slower
hardware so that sufficient delay is present for faster hardware. The
higher the number, the faster the hardware. For Intel386 and Intel486
CPUs, the delay_constant is used for System Performance Index. In
Pentium systems, the System Performance Index is 2.5 times the
delay_constant.

<time_zone>
Always 0; this feature is reserved for future Intel use.

<bus_type>
Indicates your system bus: Multibus I, Multibus II, or PC Bus.

<board_type>
The value can be:

Value System Board Type

0H System unknown

1H SBC386/12, SBC386/12S

3H SBC 386/2x, SBC 386/3x

4H SBC 386/116, SBC 386/120,
SBC 386/133, SBC 386/258

5H SBC 486/125

6H SBC 486/12, SBC 486/12S

7H SBC 486/133SE

8H MIX 386/020

0FAH SBC PCP4DX2, SBC PCP4X4,
SBC PCP4SX33

0FBH SBC P5090

0FEH SBC 486SX25, SBC 486DX33

sysinfo HI command

424 Chapter 2 Command Descriptions

<comments>
The entry on the COMNT screen of the ICU. This lets you refer to
the notes you placed in the definition file when you created the boot
system. In an iRMX for PCs system, the comments field identifies the
version of the OS as well as the licensed user and software serial
number.

When the l(ong) parameter is specified, this type of additional
information is given:

iRMX Job Tree

 MEMORY JOB ID JOB NAME
USED AVAILABLE
5872K 7694K 0258 Root Job - Has Free System Memory
115K 0K 5E60 Application Starter Job
9K 0K 1108 Human Interface Job
69K 442K 80B8 CLI
19K 15K A9B8 sysinfo
518K 0K 62A8 iRMX-Net File Server Job
274K 0K 5290 iRMX-Net File Client Job
307K 5K 4828 /rmx386/jobs/iethxpn.job
37K 10K 45D0 /rmx386/jobs/smw.job
78K 4017K 3E50 /rmx386/jobs/himem.job
47K 2K 3578 /rmx386/jobs/keybd.job
101K 15K 2D10 /rmx386/jobs/sdb.job
120K 19K 2680 /rmx386/jobs/clib.job
6K 0K 1050 EIOS Job
20K 3K 1010 RTE Job
151K 0K 0F68 DOS
46K 0K 0ED8 BIOS Job

The sum of the Root Job Used and Available Memory is the total
amount of Free Space Memory available in the system when the boot
device was loaded. Also, the sum of the Used and Available Memory
in jobs other than the root job is equal to the Used Memory of the
Root Job.

HI command sysload

Command Reference Chapter 2 425

sysload
Loads a dynamically loadable device driver or user job as a child job of the HI.
The driver or job remains resident in memory until the job is unloaded or the
system is reset.

Syntax

sysload [-i name] [-o name] [-w] [-r] [poolmin , poolmax]
pathname [target_params]

sysload -l

sysload -u job_name | job_token

Parameters
-i name

Used to specify a file, logical name, or logical device as the :ci: for the loaded job.
:CI: is the standard input for the job.

-o name
Used to specify a file, logical name, or logical device as the :co: for the loaded job.
:CO: is the standard output for the job.

-w Instructs the sysload command to wait until the loaded driver/job indicates that its
initialization is complete before terminating.

-r Replaces an existing instance of the job to be loaded with the new job. If the job to
be loaded already exists, the previous job is deleted. This has the same effect as
deleting a job with sysload -u and then loading a new version of the same job.

poolmin
A decimal number specifying the minimum allowable memory pool size for the job
being loaded, in Kbytes. The default is 296 Kbytes. Do not follow the number
with the character K, and do not use hexadecimal or octal numbers.

poolmax
A decimal number specifying the maximum allowable memory pool size for the
job being loaded, in Kbytes. The default is 16 Mbytes (0FFFFFH). Do not follow
the number with the character K, and do not use hexadecimal or octal numbers.
For use with himem, poolmax should be equal to poolmin .

See also: himem.job, System Configuration and Administration

pathname
The pathname of the driver or job to be loaded.

sysload HI command

426 Chapter 2 Command Descriptions

target_params
Parameters specific to the driver/job being loaded. These may be optional,
depending on the driver or job. The syntax of any parameters is defined by each
driver and I/O job; sysload passes the parameters without interpreting them.

-l Used without parameters to display a list of current jobs and their job tokens loaded
from a previous sysload command. For example:

sysload -l

Loaded Jobs: (6)
c470 clib.job
dbf0 paging.job
54a0 remotefd.job
4ae8 netrdr.job
36a0 netat.job
2dc8 keybd.job

-u job_name | job_token
Used to unload a driver or a job. Use the job name or token returned by sysload -l.

▲▲! CAUTION
Most jobs and drivers provided with the OS are not unloadable.
Attempting to unload such a job may cause unpredictable results
such as a General Protection fault.

See also: Reference to Loadable Jobs and Device Drivers,
System Configuration and Administration, to
determine if a particular job or driver supports
unloading (-r and -u options)

Additional Information

If sysload is invoked without parameters, it displays a usage message and the list of
currently loaded jobs.

A loadable device driver is a device driver built as an HI command. Because you
load the driver while the system is running, rather than configuring it with the ICU,
you can dynamically change driver configuration. However, do not unload jobs
with interrupt handlers.

Loaded jobs are user applications that can be added to the OS in a semi-permanent
fashion. Once the job is loaded with the sysload command, the job remains part of
the OS until it explicitly exits or until the system is rebooted. Also, if the loaded
job supports the -u option, the job can be deleted by specifying that option with the
sysload command.

HI command sysload

Command Reference Chapter 2 427

Typically, you only load a driver or job once each time the system is started. The
loaded driver is not deleted even after you log off, since sysload loads the driver as
a child job of the HI rather than the CLI. You may use the sysload command in a
submit file, such as r?logon or loadinfo.

If a driver is already loaded and you reload it without resetting the system, a new
instance of the driver is loaded. For example, you may load a RAM disk driver,
attach the device, and format it. If you then use sysload to reload the driver, and
attach to the same device, the attachdevice command reports an unformatted
volume, since it is a new RAM disk.

The loaded driver has access to standard :ci: and :co:. The default :ci: /:co:
connections are inherited from the user job that invoked the sysload command.
These defaults can be overridden by using the -i and/or -o command line options.

The OS provides loadable drivers for most uses. These are some of the drivers
provided:

• a RAM disk driver

• a terminal driver for Multibus I serial controller boards

• a driver for the system debug monitor, SDB

• a driver for the network redirector, Netrdr

• a driver for iRMX-NET

See also: Loadable device drivers, Loadable jobs, System Configuration and
Administration and Driver Programming Concepts

You may also write your own drivers or jobs to be loaded with sysload. OS drivers
follow a standard convention for log files. The driver writes to a log file in the
same directory as the driver. The log file has the same name as the driver file, with
the extension .log. By convention, the load operation is successful if the log file
contains only the sign-on message from the driver. Otherwise, an appropriate error
message is written to the log file.

You can also use sysload to add terminals defined by a loadable device driver to
the :config:terminals file, enabling those DUIB names to automatically become
part of the system during initialization.

See also: Loading and unlocking terminal devices, loading the PCX driver,
System Configuration and Administration

sysload HI command

428 Chapter 2 Command Descriptions

Examples

This example loads the RAM disk driver. Poolmin and poolmax are not
specified, so the default values are used:

sysload /rmx386/drivers/ramdrv (64)

This example loads the XMS server, specifying a poolmin of 500K, and a
poolmax of 500K:

sysload (500,500) /rmx386/jobs/himem.job

See also: himem.job and terminals, System Configuration and Administration
terminals, Driver Programming Concepts

Error Messages

Invalid PoolMin Value

Invalid PoolMax Value
Poolmin and poolmax must be decimal numbers without a suffix.

PoolMin larger than PoolMax
Poolmin must be equal to or smaller than poolmax .

Missing input parameter
You did not specify the driver's pathname.

Invalid Command Tail
You used a delimiter other than a space preceding the pathname parameter.

E_FILE_NOT_EXIST
You must use a fully specified pathname.

Could not attach <name> as CI, using default CI
You specified <name> with the -i option, but an error occurred when an attempt
was made to attach to it. The default :ci: will be used.

Could not attach <name> as CO, using default CO
You specified <name> with the -o option, but an error occurred when an attempt
was made to attach to it. The default :co: will be used.

TCP/IP command tcplisten

Command Reference Chapter 2 429

tcplisten
A daemon that controls multiple TCP/IP transport endpoints, listening to them on
behalf of several services.

Syntax

sysload :system:psh tcplisten [-t alarm] [-w window] service ...

Parameters
-t alarm

Specifies the number of seconds between checks for the death of the requested
daemons and consequent reinstatement.

-w window
Sets the send and receive window sizes on telnet connections. Window must be
between 1 and 65535.

service
One or more names of services to be provided. For example, to provide the
services of the FTP daemon (ftpd), use the service name ftp . Tcplisten appends a
d to the service name when it starts the corresponding daemon. The following
services are available:

ftp
rlogin
rsh
telnet
tftp

Additional Information

Tcplisten opens a transport endpoint for each service and binds the address (port
number) defined for the service in the /etc/services file.

Tcplisten continuously polls all its transport endpoints for connection-request
indications. Upon receipt of such an indication, tcplisten starts the corresponding
daemon to service the request. It searches the /etc directory for the daemon file to
execute in response to service request. The daemon process dissociates itself from
tcplisten after the connection is established.

See also: telnetd, ftpd , and tftpd commands, in this chapter

tcplisten TCP/IP command

430 Chapter 2 Command Descriptions

✏ Note
When multiple requests for the same service occur at nearly the
same time, some of them will receive a connection refused
error, even though there may be no other reason for refusing. In
this case, another request should be made.

Tcplisten can be set up to maintain a log file, /tmp/tcplisten.log, where it records
errors, including those where user authentication fails. Modify the /etc/tcpd.csd
network initialization script to create the /tmp/tcpd.log log file at startup. To
disable logging, remove the /tmp/tcplisten.log file if it exists and comment out the
command to create the file in the initialization script.

Logging information is appended to /tmp/tcplisten.log only if the file exists and is a
regular file; tcplisten will not create the file. If the file does not exist, tcplisten
tries to open /dev/console. If this succeeds, error messages are displayed on the
local console; otherwise, they are sent to the /dev/null device and are not displayed.

Example
sysload :system:psh tcplisten ftp telnet rlogin rsh

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

TCP/IP command telnet

Command Reference Chapter 2 431

telnet
Communicates with another host using the TELNET protocol.

▲▲! CAUTION
Do not use this command in an esubmit file or an
rq_c_send_command because queries for user input will not be
received.

Syntax

telnet [-e c] [-8] [host [port]]
tnrmx [-e c] [-8] [host [port]]

Parameters

-e c Changes the escape character to c for a telnet session.

-8 Enables the transmission of 8-bit data.

host The remote host name or its Internet address.

port The service number or its name.

Additional Information

You normally run tcplisten from the networking initialization file, /etc/tcpd.csd.
Use telnet to connect to a remote host, unless it runs the iRMX OS. To connect to
a remote iRMX host use tnrmx , an alias for

telnet -e~

The tnrmx alias is established in /etc/tcpalias.csd file.

When invoked without the host and port arguments, telnet enters command
mode, as indicated by its prompt, telnet> . In this mode, it accepts and executes
the commands discussed below.

When invoked with a host (and/or port), telnet performs an open command with
those arguments. If port is not specified, telnet attempts to contact the server at
the default port. Once a connection has been opened, telnet enters input mode. In
this mode, all text entered from the keyboard is sent to the remote host for
processing.

See also: services file, TCP/IP and NFS for the iRMX Operating System

telnet TCP/IP command

432 Chapter 2 Command Descriptions

To enter command mode from input mode, enter the telnet escape character. To
return to input mode, enter a <CR> at the telnet> prompt. To execute a single
TELNET command from input mode, and return automatically to input mode,
enter the command preceded by the escape character (for example, ^]linemode).
The default escape character is ^] when TELNET is invoked with the telnet
command or ~ when invoked with the tnrmx command. Use the -e command line
option or the escape command to change the escape character for a telnet session.

The -8 option lets you communicate with hosts that use an 8-bit character set, such
as the Asian and European character sets. If this option is not used, parity bits are
stripped from the data.

Logging out of the shell on the remote host terminates the telnet connection,
returning you to the local shell if the connection was opened from the telnet
command line or to the telnet> prompt if the connection was opened from
command mode. This can also be accomplished with the close command. The
quit command terminates both the open connection and the telnet session, always
returning you to the local shell.

See also: telnetd, in this chapter

Commands

These commands are recognized by the telnet command interpreter. They may be
abbreviated, as long as they remain unique. The normal terminal editing
conventions are available in command mode.

close Close an open telnet connection, returning to the telnet> prompt
(command mode) or to the local shell (input mode).

crmod Toggle <CR> mode. When disabled (the default), no translation of
<CR> characters takes place. When enabled, a <CR> received from
the remote host will be mapped into a <CR> and a line feed. This
mode does not affect characters typed by the user, only those
received. This mode is required by hosts that prefer the user to do
local echoing.

eight Toggle eight-bit mode. When disabled (the default), the high order
bit is stripped from each byte to ensure transmission of valid seven-bit
characters. When enabled, telnet does not strip the high-order bit,
facilitating communication with hosts using an eight-bit character set.

escape c Change the telnet escape character to the given character c. The
default escape character is ^] when TELNET is invoked with the
telnet command or ~ when invoked with the tnrmx command.
Specify control characters as ^ followed by a single letter; for
example, <Ctrl-X> is ̂X.

TCP/IP command telnet

Command Reference Chapter 2 433

help [command]

? [command]
Display a list of telnet commands (no arguments), or a description of
the specified command.

linemode Toggle line mode. When disabled (default), each character is
transmitted as it is entered. When enabled, the local host buffers all
characters until a carriage-return/linefeed sequence is entered, at
which time the entire line is transmitted.

localecho Toggle the local echo mode. When disabled (the default), the remote
TELNET server echoes input. When enabled, the local tty driver
echoes characters as they are entered.

negotiate [command option]
Negotiate TELNET options over an open connection. Options
negotiation follows the loop-preventing rules defined in the RFC 854
specifications. For a detailed description of the options, see the
TELNET specifications (RFC 854-861). When a command and
option are specified, telnet negotiates that option and returns to the
command or input mode prompt.

When a command and option are omitted, telnet enters negotiation
mode, as indicated by the negotiate> prompt. To negotiate an
option in this mode, enter the command and option at the prompt. To
return to command or input mode from negotiation mode, enter a
<CR> at the negotiate> prompt.

The negotiation commands are:

? list the commands and options that can be negotiated
DO request the remote server to start performing the option
DONT request the remote server to stop performing the option
WILL inform the remote server that you will start performing the

option
WONT inform the remote server that you will stop performing the

option

telnet TCP/IP command

434 Chapter 2 Command Descriptions

These options can be negotiated; you can abbreviate them to the
shortest unique sequence. No options are currently defined on the
extended options list. The sga (suppress go ahead) option can no
longer be negotiated.

binary transmit in binary (raw) mode
echo remote echo (input is echoed by the remote server)
exopl negotiate from the extended options list
status display options currently in effect
tm send a timing mark

open [-ec] [-8] host [port]
Open a connection to the named host. The -e option specifies an
alternate escape character and -8 enables eight-bit mode. These
options apply only to the session being opened. Host can be a host
name or Internet address. Port can be a service name or number; if
not specified, telnet attempts to contact the server at the default port.

options Toggle whether you can view processing of TELNET options. When
disabled (the default), options negotiation is conducted silently.
When enabled, options negotiations are displayed. Options sent by
the local server are labeled SENT; options received from the remote
server are labeled RCVD.

quit Close the open TELNET connection, if there is one, and exit to the
local shell.

status Show the current status of the TELNET connection, modes, and
options.

transnvt [command]
Send Network Virtual Terminal (NVT) commands to the remote
server over an open connection. The NVT commands help to
preserve such functions as abort output, interrupt, and break, which
may be invoked by different keystrokes on the local and remote hosts.
When command is specified, telnet sends that NVT command and
returns to the command or input mode prompt.

When command is omitted, telnet enters transnvt mode, as indicated
by the transnvt> prompt. To send an NVT command in this mode,
enter command at the prompt. To return to command or input mode
from transnvt mode, enter a <CR> at the transnvt> prompt.

TCP/IP command telnet

Command Reference Chapter 2 435

The valid NVT commands are:

ao send an abort output request
ayt send a message (are you there?) to remote server
brk send a break request
ec send an erase character request
el send an erase line request
dm send a data mark to signify end of urgent data
ip send an interrupt request
nop send a null operation
? display a list of transnvt commands.

✏ Note
The TELNET specifications specify defaults for line mode
transmission with the local tty driver echoing. This
implementation, by default, provides character mode transmission
with the local tty driver echoing.

Diagnostics

Exit status is 0 for normal termination or a positive number for error termination.

telnetd TCP/IP command

436 Chapter 2 Command Descriptions

telnetd
Telnetd is a server that supports the standard TELNET virtual terminal protocol.

Additional Information

The tcplisten server listens for incoming connections at the well-known port
assigned to TELNET, and starts the telnetd daemon to service each such request.

See also: tcplisten, in this chapter

Telnetd operates by allocating a pseudo-terminal device (/dev/ptmx) for a client,
which has the slave side of the pseudo-terminal as an iRMX terminal device
(ptty_0 to ptty_n). Telnetd manipulates the master side of the pseudo-terminal,
implementing the TELNET protocol and passing characters between the remote
client and an iRMX program, such as the logon command or the CLI.

When a TELNET session is started, telnetd sends a TELNET option to the client,
indicating it is willing to do remote echo of characters, to suppress go ahead, and to
receive terminal type information from the remote client. If the remote client is
willing, the remote terminal type is propagated in the environment of the iRMX-
controlled terminal state.

See also: Configuring the Telnetd Server, services file, and ptmx file, TCP/IP
and NFS for the iRMX Operating System
Configuring terminals, System Configuration and Administration

Telnetd supports these TELNET options:

• binary mode

• status of options

• remote echoing

• automatic terminal type recognition

• extended options list (there are no options currently defined on the list)

Telnetd also supports transmission of urgent data. It does not support timing mark.

✏ Note
The implementation of the TELNET options follow the TELNET
specifications. For a detailed description of the options, refer to
RFCs 856-861.

TCP/IP command telnetd

Command Reference Chapter 2 437

Diagnostics

Exit status is 0 for normal termination, a positive number for error termination. The
following diagnostic messages are returned to the TELNET client in case of an
error, after which any network connections are closed.

No ptty devices available at this time, try later.
There are no more ptty devices available for login.

Terminal type is too long for iRMX, try another.
iRMX supports terminal names upto six characters.

No config:terminals devices available at this time.
There are not ptty terminals enabled (configured) in the
:config:terminals file.

See also: telnet and tcplisten commands, in this chapter

term HI command

438 Chapter 2 Command Descriptions

term
Displays attributes of a connection or terminal, or modifies terminal attributes.

Syntax

term [logical_name] [query] [display] [halfduplex|fullduplex]
[vdt|hardcopy] [modem|nomodem] [translate|notranslate]
[xy|yx] [inputrate= num] [outputrate= num] [width= num]
[height= num] [offset= num] [overflow= num] [scroll= num]
[rpc= zero|ignore|even|odd| num]
[wpc= zero|one|even|odd|pass| num]
[flowcontrol|noflowcontrol] [highwater= num]
[lowwater= num] [fcon= num] [fcoff= num]
[linkparity= noparity|even|odd] [linklength= 6|7|8]
[linkstop= 1|1.5|2] [spchighwater= num]
[nospecialcharacter|specialcharacter (num [, num...])]

Parameters
logical _name

The logical name of the terminal. Colons are not required.

query Prompts you whether the changes are correct before applying them.

display
After setting terminal attributes, displays the new settings.

halfduplex|fullduplex
Sets the terminal to full- or half-duplex transmission.

vdt|hardcopy
Specifies whether the terminal is actually a video display terminal or a printer (hard
copy) device.

modem|nomodem
Specifies whether the terminal is connected to a modem.

translate|notranslate
Specifies whether the iRMX Terminal Support Code (TSC) should translate
between ANSI standard X3.64 escape sequences and unique terminal character
sequences.

xy|yx Specifies whether horizontal (xy) or vertical (yx) screen coordinates are sent first.

inputrate= num outputrate= num
A decimal input and output baud rate.

HI command term

Command Reference Chapter 2 439

width= num height= num
The number of characters in the screen width and the number of lines in the screen
height.

offset= num overflow= num
The cursor offset that starts the numbering sequence on X and Y axes, and the
overflow value that axis numbering falls back to after reaching 127.

scroll= num
The number of lines to send to the terminal when the operator enters the scrolling
control character (default: <Ctrl-W>).

rpc=zero|ignore|even|odd| num wpc=zero|one|even|odd|pass| num
Input (rpc) and output (wpc) parity control settings that indicate how the TSC
treats the high bit of each character. Input refers to data entered at the terminal;
output refers to data sent to the terminal. Zero means the parity bit is always set
to 0, yielding 128 8-bit characters; you may also set the value to 1, which has the
same effect. Ignore means the parity bit is unchanged by the TSC, enabling 256
8-bit characters. Even or odd means the parity bit is used to validate the parity;
these must be set the same, and yield 7-bit data.

flowcontrol|noflowcontrol
For buffered devices, enables or disables use of output flow control characters
(<Ctrl-S> and <Ctrl-Q> by default, or as defined by fcon and fcoff).

highwater= num lowwater= num
For buffered devices, specifies the number of bytes in the buffer at which controller
board firmware sends an off flow control character to stop receiving input data
(highwater) or an on flow control character to begin receiving data (lowwater).

fcon= num fcoff= num
For buffered devices, the decimal value of the ASCII character to use for on and off
flow control characters. The recommended value for fcon is 17 (<Ctrl-Q>) and
for fcoff is 19 (<Ctrl-S>).

linkparity=noparity|even|odd linklength=6|7|8 linkstop=1|1.5|2
For buffered devices, these specify how data is handled by the physical link
between the terminal and the controller device. Linklength is the number of bits
per character and linkstop is the number of stop bits.

spchighwater= num
For buffered devices, if specialcharacter is set this is the number of bytes in
the input buffer above which Special Character Mode is enabled and below which
this mode is disabled. Entering Special Character Mode means that the terminal
driver and the TSC use special characters (defined below) as interrupts for
signaling purposes.

term HI command

440 Chapter 2 Command Descriptions

nospecialcharacter|specialcharacter (num [, num...])]
For buffered devices, this specifies whether Special Character Mode can be enabled
and defines up to four ASCII characters as special characters. Surround the values
with parentheses and separate them with commas.

Additional Information

To display terminal attributes, enter only the logical name of the terminal or
connection. If the logical name is omitted, the attributes of the current terminal are
displayed. When setting terminal attributes, the control names need not be typed in
completely. Enter only enough characters of the keyword to make it unique from
the other parameters. All values are decimal by default.

Buffered devices are controllers that buffer input and output for the terminal. The
parameters that apply to buffered devices do not apply to the SBC 544A controller.

The term command cannot change connection attributes, since the changed
attributes would only be valid for the connection held by the term job and would
disappear whenever term exited. The command does not support translation
specifications.

TCP/IP Command tftp

Command Reference Chapter 2 441

tftp
The user interface to the Trivial File Transfer Protocol (TFTP), which allows you
to transfer files to and from a remote network site.

▲▲! CAUTION
Do not use this command in an esubmit file or an
rq_c_send_command because queries for user input will not be
received.

Syntax

tftp [host [port]]

Parameters

host A host name or Internet address.

port A port number or a port name defined in the /etc/services file.

Additional Information

Like the FTP protocol, TFTP allows a user to transfer files to and from a remote
network site. However, there are several significant limitations imposed by the
TFTP protocol.

• TFTP uses the User Datagram Protocol (UDP) as its transport service while
FTP uses the Transmission Control Protocol (TCP). UDP does not provide
reliable, ordered delivery of its packets. TFTP is not likely to be successful
outside of a LAN environment; do not try it across the Internet.

• TFTP provides a limited subset of the commands provided by FTP.

• TFTP does not implement a login facility, while FTP does. While this
facilitates file transfers to hosts that do not support logins, such as many
personal computers, it limits access to specified files on those hosts that do
support logins. Files are only accessible when listed by name or prefix in
/etc/tftpd.cf.

tftp TCP/IP command

442 Chapter 2 Command Descriptions

If host is specified on the command line, TFTP will attempt to establish a
connection to that host before entering the command interpreter. By default, a
connection is made to the TFTP server on the remote host; an alternate server can
be specified with the port argument. The prompt used by the command
interpreter is tftp> .

See also: services and tftpd.cf files, TCP/IP and NFS for the iRMX Operating
System

Commands

These commands are supported by tftp . They may be abbreviated, as long as they
remain unique. Tftp will prompt for required arguments omitted from a command.
Enclose command arguments that have embedded spaces in quotation (") marks.

connect host [port]
Establish a connection to the default TFTP server on the remote host,
or to the server at the specified port.

get remote-file local-file
Retrieve remote-file from the remote machine and store it in local-
file. Full pathnames for both files must be specified. If remote-file is
of the form host:remote-file, a connection is established to the remote
host and remote-file is retrieved.

help [command]

? [command]
Display a list of the tftp commands (no arguments), or a definition of
the specified command.

mode [mode-name]
If mode-name is not specified, the current file transfer mode is
displayed. If mode-name is specified, the file transfer mode is set to
mode-name. The two possible modes are ascii and binary. The
default mode is ascii.

put local-file remote-file
Send local-file to the remote machine and store it in remote-file. Note
that full pathnames for both files must be specified. If remote-file is
of the form host:remote-file, a connection is established to the remote
host and local-file is sent to that and stored in remote-file.

quit Close the connection to the remote server, if any, and exit to the local
shell.

TCP/IP Command tftp

Command Reference Chapter 2 443

rexmt value
Set the per-packet retransmission timeout to value seconds. The
default value is ten seconds.

status Show the current status of the tftp connection and modes.

timeout value
Set the total retransmission timeout to value seconds. The default
value is 30 seconds.

trace Toggle packet tracing. Packet tracing is disabled by default.

verbose Toggle verbose mode. When disabled (default), packets are
transmitted silently. When enabled, statistics regarding the efficiency
of each file transfer are reported.

Diagnostics

Exit status is 0 for normal termination, a positive number for error termination.

tftpd

444 Chapter 2 Command Descriptions

tftpd
The server process for TFTP.

Additional Information

Tftpd is a server that supports the Trivial File Transfer Protocol. The tcplisten
server listens for incoming connections at the well-known port assigned to TFTP
and starts the tftpd daemon to service each such request.

This version of TFTP provides security for files on the TFTP server, unlike most
implementations. Because TFTP does not require an account or password on the
remote system, tftpd allows access only to files whose names or prefixes are
specified in the /etc/tftpd.cf file.

See also: tftp and tcplisten commands, in this chapter
services and tftpd.cf files, TCP/IP and NFS for the iRMX Operating
System

Diagnostics

Exit status is 0 for normal termination, a positive number for error termination.

HI command time

Command Reference Chapter 2 445

time
Displays the current time or sets the time of the local (OS) or global (battery-
backed) time-of-day clock.

✏ Note
You can use this command in an esubmit file or
rq_c_send_command system call if the form of the command
does not require user input. If the command requires user input in
an rq_c_send_command system call, it will fail. However, you
can use a form of the command that requires user input in an
esubmit file if you use the eoresponse and coresponse
subcommands.

See also: esubmit command, in this chapter

Syntax
time [hh: mm: ss |q] [local|global]
time synchronize

Parameters

hh:mm:ss
Numerical designation for the hour, minute, and second. Specify only as many
digits as needed: hours in the range 0-23 and minutes and seconds in the range
0-59. You may specify the hour only, the hour and minute, or all three. Any field
not specified is assumed to be 0.

q(uery) Displays the current date, time and clock type, then prompts you to enter the new
time. Enter a valid time as described above or the letter E to exit.

local Displays or sets the time portion of the local time-of-day clock maintained by the
OS. This is the default if local or global is not specified. Any user may set the
time.

global Applies only to systems with hardware clock/calendar components, typically
backed up by battery power. Specifying global displays or sets the time portion
of this clock. Any user may display the time, but only the Super user can set it. If
you set the global clock, the local clock automatically takes on the same value.

synchronize
For systems with a global clock/calendar, this sets the time portion of the local
clock to the current time of the global clock. If you set the global clock, this
parameter is unnecessary.

time HI Command

446 Chapter 2 Command Descriptions

Additional Information

You must separate the individual time parameters with colons. If you omit the
time parameters, time displays the current date and time in this format:

dd mmm yy, hh:mm:ss <local or global clock type>

If you have a system without a global clock/calendar, whenever you start up or
reset the OS the time is automatically set to the time you last accessed the :system:
directory plus the time that elapsed since the system was started. You can reset the
time to any acceptable value.

If your system has a global clock/calendar and the OS is configured to recognize it,
the local clock is automatically set to the time maintained in the global clock when
you turn on or reset your system.

Error Messages
<time>, invalid time

You specified an invalid or out-of-range entry for one or more of the time
parameters.

<parameter>, invalid syntax
You specified an illegal combination of parameters, such as both a time and the
query parameter.

only the system manager may set the global clock
You specified the global parameter, but you are not the system manager.

E_SHARE, global clock busy
You attempted to access the global clock while another job was accessing it. Try
the command again.

<condition code:mnemonic>, while getting system time
This condition code occurred while the time command was getting the time from
the global clock. Possibly you specified the global or synchronize parameter,
but there is no global clock in the system.

E_INVALID_DATE, global date read was invalid
The date returned from the global clock was invalid. This condition usually occurs
when the global clock has never been initialized or when power to the clock has
been interrupted. The BIOS system call get_global_time gets the date from the
global clock, which the time command then displays.

HI command time

Command Reference Chapter 2 447

E_INVALID_TIME, global time read was invalid
The time returned from the global clock was invalid. This condition usually occurs
when the global clock has never been initialized or when power to the clock has
been interrupted. The BIOS system call get_global_time gets the time from the
global system clock, which the time command then displays.

E_SUPPORT, no global clock
There is no global clock in the system.

timer HI command

448 Chapter 2 Command Descriptions

timer
Times the execution of a given command and displays the elapsed time in seconds.

Syntax

timer command

Parameter
command

Any valid command line; continuation lines are allowed, using the & character.

Additional Information

The elapsed time cannot be measured in fractions of a second. The time needed to
load the command is included in the result. The reported time is only as accurate
as the system time.

HI command touch

Command Reference Chapter 2 449

touch
Changes file time stamps.

Syntax

touch inpath_list [date= date] [time= time]
[all|access|create|modify] [query]

Parameters
inpath_list

One or more pathnames of files to be touched. Multiple pathnames must be
separated by commas. Wildcards are permitted.

date= date
A fully specified date of the form: mm/dd/yy . If you omit this parameter, the
current date is used.

time= time
Time in the form: hh:mm:ss . Both mm and ss are optional. If you omit this
parameter, the current time is used.

all Modifies all available time stamps. Some file systems support full
create/access/modify time stamps (named file driver) and others only support last
modification time stamps (DOS file driver).

access (acc, a)
This parameter modifies only the last accessed time stamp, if supported by the file
system.

modify (modified, mod, m)
This parameter modifies only the last modification time stamp, if supported by the
file system.

create (cr, c)
This parameter modifies only the file creation time stamp, if supported by the file
system.

query (q)
Prompts for permission to touch each file. Respond to the prompt with:

Y Touch the file.
E Exit the command.
R Touch the remaining files without further query.
N or other Do not touch this file; go on to the next file in the inpath-list.

touch HI command

450 Chapter 2 Command Descriptions

Additional Information

If you do not specify any time stamps, the default action of the touch command is
to modify the last accessed and last modified time stamps. If you invoke touch
without any parameters, a help message listing the correct syntax and parameter
descriptions is displayed.

When you invoke touch, your user ID must have write permission for the files to be
modified by touch.

Error Messages
Invalid time specified

The time parameter was entered in an invalid format.

Invalid date specified
The date parameter was entered in an invalid format.

Missing parameter(s)
Either the time or the date parameter was specified without a corresponding
time or date value.

Request is not supported by the file driver
The file driver associated with one of the files in the inpath-list does not support the
s_set_file_status system call.

HI command translate

Command Reference Chapter 2 451

translate
Copies a file to the screen or to another file, converting the case of upper- or lower-
case characters as specified.

Syntax

translate inpath_list [to|over|after outpath_list] [q] [u] [l]
[n [= value]]

Parameters
inpath _list

One or more pathnames, separated by commas, of files to be translated.
Wildcards are permitted.

to|over|after outpath_list
Writes the output to the specified file(s) rather than to the screen.

q(uery)
Prompts for permission to process each file. Respond to the prompt with:

Y Translate the file
R Translate remaining files without further query
E Exit the command
N or other Don't translate this file; query for the next

u(pper)
All lower-case characters are forced to upper-case.

l(ower)
All upper-case characters are forced to lower-case.

n(onprinting)
If no value is specified, nonprinting characters are displayed as question marks. If
a value is specified, nonprinting characters are displayed as the ASCII character
represented by the numeric value. The value is decimal by default, but may be
specified in octal or hexadecimal by appending an O or H.

Additional Information

If no parameters are given, the translate command performs a slightly slower copy
function. If you specify both upper and lower in the same invocation, all
characters are changed to the opposite case. You cannot specify what characters
are considered non-printable.

traverse HI command

452 Chapter 2 Command Descriptions

traverse
Recursively travels a directory hierarchy, executing the specified command in each
directory in the tree. The command line may use the :$: logical file; :$: is set to
indicate whatever directory is being traversed at the moment.

Syntax

traverse directory command

Parameters
directory

Pathname of the topmost directory in the hierarchy to be traversed.

command
The command, along with arguments and parameters, to be executed in each
directory.

Example

To change the access rights for all files under the /helps directory to have read
permission, and for all subdirectories to have list permission, enter:

traverse /helps permit * R U=world

Error Messages
<file > is not a directory

The starting path is not a directory.

rq_c_send_command, exception 0021: E_FILE_NOT_EXIST
The HI rq_c_send_command system call cannot process the specified command.

HI command tree

Command Reference Chapter 2 453

tree
Displays the name (and optionally, size) of each data file and/or subdirectory in a
directory tree.

Syntax

tree pathname [to|over|after outpath] [s] [i] [noda|nodi]

Parameters
pathname

The topmost directory of the tree to be displayed. Wildcards may be used to
indicate more than one directory. However, if a wildcard pattern matches a
filename in the tree, the name is displayed regardless of a nodata or
nodirectory parameter.

to|over|after outpath
Writes the output to the specified file rather than to the screen.

s(ize) Displays sizes of files and directories.

i (ndent)
Displays filenames using indentation.

noda (ta)
Data files are not displayed.

nodi (rectory)
Directory files are not displayed.

Additional Information

By default, the tree command lists all files and subdirectories. If you enter the
command with no parameters, the tree begins in the current working directory. If
you specify the size parameter, the number of bytes and blocks is displayed for
files, as well as the number of files in directories. When you use size , directories
are denoted by an asterisk in the first column. The sizes of directories reflect the
sum of all files contained in the directory.

To display the size of all directories beginning at the root directory, enter:

tree / s noda

The size displayed for the / directory (which is the final entry) is the size of the
entire file system.

uname TCP/IP command

454 Chapter 2 Command Descriptions

uname
Display or set the system name for TCP/IP. Only the Super user can set the name.

✏ Note
You can use this command in an esubmit file but errors will not
percolate to the esubmit variable commandexcep .

Do not use this command in an rq_c_send_command system
call.

Syntax

psh uname [-s] [-n] [-r] [-v] [-m] [-a] [-S name] [-N name]

Parameters

-s Displays the system name.

-n Displays the node name by which the system is known on the network.

-r Displays the release number of the OS.

-v Displays the version number of the OS.

-m Displays the machine hardware name.

-a Displays all the above.

-S name
Sets the system name.

-N name
Sets the node name.

Additional Information

Uname is installed in the /bin directory. On an iRMX or Unix system, the system
name and node name are typically the same. They should be set to the TCP/IP host
name, not including any domain part of the name.

HI command uniq

Command Reference Chapter 2 455

uniq
Finds duplicated lines in a file and displays either the duplicated lines or non-
duplicated lines, or a combination. A line is only considered a duplicate if the
second line immediately follows the first.

Syntax

uniq pathname [to|over|after outpath] [s] [m] [d]

Parameters
pathname

The text file to be processed. If a wildcard is used, uniq processes only the first
file found.

to|over|after outpath
Writes the output to the specified file rather than to the screen.

s(ingle)
Displays only lines with no duplicates.

m(ultiple)
Displays only lines that are duplicated.

d(uplicate)
Displays the extra line of lines that are duplicated.

Additional Information

The single , multiple , and duplicate parameters may be used in any
combination. If none of these is entered, the default is single and multiple ,
which causes uniq to display all lines that contain no adjacent duplicate lines. The
lines must be adjacent in order to be detected. Two otherwise identical lines with a
different number of lines at the end are not considered to be duplicates by uniq.

unloadname NET command

456 Chapter 2 Command Descriptions

unloadname
Removes from the local Name Server object table the names and addresses of
iRMX-NET servers listed in a specified file.

Syntax

unloadname [pathname]

Parameter
pathname

The name of the file containing the list of network servers. The default file is
:sd:net/data. If you specify another file, it must use the format defined for the
net/data file.

See also: :sd:net/data file, Chapter 11, Network User’s Guide and Reference

Additional Information

The unloadname command deletes names from the object table that were
previously entered by the loadname command. The list of objects is read from a
file and the names are deleted from the object table. The format of the input file is
the same as that of the loadname command.

See also: listname and loadname commands, in this chapter

If an error message contains the name of one of the objects specified in the input
file, the error occurred just for that name. Other entries in the file are processed.

Error Messages
<name>, illegal input file format

The input format of the file is not correct.

<name>, syntax error. TYPE not found
The entry in the input file for this object does not contain the keyword TYPE=. The
name is ignored and unloadname processes the next entry.

<name>, property type too long
The property type or the system type field for this object is not the correct format.

<name>, not valid property type
The system type field for this object does not contain a valid value for the property
or system type.

<name>, syntax error. ADDRESS not found
The entry for this object does not contain the keyword ADDRESS.

NET command unloadname

Command Reference Chapter 2 457

<name>, value too long
The transport address for this object is too long.

<name>, illegal property value
The transport address for this object contains invalid characters.

<name>, name does not exist
The object name in the input file is not present in the local object table. However,
the object may be present in another system.

<name>, illegal name
The object name specified in the input file is more than 16 characters long.

unlock HI command

458 Chapter 2 Command Descriptions

unlock
Enables users whose terminals have been locked out of the system to log back on;
cannot be used for virtual terminals.

Syntax

unlock [terminal_id_list |*]

Parameters
terminal _id _list

One or more physical device names of the terminals to be unlocked. Multiple
names must be separated with commas.

* All configured terminals are to be unlocked.

Additional Information

Only the Super user can invoke the unlock command. Unlock unlocks terminals
that were locked out by either the lock or shutdown commands. When you invoke
unlock, the HI initiates logon procedures for terminals where the user is logged off.

When a terminal is unlocked, this message is displayed on the terminal where
unlock is invoked:

unlocked
<terminal_id>, unlocked

This message is displayed on the unlocked terminal:

Terminal is now unlocked and available for use.

See also: Loading and unlocking terminals, System Configuration and
Administration, for information about enabling terminals defined by
loadable device drivers

Error Messages
not multi-user system

You entered more than one terminal number in a system that is not configured as a
multi-user system.

unlock not allowed to non-super users
You are not the system manager and are not entitled to issue this command.

parameters required
You entered unlock with no parameters.

HI command unlock

Command Reference Chapter 2 459

<terminal_id>, not found
The terminal you specified is not configured into the system.

<terminal_id>, already unlocked
The terminal you specified is not locked.

<terminal_id>, terminal connected
The terminal you specified has been connected with the connect command. Use
the disconnect command to disconnect the terminal before unlocking it.

unshare NFS command

460 Chapter 2 Command Descriptions

unshare
Removes the NFS-shared access allowed by remote NFS clients from a local file
system.

Syntax

unshare pathname | symbolic_name | -a

Parameters
pathname

Specifies the local pathname of the NFS-shared file system. This parameter must
be a specific pathname.

symbolic_name
Specifies a symbolic name (alias) for the resource.

-a Removes access from all local file systems.

Additional Information

The unshare command removes the entry from the /etc/sharetab.cf file. This
means the file is not defined as NFS-shared. This effectively removes the shared
access by remote clients from the file system. The command reverses the effects of
the share command. Remote clients cannot mount or attach a file system not
defined as NFS-shared. Use this command when any particular local resource
should not be mounted or attached by a remote NFX client.

See also sharetab.cf file, TCP/IP and NFS for the iRMX Operating System
share command

Removing Shared Access from a Specific File System

To remove shared access from a specific file system, specify either a pathname or
an alias with the command. For example, the following command removes the
shared access from the local resource /usr/project/data:

-unshare /usr/project/data

If the resource /usr/project/data uses the alias “pdata”, then the following
command has the same effect:

-unshare pdata

NFS command unshare

Command Reference Chapter 2 461

Removing Shared Access from All Local Resources

To remove shared access from all local resources, use the -a parameter. For
example, the following command removes shared access from all local file
systems:

-unshare -a

✏ Note
Using unshare to remove access to a shared resource does not
prohibit access to that resource by a remote NFS client that has
already attached the resource. The connection can only be
broken by stopping NFS or detaching the resource.

unxlate Net command

462 Chapter 2 Command Descriptions

unxlate
Displays information about the format of a file that was translated with the xlate
command. The xlate command translates OMF files into bootloadable (iNA 960)
network files.

Syntax

unxlate pathname

Parameter
pathname

A file produced with the xlate command

Additional Information

This utility can be used to determine the format of an xlate-translated file. Such a
file consists of multiple modules that contain a command field, a length, a load
address, a starting address, and the actual data to be loaded. The output from
unxlate shows information about each module. The information is listed in a table
containing entries as shown below:

CMD=<cmd> LOADADDR=<base:offset> LENGTH=<len>
 STARTADDR=<base:offset>

Where:

<cmd> One of these values:

0 For the last module on the LAN controller; execution waits for
a GO command.

1 For modules that will reside on the LAN controller and are not
the last module.

2 For the last module on the LAN controller; execution starts
immediately.

C For the last module on the host.

D For modules that will reside on the host; not the last module.

<base:offset>
Memory addresses in which to load the code. The base and offset for
STARTADDR is only used if the module is the last to load and
execution starts immediately afterward.

<len> The length of the module to load.

See also: xlate command, in this chapter

HI command version

Command Reference Chapter 2 463

version
Displays the version number of one or more library files or object files, such as HI
commands.

Syntax

version pathname_list [l]

Parameters
pathname _list

One or more pathnames, separated by commas, of files from which to display
version numbers. Wildcards are permitted.

l (ong) Displays all the version numbers residing in the input file.

Additional Information

If there is a version number in the file, version displays it in this format:

<pathname>, <module_name> version is x . y

Where:

<pathname>
The file containing the command

<module_name>
Name of the specified command or library; Intel-supplied commands
have names as listed in this manual.

x.y Version number of the command.

You can use version to determine the version number of any HI command. You
can also use it to determine the version numbers of commands that you write. If
the file is a library, the command shows the current and previous version numbers.

For version to work on your commands, you must include a literal string in the
command's source code to specify the name of the command and its version. The
string contains this information:

'program_version_number=xxxx',
'program_name=yyyy...yyy',0

version HI command

464 Chapter 2 Command Descriptions

Where:

program_version_number=
Specify this exactly as shown (lower-case, underscore separating the
words, no spaces).

xxxx Version number of the product; this can be any four characters, but it
must be exactly four characters long.

program_name=
This is optional, but if you want version to recognize and display the
program name, you must specify this exactly as shown.

yyyy...yyy
Name of the command; this can be any number of characters.

0 The literal string must be terminated with a byte of binary 0.

Example

This is an example of a literal string:

DECLARE version (*) BYTE
DATA('program_version_number=V8.5',
 'program_name=MYPROG',0);

If your program included this declaration, version would display:

<pathname>, MYPROG version is V8.5

This is an example of a literal string that does not include the program name:

DECLARE vers2(*) BYTE
DATA('program_version_number=1986',0);

If your program included this declaration, version would display:

<pathname>, version is 1986

Error Messages
<pathname>, does not contain a program version number.

The command you specified does not contain version number information.

<pathname>, is not an object module.
The pathname you specified is not a file containing executable object code.

HI command whoami

Command Reference Chapter 2 465

whoami
Lists your current user ID and access rights.

Syntax

whoami

Additional Information

The whoami command produces a display similar to:

User id: # 5
Access IDs: 5, WORLD

The access IDs are the IDs of other users who have granted you access to their
files.

See also: permit command, in this chapter

xlate NET command

466 Chapter 2 Command Descriptions

xlate
Processes files in Object Module Format (OMF86/286/386) to produce an iNA 960
boot image file.

Syntax

xlate pathname to|over outpath [options]

Parameters
pathname

The name of the input OMF file.

to|over outpath
Writes the output to the specified file.

options
A list of options separated by a single space. These options may be used to
translate any OMF file:

Option Definition
Q Quiet - Do not display information as translation is done
V Verbose - Print information as translation is done
N Not Last Module - Sets bit 0 of the command byte of the boot module

structure to 1; other modules follow this one. If the complete boot module
comprises more than one file, specify this option for all files except the
last one. If this option is not specified, the translation assumes that the
module is the last one and sets bit 0 of the command byte of the boot
module structure to 0.

NET command xlate

Command Reference Chapter 2 467

These additional options may be specified to translate OMF286 and OMF386 files:

Option Definition
I Information only - Do not translate, only display contents of file header.
T No task information - Do not load any task information data. If this

option is used, it must be the last option specified, because xlate assumes
that anything following the T is an address.

T address Load task information at the specified address (a
hexadecimal number with the prefix 0x). Recognized
address suffixes are "k" for kilo and "M" for Mega. If this
option is not specified, the translation assumes the no task
information option (T with no address).

O address Address offset - Add the specified address (a hexadecimal
number with the prefix 0x) as an offset to all output
addresses. Recognized address suffixes are "k" for kilo and
"M" for Mega.

H size Output the result of the translation as hexadecimal records
of the specified length (size).

These additional options may be specified to translate OMF86 files:

Option Definition
G Go - Start execution upon loading. Sets bit 1 of the command byte of the

boot module structure to 1, and jumps to the execution address
immediately when loading is completed. If the boot module consists of
more than one file, specify this option only for the last file. If neither G
nor W is specified, the translation assumes G.

W Wait - Sets bit 1 of the boot module structure to 0; when loading is
completed, saves the execution address and waits for the start instruction.
If the boot module consists of more than one file, specify this option only
for the last file.

A Absolute addresses used in module - Sets bit 2 of the command byte of the
boot module structure to 1. If this option is not specified, bit 2 is set to 0,
which indicates that the load and execution addresses are pointers.

xlate NET command

468 Chapter 2 Command Descriptions

Option Definition
R Remote - File loaded into remote memory. Sets bit 3 of the command

byte of the boot module structure to 1: the module is to be loaded into
remote host memory (from the perspective of the NIA). If this option is
not specified, bit 3 is set to 0, which indicates that the module is to be
loaded into local memory. If this option is used with G, they must be
specified in the order R G. If this option is specified without a W or G, W
is assumed for the translation.

D Data - Include data segments in the output file. If this option is not
specified, only the code segments are translated and included in the output
file.

Additional Information

After files are translated by xlate, they can be downloaded to a local network
controller board with the load utility. The files can be loaded on a remote network
controller by including their names in a ccinfo file produced with the bcl command.

See also: bcl and load commands, in this chapter
boot file format, Network User's Guide and Reference

If processor-dependent options are not specified, the xlate utility applies these
defaults to the translation:

• Normal translation information display mode.

• Last module - Sets bit 0 of the command byte of the boot module structure
to 0.

• Go - If this is an OMF86 file translation, sets bit 1 of the command byte of the
boot module structure to 1 and jumps to the execution address immediately
when loading is completed.

• Load in local memory - If this is an OMF86 file translation, sets bit 3 of the
command byte of the boot module structure to 0; the module is to be loaded
into local memory (from the perspective of the NIA).

• Pointer addresses used in module - If this is an OMF86 file translation, sets bit
2 of the command byte of the boot module structure to 0.

• Code segments only in the output file - If this is an OMF86 file translation,
only the code segments are translated; data segments are ignored.

• Load task information at address 1050H.

See also: unxlate command, in this chapter

NET command xlate

Command Reference Chapter 2 469

Examples

1. This example translates an OMF86 file including the data segments, and
displays translation information in verbose mode. This example is for local
loading:

xlate file1.omf to file1.loc V D

Because no other options are specified, the translation makes these
assumptions:

• Last module - Sets bit 0 of the command byte of the boot module structure
to 0.

• Go - Sets bit 1 of the command byte of the boot module structure to 1 and
jumps to the execution address immediately when loading is completed.

• Load in local memory - Sets bit 3 of the command byte of the boot module
structure to 0; the module is to be loaded into local memory (from the
perspective of the NIA).

• Pointer addresses used in module - Sets bit 2 of the command byte of the
boot module structure to 0.

If the file1.loc file already exists, xlate halts without translating, leaving the
file undisturbed.

2. This example translates two OMF86 files for downloading with a remote boot
request to a host:

xlate file1.omf over file1.loc N R A
xlate file2.omf over file2.loc R A

In this case, two files are created for loading into remote memory (option R).
The files are to be loaded in this order: file1.rem (option N), then file2.rem.
The loading order must match that in the ccinfo file.

Because no other options are specified, these defaults are applied:

• Go - Sets bit 1 of the command byte of the boot module structure to 1 and
jumps to the execution address immediately when loading is completed.

• Absolute pointer addresses (option A) used in module - Sets bit 2 of the
command byte of both the boot module structures to 1.

Any existing files named file1.loc or file2.loc are overwritten.

xlate NET command

470 Chapter 2 Command Descriptions

3. This example translates an OMF286 file, including data segments:

xlate appcode.omf to appcode.out

Because no options are specified, the translation makes these assumptions:

• Normal translation information display mode.

• Load task information data at address 1050H.

If the appcode.out file already exists, xlate halts without translating, leaving
the file undisturbed.

HI command zscan

Command Reference Chapter 2 471

zscan
Reads an object file or library and displays the identification number of all iRMX
ZAPs (fixes) that have been applied.

Syntax

zscan pathname

Parameter
pathname

The name of the object file or object library to be scanned. The pathname cannot
contain wildcard characters. The pathname must specify a file, not a directory.

Additional Information

Some fixes for problems discovered in the OS software have been distributed as
iRMX updates; these fixes are called ZAPs. ZAPs are new modules that replace
the corresponding modules in the OS.

Each update diskette contains an accumulation of all ZAPs issued during the
current release of the OS. When you install the latest update, all ZAPs (from the
current update and from previous updates) are automatically applied to your
system.

The zscan command allows you to check which ZAPs have been applied to an
object file or an object library. All ZAPs are marked by a unique identifier string.
Zscan finds occurrences of these strings and returns information about the
associated ZAPs.

When you invoke zscan, you must specify an object file or an object library. You
cannot invoke the command to find all of the ZAPs applied within a specified
directory. By default, the iRMX system object files are not accessible to the World
user. To use zscan on a bootable system object file, you must grant World read
access rights to that file with the permit command, or invoke zscan as the Super
user.

See also: permit command, in this chapter

Updates to iRMX for Windows are not distributed as ZAPs. However, the zscan
command operates in iRMX for Windows, and will display any ZAPs that may
have been applied.

zscan HI command

472 Chapter 2 Command Descriptions

✏ Note
All files maintained on the DOS file system are owned by the
World user.

Output Display

If zscan encounters no ZAPs, it displays:

<filename>, No ZAPs applied.

When zscan encounters ZAPs, it displays:

<filename>, has the following ZAP(s) applied:
<zap id>, <class>: for <product>, <release>, <layer>
 .
 .
 .
<zap id>, <class>: for <product>, <release>, <layer>

Where:

<filename>
The name of the file being scanned.

<zap id> The identification code for the ZAP, in the format ZPCxxx . The code
is as follows:

Z = a ZAP identifier string
P = one of the following product codes:

B = iRMX II MB II
R = iRMX I
X = iRMX II
Z = iRMX III
N = iRMX I based iRMX-NET
P = iRMX II and III based iRMX-NET

C = the class of ZAP

A = fully evaluated
B = developer tested

xxx = the unique number assigned to the ZAP

<class> The class of the ZAP: Class A indicates a supported ZAP distributed
through the iRMX Update Service. Class B indicates an unsupported
ZAP with limited distribution.

HI command zscan

Command Reference Chapter 2 473

<product> The product the ZAP is associated with.

<layer> The layer of the OS (Nucleus, BIOS, etc.) that the ZAP pertains to.

<release> The release level of the OS layer the ZAP pertains to.

Error Messages
USAGE: zscan <object file>

You did not specify a filename in the command.

<filename> is not an object module
The file specified in the command is not an object module and cannot be scanned
for ZAPs.

■■ ■■ ■■

Command Reference Appendix A 475

Using Disk Mirroring A
iRMX disk mirroring is a hard disk configuration that maintains identical copies
(mirrors) of data on two hard disks for increased reliability.

✏ Note
The disks must have the same formatted capacity, granularity and
should be the same model type to ensure the same formatted disk
capacity.

Disk mirroring is implemented for the Peripheral Controller Interface (PCI) family
of controllers. Disk mirroring is available for:

• iRMX III systems using Multibus I and II
• iRMX for Windows and iRMX for PCs systems using Multibus II
• iRMX for Windows and iRMX for PCs systems using a PC bus with an

Adaptec 1542/1742 host adapter

This appendix is for operators who need to configure a system for disk mirroring
and for system developers who develop disk mirroring system applications.

This appendix contains this information about disk mirroring:

• Disk mirroring concepts

• Disk mirroring configurations

• Using disk mirroring, including a tutorial on using the mirror command and
information about the a_special system call

See also: mirror command, in this manual, for syntax, parameters, and basic
information
a_special call, System Call Reference

476 Appendix A Using Disk Mirroring

Introduction
Disk mirroring provides these benefits:

• Prevents system crashes due to hard disk and peripheral controller failure

• Increases data integrity by replicating write operations

• Increases data reliability and availability by allowing your system to continue
operating after a hard disk or peripheral controller failure

• Improves read performance by providing data access from both hard disks of a
mirror set

• Reduces downtime by supporting on-line repair and resynchronization of hard
disks

Disk Mirroring Concepts
This section explains these concepts:

• Mirror sets

• Failure detection

• Rollover

• On-line and off-line repair

• On-line resynchronization

• Automatically enabling disk mirroring

• Event notification

• Disk mirroring operations

A mirror set consists of two hard disks that contain identical data: the primary and
secondary hard disks. Rollover occurs when the primary disk of a mirror set fails,
and the secondary disk continues to perform I/O operations. On-line repair allows
a failed hard disk to be reformatted and reused without shutting down the system.
On-line resynchronization copies data from one hard disk to the other as a
background task. Event notification reports events such as rollover and
resynchronization completion to the operator or a file.

Command Reference Appendix A 477

Mirror Sets
Disk mirroring requires a pair of hard disks to use as a mirror set. Designate one
hard disk in the set as the primary hard disk and the other as the secondary hard
disk. The name of the primary hard disk serves as the name for the mirror set.

Once you enable disk mirroring on a mirror set, the hard disks are treated
identically, as illustrated in Figure A-1. The secondary hard disk becomes
transparent to application programs, I/O system calls to read and write take on
different characteristics:

• Applications may only direct write operations to the primary hard disk of a
mirror set. The device driver directs write operations to both the primary and
the secondary hard disks. Each write operation causes identical copies of the
data to be written to both members of the mirror set.

• Applications may only direct read operations to the primary hard disk of a
mirror set. The device driver can obtain the requested data by issuing a read
operation on either hard disk in the mirror set.

1. The application writes to the primary hard disk.
2. The device driver writes to both hard disks.

W-3404

Primary Secondary

Write Operation

Read Operation
or

Device Driver

3. To improve performance, the device driver can read
 from either hard disk.

Figure A-1. Mirror Set Operations

478 Appendix A Using Disk Mirroring

Applications direct read operations to the primary disk, but you can set up the
mirror set so that the device driver issues a read on the primary or secondary disks
alternately. This operation is transparent to applications and improves read
performance by overlapping read operations.

Failure Detection
The device driver detects a hard disk failure when a read or write operation returns
a failed status or times out. The device driver keeps track of all transactions
initiated to the primary and secondary disks. If a transaction on a hard disk does
not complete within a fixed time period, the device driver marks that hard disk as
failed. The device driver frees up all the pending transactions on the failed hard
disk and retries them on the other hard disk of the mirror set.

Once a mirror set has encountered an error on one hard disk, read and write
operations are issued to only the good hard disk.

Rollover
With disk mirroring enabled, if either a read operation or a write operation results
in an I/O error, the device driver initiates an automatic rollover. The rollover
feature allows the device driver to detect a fault or a failure on a mirror set,
determine which hard disk failed, and direct I/O operations to the surviving hard
disk of the mirror set. This allows system operations to continue. Rollover is
transparent to the application requesting the I/O operation.

If an I/O operation on one hard disk of a mirror set results in an unrecoverable
error, the device driver retries the operation on the other disk. If the retry succeeds,
the I/O operation returns with no error. The device driver then updates its state to
reflect that only one hard disk of the mirror set is operational, and the device driver
redirects all succeeding read and write operations to the surviving hard disk. The
disk that failed is marked failed and, if the application has requested notification,
the operator or application is notified of the failure. Until a repair is performed,
I/O operations continue on the surviving disk. In the absence of disk mirroring, a
hard disk failure causes a system crash.

Once an I/O error has occurred, the device driver redirects all I/O to the surviving
hard disk. You can direct operations other than read and write (typically format)
to either hard disk, and they are performed on the hard disk to which they are
directed.

Command Reference Appendix A 479

1. Rollover: when a hard disk fails, the device driver directs
 all I/O operations to the surviving disk.

W-3405

Failed
Disk

Surviving
Disk

Read
Operation

Reformat Write Operation

2. Repair: failed disk can be reformatted or repaired.
3. Resynchronization: after repair, the disks can be resynchronized.

Repaired
Disk

Surviving
Disk

Copy Operation

Figure A-2. Rollover, Repair, and Resynchronization

Rollover on Different Hard Disk Controllers

When mirrored hard disks are connected to two different hard disk controllers,
applications can recover from peripheral server and controller failures. The device
driver can detect a controller or a PCI server crash and automatically roll over to
the remaining server.

The peripheral server can support command queueing at the controller. If so, there
might be commands pending at the hard disk which failed. After rollover, these
commands can complete because the device driver will unconditionally retry all the
queued commands on the surviving hard disk when they are returned by the server.

Rollover on peripheral server and controller failures includes automatic rollover to
single disk operation on I/O errors.

480 Appendix A Using Disk Mirroring

On-line and Off-line Repair
When an I/O error occurs, the device driver redirects I/O operations to the
surviving disk. Diagnostic programs can then reformat or reassign alternates for
bad blocks in an attempt at on-line repair of the failed disk.

Because the device driver allows you to format the failed hard disk when it is in the
rollover state, you can reformat a failed hard disk on-line, without ever powering
down the system. If you set up the system for disk mirroring with
resynchronization, normal operations can continue after the repair is completed.

You must shut down the system to physically replace a disk or for off-line repair.
If the system crashes or is in rollover state at the time of shutdown, disk mirroring
is not automatically enabled when you restart the system. You must resynchronize
the new or repaired hard disk with the surviving hard disk when the system is
brought on-line.

See also: On-line resynchronization, in this appendix

System Device Repair

The procedure for mirroring a system device is identical to that of a non-system
device, but there are some issues that are unique to a system device in the event of
a failure.

When the system device fails, you might need to reboot the system from the
secondary hard disk. You must set the boot parameters so that the OS can be
rebooted from either the standard system device or its secondary.

On-line Resynchronization
Resynchronizing a mirror set involves copying data from one hard disk of the
mirror set to the other. You must explicitly resynchronize a mirror set; the device
driver does not automatically perform this operation.

You need to resynchronize a mirror set any time you recreate it, such as after a
rollover, when a new hard disk is added to an existing mirror set, or after off-line
repair. You resynchronize a mirror set while it is on-line, as a background job.
This minimizes system downtime after repair or on startup. I/O operations are
allowed on a mirror set while resynchronization is in progress.

See also: Tutorial: Using the Mirror Command, in this appendix

If the device driver detects an error during resynchronization, the resynchronization
operation is aborted and the surviving hard disk continues to respond to I/O
requests.

Command Reference Appendix A 481

Automatically Enabling Disk Mirroring
If you set up disk mirroring on your system, disk mirroring is automatically
enabled whenever the I/O system attaches the mirror set's primary hard disk. The
automatic enabling mechanism works as illustrated in Figure A-3.

W-3406

Application
requests

attachdevice.

Is
mirror info
available?

Is
mirror set

OK?

Enable mirroring.
Mirror set marked

not OK as safeguard.

Normal
detach

occurs?

Mirror set
marked OK.

Mirroring
not enabled.

Mirror set remains
marked not OK.

Application
requests
detach.

Yes

Yes

Yes

No

No

No

Figure A-3. Automatically Enabling Disk Mirroring

482 Appendix A Using Disk Mirroring

The process shown in Figure A-3 includes these steps:

1. When you attach the primary hard disk or initialize the system, the device
driver reads the volume label on the primary and secondary units before any
read or write operations are issued. The device driver determines whether the
system was shut down normally with the mirror sets left intact, or whether the
system had crashed, possibly leaving the elements of mirror sets holding
different data.

If the state information indicates that the previous detach was not normal,
mirroring is not enabled and I/O operations are performed only by the
surviving disk in the mirror set.

If the previous detach was normal, the mirror set is created and mirroring is
enabled before any I/O operations occur. I/O operations are performed by both
disks in the mirror set. As a precautionary measure, the device driver changes
the state information on the disks to indicate an improper shutdown. Thus if a
disk fails while attached, disk mirroring will not be enabled on the next
reattachment.

2. When the primary hard disk is detached the device driver records, as state
information on the mirror set hard disks, that a normal detach occurred.
Normal detach information indicates that disk mirroring can be automatically
enabled when the primary hard disk is attached next time.

In addition to the normal or improper detach information, the device driver records
the device unit information block (DUIB) name of the secondary hard disk on the
primary hard disk's volume label; it records the DUIB name of the primary hard
disk on the secondary hard disk's volume label.

See also: Mirror state structure, in this appendix

The device driver also writes an incarnation signature pattern on both hard disks.
This unique 32-bit number marks this particular instance of the mirror set. This
prevents the device driver from accidentally enabling mirroring on the wrong
instance of a hard disk.

Event Notification
You can request event notification to monitor disk mirroring events. You can get
the disk mirroring status for these events:

• Rollover

• Resynchronization complete

• Resynchronization abort

Command Reference Appendix A 483

When one of these events occurs, the device driver notifies the operator or
application with a message. You can have the message sent to the screen or a file.
Using the message, you can decide what actions to take in response to the event.
For example, if rollover occurs, you can obtain detailed status on the error that
caused the rollover.

After you receive notification of an event, you must request event notification
again to be notified of the next event.

Disk Mirroring Configuration
This section describes hardware and software configuration for disk mirroring.

Hardware Configuration
Disk mirroring is implemented for the peripheral controller interface (PCI) family
of controllers. This product family includes these boards:

• The SBC 386/12S and SBC 486/12S for Multibus I systems

• The SBC 386/258 and SBC 486/133SE for Multibus II systems

For Multibus I systems, one board includes both the PCI server and the iRMX host
device driver.

There are several configuration options for Multibus II systems. The configuration
examples shown in these illustrations use the SBC 386/258 board as the PCI server.
The illustrations show:

• The primary and secondary hard disks can be on the same or on different SCSI
busses.

• The hard disks in a mirror set may reside on the same PCI server or on
different PCI servers.

• The iRMX device driver runs on one or more separate CPU boards or on the
same board that hosts the PCI server.

✏ Note
The disks in a mirror set must have the same formatted capacity
and granularity, and must be the same model type to ensure the
same formatted disk capacity.

484 Appendix A Using Disk Mirroring

Mirror Set on One PCI Server

In Figure A-4, the PCI Server runs on the SBC 386/258 board, which is connected
to a single SCSI bus. The primary and the secondary hard disks are connected to
the same single-ended SCSI bus.

P=Primary Disk; S=Secondary Disk

SCSI

OM02002

Multibus II Bus

SP
iRMX

Device Driver
iRMX

Device Driver
SBC

386/258

Figure A-4. Mirror Set on One PCI Server

This configuration has two advantages:

• A cost effective solution, since the mirror set resides on one SBC 386/258
board

• Recovery from a primary or a secondary disk failure, as long as that failure
does not hang the SCSI bus

The major disadvantage in this configuration is that there is no recovery from either
a SCSI bus failure or an SBC 386/258 board failure.

Command Reference Appendix A 485

Mirror Set Across SCSI Busses

In Figure A-5, the PCI Server runs on the SBC 386/258D (dual) board, which is
connected to two SCSI busses. The primary hard disk is connected to the
differential SCSI bus and the secondary hard disk is connected to the single-ended
SCSI bus.

W3407

P=Primary Disk; S=Secondary Disk

Single-ended
SCSI Bus

Differential SCSI Bus

S

P

Multibus II PSB

iRMX Host

PCI
Device Driver

PCI
Device Driver

iRMX for
Windows Host

PCI Server

SBC
386/258D

Figure A-5. Mirror Set Across a SCSI Bus

This configuration has two advantages:

• A cost effective solution using a single SBC 386/258D board

• Recovery from any single SCSI bus failure that does not cause the SBC
386/258D board to fail

The major disadvantage to this configuration is that there is no recovery from an
SBC 386/258D board failure.

486 Appendix A Using Disk Mirroring

Mirror Set Across Two PCI Servers

In Figure A-6, the mirror set includes two SBC 386/258 boards. The PCI Server
runs on the SBC 386/258 boards, each of which is connected to a single-ended
SCSI bus. The primary hard disk is connected to one SCSI bus on one of the SBC
386/258 boards and the secondary hard disk is connected to a different SCSI bus on
the other SBC 386/258 board.

Single-ended
SCSI Bus

W3408

P=Primary Disk; S=Secondary Disk

Single-ended
SCSI Bus

Multibus II PSB

P S

PCI
Device Driver

iRMX for
Windows Host

PCI Server

SBC
386/258

iRMX Host

PCI
Device Driver

PCI Server

SBC
386/258

Figure A-6. Mirror Set Across Two PCI Servers

This configuration has two advantages:

• Recovery from

- A single hard disk failure on either board

- A SCSI bus failure on either board

- An SBC 386/258 board failure

• Better performance because there are two paths to the disks using the two
SBC 386/258 boards

Command Reference Appendix A 487

Mirror Set on Multiple Multibus II Systems

In Figure A-7, there are two individual Multibus II systems. Each system has its
own mirror set across the single-ended and differential SCSI busses of its
SBC 386/258D board. A PCI Server runs on each SBC 386/258D board. The
systems are connected by a shared differential SCSI bus on the two SBC 386/258D
boards.

Using two SBC 386/258D boards has two advantages:

• If either system fails, the primary hard disk of the failed system can still be
accessed from the surviving system because of the shared SCSI bus.

• Recovery is possible from any single SCSI bus failure that does not cause the
SBC 386/258D board to fail.

This redundant system configuration also provides better performance.

488 Appendix A Using Disk Mirroring

Single-ended
SCSI Bus

Shared Differential SCSI Bus

S1

P1

Multibus II PSB

iRMX Host
Device Driver

Single-ended
SCSI Bus

S2

Multibus II PSB

iRMX
for Windows
Device Driver

P2

W3409

P=Primary Disk; S=Secondary Disk

System 2System 1

PCI Server

SBC
386/258D

PCI Server

SBC
386/258D

Figure A-7. Mirror Set on Multiple Multibus II Systems

Software Configuration
There are two aspects of software configuration: setting up the mirror set with the
mirror command, and setting the number of maximum outstanding commands.
The transaction timeout period is fixed in the device driver and is not set by the
user.

See also: Disk mirroring tutorial, in this appendix
mirror command, Chapter 2

Command Reference Appendix A 489

Setting the Maximum Outstanding Commands

You must equally divide the number of outstanding messages at each PCI server
among all the PCI drivers in the system. For example, if a PCI server supports 100
messages and there are 5 iRMX hosts with 2 PCI driver instances on each host, you
must configure each PCI driver to have at most 10 messages (100 / (5*2))
outstanding.

Set the Maximum Outstanding Commands (MOC) option in the PCI Driver Screen.
You do not need to change the defaults used in the standard definition files. This is
the formula for setting the MOC:

MOC = total outstanding messages / (number of hosts * number of
device driver instances on each host)

After you configure and regenerate the OS with the new driver, use the mirror
command to set up the mirror sets.

See also: Using the mirror command, in this appendix
How to Use the Peripheral Controller Interface (PCI) Server

Using Disk Mirroring
These topics are described in this section:

• Summary of disk mirroring operations

• Tutorial on using the mirror command

• Handling events

• Handling failures

− Secondary hard disk failures

− Primary hard disk failures

• Protecting hard disks

• Using the a_special system call

Summary of Disk Mirroring Operations
You perform disk mirroring operations using both a command interface and a
system call subfunction. The mirror command lets you change and monitor disk
operations from the command line while the system is running. The disk mirroring
subfunction of the BIOS a_special system call lets you develop disk mirroring
applications.

490 Appendix A Using Disk Mirroring

The mirror command and the disk mirroring subfunction of the BIOS a_special
system call provide these operations:

Create mirror set Requests the device driver to create a mirror set of two specified
hard disks. You specify one hard disk as primary and the other
hard disk as secondary. The primary hard disk's name becomes
the mirror set's name.

Enable mirroring
with
resynchronization

Enables disk mirroring by resynchronizing the primary and
secondary hard disks on-line. Resynchronizing a mirror set
involves copying data from one hard disk of the mirror set to the
other. You explicitly specify the source hard disk and destination
hard disk for the data copy.

Disable mirroring Requests the device driver to disable and discontinue mirroring
operations on a specified mirror set.

Request mirror
event notification

Requests notification when certain events occur on a mirror set.
These events include rollover, resynchronization completion, and
resynchronization abort. You can have the status message sent to
the screen or to a file.

Get mirror status Reports disk mirroring status for a mirror set. For example, the
status information includes whether a rollover has occurred and
whether resynchronization is in progress on a mirror set.

Get mirror attach
status

Reports attach status for a hard disk after it is attached to the
system. The status report contains such information as the name
of the hard disk's mirror set and the state of the disk when it was
last detached.

Set mirror options Sets or changes the read policy for a mirror set.

See also: mirror command, in this manual
a_special system call, System Call Reference

Command Reference Appendix A 491

Tutorial: Using the Mirror Command
To set up the mirror set, use the mirror command as illustrated in this example.
The PCI mirroring driver and the mirror command must be installed and the OS
must be rebuilt. Assume that the primary and the secondary disks are Maxtor 4380
with SCSI units 2 and 3, and that the system was properly configured and generated
with the ICU. The DUIB names for the two disks are M4380_2 and M4380_3
respectively.

Follow these steps to set up a mirror set on a new system.

1. Attach and format the primary and secondary disks:

ad m4380_2 as :w:
ad m4380_3 as :w1:
format :w: <format command options>
format :w1: <format command options>

Formatting will take 15 to 30 minutes for each disk, depending on the disk.

2. Detach the secondary hard disk by entering:

dd :w1:

3. Create the mirror set by entering:

mirror create :w: m4380_3

4. Get the status of the mirror set by entering:

mirror getstat :w:

This information is displayed on the screen:

State = Mirror Set Created
Primary Unit = M4380_2
Secondary Unit = M4380_3
Read Policy = Alternate Read

5. Resynchronize the primary hard disk with the secondary hard disk by entering:

mirror resync :w: p2s

The resync function has started when the hard disk lights start flashing.
Resynchronization takes 15 to 30 minutes, depending on the disk.

6. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

492 Appendix A Using Disk Mirroring

This information is displayed on the screen:

State = Resync In Progress
Primary Unit = M4380_2
Secondary Unit = M4380_3
Resync Source Unit = M4380_2
Resync Percent Complete = xy%
Read Policy = Alternate Read

7. Obtain notification of the resynchronization completion by entering:

bk mirror waitevent :w: > :config:mirror.log

This causes a task to wait in the background for the resynchronization to
complete. The status of the resynchronization is written into
:config:mirror.log.

When the resynchronization is finished, the background job waiting for an
event will complete, and send a message to the screen. Examine :config:
mirror.log to see if the resynchronization completed normally. The Mirror Set
Event message should read Resync complete .

8. To verify that mirroring is now enabled, use the getstat parameter. All read
commands now alternate between both disks and all write commands are
duplicated on both disks. This information is displayed on the screen:

State = Mirroring Enabled
Primary Unit = M4380_2
Secondary Unit = M4380_3
Read Policy = Alternate Read

9. To verify that mirroring gets automatically enabled after a normal detach,
detach the primary hard disk M4380_2:

dd :w:

10. Attach the primary hard disk again, then enter:

mirror attstat :w:

The mirror state information that was written on the disk during the detach will
be displayed on the screen. The incarnation number is a unique 9-digit number
assigned at shutdown time.

Mirror Attach Status = Mirror Set Valid
Other Unit Name = M4380_3
Incarnation Number = XXXXXXXXX
Disk Status = Marked Good

Command Reference Appendix A 493

The attstat parameter is also useful for troubleshooting in certain situations.
For instance, if you expect mirroring to be enabled automatically when a hard
disk is attached, you can use the attstat parameter to check this. It might
not be enabled if the secondary hard disk is accidentally attached instead of the
primary.

11. To verify that mirroring has been automatically enabled, use the getstat
parameter.

This information is displayed on the screen:

State = Mirroring Enabled
Primary Unit = M4380_2
Secondary Unit = M4380_3
Read Policy = Alternate Read

Now you can start normal operations.

If there are multiple mirror sets, the preceding steps must be repeated for each
mirror set.

Handling Events
To receive notification of important events, such as rollover or resynchronization
completion, you must always keep a mirror command with the waitevent

parameter operating in the background. When an event occurs, the command
prints the event that occurred. You can redirect the output to a log file. Once an
event has been reported, use the mirror command with the getstat parameter to
get more details about the event. You can use a submit file for this purpose. This
file has two lines:

mirror waitevent :w:
mirror getstat :w:

To wait for an event, type:

bk <submit file name> > :config:mirror.log

Once an event has been reported, you must again invoke the submit file to obtain
further notification of events.

494 Appendix A Using Disk Mirroring

Handling Failures
This section discusses options for handling primary and secondary failures. A
failure may be a hard disk failure, a SCSI bus failure, a disk controller failure, or a
PCI Server failure.

When a failure occurs, two possibilities exist:

Off-line
repair

Keep the system running on the surviving disk until the next
scheduled shutdown and fix the failure while the system is shut down.
Re-introduce the fixed disk into the mirror set when the system is
rebooted.

On-line
repair

Try to fix the failure and restart the failed entity without shutting the
system down. A failed hard disk may be fixed by attempting to
format it. For example, the reboot command can be used to restart a
failed SCSI controller, and the SCSI bus may be fixed by resetting it.
(The PCI server has an option to reset the SCSI bus on startup.)

The next two sections describe how to handle secondary and primary hard disk
failures.

Handling Secondary Hard Disk Failure

Assume the primary hard disk is M4380_2 and the secondary hard disk is
M4380_3. Hard disk M4380_3 crashed and the system is running on its primary
hard disk, M4380_2.

Off-line Repair of Secondary Hard Disk

To perform an off-line repair, take these steps.

1. Shut the system down and replace the secondary hard disk.

2. Attach the primary hard disk M4380_2 and get the system started while
formatting the new secondary hard disk:

ad m4380_2 as :w:

<perform normal operations on :w:>
ad m4380_3 as :w1:

format :w1: <format parameters>

Formatting will take 15 to 30 minutes, depending on the disk.

Command Reference Appendix A 495

3. When the format is finished, detach the new secondary hard disk:

dd :w1:

4. Create the mirror set and resynchronize the new secondary hard disk:

mirror create :w: m4380_3
mirror resync :w: p2s

Resynchronization takes 15 to 30 minutes, depending on the disk.

5. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

6. Get the resynchronization notification by invoking the mirror command to
wait for an event in the background:

bk mirror waitevent :w: > :config:mirror.log

When the resynchronization is complete, you receive a notification. The two
disks are now identical.

On-line Repair of Secondary Hard Disk

To attempt to fix the secondary hard disk by formatting it on-line, take these steps.

1. Attach and format the secondary hard disk, M4380_3:

ad m4380_3 as :w1:
format :w1: <format options>

Formatting will take 15 to 30 minutes, depending on the disk.

If the format is not successful, the hard disk may have to be repaired off-line.

2. After the format is complete, detach the secondary hard disk:

dd :w1:

3. Resynchronize the primary hard disk with the secondary:

mirror resync :w: p2s

Resynchronization takes 15 to 30 minutes, depending on the disk.

496 Appendix A Using Disk Mirroring

4. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

5. Wait for the resynchronization to complete:

bk mirror waitevent :w: > :config:mirror.log

When the resynchronization is complete, you receive a notification. The two
disks are now identical.

Handling Primary Hard Disk Failure

Assume that the hard disk M4380_2 crashed and the system is running on its
secondary, M4380_3.

Off-line Repair of Primary Hard Disk

When the primary hard disk fails, you have the option of either replacing the disk
or attaching the secondary disk as the primary and trying to reformat the former
primary disk. Both options require shutting the system down.

To perform an off-line repair, take these steps.

1. Shut the system down and replace the primary hard disk if necessary.

2. Attach the secondary hard disk M4380_3 as the primary hard disk and get the
system started while formatting the new (or former primary) hard disk:

ad m4380_3 as :w:

<Perform normal operations on :w:>
ad m4380_2 as :w1:

format :w1: <format parameters>

Formatting takes 15 to 30 minutes, depending on the disk.

3. When the format is finished, detach the new hard disk:

dd :w1:

4. Create the mirror set and resynchronize the new hard disk:

mirror create :w: m4380_2
mirror resync :w: p2s

Resynchronization takes 15 to 30 minutes, depending on the disk.

Command Reference Appendix A 497

5. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

6. Wait for the resynchronization notification by invoking the mirror command
to wait for an event in the background:

bk mirror waitevent :w: > :config:mirror.log

When the resynchronization is complete, you receive a notification. The two
disks are now identical.

On-line Repair of Primary Hard Disk

On-line repair using the iRMX format command is not possible when the primary
disk has failed, since the OS does not allow a hard disk to be reformatted when it is
in use. Even though the device driver redirects all I/O to the secondary hard disk,
the I/O System is not aware of this and assumes that all I/O is being performed on
the primary hard disk.

Utility programs that directly communicate with the PCI server may be used to
format the primary hard disk in an attempt to fix it. If these are available, take
these steps:

1. Attempt to fix the primary disk by formatting it. If the format is not
successful, you must repair the hard disk off-line.

2. If the format is successful, resynchronize the primary with the secondary. The
resynchronization direction is from secondary to primary:

mirror resync :w: s2p

Resynchronization takes 15 to 30 minutes, depending on the disk.

3. You can check on the progress of the resynchronization by entering:

mirror getstat :w:

4. Wait for the resynchronization to complete:

bk mirror waitevent :w: > :config:mirror.log

When the resynchronization is complete, you receive a notification. The two
disks are now identical.

See also: How to Use the Peripheral Controller Interface (PCI) Server, for
more information

498 Appendix A Using Disk Mirroring

Protecting Hard Disks
The PCI device driver reserves both the primary hard disk that is being attached
and the secondary hard disk in a mirror set. If a hard disk is reserved and an
attempt is made to reserve it again, the driver returns a Write Protect Error. This
protects a hard disk from being used by two instances of the device driver at the
same time. This can happen when a hard disk is attached and another driver tries
to use it as a secondary hard disk of a mirror set.

Using A_special for Disk Mirroring
Function code 19 of the a_special system call performs disk mirroring operations
on the primary hard disk of the mirror set and is valid for physical and named
drivers. The iRMX PCI device driver implements the actual mirroring, error
detection and rollover, and on-line resynchronization. Refer to the mirror.lit and
mirror.h files for the literal definitions for the disk mirroring subfunction.

See also: Function 19 and error messages for a_special, System Call Reference

Mirror State Structure

Each mirrored disk contains a mirr_state_struct structure, located in the
Volume Label at a byte offset of 896 decimal. When the first attach is performed
on a hard disk, the device driver uses this structure to detect whether this hard disk
was part of a mirror set and, if it was, to identify the name of the secondary disk.
The format of this structure in PL/M is:

DECLARE mirr_state_struct STRUCTURE(
other_name(14) BYTE,
valid_flg WORD32,
incarnation WORD32,
prim_flg BYTE,
good_flg BYTE);

The format of the structure in C is:

typedef struct {
UINT_8 other_name(14);
UINT_32 valid_flg;
UINT_32 incarnation;
UINT_8 prim_flg;
UINT_8 good_flg;

} MIRR_STATE_STRUCT;

Command Reference Appendix A 499

Where:

other_name
Specifies the DUIB name of the other hard disk of the mirror set. The
DUIB name must be in capital letters, be null-terminated, and be a
maximum of 14 characters not including the null.

valid_flg Specifies if the mirror set is valid. A valid set has the pattern
600ddi5c (looks like gooddisc) on both disks; an invalid set has the
pattern deadbeef . If the mirror set is valid, the device driver
automatically re-enables mirroring. The valid flag is set at the end of
a normal detach if no I/O errors have occurred. The device driver
clears the flag on each disk when it reads the disk so that mirroring is
not automatically enabled if the system crashes.

incarnation
Is a pattern that is written on the disks to uniquely identify the correct
instance of a mirror set.

prim_flg Specifies if this hard disk is the primary or secondary unit of a mirror
set:
1 primary unit
2 secondary unit

good_flg Specifies whether this disk was good when it was detached:
0AAH good
055H not good

■■ ■■ ■■

Command Reference Appendix B 501

Using Diskverify
in Interactive Mode B

You can use diskverify in one of two ways:

• In interactive mode, which requires an understanding of the iRMX file
structures. This appendix describes using diskverify in interactive mode.

• As a single Human Interface command, which does not require as much
understanding of the iRMX file structures

See also: diskverify as a single command, Chapter 2
named volume structure, Appendix C

Introduction
The Disk Verification Utility (DVU) inspects, verifies, and corrects the data
structures of iRMX named or physical volumes after such occurrences as power
irregularities or accidental reset. Diskverify can be used on named and physical
volumes; it cannot be used on remote, NFS, or DOS volumes. In iRMX for
Windows, use this command only for an iRMX partition, not for a DOS drive or a
partition containing the DOS file system.

The DVU can reconstruct the file descriptor node (fnode) file, the volume label, the
fnode map, the volume free space map, and the bad blocks map of the volume. In
addition, with diskverify you can view bad track information, and manipulate
fnodes and the actual data on the volumes. The DVU also supports auto-volume
recognition, which means you can verify any iRMX named volume without
detaching and reattaching the device with the correct DUIB. These processes
usually involve reading a portion of the volume into a buffer, modifying that
buffer, and writing the information back to the volume.

This appendix includes:

• Invocation instructions and invocation error messages
• Information about using commands and parameters
• Diskverify error messages
• Instructions for using diskverify to back up and restore volume labels and

fnodes
• A command summary table
• Descriptions of the 36 Disk Verification Utility commands

502 Appendix B Using Diskverify in Interactive Mode

You must be familiar with volume structure to use the full capabilities of the Disk
Verification Utility. You should also understand the OS, and particularly the BIOS
and Human Interface layers.

See also: Volume structure, Appendix C
I/O Systems, Introducing the iRMX Operating Systems for general
information
System Concepts for information on the BIOS and for information on
the HI

▲▲! CAUTION
Do not use the diskverify commands in an interactive program
unless you understand the iRMX volume structure. Some
commands, if not used correctly, can render your volumes
unusable.

It is recommended that you first try using diskverify on an expendable diskette.
Format a spare diskette and create a simple file structure on it. Include some data
files in the directories.

See also: format command, Chapter 2

Command Reference Appendix B 503

Invoking Diskverify
Unless you are the Super user, you may only invoke diskverify for devices
attached by you or the World user. The diskverify utility reattaches the device as a
physical device before verifying it. When the utility finishes, it reattaches the
device as it was before you invoked the utility.

If you verify the system device (:sd:), the OS deletes all connections to the device.
You must either use the attachfile command with the system option or reboot the
system to restore the system logical names before you can enter more commands.
Attachfile can also be used to restore your :home: directory.

See also: attachfile in Chapter 2

To invoke diskverify in interactive mode, enter:

diskverify : logical_name : [to|over|after outpath]

Where:

:logical_name :
Logical name of the secondary storage device containing the volume to be verified.
The colons are not required.

to|over|after
To writes the output of the DVU to the specified file, over copies the output over
the specified file, and after appends the output to the end of the specified file; if
the file does not exist, it is created.

outpath
Pathname of the file to receive the output from the DVU. You cannot direct the
output to a file on the volume being verified. If you attempt this, the utility returns
an error message.

If you omit the outpath parameter and/or the preposition, output is directed to the
console screen (:co:) by default.

When you invoke diskverify , the utility displays a header message (where Vx. y is
the version number of the utility) and the utility prompt (*), as follows:

iRMX Disk Verify Utility, Vx.y
Copyright <year> Intel Corporation
All Rights Reserved
*

You can then enter any of the diskverify commands. If you enter anything else,
the utility displays an error message.

504 Appendix B Using Diskverify in Interactive Mode

Invocation Error Messages
These error messages can be generated when you invoke the DVU:

argument error
The option specified is not valid.

<logical_name>, invalid logical name
The logical name does not exist, was longer than 12 characters, contained invalid
characters, or was missing a matching colon.

0045 : E_LOG_NAME_NEXIST or <logical_name>, logical name does not
exist

A nonexistent logical name was specified in either the :logical_name: or
outpath parameter.

<outpath>, 0038 : E_ALREADY_ATTACHED
The output was directed to a file on the volume being verified.

command syntax error
You made an error when entering the command.

<logical_name>, outstanding connections to the device have been
deleted.

This warning is not fatal, and will occur every time you try to verify the system
device or any other volume on which files have been attached.

<logical_name> or <outpath>, invalid wildcard specification
The logical name or output pathname contained a wildcard character.

<logical_name>, can't attach device
The device cannot be attached and read.

device size inconsistent
size in volume label = <value1> : computed size = <value2>

When the DVU computed the size of the volume, the size it computed did not
match the information recorded in the iRMX volume label. The volume label may
contain invalid or corrupted information. This is not a fatal error, but it is an
indication that further error conditions may result during the verification session.
You may have to reformat the volume or use the DVU to restore the volume label.

<partial logical_name>, 0081: E_STRING_BUFFER
The logical name was longer than 12 characters, not including colons.

<logical_name>, device does not belong to you
An attempt was made to verify a device that was attached by another user. For
example, the system device is :sd: and the user is not the Super user.

<logical_name>, device size is zero
The logical name entered does not define a mass storage device. For example, you
cannot perform diskverify on a line printer.

Command Reference Appendix B 505

Using Diskverify Commands
This section provides information about:

• Abbreviating command names

• Using parameters

• Input radices

• Aborting diskverify commands

The notation used for diskverify command syntax is the same as for other
commands in this manual.

See also: Command Syntax, Chapter 2

Abbreviating Command Names
When you enter a diskverify command, you can enter the command name, its
abbreviation, or any unique portion of the command name. For example, when
specifying the displayfnode command, you can enter any of these:

displayfnode fnodenumber
df fnodenumber
displayf fnodenumber

You can also enter any other partial form of the word displayfnode that contains at
least the characters displayf.

Command name abbreviations are provided in the Command Summary Table (in
parentheses after the command name) and in the syntax description for each
command. The syntax descriptions give any standard abbreviations or substitutes
with the full name as options. For example:

d|db|displaybyte
means that d or db may be used for displaybyte

>|<CR>|dnb|displaynextblock
means that a right angle bracket (>), carriage return, or dnb may be
used for displaynextblock

506 Appendix B Using Diskverify in Interactive Mode

Using Parameters
Several diskverify commands have parameters in this form:

keyword = value

You can also enter these parameters in this form:

keyword (value)

For example, both of these specify a free command:

free fnode = 10

free fnode (10)

The use of the to , over , and after parameters is the same as for other commands
in this manual.

See also: Using the to, over, and after parameters, Chapter 1

Abbreviating Parameters
These parameters, used with the verify and fix commands, have standard
abbreviations:
Parameter Abbreviation
named n
named1 n1
named2 n2

Both the full name and the abbreviation are listed in the individual commands'
parameter descriptions.

Specifying Input Radices
Diskverify always produces numerical output in hexadecimal format. You can
provide input to diskverify in any one of these three radices by including a radix
character immediately after the number. The valid radix characters are:

Radix Character Example
hexadecimal h or H 16h, 7CH
decimal t or T 23t, 100T
octal o, O, q, or Q 27o, 33Q

If you omit the radix character, diskverify assumes the number is hexadecimal.

Command Reference Appendix B 507

Aborting Diskverify Commands
You can abort some diskverify commands by typing <Ctrl-C>. This terminates the
command and returns control to the DVU, not the HI command level. These
commands are:

disk
displaybyte
displaydirectory
displayfnode
displaynextblock
displaypreviousblock
displayword
editfnode
editsavefnode
fix
getbadtrackinfo
listbadblocks
substitutebyte
substituteword
verify

508 Appendix B Using Diskverify in Interactive Mode

Diskverify Error Messages
Each diskverify command can generate a number of error messages, which
indicate errors in the way you specified the command, or problems with the volume
itself. Individual command descriptions list the error messages generated by the
particular command.

These messages can be generated by many of the commands:

block I/O error
The utility attempted to read or write a block on the volume, found that the block
was physically damaged, and therefore could not complete the requested command.
Or, the utility tried to write a block to a disk volume that is write-protected. The
error message states whether read or write was performed, and the number of the
block causing the error.

command syntax error
A syntax error was made in a command.

illegal command
The command specified is not a valid diskverify command.

fnode file/space map file inconsistent
One of the files, r?save (the fnode backup file) or r?fnodemap (the map of file
descriptor nodes), is damaged and diskverify cannot perform further verification.

argument error
The command was missing a required argument, the argument was illegally
specified, or an argument was entered for a command that does not accept one.

not a named disk
Either the device is not a named volume, or the iRMX volume label, obtained when
diskverify begins processing, contains invalid information. The latter may cause
the DVU to assume that a named volume is a physical volume. In this case, the
commands that apply to named volumes only (such as displayfnode,
displaydirectory, and verify named) issue this message. If you are sure the
volume is a named volume, this message may indicate that the iRMX volume label
is corrupted.

If the file was formatted with the reserve option of the format command,
diskverify issues this message only if both volume labels are corrupted. When
only the volume label is invalid, the duplicate in the save area is used.

seek error
The utility unsuccessfully attempted to seek to a location on the volume. This error
normally results from invalid information in the iRMX volume label or the fnodes,
from inserting a new volume after diskverify is invoked, or from a defective disk.

Command Reference Appendix B 509

Tutorial: Backing Up and Restoring Fnodes
To access data on a named volume (such as a disk), the iRMX OSs create and
maintain an index of pointers to the location of every file on the disk.

This index consists of the iRMX volume label and a file descriptor node (fnode)
file. The volume label is the initial entry point into the device. The fnode file
contains a pointer and other vital information for each file on the disk. Since both
contain information essential to accessing and maintaining the volume and files, if
either one is damaged or destroyed it is very difficult to locate files and recover the
data on the disk.

The backup and restore fnodes feature enables some recovery of data lost as a
result of damage to the volume label or the fnode file. This feature is not intended
to provide comprehensive protection from the loss of data associated with damaged
iRMX volume labels or fnode files. Rather, it offers a tool that, when properly
applied, can be useful in maintaining volume integrity in certain situations. For
comprehensive protection against loss of data use the HI backup command.

See also: backup command, Chapter 2

To use this feature, you must create and maintain a backup version of the volume
label and the fnode file, as detailed later in this section. You can then:

• Examine the contents of the backup file, r?save

• Restore damaged fnodes

• Restore the volume label

• Edit fnodes or save fnodes

This section provides a description of each operation, followed by one or more
examples of a typical implementation.

Structure of the Volume Label and Fnode File
The organization of the volume label and the fnode file reflects the hierarchical file
structure. The iRMX volume label contains a pointer to the fnode of the file
structure's root directory, the starting address for any file or directory on the
volume. The fnode file begins with the root directory and continues down through
the directory and file levels. Each file or directory is represented by an fnode. The
pointers and fnodes are adjusted each time a file is created, deleted, or changes
size.

510 Appendix B Using Diskverify in Interactive Mode

The fnode, in addition to other data describing the file or directory, contains
pointers to blocks on the volume. If the fnode describes a short file, these blocks
contain the actual file data. If the fnode describes a long file, these blocks contain
pointers to other blocks containing the actual data. If the fnode describes a
directory, these blocks contain entries which describe the contents of the directory.
Each entry lists the fnode number and name of the associated file or directory.

See also: Short and long files, Appendix C

The number of unallocated fnodes in the fnode file is controlled by the files
parameter of the format command. In addition to the unallocated fnodes, seven
(with an option of nine) allocated fnodes are established when the fnode file is
created. These allocated fnodes represent:

• The fnode file

• The volume label file, r?volumelabel

• The volume free space map file, r?spacemap

• The free fnodes map file, r?fnodemap

• The bad blocks file, r?badblockmap

• The root directory

• The space accounting file

• Optionally, the duplicate volume label file, r?save

See also: format command, Chapter 2

Creating the Backup Volume Label and Fnode File
Use the optional reserve parameter of the format command to create a file
named r?save. Format places a copy of the iRMX volume label in the front (that
is, the physical end) of the file, and copies the fnode file into r?save.

The r?save file is stored in one of the innermost tracks of the disk where the chance
of accidental loss of data is minimal. (In normal use, the disk heads do not extend
to the innermost tracks.)

▲▲! CAUTION
The format command overwrites all of the data currently on the
disk. Therefore, before invoking format, use the HI backup
command to make a backup copy of any files you wish to save.
Or, use a blank disk to experiment with these procedures.

Command Reference Appendix B 511

Example

Assume that you have booted your system from a diskette to format the system
disk. The command below uses the format command, specifying the reserve

parameter. This will format the disk, create the r?save backup file, and copy the
volume label and initialized fnode file into r?save.

-attachdevice cmbo as :mydisk: <CR>
-format :mydisk: il = 4 files = 3000 reserve <CR>

The HI responds:

volume () will be formatted as a named volume

granularity = 1,024 map start = 7,859

interleave = 4

files = 3000

extensionsize = 3

save area reserved = yes

bad track/sector information written = no

TTTTTTTTTTTTTTTTT

volume formatted

✏ Note
The map start value may change if r?save is present.

The disk has now been formatted. If you use the DVU command displaydirectory
on the volume root fnode (fnode 6) or the HI dir command with the invisible (I)
option on the volume root directory, you will find an fnode listed for r?save.
R?save contains a duplicate copy of the fnodes in the fnode file: eight allocated
fnodes (r?save, r?spacemap, r?fnodemap, etc.) and 2,999 unallocated fnodes. (The
r?save fnode is allocated out of the 3,000 fnodes specified through the files

parameter.)

512 Appendix B Using Diskverify in Interactive Mode

Maintaining the Backup Fnode File
The format command creates a backup of the fnode file in its initialized state.
R?save is not automatically updated as files are created, written to, or deleted from
the volume. Therefore, it is very important to back up the fnode file at regular
intervals, such as once a day, or before each system shutdown. Otherwise the
backup fnode file will contain incorrect information and be useless for data
recovery.

There are two ways to back up the fnode file on a volume:

• Use the HI shutdown command with the backup option.

• Use the backupfnodes option of diskverify .

In both cases, you must reboot the system after backing up the fnodes on the
volume.

Examples

1. This example uses shutdown with the backup option to copy the volume
fnode file to its duplicate file, r?save, on any attached volume:

 super-shutdown B <CR>

 ***SYSTEM WILL BE SHUTDOWN IN 10 MINUTE(S)

 :SD:, outstanding connections to device have been deleted

 ***SHUTDOWN COMPLETED ***

2. This example uses the diskverify command backupfnodes to copy all fnodes
in the system disk (:sd:, attached as a logical device) fnode file into the r?save
file:

 super- diskverify :sd: <CR>

 iRMX Disk Verify Utility, Vx.x
 Copyright <year> Intel Corporation
 All Rights Reserved
 :sd:, outstanding connections to device have been deleted
 * backupfnodes <CR> or bf <CR>

 fnode file backed up to save area
 *

Command Reference Appendix B 513

Restoring Fnodes
If the volume label or the fnode file become damaged, you can attempt to recover
files on the volume by using the DVU commands restorefnode and
restorevolumelabel to rebuild the index. To assist in this process, you can use the
displaysavefnode DVU command to look at individual fnodes stored in the r?save
file.

▲▲! CAUTION
The system changes the fnode file each time a volume is
modified. If you do not back up the fnodes after each
modification, some fnodes in r?save may not be associated with
the same files as the corresponding fnodes in the fnode file.
Attempting to recover fnodes under these conditions is dangerous
because the restorefnode command could overwrite valid
information with invalid information.

Examples

1. This example uses the verify command to examine the fnode file on the
volume :sd:(attached as a logical device):

 super- diskverify :sd: <CR>

 iRMX Disk Verify Utility, Vx.x
 Copyright <year> Intel Corporation
 All Rights Reserved
 :sd:, outstanding connections to device have been

deleted
 * verify

After examining the structure of the disk, you find that fnodes 09H through
0CH have probably been destroyed. You then use the restorefnode command
to recover these fnodes; the DVU prompts you to confirm each fnode:

 * restorefnode 9, 0C <CR> or rf 9, 0C <CR>

 restore fnode 9? Y <CR>

 restored fnode number: 9
 restore fnode 0A? Y <CR>

 restored fnode number: 0A
 restore fnode 0B? Y <CR>

 restored fnode number: 0B
 restore fnode 0C? Y <CR>

 restored fnode number: 0C

514 Appendix B Using Diskverify in Interactive Mode

The DVU has now copied fnodes 09H through 0CH in the r?save file into
fnode 09H through 0CH in the fnode file. You should now be able to recover
the data on the disk.

2. Assume the same situation as in Example 1 except that two files, at fnodes
0AH and 0BH, have been modified since the last time the fnodes were backed
up. You do not wish to restore them, since you might be replacing valid data
with invalid data.

To pass over the restoration of these two fnodes, respond to the confirmation
prompt with some character other than Y, as shown. The DVU returns the
message: allocation bit not set for saved fnode .

 * restorefnode 9, 0C <CR> or rf 9, 0C <CR>

 restore fnode 9? Y <CR>

 restored fnode number: 9
 restore fnode 0A? <CR>

 allocation bit not set for saved fnode
 restore fnode 0B? <CR>

 allocation bit not set for saved fnode
 restore fnode 0C? Y <CR>

 restored fnode number: 0C

The r?save fnodes 09H and 0CH have now been copied into the fnode file;
0AH and 0BH were not restored.

Restoring the Volume Label
Since the contents of the iRMX volume label do not change, the copy of the
volume label in r?save does not need updating to remain valid.

When the DVU encounters a damaged volume label, it automatically uses the
backup volume label if the r?save file is present. However, it does not restore
unless explicitly instructed to do so.

When the backup label is used, the DVU issues the message: duplicate volume
label used . If this message appears when the DVU is activated, then the volume
label is damaged. It can be restored by being overwritten with the volume label
copy from r?save.

Command Reference Appendix B 515

Example

When you attempt to access files on :sd: (the logical name of the current volume)
the system returns an E_ILLEGAL_VOLUME message. Invoke the DVU to check the
possibility that the volume label is damaged:

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
duplicate volume label used
*

The message duplicate volume label used confirms that the volume label
has been damaged. Restore the volume label using the restorevolumelabel
command:

*restorevolumelabel <CR> or rvl <CR>

The DVU responds:

volume label restored
*

The original volume label has been overwritten with the duplicate copy from the
r?save file. Attempts to access files on volume :sd: should now be successful.

Displaying R?save Fnodes
If you cannot access a file, it may be because the fnode file is damaged. You can
use the DVU to display the file's directory and identify the file's fnode, and then
display the fnode.

Any fnode (both allocated and unallocated) in the r?save file can be examined by
using the DVU displaysavefnode command with the fnode's hexadecimal number.
The DVU will display vital information about the fnode (total blocks, total size,
block pointers, parent node, etc.). The fnode is displayed in the same format used
by the displayfnode command.

516 Appendix B Using Diskverify in Interactive Mode

Example

Assume that you cannot access a file at fnode 3C8H on a disk attached as :sd:.
You use displayfnode to display fnode 3C8H, but you are not confident of the data
you see. Since the fnode for the file has been backed up since the file was last
modified, you decide to compare the data in the r?save fnode. To do so, invoke
diskverify , then enter this command to display the data for fnode 3C8H in r?save:

*displaysavefnode 3C8 <CR> or dsf 3C8 <CR>

The DVU responds:

Fnode number = 3C8 (saved)
path name: /USER/MYFILE
 flags : 0025 => short file
 type : 08 => data file
 file gran/vol gran : 01
 owner : 0001
 create,access,mod times : 00000000, 00000000, 00000000
 total size,total blocks : 00002D01, 0000000C
 block pointer (1) : 000C, 004910
 block pointer (2) : 0000, 000000
 block pointer (3) : 0000, 000000
 block pointer (4) : 0000, 000000
 block pointer (5) : 0000, 000000
 block pointer (6) : 0000, 000000
 block pointer (7) : 0000, 000000
 block pointer (8) : 0000, 000000
 this size : 00003000
 id count : 0001
 accessor (1) : 0F, 0001
 accessor (2) : 00, 0000
 accessor (3) : 00, 0000
 parent, checksum : 03C4, 56CA
 aux (*) : 000000

*

You can modify the contents of the both the original fnode file and the saved fnode
file by using either the editfnode or editsavefnode commands.

Command Reference Appendix B 517

Diskverify Command Descriptions
This section provides a command summary followed by a complete description of
each command.

In the descriptions, the commands are presented in alphabetical order except when
two commands are similar, such as displaybyte and displayword. In this case, the
first command is in its alphabetical order, and the second command follows it with
only the differences described.

Command Summary
The command summary below lists the name, name abbreviation, and a brief
description of each diskverify command.

Table B-1. Diskverify Command Summary

Command Description

allocate Marks a particular fnode or volume block as allocated

arithmetic commands Perform arithmetic functions: add (+), sub (-), div (/), mul (*),
and mod (finds the remainder of a division process)

backupfnodes (bf) Copies current fnode file into a backup file named r?save

conversion commands Perform conversion functions: address and block convert
between block numbers and absolute addresses; dec and hex
convert between decimal and hexadecimal numbers

disk Displays the attributes of the volume being verified

displaybyte (db or d) Displays the working buffer in byte format

displayword (dw) Displays the working buffer in word format

displaydirectory (dd) Displays directory contents

displayfnode (df) Displays the specified fnode information

displaysavefnode (dsf) Displays the fields of a single fnode in the r?save file

displaynextblock
(dnb or > or <CR>)

Displays the next volume block

continued

518 Appendix B Using Diskverify in Interactive Mode

Table B-1. Command Summary (continued)

Command Description

displaypreviousblock
(dpb or <)

Displays the previous volume block

editfnode (ef) Edits the specified fnode

editsavefnode (esf) Edits the specified saved fnode

exit (e) Exits the Disk Verification Utility

fix Verifies the disk and fixes inconsistencies

free Marks a particular fnode or volume block as free

getbadtrackinfo (gb) Displays the bad track information

help (h) Lists the diskverify commands

listbadblocks (lbb) Displays all the bad blocks on the volume

quit (q) Exits the Disk Verification Utility

read (r) Reads a volume block into the working buffer

restorefnode (rf) Copies one fnode (or range of fnodes) from the r?save file to
the fnode file

restorevolumelabel (rvl) Copies the duplicate volume label to the volume label offset on
track 0

save Writes the updated fnode map, free space map, and bad block
map to the volume

substitutebyte
(sb or s)

Modifies the contents of the working buffer in byte format

substituteword (sw) Modifies the contents of the working buffer in word format

verify (v) Verifies the volume

write (w) Writes the working buffer to the volume

DVU command allocate

Command Reference Appendix B 519

allocate
Designates fnodes or volume blocks as allocated. You can also use this command
to designate one or a range of volume blocks as bad.

Syntax

allocate fnode =fnodenum [, fnodenum]|
block =blocknum [, blocknum]|
badblock =blocknum [, blocknum]

Parameters
fnodenum

Number of the fnode to allocate. This number can range from 0 through (max
fnodes - 1), where max fnodes is the number of fnodes defined when the volume
was originally formatted. Two fnode values separated by a comma signify a range
of fnodes.

blocknum
Number of the volume block to allocate. This number can range from 0 through
(max blocks - 1), where max blocks is the number of volume blocks in the volume.
Two block numbers separated by a comma signify a range of block numbers.

Output

Allocate returns one of these messages, depending on whether you specify fnodes,
blocks, or badblocks:

<fnodenum>, fnode marked allocated
<blocknum>, block marked allocated
<blocknum>, block marked bad

Where:

<fnodenum>
Is the number of the fnode that the utility designated as allocated.

<blocknum>
Is the number of the volume block that the utility designated as
allocated or bad.

If a block is not allocated before you designate it as bad, allocate also displays:

<blocknum>, block marked allocated

allocate DVU command

520 Appendix B Using Diskverify in Interactive Mode

Allocate checks the allocation status of fnodes or blocks before allocating them.
Therefore, if you specify allocate for a block or fnode already allocated, allocate
returns one of these messages:

<fnodenum>, fnode already marked allocated
<blocknum>, block already marked allocated
<blocknum>, block already marked bad

Additional Information

When you discover an inconsistency between allocated fnodes or volume blocks
and referenced fnodes or volume blocks (most often as a result of using the verify
command), you can use allocate and to help correct the errors.

Fnodes are data structures that describe the files on the volume. They are created
when the volume is formatted. An allocated fnode is one that represents an actual
file. Allocate designates fnodes as allocated by updating the flags field of the
fnode and free fnodes map file.

An allocated volume block is a block of data storage that is part of a file; it is not
available to be assigned to a new file. Allocate designates volume blocks as
allocated by updating the volume free space map with this information.

When you use allocate to designate bad blocks, it updates the volume free space
map and marks an associated bit as bad in the bad blocks file.

Error Messages
argument error

A syntax error was made in the command, or a nonnumeric character was specified
in the blocknum or fnodenum parameter.

<blocknum>, block out of range
The block number specified was larger than the largest block number in the
volume.

<fnodenum>, fnode out of range
The fnode number specified was larger than the largest fnode number in the
volume.

no badblocks file
The volume does not have a bad blocks file. This message could appear if you
used an earlier version of the format command to format the disk.

DVU command arithmetic commands

Command Reference Appendix B 521

arithmetic commands
Perform arithmetic operations within the DVU: add adds two numbers together,
sub subtracts one number from another, div divides one number by another, mul
multiples one number by another, and mod finds the remainder of one number
divided by another.

Syntax

+|add arg1 , arg2
-|sub arg1 , arg2
/|div arg1 , arg2
*|mul arg1 , arg2
mod arg1 , arg2

Where:

arg1 and arg2
Numbers on which the command operates. The value of each argument cannot be
greater than 232-1. Sub subtracts arg2 from arg1 ; div divides arg1 by arg2 ;
mod performs the operation arg1 modulo arg2 .

Output

The commands perform their operations on unsigned numbers only and do not
report any overflow conditions. The number is displayed in hexadecimal format
first, followed by the decimal number in parentheses. For example:

13 (19T)

arithmetic commands DVU command

522 Appendix B Using Diskverify in Interactive Mode

Examples

In all the examples below, the beginning asterisk is the DVU prompt. In the first
example, the second asterisk is the multiply operator.

** 134T, 13T <CR> or * MUL 134T, 13T <CR>
 6CE (1742T)

* + 8, 4 <CR>

 0C (12T)

* SUB 8884, 256 <CR>

 862E (34350T)

* MOD 1225, 256T <CR>

 25 (37T)

Error Messages

This error message may be returned by any of the arithmetic commands:

argument error
A syntax error was made in the command, a nonnumeric value was specified for
one of the arguments, or a value was specified for a block number parameter that
was not a valid block number.

DVU command backupfnodes (bf)

Command Reference Appendix B 523

backupfnodes
Copies the current fnode file into a designated fnode backup file named r?save.

Syntax

bf|backupfnodes

Output

fnode file backed up to save area

Additional Information

The backupfnodes command ensures against data loss that occurs when the fnode
file is damaged or destroyed. Be sure that the current fnode file is valid before
executing the backupfnode command (using named verification).

To use this command, you must have formatted the volume using the reserve
option in the format command (V1.1 or later) to create a special reserve area
(r?save). If not, the backupfnodes command will be unable to copy the fnode file
to r?save, and will return an error message.

The format command writes the initialized copy of the fnode file into r?save.
Therefore, you do not have to use backupfnodes on a newly formatted volume.
Subsequently, you can routinely (for example, once a day) back up fnodes to assure
that the data in r?save matches the data in the fnode file. You can do this by using
either the backupfnodes command or the HI shutdown command with the backup

option.

See also: shutdown command, in this chapter

backupfnodes (bf) DVU command

524 Appendix B Using Diskverify in Interactive Mode

Error Messages
argument error

Backupfnodes does not accept an argument.

no save area was reserved when volume was formatted
To support fnode backup, use the backup command to save the data on the
volume, reformat the volume using the reserve option of the format command,
and then restore the volume data.

not a named disk
The volume specified when the DVU was invoked is a physical volume, not a
named volume.

Example

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
* verify named <CR>

.

.

.
 BIT MAPS O.K.
* backupfnodes <CR> or bf <CR>

fnode file backed up to save area
*

DVU command address

Command Reference Appendix B 525

conversion commands
Perform conversion operations within the Disk Verification Utility: address and
block convert between block numbers and absolute addresses; dec and hex convert
between decimal and hexadecimal numbers.

address
Converts a block number into an absolute address on the volume; the inverse of the
block command.

Syntax

address blocknum

Where:

blocknum
Volume block number that address converts into an absolute address in
hexadecimal. This parameter can range from 0 through (max blocks - 1), where
max blocks is the number of volume blocks in the volume.

Output

In response, address displays:

absolute address = <addr>

Where:

<addr> Absolute address in hexadecimal that corresponds to the specified
block number. This address represents the number of the byte that
begins the block and can range from 0 through (volume size - 1),
where volume size is the size, in bytes, of the volume.

Additional Information

All memory in a volume is divided into volume blocks, which are areas of memory
the same size as the volume granularity. Volume blocks are numbered sequentially
in the volume, starting with the block containing the smallest addresses (block 0).

block DVU command

526 Appendix B Using Diskverify in Interactive Mode

block
Converts an absolute address into a volume block number; the inverse of the
address command.

Syntax

block address

Where:

address
32-bit absolute address, in hexadecimal, that block converts into a block number.
This parameter can range from 0 through (volume size - 1), where volume size is
the size, in bytes, of the volume.

Output

In response, block displays:

block number = <blocknum>

Where:

<blocknum>
Number of the volume block that contains the specified absolute
address in hexadecimal. The block command determines this value
by dividing the absolute address by the volume block size and
truncating the result.

DVU command dec

Command Reference Appendix B 527

dec
Finds the decimal equivalent of a number.

Syntax

dec arg

Where:

arg Number for which dec finds the decimal equivalent. The value of the argument
cannot be greater than 232-1. The default base is in hexadecimal.

Output

Dec displays the decimal equivalent of the specified number.

hex DVU command

528 Appendix B Using Diskverify in Interactive Mode

hex
Finds the hexadecimal equivalent of a number.

Syntax

hex arg

Where:

arg Number for which the command finds the hexadecimal equivalent. To specify a
decimal number, follow it with a T. The value of the argument cannot be greater
than 232-1.

Output

Hex displays the hexadecimal equivalent of the specified number.

Examples

* HEX 155T <CR>

 9B

* ADDRESS 15 <CR>

absolute address = 0A80

* BLOCK 2236 <CR>

block number = 44

Error Messages

This error message may be returned by any of the conversion commands:

argument error
A syntax error was made in the command, a nonnumeric value was specified for
one of the arguments, or a value was specified for a block number parameter that
was not a valid block number.

DVU command hex

Command Reference Appendix B 529

This error message may be returned by the address command:

<blocknum>, block out of range
If the command was an address command, the block number entered was greater
than the number of blocks in the volume.

This error message may be returned by the block command:

<address>, address not on the disk
If the command was a block command, block converted the address to a volume
block number, but the block number was greater than the number of blocks in the
volume.

disk DVU command

530 Appendix B Using Diskverify in Interactive Mode

disk
Displays the attributes of the volume being verified.

Syntax

disk

Output

The output of the disk command depends on whether the volume is formatted as a
physical or named volume. For a physical volume:

 device name = <devname>
 physical disk
device granularity = <devgran>
 block size = <devgran>
 number of blocks = <numblocks>
 volume size = <size>

Where:

<devname> Physical name of the device containing the volume. This is the
physical name of the device, as specified in the attachdevice HI
command.

<devgran> Granularity of the device, as defined in the Device Unit Information
Block (DUIB). For physical devices, this is also the volume block
size.

See also: DUIBs, Driver Programming Concepts

<numblocks>
Number of volume blocks in the volume.

<size> Size of the volume, in bytes.

DVU command disk

Command Reference Appendix B 531

Output for a named volume:

 device name = <devname>
named disk, volume name = <volname>
 device granularity = <devgran>
 block size = <volgran>
 number of blocks = <numblocks>
 number of free blocks = <numfreeblocks>
 volume size = <size>
 interleave = <inleave>
 extension size = <xsize>
 number of fnodes = <numfnodes>
 number of free fnodes = <numfreefnodes>
 root fnode = <rootfnode>
 save area reserved = (yes/no)

The <devname> , <devgran> , <numblocks> , and <size> fields are the same as
for physical files. The remaining fields are:

<volname> Name of the volume, as specified when the volume was formatted.

<volgran> Volume granularity, as specified when the volume was formatted.

<numfreeblocks>
Number of available volume blocks in the volume.

<inleave> The interleave factor for a named volume.

<xsize> Size, in bytes, of the extension data portion of each fnode.

<numfnodes>
Number of fnodes in the volume. The fnodes were created when the
volume was formatted.

<numfreefnodes>
Number of available fnodes in the named volume.

<rootfnode>
The number of the fnode that contains the volume's root directory.

save area reserved
Indicates whether the r?save file is reserved for volume label and
fnode file backups.

See also: Named disk fields, in this appendix
format command, Chapter 2

disk DVU command

532 Appendix B Using Diskverify in Interactive Mode

Additional Information

You can abort this command by typing <Ctrl-C>.

Example

This example shows the output of the disk command for a 5.25-inch diskette:

super- diskverify :f0: <CR>

iRMX Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved

* disk <CR>

 device name =wmf0
 named disk, volume name =rmx286
 device granularity =0200
 block size =0200
 number of blocks =0000027C
 number of free blocks =000001E9
 volume size = 0004F800
 interleave = 0005
 extension size = 03
 number of fnodes =00CF
 number of free fnodes =00BE
 root fnode =0006
 save area reserved =no

DVU command displaybyte (d or db)

Command Reference Appendix B 533

displaybyte
Displays the specified portion of the working buffer in 16-byte rows.

Syntax

d|db|displaybyte [startoffset [, endoffset]]

Parameters
startoffset

Number of the byte at which you want the display to begin. With this parameter,
displaybyte starts with the row containing the specified offset; if you omit this
parameter, displaybyte starts at the beginning of the working buffer.

endoffset
Number of the byte, relative to the start of the buffer, at which you want the display
to begin. If you omit this parameter, displaybyte shows only the row indicated by
startoffset . However, if you omit both startoffset and endoffset ,
displaybyte displays the entire working buffer.

Output

Displaybyte begins by listing the block number where data resides in the working
buffer. It then lists the specified portion of the buffer, providing the column
numbers as a header and beginning each row with the relative address of the first
byte in the row. It also includes, at the right of the listing, the ASCII equivalents of
the bytes, if the ASCII equivalents are printable characters. If a byte is not a
printable character, displaybyte displays a period in the corresponding position.
For example:

* displaybyte 7,13 <CR>

BLOCK NUMBER = blocknum

offset 0 1 2 3 4 5 6 7 8 9 A B C D E F ASCII STRING
 0000 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0010 61 6E 20 65 78 61 6D 70 6C 65 20 20 20 20 20 20 an example

displaybyte (d or db) DVU command

534 Appendix B Using Diskverify in Interactive Mode

Additional Information

Diskverify maintains a working buffer for read and write commands. The size of
the buffer is equal to the volume's granularity value. After you read a volume
block of memory into the working buffer with the read command, you can display
part or all of that buffer, in BYTE format, by entering the displaybyte command.
Displaybyte displays the hexadecimal value for each byte in the specified portion
of the buffer. You can also use substitutebyte and substituteword to change the
data in the block. Finally, you can use the write command to write the modified
block back out to the volume.

You can abort this command by typing <Ctrl-C>.

Error Messages
argument error

A syntax error was made in the command, or a nonnumeric character was specified
in one of the offset parameters.

<offset>, invalid offset
Either a larger value was specified for startoffset than for endoffset , or an
offset value larger than the number of bytes in the block was specified.

DVU command displayword (dw)

Command Reference Appendix B 535

displayword
Is the same as the displaybyte command, except that it displays the working buffer
in eight words per row.

Syntax

dw|displayword [startoffset [, endoffset]]

Examples

Assuming that the volume granularity is 128 bytes and that you have read block
20H into the working buffer with the read command, this command displays that
block:

* displayword <CR>

BLOCK NUMBER = 20

offset 0 2 4 6 8 A C E
 0000 0000 0000 0000 0000 0000 0000 0000 0000
 0010 0000 0080 0000 0000 0000 0001 FF0F 00FF
 0020 0000 0000 0500 0000 0000 0025 0108 FFFF
 0030 1F25 0000 002E 0000 1F25 0000 002B 0000
 0040 0001 0000 0001 0080 0000 0000 0000 0000
 0050 0000 0000 0000 0000 0000 0000 0000 0000
 0060 0000 0000 0000 0000 0000 0000 0080 0000
 0070 0000 0000 0001 FF0F 00FF 0000 0000 0500
*

This command displays the portion of the block that contains the offsets 31H
through 45H (words beginning at odd addresses):

* dw 31, 45 <CR>

BLOCK NUMBER = 20

offset 0 2 4 6 8 A C E
 0031 001F 2E00 0000 2500 001F 2B00 0000 0100
 0041 0000 0100 8000 0000 0000 0000 0000 0000
*

displayword (dw) DVU command

536 Appendix B Using Diskverify in Interactive Mode

This command displays the portion of the block that contains the offsets 30H
through 45H (words beginning at even addresses). Notice how the output differs
from the previous example:

* displayword 30, 45 <CR>

BLOCK NUMBER = 20

offset 0 2 4 6 8 A C E
 0030 1F25 0000 002E 0000 1F25 0000 002B 0000
 0040 0001 0000 0001 0080 0000 0000 0000 0000
*

DVU command displaydirectory (dd)

Command Reference Appendix B 537

displaydirectory
Lists all the files contained in a directory, with their fnode numbers and types.

Syntax

dd|displaydirectory fnodenum

Parameter
fnodenum

Number of the fnode that corresponds to a directory file. This number can range
from 0 through (max fnodes - 1), where max fnodes is the number of fnodes
defined when the volume was originally formatted. Displaydirectory lists all files
or directories contained in this directory.

Output

The format of the display is:

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE

<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>

<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>

 . . .

 . . .
 . . .

Where:

<filename>
Name of the file or directory contained in the directory.

<fnode> Number of the fnode that describes the file.

<type> Type of the file, as follows:

Type of file Description
data data files
dir directory files
smap volume free space map
fmap free fnodes map
bmap bad blocks map
vlab volume label file
**** indicates an illegal fnode type

displaydirectory (dd) DVU command

538 Appendix B Using Diskverify in Interactive Mode

Additional Information

You can abort this command by typing <Ctrl-C>.

Example

This command lists the files contained in the directory with fnode 6:

 * displaydirectory 6 <CR>

 FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE

 R?SPACEMAP 0001 SMAP R?FNODEMAP 0002 FMAP R?BADBLOCKMAP 0004 BMAP

 R?VOLUMELABEL 0005 VLAB R?SAVE 0007 DATA RMX286 0008 DIR

 MYFILE 0009 DATA YOURFILE 000A DATA ONEFILE 000B DATA

 *

Error Messages
argument error

A nonnumeric character was specified in the fnodenum parameter.

<fnodenum>, fnode not allocated
The number specified for the fnodenum parameter does not correspond to an
allocated fnode. This fnode does not represent an actual file.

<fnodenum>, not a directory fnode
The number specified for the fnodenum parameter is not an fnode for a directory
file.

<fnodenum>, fnode out of range
The number specified for the fnodenum parameter is larger than the largest fnode
number on the volume.

DVU command displayfnode (df)

Command Reference Appendix B 539

displayfnode
Displays the fields associated with an fnode.

Syntax

df|displayfnode fnodenum

Parameter
fnodenum

Number of the fnode to be displayed. This number can range from 0 through (max
fnodes - 1), where max fnodes is the number of fnodes defined when the volume
was originally formatted.

Output

Displayfnode displays the fields of the specified fnode in this format:

Fnode number = <fnodenum>
path name: <pathname>
 flags : <flgs>
 type : <typ>
 file gran/vol gran : <gran>
 owner : <own>
 create,access,mod times : <crtime>, <acctime>, <modtime>
 total size,total blks : <totsize>, <totblks>
 block pointer (1) : <blks>, <blkptr>
 block pointer (2) : <blks>, <blkptr>
 block pointer (3) : <blks>, <blkptr>
 block pointer (4) : <blks>, <blkptr>
 block pointer (5) : <blks>, <blkptr>
 block pointer (6) : <blks>, <blkptr>
 block pointer (7) : <blks>, <blkptr>
 block pointer (8) : <blks>, <blkptr>
 this size : <thissize>
 id count : <count>
 accessor (1) : <access>, <id>
 accessor (2) : <access>, <id>
 accessor (3) : <access>, <id>
 parent, checksum : <prnt>, <checksum>
 aux(*) : <auxbytes>

displayfnode (df) DVU command

540 Appendix B Using Diskverify in Interactive Mode

Where:

<fnodenum>
Number of the fnode being displayed. If the fnode does not describe
an actual file (that is, if it is not allocated), this message appears next
to this field:

*** ALLOCATION STATUS BIT IN THIS FNODE NOT SET ***

In this case, the fnode fields are normally set to 0.

<pathname>
Full pathname of the file described by the fnode. This field is not
displayed if the fnode does not describe a file.

<flgs> A word defining the attributes of the file. Significant bits of this word
are:

Bit Attribute Setting
6 deletion 1 to indicate a temporary file or a file to

be deleted
5 modification 1 whenever a file is modified
1 long or short file 1 for long files

0 for short files
0 allocation status 1 for allocated fnodes

0 for free fnodes

The displayfnode command displays a message next to this field that indicates
whether the file is a long or short file.

<typ> Type of file. This field contains a value, and a description which is
displayed next to the value. The possible values and descriptions are
as follows:

Value Descriptions
 00 fnode file
 01 volume map file
 02 fnode map file
 03 account file
 04 bad block file
 06 directory file
 08 data file
 09 volume label file
any other value illegal value

<gran> File granularity, specified as a multiple of the volume granularity.

<own> User ID of the owner of the file.

DVU command displayfnode (df)

Command Reference Appendix B 541

<crtime>
<acctime>
<modtime>

Time and date of file creation, last access, and last modification.
These values are expressed as the time, in seconds, since midnight
(00:00) on January 1, 1978.

<totsize> Total size, in bytes, of the actual data in the file.

<totblks> Total number of volume blocks used by the file, including indirect
block overhead.

<blks>, <blkptr>
Values that identify the data blocks of the file. For short files, each
<blks> parameter indicates the number of volume blocks in the data
block, and each <blkptr> is the number of the first such volume
block. For long files, each <blks> parameter indicates the number of
volume blocks pointed to by an indirect block, and each <blkptr> is
the block number of the indirect block.

<thissize>
Size in bytes of the total data space allocated to the file, minus any
space used for indirect blocks.

<count> Number of user IDs associated with the file.

<access>, <id>
Each pair of fields indicates the access rights for the file and the ID of
the user who has that access ID. Bits in the <access> field are set to
indicate these access rights:

Bit Data File Directory File
3 update change entry
2 append add entry
1 read list
0 delete delete

The first ID listed is the owner's ID.

<prnt> Fnode number of the directory that contains the file.

<checksum>
Checksum of the fnode.

<auxbytes>
Auxiliary bytes associated with the file.

displayfnode (df) DVU command

542 Appendix B Using Diskverify in Interactive Mode

Additional Information

Each time a file is created on the volume, the BIOS allocates an fnode for the file
and fills in the fnode fields to describe the file. The displayfnode command
enables you to examine these fnodes and determine where the data for each file
resides.

You can abort this command by typing <Ctrl-C>.

Example

This example displays fnode 10 of a volume, which represents a directory:

* displayfnode 10 <CR>

Fnode number = 10
path name : /MYDIR
 flags : 0025 =>short file
 type : 06 =>directory file
 file gran/vol gran : 01
 owner : FFFF => world
 create,access,mod times : 10219017, 10219E58, 10219E58
 total size,total blocks : 00000360, 00000001
 block pointer (1) : 0001, 000050
 block pointer (2) : 0000, 000000
 block pointer (3) : 0000, 000000
 block pointer (4) : 0000, 000000
 block pointer (5) : 0000, 000000
 block pointer (6) : 0000, 000000
 block pointer (7) : 0000, 000000
 block pointer (8) : 0000, 000000
 this size : 00000400
 id count : 0001
 accessor (1) : 0F, FFFF
 accessor (2) : 00, 0000
 accessor (3) : 00, 0000
 parent, checksum : 0006, 796D
 aux(*) : 000000
*

DVU command displayfnode (df)

Command Reference Appendix B 543

Error Messages
argument error

The value entered for the fnodenum parameter was not a legitimate fnode number.

<fnodenum>, fnode out of range
The number specified for the fnodenum parameter is larger than the largest fnode
number on the volume.

Unable to get pathname - <reason>
The pathname specified could not be retrieved. Possible causes of this error are
seek error, I/O error, invalid parent, or insufficient memory.

displaysavefnode (dsf) DVU command

544 Appendix B Using Diskverify in Interactive Mode

displaysavefnode
Is identical to displayfnode, except displaysavefnode takes the fnode information
from the r?save file, and displays the fnode as saved.

Syntax

dsf|displaysavefnode fnodenum

Output

The output is identical to displayfnode except for the first line, which indicates
that the fnode is saved. The format of the first line is:

Fnode number = <fnodenum> (saved)

Error Messages
argument error

When the command was entered, no argument was supplied. Displaysavefnode
requires a designation of the fnode number.

<fnodenum>, fnode out of range
The number specified for the fnodenum parameter is larger than the largest fnode
number on the volume.

no save area was reserved when volume was formatted
To support fnode backup, use the backup command to save the data on the
volume, reformat the volume using the reserve option of the format command,
and then restore the volume data.

Unable to get pathname - <reason>
The pathname specified could not be retrieved. Possible causes of this error are
seek error, I/O error, invalid parent, or insufficient memory.

DVU command displaynextblock (dnb)

Command Reference Appendix B 545

displaynextblock
Displays the next volume block: the block immediately following the block
currently in the working buffer. The display format can be either word or byte.

Syntax

dnb|>|<CR>|displaynextblock

Additional Information

Displaynextblock copies the next volume block from the volume to the working
buffer and displays it at your terminal. If you specify displaynextblock at the end
of the volume, the utility wraps around and displays the first block in the volume.
It destroys any data currently in the working buffer.

The utility remembers the mode (word if you used displayword, or byte if you
used displaybyte) in which you displayed the volume block currently in the
working buffer, and it displays the next block in that format. Displaynextblock
uses the byte format as a default if you have not yet displayed a volume block.

Once the block is in the working buffer, you can use substitutebyte and
substituteword to change the data in the block. Finally, you can use the write
DVU command to write the modified block back out to the volume.

You can abort this command by typing <Ctrl-C>.

displaypreviousblock (dpb) DVU command

546 Appendix B Using Diskverify in Interactive Mode

displaypreviousblock
Is identical to displaynextblock, except that it displays the volume block preceding
the current block in the working buffer.

Syntax

dpb|<|displaypreviousblock

DVU command editfnode (ef)

Command Reference Appendix B 547

editfnode
Allows you to edit values within a specified fnode.

Syntax

ef|editfnode fnodenum

Parameter
fnodenum

Number of the fnode to edit. This number can be in the range of 0 through (max
fnodes - 1), where max fnodes is the number of fnodes defined when the volume
was originally formatted.

Output

Fnode number = nnnn

Where:

nnnn is the number of the fnode you want to edit.

The first field of the fnode, flags , is displayed with its current value:

flags(xxxx):

Where:

xxxx is the current value of the flags field.

From this point on, you can edit the fnode fields, one at a time. After you have
edited the last fnode field or entered a Q while in edit mode, this query appears on
the screen and the modified fnode is displayed:

Write back?

A response of Yes causes the fnode with the modified values to be written on the
volume and this message to be displayed:

Fnode has been updated

Any other response causes the fnode to remain unchanged, and this message is
displayed:

Fnode not changed

editfnode (ef) DVU command

548 Appendix B Using Diskverify in Interactive Mode

Additional Information

The current value of each field is displayed followed by a colon. Editfnode then
waits for one of these responses from the terminal:

Response Meaning
<CR> No modification to the field.
numerical value <CR> The new value to be assigned. This value is always

interpreted as hexadecimal.
QUIT or Q or q <CR> Skip the remaining fields and display the query.

Any response other than those listed above causes the field to remain unchanged,
and the next field to be displayed.

Once the fnode has been updated, you can use displayfnode to examine the
contents of the fnode and the changes you made. Changing the contents of an
fnode causes it to have a bad checksum; use fix with the named1 option to correct
it.

See also: displayfnode and fix commands, in this appendix

This command can be aborted by typing <Ctrl-C>.

Example

This example illustrates using editfnode to edit fnode 10:

* editfnode 10 <CR>

fnode number = 10
flags(0025): <CR>

type(0006): <CR>

file gran/vol gran(01): <CR>

owner(0FFFF): 0 <CR>

create time(10219CB2): q <CR>

DVU command editfnode (ef)

Command Reference Appendix B 549

The only edit is the owner field. Entering q causes the modified fnode to be
displayed, with the new owner value:

 flags : 0025 =>short file
 type : 06 =>directory file
 file gran/vol gran : 01
 owner : 0000
 create,access,mod times : 10219CB2, 10219CC8, 10219CC8
 total size,total blocks : 00000360, 00000001
 block pointer (1) : 0001, 000050
 block pointer (2) : 0000, 000000
 block pointer (3) : 0000, 000000
 block pointer (4) : 0000, 000000
 block pointer (5) : 0000, 000000
 block pointer (6) : 0000, 000000
 block pointer (7) : 0000, 000000
 block pointer (8) : 0000, 000000
 this size : 00000400
 id count : 0001
 accessor (1) : 0F, FFFF
 accessor (2) : 00, 0000
 accessor (3) : 00, 0000
 parent, checksum : 0006, 0000
 aux(*) : 000000
Write back? yes <CR>

Fnode has been updated
*

Error Messages
argument error

The option specified is not valid.

<fnode num>, fnode out of range
The fnode number specified was larger than the largest fnode number on the
volume.

Error in Input
Invalid input was entered while editing an entry.

editsavefnode (esf) DVU command

550 Appendix B Using Diskverify in Interactive Mode

editsavefnode
Is identical to editfnode, except that you can edit an fnode from the r?save file. In
addition, it designates the fnode as saved when displaying the fnode number.

Syntax

esf|editsavefnode fnodenum

Error Messages

The error messages are the same as in editfnode, with the addition of this message:

no save area was reserved when volume was formatted
To support fnode backup, use the backup command to save the data on the
volume, reformat the volume using the reserve option of the format command,
and then restore the volume data.

DVU command exit (e)

Command Reference Appendix B 551

exit
Exits the DVU and returns control to the HI command level; identical to the quit
command.

Syntax

e|exit

Additional Information

Although you can use diskverify to verify the system device (:sd:), all connections
to this device are deleted by the OS. After exiting, you must reboot or warm start
the system.

See also: Warm start feature, System Debugger

fix DVU command

552 Appendix B Using Diskverify in Interactive Mode

fix
Verifies the volume in the same way as the verify command; also fixes various
kinds of inconsistencies discovered during verification.

Syntax

fix [[all|named1|named] [,list]] [named2|physical]

Parameters

all Performs all operations appropriate to the volume. For named volumes, this option
performs both the named and physical verification functions. For physical
volumes, this option performs only the physical verification function. For both
named and physical volumes, all performs the fixes for the relevant
verifications.

named1 or n1
Performs named1 verification and fixes these inconsistencies:

• Fixes bad checksums

• Attaches orphan fnodes to their parents. An orphan fnode is an fnode
contained within a directory, whose parent field does not point back to this
directory. If the parent field of the specified fnode points to a second valid
directory, and the second directory also points to the fnode, no fix is performed
since the specified fnode belongs to an existing directory. This is a case of
multiple references (discussed in named2 below).

• If the parent field does not point to a valid parent, the parent field is fixed to
point to the directory that contains this fnode in its file list.

named or n
Performs both the named1 and named2 verification functions on a named volume
and fixes the inconsistencies defined for these options.

list Lists the file information displayed in the verify command description later in this
appendix, for any verification that includes named1.

DVU command fix

Command Reference Appendix B 553

named2 or n2
Performs named2 verification and fixes these inconsistencies:

• Removes fnodes from their illegal parents. If there is a multiple reference to
an fnode, the fnode is removed from the directories that it does not point to (if
fix was performed with named1, the fnode should now point to one valid
parent).

• Saves fnode and block bit maps on completion of named2.

physical
Performs physical verification and saves the bad block bit map.

See also: verify command, in this appendix

Output

Fix produces the same output as the verify command (see examples there) with
additional messages displayed when an inconsistency is fixed. Named1 output
includes these messages:

Checksum Fixed
fnode nnnn was attached to parent nnnn

The first message appears after a bad checksum is fixed. The second message is
displayed when the parent field of an fnode is modified to point to a valid parent.

Named2 displays this message when an fnode with multiple references is removed
from the directory:

fnode removed from this directory

If an fnode exists on a disk and is marked allocated, but has not been referenced,
fix issues a warning message and asks if you want to save the bit maps. This
prevents save from freeing this fnode and its blocks, possibly causing a file to be
lost.

Additional Information

Because fix and verify perform the same verification functions and generate the
same error messages, the command description given here describes only the
additional functions of fix .

See also: verify command, in this appendix

You can abort this command by typing <Ctrl-C>. <Ctrl-C> is ignored when fix is
writing to the volume in order to prevent inconsistencies on the volume.

free DVU command

554 Appendix B Using Diskverify in Interactive Mode

free
Designates fnodes and volume blocks as free (unallocated); also removes volume
blocks from the bad blocks file.

Syntax

free fnode =fnodenum [, fnodenum]|
block =blocknum [, blocknum]|
badblock =blocknum [, blocknum]

Parameters
fnodenum

Number of the fnode to free. This number can range from 0 through (max fnodes -
1), where max fnodes is the number of fnodes defined when the volume was
originally formatted. Two fnode values separated by a comma signify a range of
fnodes.

blocknum
Number of the volume block to free. This number can range from 0 through
(max blocks - 1), where max blocks is the number of volume blocks in the volume.
Two block numbers separated by a comma signify a range of block numbers.

Output

Free returns one of these messages, depending on whether you specify fnodes,
blocks, or badblocks:

<fnodenum>, fnode marked free
<blocknum>, block marked free
<blocknum>, block marked good

Where:

<fnodenum>
is the number of the fnode that the utility designated as free.

<blocknum>
is the number of the volume block that the utility designated as free or
good.

DVU command free

Command Reference Appendix B 555

Free checks the allocation status of fnodes or blocks before freeing them.
Therefore, if you specify free for a block or fnode that is already unallocated, free
returns one of these messages:

<fnodenum>, fnode already marked free
<blocknum>, block already marked free
<blocknum>, block already marked good

Additional Information

When you discover an inconsistency between allocated fnodes or volume blocks
and referenced fnodes or volume blocks (most often as a result of using the verify
command), you can use free and to help correct the errors. You can also use free
to correct inconsistencies in good block and bad block information.

Free fnodes are fnodes for which no actual files exist. Free designates fnodes as
free by updating both the flags field of the fnode and the free fnodes map file.

Free volume blocks are blocks that are not part of any file; they are available to be
assigned to any new or current file. Free designates volume blocks as free by
updating the volume free space map.

When you use the free command to designate one or more bad blocks as good, it
removes the block number from the bad blocks file. However, free badblock does
not designate the blocks as free. To update the volume free space map and
designate these blocks as free, use the free block command.

Error Messages
argument error

A syntax error was made in the command, or a nonnumeric character was specified
in the blocknum or fnodenum parameter.

<blocknum>, block out of range
The block number specified was larger than the largest block number in the
volume.

<fnodenum>, fnode out of range
The fnode number specified was larger than the largest fnode number in the
volume.

no badblocks file
The volume does not have a bad blocks file. This message could appear if you
used an earlier version of the format command to format the disk.

not a named disk
Free was performed on a physical volume.

getbadtrackinfo (gb) DVU command

556 Appendix B Using Diskverify in Interactive Mode

getbadtrackinfo
Displays the volume's bad track information as written by the manufacturer or the
HI format command.

Syntax

gb|getbadtrackinfo

Output

Bad track information:
cyl head sector
cccc hh ss
cccc hh ss
. . .
. . .

Where:

cccc is the cylinder number

hh is the head number

ss is the sector number (always 0 for all devices supported in this release
of the OS)

Additional Information

The output displayed by the getbadtrackinfo command is compatible with the
format required by the HI format command when writing bad track information on
the disk. To use the output as input to format , exit diskverify and reboot the
system. Then edit :w:bad.lst and remove the header lines. The file can then be
used as input to the bad track information file created by the format command.

The example below shows how to use getbadtrackinfo this way:

-attachdevice wmf0 as :w: <CR>
-diskverify :sd: to :w:bad.list <CR>
*getbadtrackinfo <CR>
*exit <CR>

Getbadtrackinfo can be aborted by typing <Ctrl-C>.

DVU command getbadtrackinfo (gb)

Command Reference Appendix B 557

Error Messages
I/O error while trying to read bad track information

An I/O error occurred while reading the bad track information.

No valid bad track info found
Bad track information is not valid and cannot be displayed.

No bad track info found
The area designated for bad track information is empty.

help (h) DVU command

558 Appendix B Using Diskverify in Interactive Mode

help
Lists all available Disk Verification Utility commands and provides a short
description of each command.

Syntax

h|help

Output

 *help

allocate/free : allocate/free fnodes, space blocks, bad blocks

backup/restore fnodes (bf/rf) : backup/restore fnode file to/from save area

Control-C : abort the command in progress

disk : display disk attributes

display byte/word (d,db/dw) : display the buffer in (byte/word format)

display directory (dd) : display the directory contents

display fnode (df) : display fnode information

display next block (>,dnb) : read and display 'next' volume block

display previous block (<,dpb) : read and display 'previous' volume block

display save fnode (dsf) : display saved fnode information

exit,quit : quit disk verify

list bad blocks (lbb) : list bad blocks on the volume

read (r) : read a disk block into the buffer

restore volume label (rvl) : copy volume label from save area

save : save free fnodes, free space & bad block maps

substitute byte/word (s,sb/sw) : modify the buffer (byte/word format)

verify : verify the disk

write (w) : write to the disk block from the buffer

edit fnode (ef) : edit an fnode

edit save fnode (esf) : edit a saved fnode

fix : perform various fixes on the volume

get bad track info (gb) : get the bad track info on the volume

arithmetic and conversion commands-

address : convert block number to absolute address

block : convert absolute address to block number

hex/dec : display number as hexadecimal/decimal number

add,+,sub,-,mul,*,div,/,mod : arithmetic operations on unsigned numbers

DVU command listbadblocks (lbb)

Command Reference Appendix B 559

listbadblocks
Displays all the bad blocks on a named volume.

Syntax

lbb|listbadblocks

Output

Listbadblocks displays up to eight columns of block numbers from the bad blocks
file, in this format:

Badblocks on Volume: volumenum

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

If no blocks have been marked as bad, listbadblocks displays this message:

no badblocks

Additional Information

You can abort this command by typing <Ctrl-C>.

Error Messages
no badblocks file

The volume does not have a bad blocks file. This message could appear because
you used an earlier version of the HI format command when formatting the disk,
or because the disk is a physical volume.

quit (q) DVU command

560 Appendix B Using Diskverify in Interactive Mode

quit
Exits the DVU and returns control to the HI command level; identical to exit.

Syntax

q|quit

Additional Information

Although you can use diskverify to verify the system device (:sd:), all connections
to this device are deleted by the OS. After exiting, you must reboot the system or
use the warm start feature.

See also: Warm start feature, System Debugger

DVU command read (r)

Command Reference Appendix B 561

read
Reads a volume block from the disk into the working buffer.

Syntax

r|read [blocknum]

Parameter
blocknum

Number of the volume block to read. This number can range from 0 through
(max blocks - 1), where max blocks is the number of volume blocks in the volume.
If you omit this parameter, the read command reads the most recently accessed
block.

Output

Read reads the block into the working buffer and displays:

read block number: <blocknum>

Where:

<blocknum>
is the number of the block.

Additional Information

Read destroys any data currently in the working buffer. Once the block is in the
working buffer, you can use displaybyte and displayword to display the block, and
you can use substitutebyte and substituteword to change the data in the block.
Finally, you can use the write command to write the modified block back to the
volume and repair damaged volume data.

Error Messages
argument error

A nonnumeric character was specified in the blocknum parameter.

<blocknum>, block out of range
The block number specified was larger than the largest block number in the
volume.

FFFFFFFF, block out of range
No block number was specified and no previous read request was executed on this
volume.

restorefnode (rf) DVU command

562 Appendix B Using Diskverify in Interactive Mode

restorefnode
Copies an fnode or a range of fnodes from the r?save file to the fnode file.

Syntax

rf|restorefnode fnodenum [, fnodenum]

Parameter
fnodenum

The hexadecimal number of the fnode to be restored. This number must be greater
than or equal to 0 and less than the maximum number of fnodes defined when the
volume was formatted. Two fnode numbers specifies a range of fnodes to be
restored. The second number must be greater than the first.

Output

Before changing the fnode file, restorefnode displays each fnode number to be
changed and prompts you to confirm (by entering a Y or y) that the fnode is to be
restored:

restore fnode (fnodenum)? Y <CR>

When you respond Y or y , and the fnode is restored:

restored fnode number: (fnodenum)
*

If you do not respond with Y, the fnode is not restored, and the response is the
asterisk (*) prompt:

restore fnode (fnodenum)? <CR>
*

Restorefnode passes on to the next fnode in the range.

Additional Information

The restorefnode command enables you to rebuild a damaged fnode file, thereby
re-establishing links to data that would otherwise be lost.

Since restorefnode operates on the r?save file (the fnode backup file), you must
have reserved this file with the reserve option of the format command when the
volume was formatted. Otherwise, restorefnode will return an error message.

DVU command restorefnode (rf)

Command Reference Appendix B 563

▲▲! CAUTION
When using this command, be sure that any fnode you restore
represents a file that has not been modified since the last fnode
backup. Restorefnode overwrites the specified fnode in the
fnode file with the corresponding fnode in the r?save file. If that
fnode has not been backed up since the last file modification, a
valid fnode may be overwritten with invalid data. Thus, all links
to the associated file will be destroyed, and you will lose all of
the data in the file.

Example

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
* restorefnode 9,0B <CR> or rf 9,0B <CR>

restore fnode 9? Y <CR>

restored fnode number: 9
restore fnode 0A? Y <CR>

restored fnode number: 0A
restore fnode 0B? Y <CR>

restored fnode number: 0B
*

restorefnode (rf) DVU command

564 Appendix B Using Diskverify in Interactive Mode

Error Messages
argument error

The required argument was not supplied when the command was entered.

no save area was reserved when volume was formatted
To support fnode backup, use the backup command to save the data on the
volume, reformat the volume using the reserve option of the format command,
and then restore the volume data.

not a named disk
The volume specified when the DVU was invoked is a physical volume, not a
named volume.

<fnode num>, fnode out of range
The fnode number specified is not in the range of 0 to (maximum fnodes - 1).

allocation bit not set for saved fnode
restore fnode <fnode num>?

The fnode you specified has not been backed up in the r?save file. If you respond
to the query with a Y or y , the data in the file associated with the original fnode will
be lost.

See also: Caution, restorefnode command

DVU command restorevolumelabel (rvl)

Command Reference Appendix B 565

restorevolumelabel
Copies the duplicate volume label to the volume label on track 0.

Syntax

rvl|restorevolumelabel

Output

Volume label restored

Additional Information

Use restorevolumelabel to rebuild a damaged volume label, thereby re-
establishing links to data that would otherwise be lost.

The duplicate volume label must have been constructed when the volume was
formatted, by using the reserve option of the format command. The volume
label is automatically copied to the end of the r?save file at this time. Because the
contents of the volume label do not change, no other volume label backup is
required.

If a duplicate volume label has been reserved on a volume, the DVU can access
that volume as a named volume even if the volume label is damaged. When the
original volume label is corrupted, the DVU attempts to use the duplicate volume
label. If the backup label is used, a DUPLICATE VOLUME LABEL USED message
appears when the utility is invoked.

If the duplicate volume label was not reserved when the volume was formatted,
restorevolumelabel will return an error message.

Example

super- diskverify :sd: <CR>

iRMX Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
DUPLICATE VOLUME LABEL USED
* restorevolumelabel <CR> or rvl <CR>

volume label restored
*

restorevolumelabel (rvl) DVU command

566 Appendix B Using Diskverify in Interactive Mode

Error Messages
argument error

This command does not accept an argument, but one was supplied when the
command was entered.

no save area was reserved when volume was formatted
To support volume label backup, use the backup command to save the data on the
volume, reformat the volume using the reserve option of the format command,
and then restore the volume data.

not a named disk
The volume specified when the DVU was invoked is a physical volume, not a
named volume.

DVU Command save

Command Reference Appendix B 567

save
Writes the reconstructed free fnodes bit map, volume free space bit map, and the
bad blocks bit map to the volume being verified.

Syntax

save

Output

save fnode map?

If you want to write the reconstructed free fnodes map to the volume, enter Y, y , or
YES. Otherwise, enter any other character or a <CR>. If you enter Y, save writes
the fnode map to the volume and displays:

free fnode map saved

In any case, save next displays this message:

save space map?

If you want to write the reconstructed free space map to the volume, enter Y.
Otherwise, enter any other character or a <CR>. If you enter Y, save writes the
space map to the volume and displays:

free space map saved

Save displays this message if the bad blocks map is reconstructed:

save bad block map?

If you want to write the reconstructed bad blocks map to the volume, enter Y.
Otherwise, enter any other character or a <CR>. If you enter Y, save writes the bad
blocks map to the volume and displays:

bad block map saved

Additional Information

The save command takes the free fnodes map, the volume free space map, and the
bad block map created during the verify operation and writes them to the volume,
replacing the maps that currently exist. The maps were originally created with the
named2 and physical options of the verify command.

See also: verify command, in this appendix

save DVU command

568 Appendix B Using Diskverify in Interactive Mode

Example

This example illustrates the format of the save command after you use verify with
the named or named2 option.

* VERIFY NAMED2 <CR>

'NAMED2' VERIFICATION
 .
 .
 .

 BIT MAPS O.K.
* SAVE <CR>

save fnode map? y <CR>

 free fnode map saved
save space map? y <CR>

 free space map saved
*

Error Message
nothing to save

No bit map was constructed with the verify command prior to invoking save.

DVU command substitutebyte (s or sb)

Command Reference Appendix B 569

substitutebyte
Interactively changes the contents of the working buffer, in byte format.

Syntax

s|sb|substitutebyte [offset]

Parameter
offset

Number of the first byte, relative to the start of the working buffer, that you want to
change. This number can range from 0 to (block size - 1), where block size is the
size of a volume block and thus the size of the working buffer. If you omit this
parameter, the command assumes a value of 0.

Output

Substitutebyte displays the specified byte and waits for you to enter a new value:

<offset>: val -

Where:

<offset> is the number of the byte, relative to the start of the buffer.

val is the current value of the byte.

At this point, you can enter one of these:

<CR> alone Substitutebyte leaves the current value as is, displays the
next byte in the buffer, and waits for further input. If you
enter a <CR> when you are at the last byte of the buffer,
substitutebyte displays the first byte of the buffer.

A value and <CR> Substitutebyte substitutes the new value for the current
byte. If the value you enter requires more than one byte of
storage, substitutebyte uses only the low-order byte of the
value. It then displays the next byte in the buffer and
waits for further input.

A value followed by a
period (.) and <CR>

Substitutebyte substitutes the new value for the current
byte. It then exits from the command and gives the
asterisk (*) prompt, enabling you to enter any diskverify
command.

substitutebyte (s or sb) DVU command

570 Appendix B Using Diskverify in Interactive Mode

A period (.) and <CR> This exits the substitutebyte command and gives the
asterisk (*) prompt, enabling you to enter any diskverify
command.

Additional Information

Use substitutebyte to consecutively step through the working buffer and change
whatever bytes are appropriate. When you finish changing the buffer, enter a
period (.) followed by a <CR> to exit the command.

The substitutebyte command changes only the values in the working buffer. To
make the changes in the volume, enter the write command to write the working
buffer back to the volume.

You can abort this command by typing <Ctrl-C>.

Example

This example changes several bytes in two portions of the working buffer. Two
substitutebyte commands are used.

* substitutebyte<CR>

0000: A0 - 00<CR>

0001: 80 - <CR>

0002: E5 - <CR>

0003: FF - 31<CR>

0004: FF - .<CR>

* substitutebyte 40<CR>

0040: 00 - E6<CR>

0041: 00 - E6.<CR>

*

Error Messages
argument error

A nonnumeric character was specified in the offset parameter.

<offsetnum>, invalid offset
An offset value larger than the number of bytes in the block was specified.

DVU command substituteword (sw)

Command Reference Appendix B 571

substituteword
Is identical to substitutebyte, except that it displays the working buffer in word
format, and substitutes word values in the buffer.

Syntax

sw|substituteword [offset]

Example

This example changes several bytes in two areas of the working buffer. Two
substituteword commands are used. In the first command the words begin on even
addresses, and in the second command, they begin on odd addresses.

* substituteword<CR>

0000: A0B0 - 0000<CR>

0002: 8070 - <CR>

0004: E511 - <CR>

0006: FFFF - 3111<CR>

0008: FFFF - .<CR>

* substituteword 35<CR>

0035: 0000 - E6FF<CR>

0037: 0000 - E6AB.<CR>

*

verify (v) DVU command

572 Appendix B Using Diskverify in Interactive Mode

verify
Checks physical and named volumes to ensure that the volumes contain valid file
structures and data areas.

Syntax

v|verify [[named1|named|all] [,list]] [named2|physical]

Parameters

named1 or n1
Checks named volumes to ensure that the information recorded in the fnodes is
consistent and matches the information obtained from the directories themselves.
Verify performs these operations during a named1 verification:

• Checks fnode numbers in the directories to see if they correspond to allocated
fnodes

• Checks the parent fnode numbers recorded in the fnodes to see if they match
the information recorded in the directories

• Checks the fnodes against the files to determine if the fnodes specify the
proper file type

• Checks the pointer (n) structures of long files to see if the indirect blocks
accurately reflect the number of blocks used by the file

• Checks each fnode to see if the total size , total blks , and this size
fields are consistent

• Checks the bad blocks file to see if the blocks in the file correspond to the
blocks marked as bad on the volume

• Checks the checksum of each fnode

named2 or n2
Checks named volumes to ensure that the information recorded in the free fnodes
map and the volume free space map matches the actual files and fnodes. Verify
performs these operations during a named2 verification:

• Creates a free fnodes map by examining every directory in the volume. It then
compares that free fnodes map with the one already on the volume.

• Creates a free space map by examining the information in the fnodes. It then
compares that free space map with the one already on the volume.

DVU command verify (v)

Command Reference Appendix B 573

• Checks to see if the block numbers recorded in the fnodes and the indirect
blocks actually exist.

• Checks to see if two or more files use the same volume block. If so, it lists the
files referring to each block.

• Checks the volume free space map for any bad blocks that are marked as free.

• Checks to see if two or more directories reference the same fnode. If so, it lists
the directories referring to each fnode.

named or n
Performs both the named1 and named2 operations on a named volume. If you
specify the verify command with no option, named is the default.

physical
Reads all blocks on the volume and checks for I/O errors. This parameter applies
to both named and physical volumes. Verify also creates a bad blocks map by
examining every block on the volume.

all Performs all operations appropriate to the volume. For named volumes, performs
both the named and physical operations. For physical volumes, performs only
the physical operations.

list When you specify this option, the file information shown in Named1 Output below
is displayed for every file on the volume, even if the file contains no errors. You
can use this option with all parameters that either explicitly or implicitly specify
the named1 parameter.

Output

Verify produces a different kind of output for each of the named1, named2, and
physical options. The named and all options produce combinations of these
three kinds of output.

Named1 Output

Named1 used without the list option:

 DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLOCK SIZE = <blksize>

 'NAMED1' VERIFICATION

 FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>: TYPE=<typ>

 <error messages>

verify (v) DVU command

574 Appendix B Using Diskverify in Interactive Mode

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>: TYPE=<typ>

 <error messages>

 FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>: TYPE=<typ>

 <error messages>

Where:

<devname> Physical name of the device, as specified in the attachdevice
command.

<devsize> Hexadecimal size of the volume, in bytes.

<blksize> Hexadecimal volume granularity. This number is the size of a volume
block.

<filename>
Name of the file (1 to 14 characters).

<fnodenum>
Hexadecimal number of the file's fnode.

<lev> Hexadecimal level of the file in the file hierarchy. The root directory
of the volume is the only level 0 file. Files contained in the root
directory are level 1 files. Files contained in level 1 directories are
level 2 files. This numbering continues for all levels of files in the
volume.

<parnt> Fnode number of the directory that contains this file, in hexadecimal.

<typ> Type of file:

Type Meaning
DATA data files
DIR directory files
SMAP volume free space map
FMAP free fnodes map
BMAP bad blocks map
VLAB volume label file

If verify cannot ascertain that the file is a directory or data file, it
displays the characters **** in this field.

<error messages>
Messages that indicate the errors associated with the previously-listed
file. The possible error messages are listed later in this section.

DVU command verify (v)

Command Reference Appendix B 575

As shown above, the named1 option (without the list option) displays
information about each file that is in error. If you use the list option with the
named1 option, the file information above is displayed for every file, even if the
file contains no errors. The named1 display also contains error messages that
immediately follow the list of the affected files.

Named2 Output

If verify detects an error during named2 verification, it displays one or more error
messages in place of the BIT MAPS O.K. message.

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLK SIZE = <blksze>

'NAMED2' VERIFICATION

 BIT MAPS O.K.

The fields in the named2 output are exactly the same as the corresponding fields in
named1 output.

Physical Output

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLOCK SIZE = <blksize>

'PHYSICAL' VERIFICATION

NO ERRORS

The fields in physical output are exactly the same as the corresponding fields in
named1 output.

If verify detects an error during physical verification, it displays this message in
place of the NO ERRORS message:

<blocknum>, error

Named and All Output

If you specify named verification, verify displays both the named1 and named2

output. If you specify the all verification for a named volume, verify displays the
named1, named2, and physical output. If you specify the all verification for a
physical volume, verify displays the physical output.

verify (v) DVU command

576 Appendix B Using Diskverify in Interactive Mode

Additional Information

Verify can perform three kinds of verification: named1, named2, and physical .
Named1 and named2 verifications check the file structures of named volumes.
They do not apply to physical volumes. A physical verification checks each data
block of the volume for I/O errors, and applies to both named and physical
volumes.

As part of the named2 verification, verify creates a new free fnodes map and a new
volume free space map. To create the free fnodes map, it examines every directory
on the volume to determine which fnodes represent actual files. To create the
volume free space map, it examines the pointer(n) fields of the fnodes to
determine which volume blocks the files use. It compares these with the
corresponding maps on the volume. You can use the save command to write the
maps produced during named2 verification to the volume, overwriting the maps on
the volume.

When you perform a physical verification on a named volume, if the volume has
a bad blocks file, verify also creates its own bad blocks map. It does this by
examining every block on the volume, not by copying the maps that exist on the
volume. Verify then compares the newly created maps with the maps that exist on
the volume. If a discrepancy exists, verify displays a message indicating this. You
can use the save command to write the bad blocks map produced during physical

verification to the volume; this destroys the bad blocks map already on the volume.

You can abort this command by typing <Ctrl-C>.

Example

This command performs both named and physical verification on a named volume:

* verify ALL <CR>

DEVICE NAME = F1 : DEVICE SIZE = 0003E900 : BLOCK SIZE = 0080

'named1' VERIFICATION

'named2' VERIFICATION
 BIT MAPS O.K.
'physical' VERIFICATION
 NO ERRORS
*

DVU command verify (v)

Command Reference Appendix B 577

Error Messages

Four kinds of error messages can occur: as a result of entering the verify
command, or from the named1 , named2, or physical error messages.

Verify Command Error Messages

argument error
The parameter specified is not a valid verify parameter.

Named1 Error Messages

These messages can appear in a named1 display, immediately after the file to
which they refer:

<blocknum 1 - blocknum n>, block bad
The block numbers displayed in this message are marked as bad.

<blocknum 1 - blocknum n>, invalid block number recorded in the
fnode/indirect block
One of the pointer (n) fields in the fnode specifies block numbers larger than the
largest block number in the volume.

directory stack overflow
A directory on the volume lists itself or one of the parent directories in its
pathname. Thus when the utility searches through the directory tree it continually
loops through a portion of the tree, overflowing an internal buffer area. Performing
named2 verification may indicate the cause of this problem.

file size inconsistent
total_size = <totsize> :this_size = <thsize> :data blocks = <blks>

The total size , this size , and total blks fields of the fnode are
inconsistent.

<filetype>, illegal file type
The file type of a user file, as recorded in the type field of the fnode, is not valid.
The valid file types and their descriptions are:

File Type Number Description
smap 1 volume free space map
fmap 2 free fnodes map
bmap 4 bad blocks map
dir 6 directory
data 8 data
vlab 9 volume label file

verify (v) DVU command

578 Appendix B Using Diskverify in Interactive Mode

<fnodenum>, allocation status bit in this fnode not set
The file is listed in a directory but the flags field of its fnode indicates that fnode is
free. The free fnodes map may or may not list the fnode as allocated.

<fnodenum>, fnode out of range
The fnode number is larger than the largest fnode number in the fnode file.

<fnodenum>, parent fnode number does not match
The file represented by fnodenum is contained within a directory whose fnode
number does not match the parent field of the file.

invalid blocknum recorded in the fnode/indirect block
One of the pointers within the fnode or within the indirect block specifies a block
number that is larger than the largest block number in the volume.

insufficient memory to create directory stack
There is not enough dynamic memory available in the system for the utility to
perform the verification.

sum of the blks in the indirect block does not match block in the
fnode
The file is a long file, and the number of blocks listed in a pointer (n) field of the
fnode does not agree with the number of blocks listed in the indirect block.

total-blocks does not reflect the data-blocks correctly
The total blks field of the fnode and the number of blocks recorded in the
pointer (n) fields are inconsistent.

Bad Checksum, checksum is : <number>
Checksum should be : <number>

The checksum recorded in the fnode does not match the checksum calculated by
diskverify .

Named2 Error Messages

These messages can appear in a named2 display:

<blocknum1 - blocknum2>, bad block not allocated
The volume free space map indicates that the blocks are free, but they are marked
as bad in the bad blocks file.

<blocknum>, block allocated but not referenced
The volume free space map lists the specified volume block as allocated, but no
fnode specifies the block as part of a file.

<blocknum>, block referenced but not allocated
An fnode indicates that the specified volume block is part of a file, but the volume
free space map lists the block as free.

DVU command verify (v)

Command Reference Appendix B 579

directory stack overflow
A directory on the volume lists itself or one of the parent directories in its
pathname. Thus when the utility searches through the directory tree it continually
loops through a portion of the tree, overflowing an internal buffer area. In this
case, performing named2 verification may indicate the cause of this problem. The
Multiple reference message (explained below) may help you find the cause of
this problem.

Fnodes map indicates fnodes > max_fnode
The free fnodes map indicates that there are a greater number of unallocated fnodes
than the maximum number of fnodes in the volume.

<fnodenum>, fnode-map bit marked allocated but not referenced
The free fnodes map lists the specified fnode as allocated, but no directory contains
a file with the fnode number.

<fnodenum>, fnode referenced but fnode-map bit marked free
The specified fnode number is listed in a directory, but the free fnodes map lists the
fnode as free.

Free space map indicates Volume block > max_volume_block
The free space map indicates that there are a greater number of unallocated blocks
than the maximum number of blocks in the volume.

insufficient memory to create directory stack
Not enough dynamic memory is available in the system for the utility to perform
the verification.

insufficient memory to create fnode and space maps
During a named2 verification, the utility tried to create a free fnodes map and a
volume free space map, but did not have enough dynamic memory available in the
system.

Multiple reference to fnode <fnodenum>
Path name : <full path name>
referring fnodes:
<fnodenum> Path name: <full path name>
<fnodenum> Path name: <full path name>

The directories on the volume list more than one file associated with this fnode
number.

verify (v) DVU command

580 Appendix B Using Diskverify in Interactive Mode

Multiple reference to block <blocknum>
referring fnodes:
<fnodenum> Path name: <full path name>
<fnodenum> Path name: <full path name>

More than one fnode specifies this block as part of a file.

Physical Error Messages

<blocknum>, error
An I/O error occurred when verify tried to access the specified volume block. The
volume probably has a physical defect.

insufficient memory to create bad blocks map
During a physical verification, the utility tried to create a bad blocks map, but
did not have enough dynamic memory available in the system.

Miscellaneous Error Messages

These messages indicate internal errors in the Disk Verification Utility. Under
normal conditions these messages should never appear. If these (or other
undocumented messages) do appear during a named1 or named2 verification, exit
the DVU and re-enter the diskverify command:

directory stack empty
directory stack error
directory stack underflow

DVU command write (w)

Command Reference Appendix B 581

write
Writes the contents of the working buffer to the volume.

Syntax

w|write [blocknum]

Parameter
blocknum

Number of the volume block to which the command writes the working buffer.
This number can range from 0 through (max blocks-1), where max blocks is the
maximum number of blocks in the volume. If you omit this parameter, write
writes the buffer back to the block most recently accessed.

Output

write to block <blocknum>?

Where:

<blocknum>
is the number of the volume block to which write intends to write the
working buffer.

If you respond by entering Y or any character string beginning with Y or y , write
copies the working buffer to the specified block on the volume and displays:

written to block number:<blocknum>

Any other response aborts the write process.

write (w) DVU command

582 Appendix B Using Diskverify in Interactive Mode

Additional Information

The write command is used in conjunction with the read, displaybyte,
displayword, substitutebyte, and substituteword commands to modify
information on the volume. Initially you use read to copy a volume block from the
volume to a working buffer. Then you can use displaybyte and displayword to
view the buffer and substitutebyte and substituteword to change the buffer.
Finally, you can use write to write the modified buffer back to the volume. By
default, write copies the buffer to the block most recently accessed by a read or
write command.

A write command does not destroy the data in the working buffer. The data
remains the same until the next substitutebyte, substituteword, or read command
modifies the buffer.

Example

This command copies the working buffer to the block from which it was read:

*write <CR>
write 4B? y <CR>
write to block 4B? y
written to block number: 4B

*

Error Messages
argument error

A syntax error was made or nonnumeric characters were specified in the blocknum
parameter.

<blocknum>, block out of range
The block number specified was larger than the largest block number in the
volume.

FFFFFFFF, block out of range
No blocknum was specified and no previous read request was executed on this
volume.

■■ ■■ ■■

Command Reference Appendix C 583

Structure Of A Named Volume C
Introduction

This appendix describes the structure of an iRMX volume that contains named
files. It is provided as reference information to help you interpret output from the
commands (especially diskverify, format , and restore) or to help you create your
own formatting utility programs. It covers the structure of directory files, the
concepts of long and short files, and also includes information on the:

• ISO Volume Label

• iRMX Volume Label, including partition table

• MSA Bootloader Location Table

• Fnode file

• Volume free space map file

• Free fnodes map file

• Bad blocks map file

• Root directory

The blocks reserved for the Bootstrap Loader (in Figure C-1) are not discussed.
Bootstrap Loader blocks are automatically included on a new volume when you
format a volume with the format command.

See also: Bootstrap option, format command, Chapter 2

This appendix is for programmers with experience in reading and writing actual
volume information. It does not attempt to teach these functions.

584 Appendix C Structure of a Named Volume

Volume Structure
Figure C-1 illustrates the general structure of a named file volume.

383 384 511 512 767 768 895 896 1023 1024 3327 3328

W-2926

0

uninitialized

reserved
for future

ISO
standard-

ization

ISO
Volume
Label

Bootloader
Location

Table

iRMX
Volume
Label

reserved
for

Bootstrap
Loader

reserved
for

Bootstrap
Loader

Data
and

Directory
files

absolute byte
number

volume
free space

map file

fnode
file

bad
blocks

file

root
directory

free fnodes
map file

Figure C-1. General Structure of Named Volumes

Volume Labels
Each iRMX named volume contains ISO (International Standardization
Organization) label information as well as iRMX label information and files. This
section describes the structure of ISO volume labels and iRMX volume labels, both
of which must be present on a named volume.

Command Reference Appendix C 585

ISO Volume Label
The ISO volume label is recorded in absolute byte positions 768 through 895 of the
volume (for example, sector 07 of a single-density diskette, or the middle of the
second logical sector for a uniform-format double-density diskette). This is the
structure of the volume label in PL/M notation:

DECLARE
iso_vol_label STRUCTURE(

label_id(3) BYTE,
reserved_a BYTE,
vol_name(6) BYTE,
vol_struc BYTE,
reserved_b(60) BYTE,
rec_side BYTE,
reserved_c(4) BYTE,
ileave(2) BYTE,
reserved_d BYTE,
iso_version BYTE,
reserved_e(48) BYTE);

This is the structure in C notation:

typedef struct {
UINT_8 label_id[3];
UINT_8 reserved_a;
UINT_8 vol_name[6];
UINT_8 vol_struc;
UINT_8 reserved_b[60];
UINT_8 rec_side;
UINT_8 reserved_c[4];
UINT_8 ileave[2];
UINT_8 reserved_d;
UINT_8 iso_version;
UINT_8 reserved_e[48];

} ISO_VOL_LABEL_STRUCT;

586 Appendix C Structure of a Named Volume

Where:

label_id(3)
Label identifier. For named file volumes, this field contains the
ASCII characters VOL.

reserved_a
Reserved field containing the ASCII character 1.

vol_name(6)
Volume name. This field can contain up to six printable ASCII
characters, left-justified and space-filled. A value of all spaces
implies that the volume name is recorded in the iRMX volume label
(absolute byte positions 384-393).

vol_struc For named file volumes, this field contains the ASCII character N,
indicating that this volume has a non-ISO file structure.

reserved_b(60)
Reserved field containing 60 bytes of ASCII spaces.

rec_side For named file volumes, this field contains the ASCII character 1 to
indicate that only one side of the volume is to be recorded.

reserved_c(4)
Reserved field containing four bytes of ASCII spaces.

ileave(2) Two ASCII digits indicating the interleave factor for the volume, in
decimal. ASCII digits consist of the numbers 0 through 9. When
formatting named volumes, you should set this field to the same
interleave factor that you use when physically formatting the volume.

reserved_d
Reserved field containing an ASCII space.

iso_version
For named file volumes, this field contains the ASCII character 1,
which indicates ISO version number one.

reserved_e(48)
Reserved field containing 48 ASCII spaces.

Command Reference Appendix C 587

iRMX Volume Label and Partition Table
The iRMX volume label is recorded in absolute byte positions 384 through 511 of
the volume (sector 04 of a single density diskette). If the disk is partitioned, the
partition table is written into this location as well. This is the structure of the
volume label in PL/M notation:

DECLARE rmx_volume_information STRUCTURE(
vol_name(10) BYTE,
flags BYTE,
file_driver BYTE,
vol_gran WORD_16,
vol_size WORD_32,
max_fnode WORD_16,
fnode_start WORD_32,
fnode_size WORD_16,
root_fnode WORD_16,
dev_gran WORD_16,
interleave WORD_16,
track_skew WORD_16,
system_id WORD_16,
system_name(12) BYTE,
device_special(8) BYTE,
vol_flags BYTE);

This is the structure in C notation:

typedef struct {
UINT_8 vol_name[10];
UINT_8 flags;
UINT_8 file_driver;
UINT_16 vol_gran;
UINT_32 vol_size;
UINT_16 max_fnode;
UINT_32 fnode_start;
UINT_16 fnode_size;
UINT_16 root_fnode;
UINT_16 dev_gran;
UINT_16 interleave;
UINT_16 track_skew;
UINT_16 system_id;
UINT_8 system_name[12];
UINT_8 device_special[8];
UINT_8 vol_flags;

} RMX_VOLUME_INFORMATION_STRUCT;

588 Appendix C Structure of a Named Volume

Where:

vol_name(10)
Volume name in printable ASCII characters, left-justified and zero-
filled.

flags Byte that lists the device characteristics for automatic device
recognition. The individual bits in this byte indicate these
characteristics (bit 0 is rightmost bit):

Bit Meaning
7-5 Reserved
4 vf_format flag. This bit indicates the type of format on track

0. When set to one, it indicates that all tracks, including
track 0, have the same format (Uniform format). When set
to 0, it indicates track 0 is formatted to be single density with
128-byte sectors (Standard format).

3 vf_mini flag. This bit indicates the size of the recording
media. When set to one, it indicates double density. When
set to 0, it indicates either quad density or an 8-inch diskette.

2 vf_sides flag. This bit indicates the number of recording
sides on the volume. When set to one, it indicates a double-
sided volume. When set to 0, it indicates a single-sided
volume.

1 vf_density flag. This bit indicates the recording density of
the volume. When set to one, it indicates modified
frequency modulation (MFM) or double-density recording.
When set to 0, it indicates frequency modulation (FM) or
single-density recording.

0 vf_auto flag. When set to one, this bit indicates that the flags
byte contains valid data for automatic device recognition.
When set to 0, it indicates that the remaining flags contain
meaningless data.

file_driver
Number of the file driver used with this volume. For named file
volumes, this field is set to four.

vol_gran Volume granularity, specified in bytes. This value must be a multiple
of the device granularity. It sets the size of a logical device block,
also called a volume block.

vol_size Size of the entire volume, in bytes.

max_fnode Number of fnodes in the fnode file.

See also: Fnodes, in this appendix

Command Reference Appendix C 589

fnode_start
A 32-bit value that represents the number of the first byte in the fnode
file (byte 0 is the first byte of the volume).

fnode_size
Size of an fnode, in bytes.

root_fnode
Number of the fnode describing the root directory.

dev_gran Device granularity of all tracks except track 0 (which contains the
volume label). This field is important only when the system requires
automatic device recognition.

interleave
Block interleave factor for this volume. This value indicates the
physical distance, in blocks, between consecutively-numbered blocks
on the volume. A value of one indicates that consecutively-numbered
blocks are adjacent. A value of 0 indicates an unknown or undefined
interleave factor.

track_skew
Offset, in bytes, between the first block on one track and the first
block on the next track. A value of 0 indicates that all tracks are
identical.

system_id Numerical code identifying the OS that formatted the volume. These
codes are reserved for Intel OSs:

Operating System Code
iRMX 0 - 0Fh
iNDX 20h - 2Fh

Currently, the OSs place a 0 in this field.

system_name(12)
Several pieces of information are in this field:

The leftmost eight bytes of this field contain the name of the OS that
formatted the volume, in printable ASCII characters, left-justified and
space-filled. Zeros (ASCII nulls) indicate that the OS is unknown.

The next byte is an ASCII character that identifies the program that
formatted the volume, usually F for the Human Interface format
command. If the formatting program is unable to provide this
information, it places an ASCII space in this field.

The Human Interface format command places characters in the last 3
bytes of this field based on the OS version. For iRMX III, the
characters are 03.

590 Appendix C Structure of a Named Volume

device_special(8)
Reserved for special device-specific information. When none exists,
this field must contain 0s. For example, if the device is a hard disk
with an SBC 214/215G controller, the iRMX OSs impose a structure
on this field and supply this information (PL/M notation):

SPECIAL STRUCTURE(
cylinders WORD_16,
fixed BYTE,
removable BYTE,
sectors BYTE,
sector_size WORD_16,
alternates BYTE);

This is the structure in C notation:

typedef struct {
UINT_16 cylinders;
UINT_8 fixed;
UINT_8 removable;
UINT_8 sectors;
UINT_16 sector_size;
UINT_8 alternates;

} SPECIAL_STRUCT;

Where:

cylinders Total number of cylinders on the disk drive.

fixed Number of heads on the fixed disk or Winchester disk.

removable Number of heads on the removable disk cartridge.

sectors Number of sectors in a track.

sector size
Sector size, in bytes.

alternates
Number of alternate cylinders or spare sectors on a track.

vol_flags Contains flags for general volume information, defined as:

Flag Bit Meaning
vf_integrity 0 The volume has been properly shut down.

1 Possible disk corruption (the volume was
attached, but was not subsequently detached).

Command Reference Appendix C 591

Partition Table Structure

For an unpartitioned disk the remainder of the iRMX volume label (bytes 441
through 511) is reserved and must be set to 0.

A partitioned disk contains a partition table of 64 bytes beginning at byte 446 and
ending at byte 509. The partition table contains four contiguous 16-byte structures
as shown below in C notation:

typedef struct {
UINT_8 boot;
UINT_8 start_head;
UINT_16 start_cylinder_sector;
UINT_8 system;
UINT_8 end_head;
UINT_16 end_cylinder_sector;
UINT_32 first_partition_sector;
UINT_32 number_of_sectors;

} PARTITION_TABLE_STRUCT;

Where:

boot Specifies whether this is the active boot partition.

start_head
The beginning head of this partition.

start_cylinder_sector
The beginning cylinder of this partition.

system Specifies the OS type and whether this is a primary or extended
partition.

end_head The last head of this partition

end_cylinder_sector
The last cylinder of this partition.

first_partition_sector
The beginning sector number of this partition.

number_of_sectors
Number of sectors in this partition.

✏ Note
For more information on the partition table structure, refer to a
DOS technical reference; this is the same structure used for a
DOS partition table.

See also: Appendix F in this manual

592 Appendix C Structure of a Named Volume

Bootloader Location Table
The Bootloader Location Table (BOLT) describes the location of the Multibus II
System Architecture (MSA) second stage bootstrap loader, which is normally in the
file r?secondstage. The MSA first stage bootstrap loader requires the BOLT to
read and load the MSA second stage. The BOLT describes the location of the
r?secondstage file as a set of data blocks on the disk by listing the number of data
blocks and the byte offset and length of each block. The BOLT also contains other
information about the MSA second stage needed by the first stage.

The format command writes the BOLT structure to bytes 512 through 767 of a
named volume. This replaces the area marked uninitialized, reserved for future
ISO standardization in previous versions of the iRMX OSs.

The BOLT structure in PL/M is:

BOLT STRUCTURE(
reserved(4) WORD_32,
magic_word1 WORD_32,
magic_word2 WORD_32,
version WORD_16,
types WORD_16
data_size WORD_32,
num_entries WORD_32,
tbl_entry(num_entries) STRUCTURE(

byte_offset WORD_32,
length

WORD_16));

Command Reference Appendix C 593

The BOLT structure in C:

typedef {
UINT_32 reserved[4];
UINT_32 magic_word1;
UINT_32 magic_word2;
UINT_16 version;
UINT_16 types;
UINT_32 data_size;
UINT_32 num_entries;
struct tbl_entry[num_entries]{

UINT_32 byte_offset;
UINT_16 length;

}}BOLT_ STRUCT

Where:

reserved(4)
Reserved for future use. Set to 0.

magic_word1
A value which defines a valid MSA second stage bootloader image.
This value is 0B00F10ADH.

magic_word2
Reserved for future use. Set to 0.

version The version of the BOLT structure. The BOLT structure listed here is
version 2.

types Defines the type of code and data segments used in the second stage
file to be bootloaded.

Bit Meaning
1 Indicates the type of data segment:

0 = Use16
1 = Use32

0 Indicates the type of code segment:
0 = Use16
1 = Use32

The format command sets these bits to 0 (Use16).

data_size The size of the data segment for the second stage bootstrap loader.

594 Appendix C Structure of a Named Volume

num_entries
The number of entries in the table describing the second stage
location.

tbl_entry(num_entries)
A table containing byte_offset and length pairs which indicate
where the second stage is located on the media.

byte_offset The offset, in bytes, from the beginning of the media
to this part of the second stage bootstrap loader.

length The length of this part of the second stage bootstrap
loader.

Command Reference Appendix C 595

Initial Files
Any mechanism that formats iRMX named volumes must place seven files, with
the option of an eighth and ninth file, on the volume during the format process.
These files are:

File File Name
fnode file not accessible as a file
volume label file r?volumelabel
volume free space map file r?spacemap
free fnodes map file r?fnodemap
bad blocks file r?badblockmap
root directory not accessible as a file
space accounting file, not accessible as a file
Optionally, duplicate volume label file r?save
Optionally, MSA second stage file r?secondstage

The first of these files, the fnode file, contains information about all of the files on
the volume. The general structure of the fnode file is discussed first. Then all of
the files are discussed in terms of their fnode entries and their functions.

Fnode File
A data structure called a file descriptor node (fnode) describes each file in a named
file volume. All the fnodes for the entire volume are grouped together in a file
called the fnode file. When the I/O System accesses a file on a named volume, it
examines the iRMX volume label to determine the location of the fnode file, and
then examines the appropriate fnode to determine the actual location of the file.

See also: iRMX volume label, in this appendix

When a volume is formatted, the fnode file contains seven allocated fnodes and any
number of unallocated fnodes. The original number of unallocated fnodes depends
on the files parameter of the format command. These allocated fnodes represent
the fnode file, the volume label file, the volume free space map file, the free fnodes
map file, the bad blocks file, the root directory, and the space accounting file. The
size of the fnode file is determined by the number of fnodes that it contains. The
number of fnodes in the fnode file also determines the number of files that can be
created on the volume. The number of files is set when you format the storage
medium.

See also: Fnode file, volume label file, volume free space map file, free fnodes
map file, bad blocks file, root directory, and space accounting file, in
this appendix

596 Appendix C Structure of a Named Volume

This is structure of an individual fnode in a named file volume, in PL/M notation:

DECLARE
fnode STRUCTURE (

flags WORD_16,
type BYTE,
gran BYTE,
owner WORD_16,
cr_time WORD_32,
access_time WORD_32,
mod_time WORD_32,
total_size WORD_32,
total_blks WORD_32,
pointr(40) BYTE,
this_size WORD_32,
reserved_a WORD_16,
chk_sum WORD_16,
id_count WORD_16,
acc(9) BYTE,
parent WORD_16,
aux(*) BYTE);

This is the structure of an individual fnode in a named file volume, in C:

typedef struct {
UINT_16 flags;
UINT_8 type;
UINT_8 gran;
UINT_16 owner;
UINT_32 cr_time;
UINT_32 access_time;
UINT_32 mod_time;
UINT_32 total_size;
UINT_32 total_blks;
UINT_8 pointr[40];
UINT_32 this_size;
UINT_16 reserved_a;
UINT_16 chk_sum;
UINT_16 id_count;
UINT_8 acc[9];
UINT_16 parent;
UINT_8 aux[2];/*adjust aux#

 for application*/
} FNODE_STRUCT

Command Reference Appendix C 597

Where:

flags A word that defines a set of attributes for the file. The individual bits
in this word indicate these attributes (bit 0 is the rightmost bit):

Bit Meaning
15-7 Reserved bits, always set to 0.
6 Deletion attribute. This bit is set to one to indicate that

the file is a temporary file or that the file will be deleted
(the deletion may be postponed because additional
connections exist to the file). Initially, when the volume
is formatted, this bit is set to 0 in each fnode.

5 Modification attribute. Whenever a file is modified, this
bit is set to one. Initially, when a volume is formatted,
this bit is set to 0 in each fnode.

3-4 Reserved bits, always set to 0.
2 Reserved bit, always set to one.
1 Long or short file attribute. This bit describes how the

ptr fields of the fnode are interpreted. If set to 0,
indicating a short file, the ptr fields identify the actual
data blocks of the file. If set to one, indicating a long
file, the ptr fields identify indirect blocks. When
formatting a volume, this bit is always set to 0, since the
initial files on the volume are short files.
See also: Indirect blocks, in this appendix

0 Allocation status. If set to one, this fnode describes an
actual file. If set to 0, this fnode is available for
allocation. When formatting a volume, this bit is set to
one in the seven allocated fnodes. In other fnodes, it is
set to 0.

598 Appendix C Structure of a Named Volume

type Type of file. These are acceptable types:

Mnemonic Value Type
ft_fnode 0 fnode file
ft_volmap 1 volume free space map
ft_fnodemap 2 free fnodes map
ft_account 3 space accounting file
ft_badblock 4 device bad blocks file
ft_dir 6 directory file
ft_data 8 data file
ft_vlabel 9 volume label file

During system operation, only the I/O System can access file types
other than ft_data and ft_dir .

See also: File types, in this appendix

gran File granularity, specified in multiples of the volume granularity. The
default value is 1. This value can be set to any multiple of the volume
granularity.

owner User ID of the owner of the file. For the files initially present on the
volume, this parameter is important only for the root directory. For
the root directory, this parameter should specify the user World
(FFFFH). The I/O System does not examine this parameter for the
other files (fnode file, volume free space map file, free fnodes map
file, bad blocks file, volume label), so a value of 0 can be specified.

cr_time Time and date that the file was created, expressed as a 32-bit value.
This value indicates the number of seconds since a fixed, user-
determined point in time. By convention, this point in time is
midnight (00:00), January 1, 1978. For the files initially present on
the volume, this parameter is important only for the root directory. A
0 can be specified for the other files (fnode file, volume free space
map file, free fnodes map file, bad blocks file, volume label.)

access_time
Time and date of the last file access (read or write), expressed as a 32-
bit value. For the files initially present on the volume, this parameter
is important only for the root directory.

mod_time Time and date of the last file modification, expressed as a 32-bit
value. For the files initially present on the volume, this parameter is
important only for the root directory.

total_size
Total size, in bytes, of the actual data in the file.

Command Reference Appendix C 599

total_blks
Total number of volume blocks used by this file, including indirect
block overhead. A volume block is a block of data whose size is the
same as the volume granularity. All memory in the volume is divided
into volume blocks, which are numbered sequentially, starting with
the block containing the smallest addresses (block 0).

See also: Indirect blocks, in this appendix

pointr(40) A group of bytes on which this structure is imposed (in PL/M):

PTR(8) STRUCTURE(
NUM_BLOCKS WORD_16,
BLK_PTR(3) BYTE);

The same structure in C:

typedef struct {
UINT_16 num_blocks;
UINT_8 blk_ptr[3];

} ptr_struct[8];

This structure identifies the data blocks of the file. These data blocks
may be scattered throughout the volume, but together they make up a
complete file. If the file is a short file (bit 1 of the flags field is set
to 0), each ptr structure identifies an actual data block. In this case,
the fields of the ptr structure contain:

num_blocks Number of volume blocks in the data block.

blk_ptr(3) A 24-bit value specifying the number of the first
volume block in the data block. Volume blocks are
numbered sequentially, starting with the block with
the smallest address (block 0). The bytes in the
blk_ptr array range from least significant
(blk_ptr(0)) to most significant (blk_ptr(2)).

600 Appendix C Structure of a Named Volume

If the file is a long file (bit 1 of the flags field is set to one), each
ptr structure identifies an indirect block (possibly consisting of more
than one contiguous volume block), which in turn identifies the data
blocks of the file. In this case, the fields of the ptr structure contain:

num_blocks Number of volume blocks pointed to by the indirect
block.

blk_ptr(3) A 24-bit volume block number of the indirect block.

See also: Indirect blocks, in this appendix.

this_size Size, in bytes, of the total data space allocated to the file. This figure
does not include space used for indirect blocks, but it does include any
data space allocated to the file, regardless of whether the file fills that
allocated space.

reserved_a
Reserved field, set to 0.

chk_sum Contains a checksum value for the fnode.

Id_count Number of access-ID pairs declared in the acc(9) field.

acc(9) A group of bytes on which this structure is imposed (in PL/M):

ACCESSOR(3) STRUCTURE(
access BYTE,
id WORD_16);

The same structure in C:

typedef struct {
UINT_8 access;
UINT_16 id;

}ACCESSOR_STRUCT[3];

Command Reference Appendix C 601

This structure contains the access-ID pairs that define the access rights
for the users of the file. By convention, when a file is created, the
owner's ID is inserted in accessor(0) , along with the code for the
access rights. The fields of the accessor structure contain:

access Encoded access rights for the file. The settings of the
individual bits in this field grant (if set to 1) or deny (if
set to 0) permission for the corresponding operation. Bit
0 is the rightmost bit.

Bit Data File Operation Directory Operation
7-4 reserved (must be 0)
3 update change entry
2 append add entry
1 read list
0 delete delete

id ID of the user who gains the corresponding access
permission.

parent Fnode number of directory file that lists this file. For files initially
present on the volume, this parameter is important only for the root
directory. For the root directory, this parameter should specify the
number of the root directory's own fnode. For other files (fnode file,
volume free space map file, free fnodes map file, bad blocks file,
volume label) the I/O System does not examine this field.

aux(*) Auxiliary bytes associated with the file. The named file driver does
not interpret this field, but the user can access it by making
get_extension_data and set_extension_data system calls. The size
of this field is determined by the size of the fnode, specified in the
iRMX volume label. If you use the format command or create your
own utility to format a volume, you can make this field as large as
you wish; however, a larger aux field implies slower file access.

Certain fnodes designate special files that appear on the volume. These sections
discuss these fnodes and the associated files.

602 Appendix C Structure of a Named Volume

Fnode 0: Fnode File
The first fnode structure in the fnode file describes the fnode file itself. This file
contains all the fnode structures for the entire volume. It must reside in contiguous
locations in the volume. The fields of fnode 0 must be set as:

• The bits in the flags field are set to (bit 0 is the rightmost bit):
Bit Value Description
15-7 0 Reserved bits
6 0 File will not be deleted
5 0 Initial status is unmodified
3-4 0 Reserved bits
2 1 Primary fnode
1 0 Short file
0 1 Allocated file

• The type field is set to ft_fnode .

• The gran field is set to 1.

• The owner field is set to the ID of the user who formatted it.

• The cr_time , access_time , and mod_time fields are set to the time the
system was formatted.

• Since the iRMX volume label specifies the size of an individual fnode
structure and the number of fnodes in the fnode file, the value specified in the
total_size field of fnode 0 must equal the product of the values in the
fnode_size and max_fnode fields of the iRMX volume label.

• The total_blocks field specifies enough volume blocks to account for the
memory listed in the total_size field. The product of the value in the
total_blocks field and the volume granularity equals the value of the
this_size field, since the fnode file is a short file.

• Since the fnode file must reside in contiguous locations in the volume, only
one ptr structure describes the location of the file. The value in the
num_blocks field of that ptr structure equals the value in the
total_blocks field. The blk_ptr field indicates the number of the first
block of the fnode file.

• The id_count field is set to 1.

Command Reference Appendix C 603

Fnode 1: Volume Free Space Map File
The second fnode, fnode 1, describes the volume free space map file. The type
field for fnode 1 is set to ft_volmap to designate the file as such.

The volume free space map file keeps track of all the space on the volume. It is a
bit map of the volume, in which each bit represents one volume block (a block of
space whose size is the same as the volume granularity). If a bit in the map is set
to one, the corresponding volume block is free to be allocated to any file. If a bit in
the map is set to 0, the corresponding volume block is already allocated to a file.
The bits of the map correspond to volume blocks such that bit n of byte m
represents volume block (8 * m) + n. The bits in the remaining space allocated to
the map file (those that do not correspond to actual blocks of memory) must be set
to 0.

When the volume is formatted, the volume free space map file indicates that the
first 3328 bytes of the volume (the label and bootstrap information) plus any files
initially placed on the volume (fnode file, volume free space map file, free fnodes
map file, bad blocks file) are allocated. Space is also reserved for the r?save and
r?secondstage files if they are selected during formatting.

Fnode 2: Free Fnodes Map File
The third fnode, fnode 2, describes the free fnodes map file. The type field of
fnode 2 is set to ft_fnodemap to designate the file as such.

The free fnodes map file keeps track of all the fnodes in the fnodes file. It is a bit
map in which each bit represents an fnode. If a bit in the map is set to one, the
corresponding fnode is not in use and does not represent an actual file. If a bit in
the map is set to 0, the corresponding fnode already describes an existing file. The
bits in the map correspond to fnodes such that bit n of byte m represents fnode
number (8 * m) + n. The bits in the remaining space allocated to the map file
(those that do not correspond to actual fnode structures) must be set to 0.

When the volume is formatted, the free fnodes map file indicates that fnodes 0, 1,
2, 3, 4, 5, and 6 are in use. If the reserve option is selected when the volume is
formatted, the map file also indicates fnode 7 is in use. If other files are initially
placed on the volume, the free fnodes map file must be set to indicate this as well.

Fnode 3: Accounting File
Fnode 3 is a placeholder. When a volume is formatted, fnode 3 is set up
representing a file of type ft_account . The fnode is set up as allocated, and of
the indicated type, but it does not assign any actual space for the file.

604 Appendix C Structure of a Named Volume

Fnode 4: Bad Blocks Map File
The fifth fnode, fnode 4, describes a file containing a map of all the bad blocks on
the volume. The type field of fnode 4 is set to ft_badblock to indicate this.

The bad block map file keeps track of all the bad blocks on the volume. It is a bit
map of the volume, in which each bit represents one volume block (a block of
space whose size is the same as the volume granularity). If a bit in the map is set
to 0, the corresponding volume block has no bad blocks and may be allocated to
any file. If a bit in the map is set to one, the corresponding volume block is bad. If
a block is marked bad, it must also be marked allocated in the volume free space
file. The bits of the map correspond to volume blocks such that bit n of byte m
represents volume block (8 * m) + n.

Fnode 5: Volume Label File
This fnode describes a file containing the first 3328 bytes of any volume. The
information in this file defines the volume as a whole. The type field of this fnode
is set to ft_vlabel . You cannot write to this fnode.

Fnode 6: Root Directory
The root directory is a special directory file. It is the root of the named file
hierarchy for the volume. The iRMX volume label specifies the fnode number of
the root directory. The root directory is its own parent; thus the parent field of its
fnode specifies its own fnode number.

The root directory (and all directory files) associates file names with fnode
numbers. It consists of a number of entries that have this structure in PL/M
notation:

DECLARE
DIR_ENTRY STRUCTURE(

fnode WORD_16,
component(14) BYTE);

This is the structure in C:

typedef struct {
UINT_16 fnode;
UINT_8 component[14];

} DIR_ENTRY_STRUCT;

Command Reference Appendix C 605

Where:

fnode Fnode number of a file listed in the directory.

component(14)
A string of ASCII characters that is the final component of the path
name identifying the file. This string is left-justified and null padded
to 14 characters.

When a file is deleted, its fnode number in the directory entry is set to 0.

Fnodes 7 and 8: R?secondstage and R?save
These fnodes may or may not be reserved depending on whether the reserve and
msaboot (iRMX II only) options are used during formatting. If both options are
used, the r?secondstage file is placed in fnode 7 and the r?save file is placed in
fnode 8. If only reserve is used, r?save is placed in fnode 7 and fnode 8 remains
unallocated. If only msaboot (iRMX II only) is used, r?secondstage is placed in
fnode 7 and fnode 8 remains unallocated. If neither option is used, both fnode 7
and fnode 8 remain unallocated.

R?secondstage

R?secondstage is a file which may be optionally created by the msaboot option of
the format command. R?secondstage is the second stage bootloader for systems
that conform to the Multibus II System Architecture (MSA) specification.
R?secondstage is created at the end of the volume. However, if the reserve

option is also specified, r?secondstage will be placed in the volume blocks
immediately preceding r?save. (The fnode for the r?secondstage file is allocated
out of the fnodes reserved through the files parameter of the format command.)

R?save

R?save is a file which may be optionally created by the reserve option of the
format command. R?save contains the duplicate volume label, in the innermost
track of the volume. A copy of the iRMX volume label is placed at the physical
end of the file and an fnode is allocated for r?save in the fnode file, out of the
fnodes reserved through the files parameter of the format command.

606 Appendix C Structure of a Named Volume

The format command creates a backup of the fnode file in its initialized state.
R?save is not subsequently updated as files are written to or deleted from the
volume. Therefore, you will have to use the backupfnodes command or the
backup option of the Human Interface shutdown command to back up the fnode
file at regular intervals.

Other Fnodes
When formatting a volume, no other fnodes in the fnode file represent actual files.
The remaining fnodes must have bit 0 (allocation status) set to 0.

Command Reference Appendix C 607

Short and Long Files
A file on a volume is not necessarily one contiguous string of bytes. In many
cases, it consists of several blocks of data scattered throughout the volume. The
fnode for the file indicates the locations and sizes of these blocks in one of two
ways, as short files or as long files.

Short Files
If the file consists of eight or fewer distinct blocks of data, its fnode can specify it
as a short file. The fnode for a short file has bit 1 of the flags field set to 0. This
indicates to the I/O System that the PTR structures of the fnode identify the actual
data blocks that make up the file. Figure C-2 illustrates an fnode for a short file.
Decimal numbers are used in the figure for clarity.

Volume

8000

8
ptr (0)

3
ptr (1)

2

ptr (2)

8192

3

Volume Granularity = 1024

W-2927

Fnode File

Data Block

Data Block

Data Block

Fnode 8

Label and
Bootstrap

Information

total_size

total_blks

this_size

Figure C-2. Short File Fnode

608 Appendix C Structure of a Named Volume

As you can see in Figure C-2, fnode 8 identifies the short file. The file consists of
three distinct data blocks. Three ptr structures give the locations of the data
blocks. The num_blocks field of each ptr structure gives the length of the data
block (in volume blocks), and the blk_ptr field points to the first volume block of
the data block.

The other fields shown in Figure C-2 include total_blks , this_size , and
total_size . The total_blks field specifies the number of volume blocks
allocated to the file, which in this case is eight. This equals the sum of
num_blocks values (3 + 2 + 3), since short files use all allocated space as data
space.

The this_size field specifies the number of bytes of data space allocated to the
file. This is the sum of the num_blocks values (3 + 2 + 3) multiplied by the
volume granularity (1024) and equals 8192.

The total_size field specifies the number of bytes of data space that the file
occupies (designated in Figure C-2 by the shaded area). As you can see, the file
does not occupy all the space allocated for it, so the total_size value (8000) is
not as large as the this_size value.

Long Files
If the file consists of more than eight distinct blocks of data, its fnode must specify
it as a long file. The fnode for a long file has bit 1 of the flags field set to one.
This tells the I/O System that the ptr structures of the fnode identify indirect
blocks. The indirect blocks identify the actual data blocks that make up the file.

Each indirect block contains a number of indirect pointers, which are structures
similar to the ptr structures. However, an indirect block can contain more than
eight structures and thus can point to more than eight data blocks. In fact, an
indirect block can consist of more than one volume block; however, all volume
blocks of an indirect block must be contiguous. This is the structure of each
indirect pointer, in PL/M notation:

DECLARE
IND_PTR STRUCTURE(

nblocks BYTE,
blk_ptr(3) BYTE);

Command Reference Appendix C 609

This is the structure in C:

typedef struct {
UINT_8 nblocks;
UINT_8 blk_ptr[3];

} IND_PTR_STRUCT;

Where:

nblocks Number of volume blocks in the data block.

blk_ptr A 24-bit volume block number of the first volume block in the data
block. Volume blocks are numbered sequentially throughout the
volume, starting with the block with the smallest address (block 0).

The OS determines how many indirect pointers there are in an indirect block by
comparing the nblocks fields of the indirect pointers with the num_blocks field
of the fnode. It assumes that the indirect block contains as many pointers as
necessary for the sum of the nblocks fields to equal the num_blocks field.

Because indirect blocks can span several volume blocks, any utility that uses
indirect blocks must determine if an indirect block consists of more than one
volume block. To do this:

1. Use the read DVU command to read the volume block pointed to by the
blk_ptr field in the fnode's pointr structure. Blk_ptr points to the
beginning of a volume block containing all or the first part of an indirect
block.

2. If the sum of all nblocks fields in the volume block is less than num_blocks ,
the indirect block continues into the next contiguous volume block. The utility
must read and process the next volume block.

3. Add the nblocks values in the new volume block to the sum of all previous
nblocks . When the sum of the nblock values equals num_blocks you have
reached the end of the indirect block. If necessary, continue reading volume
blocks and summing nblocks values until the sum of the nblocks values
equals num_block s. The utility may have to read several volume blocks
before finding the end of the indirect block.

610 Appendix C Structure of a Named Volume

Figure C-3 illustrates an fnode for a long file. Decimal numbers are used in the
figure for clarity.

Volume

20300

21
ptr (0)

20480

20

W-2928

Indirect
Block

2

2
1

3
2
3
3
2
2

Volume Granularity = 1024

Fnode 9

Fnode File

Label and
Bootstrap

Information

Data
Blocks

total_size

total_blks

this_size

Figure C-3. Long File Fnode

Command Reference Appendix C 611

As you can see in Figure C-3, fnode 9 identifies the long file. The actual file
consists of nine distinct data blocks. One ptr structure and an indirect block give
the locations of the data blocks. The num_blocks field of the ptr structure
contains the number of volume blocks pointed to by the indirect block. The
blk_ptr field points to the first volume block of the indirect block.

In the indirect block, each nblocks field gives the length of an individual data
block, and each blk_ptr field points to the first volume block of a data block.

Figure C-3 also lists the total_blks , +this_size , and total_size values,
which are more complex than for a short file. The total_blks field specifies the
number of volume blocks allocated to the file, which in this case is 21. Of these 21
and 20 are used for actual data storage and 1 is used for the indirect block.

The this_size field specifies the number of bytes of data space allocated to the
file, and does not include the size of the indirect block. This size is equal to the
num_blocks value (20) or the sum of nblocks values in the indirect block (2 + 1
+ 2 + 3 + 2 + 3 + 3 + 2 + 2 = 20) multiplied by the volume granularity (1024) and
equals 20480.

The total_size field specifies the number of bytes of data space that the file
currently occupies (designated in Figure C-3 by the shaded areas). As you can see,
the file does not occupy all the space allocated for it, so the total_size value
(20300) is not as large as the this_size value.

612 Appendix C Structure of a Named Volume

Diskette Formats
The diskette device drivers supplied with the iRMX Basic I/O Systems can support
several diskette characteristics, listed in Tables C-1, C-2, and C-32.

Table C-1. Characteristics of 5 1/4-Inch Non-SCSI Boot Diskettes

Sectors Device Size (in bytes)
Sector
Size Density

per
Track Format

One-Sided
40 Tracks 80 Tracks

Two-Sided
40 Tracks 80 Tracks

128 Single 16 Standard 81920 163840 163840 327680
256 Single 9 Standard 91904 184064 184064 368384
512 Single 4 Standard 81920 163840 163840 327680

1024 Single 2 Standard 81920 163840 163840 327680
256 Double 16 Standard 1617921 325632 325632 653312
512 Double 8 Standard 1617921 325632 325632 653312

1024 Double 4 Standard 1617921 325632 325632 653312

For compatibility with ECMA (European Computer Manufacturers Association)
and ISO (International Organization for Standardization), the iRMX device drivers,
when called by the format command, can format the beginning tracks of all 5 1/4-
inch diskettes in the same way. The device drivers format track 0 of side 0 with
single-density, 128-byte sectors, with an interleave factor of 1.

Table C-2. Characteristics of 5 1/4-Inch SCSI Boot and Data Diskettes

Sectors Device Size (in bytes)
Sector
Size Density

per
Track Format

One-Sided
40 Tracks 80 Tracks

Two-Sided
40 Tracks 80 Tracks

512 Double 9 Uniform -- -- 368640 --
512 Quad 15 Uniform -- -- -- 1228800

Command Reference Appendix C 613

Table C-3. Characteristics of 3 1/2-Inch SCSI Boot and Data Diskettes

Sectors Device Size (in bytes)
Sector
Size Density

per
Track Format

One-Sided
80 Tracks

Two-Sided
80 Tracks

512 Quad 18 Uniform -- 14745600

512 Double 9 Uniform 737280 --

The iRMX device drivers map the sectors on these beginning tracks into blocks of
device granularity size so that the BIOS and the Bootstrap Loader can treat
diskettes as if they contained a contiguous string of blocks, all of the same size.

When the device driver tries to combine these leftover sectors of track 0, side 1
with the first sectors of track 1, side 0, it finds that the sectors of track 1, side 0 are
already of device granularity size. Therefore, since the device driver cannot access
partial sectors, it is left with one block (the leftover sectors of track 0, side 1) that is
less than device granularity size. When the device granularity is 512, this small
block is block 19; when the device granularity is 1024, it is block 9.

If nothing is done to exclude this smaller-than-normal block from use, the device
driver will treat this block as a normal block, assuming it is of device granularity
size. Thus, if you try to write information to that block, the driver will attempt to
write an entire device granularity block of information into a block that is much
smaller, thereby losing data.

To prevent this situation, the format command automatically declares this smaller-
than-normal block as allocated in the volume free space map when it formats the
volume. This prevents the BIOS from ever writing information into this block. If
you write your own formatting utility, you should also declare this block as
allocated.

■■ ■■ ■■

Command Reference Appendix D 615

Real-Time Graphics Interface D
Description

The iRMX II and III OSs contain a driver that supports the SBX 279 and 279A
graphics interface modules. These modules attach to a Multibus CPU board and
provide users with a graphics interface, including:

• A windowed environment

• A mouse to use in manipulating windows

• A PC-style keyboard for entering data

These sections describe the windows and how to manipulate them with the mouse.

Using the Windows
The windows provided by the SBX 279 or 279A board are ways of viewing many
operations simultaneously on one screen. You can think of them as many terminals
contained in one, with each window representing a terminal. For example, the
System 520 initializes with multiple windows. For each CPU board there are at
least two windows: one for the Monitor/Bootstrap loader/Debugger display and
one for the CPU HI screen.

At system start-up, the windows are layered on top of each other. You can
manipulate the windows with the mouse (move, resize, and relayer them) so that
you can view all or some of the windows at once. In the example screen in Figure
D-1, X is the OS (II for iRMX II, III for iRMX III) and y is the release level (1.0 for
Release 1, 4.0 for Release 4).

616 Appendix D Real-Time Graphics Interface

Figure D-1 is a simple display showing two windows for a single CPU.

MSA Bootstrap Loader

Booting from SCW_2

ÚÄÄ
Loading Bo ³copied to :menu:
 ³
 ³4:46 global
Loading ta ³onfig:R?INIT
 ³
 ³-*
 ³
 ³ iRMX* X.y operating system
 ³
 ³s a Registered Trademark of Intel Corporation
 ³
 ³-*
 ³

ÀÄÄ

Figure D-1. An Example of Windows Displayed on the System 520

Command Reference Appendix D 617

Using the Mouse
You can use the mouse to move, resize, and relayer the windows. All of these
actions are provided in one of two pop-up menus: basic or expanded.

The basic menu exists in EPROM on the SBX 279A Multimodule before the OS is
initialized. Once initialized, the OS can load the expanded menu when executing
the :config:r?init file during the boot up procedure. The default system command
file for the System 520 contains several options that are commented out. Activate
the option that is appropriate. The expanded menu offers more options and
provides a faster method of selecting windows: just point at the desired window
and press any of the mouse buttons.

To select an option from either pop-up menu, do this:

1. Move the mouse so the pointer is outside any window.

2. Press and hold any one of the mouse buttons; the menu appears on the screen.

3. Move the mouse up or down the menu to select an option. Each option is
highlighted as the pointer passes over it.

4. To select an option, release the mouse button when the option is highlighted.
The menu disappears and the pointer changes to an icon. The icons are shown
to the right of the menu in figures D-2 and D-3.

The mouse cannot be used to select anything inside a window (a file, for instance).

With the expanded menu map window function, you can also use the mouse to
associate an <Alt>-Function key combination with a specific window. This is
especially helpful when using numerous windows; for example, when there are
multiple CPU boards in a Multibus II system.

To load the expanded menu as part of your application, enter:

ad g279_0 as :vdi: physical
copy :config:<menu-name> to :vdi:
dd :vdi:

Where <menu-name> is one of these; both menus are initially installed in the
:config:default directory:

menu.279 For the SBX 279 board

menu.279A For the SBX 279A board

If these commands are executed in a submit file, you cannot detach the :vdi: logical
name until about 2 seconds after copying the menu, due to buffer flushing in the
BIOS. If the copying has not completed before the device is detached, the menu is
lost and the system must be restarted. To accomplish the 2 second delay, use the
pause command or a status command such as date before the detach command.

618 Appendix D Real-Time Graphics Interface

Basic Menu
This section explains the selections provided by the basic menu, which is shown in
Figure D-2. The icon for each menu selection is shown to the right of the menu
item. This menu appears before the iRMX III OS is installed or initialized. Once
installed, the OS invokes an expanded menu, which is described later.

Intel System Menu

Pop

Push

Pan

Move

Resize

Keyboard Focus

Pop/Focus

Pop/Focus/Resize

Exit

W-3232

Figure D-2. Basic Menu Selections

Command Reference Appendix D 619

The meaning of the basic menu selections is:

Pop This causes the selected window to appear on top of all other windows. The
keyboard might not be attached to the window that has been popped. Use the
Keyboard Focus selection to direct keyboard input to the popped window.

1. Select Pop from the menu with the mouse. The pointer changes to an up
arrow.

2. Place the arrow within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of all other windows.

Push This causes the selected window to be placed behind all other windows.

1. Select Push from the menu with the mouse. The pointer changes to a down
arrow.

2. Place the arrow within the desired window and press any of the mouse buttons.

3. The selected window is placed behind all other windows.

Pan This moves the contents of a window within the window. This selection is useful
for viewing the contents of a window that has been reduced in size.

1. Select Pan from the menu with the mouse. The pointer changes to the icon
shown in Figure D-2.

2. Place the icon within the desired window. Press and hold down any of the
mouse buttons.

3. Moving the mouse moves the contents of the window.

4. Release the mouse button when the desired contents are displayed.

Move This moves a window around the screen.

1. Select Move from the menu with the mouse. The pointer changes to the icon
shown in Figure D-2.

2. Position the icon within the desired window. Press and hold down any of the
mouse buttons.

3. Moving the mouse moves the entire window.

4. Release the mouse button when the window is in the desired location.

620 Appendix D Real-Time Graphics Interface

Resize This selection changes the size of a window.

1. Select Resize from the menu with the mouse. The pointer changes to the icon
shown in Figure D-2.

2. Position the icon within the desired window and near one of the four corners of
the window. The selected corner will be the part of the window that moves.
Press and hold down any of the mouse buttons.

3. Move the mouse to shrink or enlarge the window.

4. Release the mouse button when the window is at the desired size. Window
contents are not rescaled when the window is resized. The maximum size of a
window is either the size of the bitmap in which it is drawn or the size of the
screen.

Keyboard Focus
This selection directs keyboard input to a window.

1. Select Keyboard Focus from the menu with the mouse. The pointer changes
to a box icon.

2. Position the icon within the desired window and press any of the mouse
buttons.

3. Keyboard input is now directed to the selected window.

Pop/Focus
This causes the selected window to appear on top of all the other windows, with
keyboard input directed to the selected window. This is the same as using Pop
followed by Keyboard Focus.

1. Select Pop/Focus from the menu with the mouse. The pointer changes to the
icon shown in Figure D-3.

2. Position the icon within the desired window and press any of the mouse
buttons.

3. The selected window is displayed on top of all other windows and keyboard
input is directed to it.

Command Reference Appendix D 621

Pop/Focus/Resize
This causes the selected window to appear on top of the other windows with
keyboard input directed to it, and expands the window to full width and
approximately three-quarter height.

1. Select Pop/Focus/Resize from the menu with the mouse. The pointer changes
to the icon shown in Figure D-3.

2. Position the icon within the desired window and press any of the mouse
buttons.

3. The selected window is displayed on top of other windows, expanded in size,
with keyboard input directed to it.

Exit Use this selection to leave the menu list without affecting the windows.

622 Appendix D Real-Time Graphics Interface

Expanded Menu
This section explains the selections provided by the expanded menu, which is
shown in Figure D-3. The icon for each menu selection is shown to the right of
that menu item. This menu is provided by the OS on the System 520.

Window Operations

Pan

Attach Keyboard

Pop to Foreground

Push to Background

Pop and Set Focus

Move Window

Resize Window

Expand Window

Reduce Window

Map Window

W-3233

Figure D-3. Expanded Menu Selections

Command Reference Appendix D 623

The meaning of the expanded menu selections is:

Pan This moves the contents of a window within the window. This selection is useful
for viewing the contents of a window that has been reduced in size.

1. Select Pan from the menu with the mouse. The pointer changes to the icon
shown in Figure D-3.

2. Place the icon within the desired window. Press and hold down any of the
mouse buttons.

3. Moving the mouse moves the contents of the window.

4. Release the mouse button when the desired contents are displayed.

Attach Keyboard
This selection directs keyboard input to a window.

1. Select Attach Keyboard from the menu with the mouse. The pointer changes
to a box icon.

2. Position the icon within the desired window and press any of the mouse
buttons.

3. Keyboard input is now directed to the selected window.

Pop to Foreground
This causes the selected window to appear on top of all other windows. The
keyboard might not be attached to the window that has been popped. Use the
Attach Keyboard selection to direct keyboard input to the popped window.

1. Select Pop to Foreground from the menu with the mouse. The pointer
changes to an up arrow.

2. Place the arrow within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of all other windows.

Push to Background
This causes the selected window to be placed behind all other windows.

1. Select Push to Background from the menu with the mouse. The pointer
changes to a down arrow.

2. Place the arrow within the desired window and press any of the mouse buttons.

3. The selected window is placed behind all other windows.

624 Appendix D Real-Time Graphics Interface

Pop and Set Focus
This causes the selected window to appear on top of all other windows, with
keyboard input directed to the selected window.

1. Select Pop and Set Focus from the menu with the mouse. The pointer
changes to a combination box and up arrow icon.

2. Place the icon within the desired window and press any of the mouse buttons.

3. The selected window is displayed on top of all other windows and keyboard
input is directed to it.

Move Window
This moves a window around the screen.

1. Select Move Window from the menu with the mouse. The pointer changes to
the icon shown in Figure D-3.

2. Position the icon within the desired window. Press and hold down any of the
mouse buttons.

3. Move the mouse to move the entire window.

4. Release the mouse button when the window is in the desired location.

Resize Window
This selection changes the size of a window.

1. Select Resize Window from the menu with the mouse.

2. Position the icon within the desired window and near one of the four corners of
the window. The selected corner will be the part of the window that moves.
Press and hold down any of the mouse buttons.

3. Move the mouse to shrink or enlarge the window.

4. Release the mouse button when the window is at the desired size. Window
contents are not rescaled when the window is resized. The maximum size of a
window is either the size of the bitmap in which it is drawn or the size of the
screen.

Command Reference Appendix D 625

Expand Window
This causes the selected window to appear on top of the other windows with
keyboard input directed to it, and expands the window to full width and
approximately three-quarter height.

1. Select Expand Window from the menu with the mouse.

2. Position the icon within the desired window and press any of the mouse
buttons.

3. The selected window is displayed on top of other windows, expanded in size,
with keyboard input directed to it.

Reduce Window
This selection allows you to shrink the size of a window quickly and move it out of
the way of other windows.

1. Select Reduce Window from the menu with the mouse.

2. Position the icon within the desired window next to one of the four corners.
Press and hold down any one of the mouse buttons.

3. Move the mouse; the window shrinks rapidly.

4. Release the mouse when the window reaches the desired size and position on
the screen.

Map Window
This selection assigns an <Alt>-Function key combination (F1-F10) to each
window. When the <Alt>-Function key combination is pressed, the corresponding
window is displayed on top of other windows and keyboard input is directed to that
window.

1. Select Map Window from the menu with the mouse.

2. Position the icon within the desired window and press any one of the mouse
buttons.

3. On the keyboard, hold down the <Alt> key and press the function key you
want assigned to the window.

4. To use the function keys to select a window, hold down the <Alt> key and
press the corresponding function key. The window assigned to that key is
displayed on top of other windows and keyboard input is directed to it.

See also: SBX 279A Display Subsystem Hardware Reference Manual and
Programmer's Guide to the Real-Time Graphics Interface

■■ ■■ ■■

Command Reference Appendix E 627

Supplied Device Drivers and
Physical Device Names E

Supplied Device Drivers

Preconfigured Drivers, iRMX For Windows and iRMX For PCs
These are the device drivers that are built into iRMX for Windows and iRMX for
PCs:

• ROM BIOS-based Hard Disk Driver

• ROM BIOS-based Diskette Driver

• Byte Bucket Driver

• COM1 driver and COM2 driver

If you are using an iRMX driver to attach a flexible disk or hard disk partition,
don't attempt to attach it using the EDOS file driver.

ROM BIOS-based Hard Disk Driver

The ROM BIOS-based Hard Disk Driver is the link between iRMX and one or two
IBM PC-AT-compatible hard disk controllers. This is a random access driver. The
driver supports one to four partitions on a single hard disk. Each partition is
accessed as a logical device. The partitions can support different file structures,
allowing multiple operating systems to exist on a single drive. The Physical File
driver can access all partitions created on a hard disk; the Named File driver can
access only iRMX partitions.

A generic unit is associated with each physical drive. This unit automatically maps
to the first iRMX partition. The unit is part of the Automatic Device
Characteristics Recognition (ADCR) feature of the OS.

Each disk drive can support up to six device-units, as shown in Table E-1.

628 Appendix E Physical Device Names

Table E-1. Hard Disk Partition Names

DUIB Name Description
C_RMX Generic name for C: drive
C_RMX0 DUIB for entire drive (all partitions)
C_RMX1 Partition 1
C_RMX2 Partition 2
C_RMX3 Partition 3
C_RMX4 Partition 4
D_RMX Generic DUIB name for D: drive
D_RMX0 DUIB for entire drive
D_RMX1 Partition 1
D_RMX2 Partition 2
D_RMX3 Partition 3
D_RMX4 Partition 4

ROM BIOS-based Diskette Driver

The ROM BIOS-based diskette driver is the link between iRMX for Windows and
one IBM PC-AT-compatible diskette controller. This random-access driver
supports the disk controller as one device with two device-units. Table E-2 lists the
device names available for the diskette drives.

✏ Note
You must use the drivers in Table E-2 for iRMX For PCs. Do not
use a_dos and b_dos .

Command Reference Appendix E 629

Table E-2. Diskette Driver Device Names

Device Name Disk Capacity
Drive 0 (Unit 0)

Disk Format Drive Capacity
A 360 Kbytes Uniform 360 Kbytes 48 TPI
AH 1.2 Mbytes Uniform 1.2 Mbytes 96 TPI
AM 720 Kbytes Uniform 135 TPI
AMH 1.44 Mbytes Uniform 135 TPI
AMO 2.88 Mbytes Uniform 135 TPI

Device Name Disk Capacity
Drive 1 (Unit 1)

Disk Format Drive Capacity
B 360 Kbytes Uniform 360 Kbytes 48 TPI
BH 1.2 Mbytes Uniform 1.2 Mbytes 96 TPI
BM 720 Kbytes Uniform 135 TPI
BMH 1.44 Mbytes Uniform 135 TPI
BMO 2.88 Mbytes Uniform 135 TPI

Byte Bucket Driver

This driver provides a pseudo device interface for operations that don't require
device activity. It is used for discarding output (byte bucket) and for direct
communication between tasks (stream files).

Driver characteristics are

• Returns EOF for read operations and write-completed for write operations

• Accepts all operations except special and seek, in the case of stream files, but
does no operations for them

See also: Stream files, System Concepts

COM1 and COM2 Driver

See also: comdrv, System Configuration and Administration, for a description of
the COM1 and COM2 drivers and how to set the I/O addresses and
interrupts to use them

630 Appendix E Physical Device Names

Loadable Device Drivers
You add loadable drivers to the OS dynamically using the sysload command
instead of building the driver into the OS with the ICU.

See also: Loadable Jobs and Device Drivers, System Configuration and
Administration, for descriptions of each loadable driver

The OS includes source code for loadable driver initialization front-ends in these
directories: /rmx386/demo/c/ldd for C and /rmx386/demo/plm/ldd for PL/M. The
default drivers are found in /rmx386/drivers. Use the soource code examples when
writing your own loadable drivers.

See also: Making a Driver Loadable, Driver Programming Concepts
loadable device drivers, System Configuration and Administration

Loadable Device Driver Support Files

The OS provides a number of include files, for both C and PL/M, and a library that
supports loadable drivers. The files contain literal and data structure definitions,
macros, and utilities required for custom, random access, and terminal drivers.
These files are described below:

lddinfo.lit Contains the PL/M literal declarations that define the data structures
used by loadable drivers.

lddinfo.h Contains the C literal declarations that define the data structures used
by loadable drivers.

lddinfo.mac Contains ASM literal declarations and macros that are used to produce
loadable device driver configuration files.

lddupc.ext Contains PL/M external declarations for a number of driver utilities
found in the loadable device driver library ldd.lib.

lddupc.h Contains C external declarations for a number of driver utility
procedures found in the loadable device driver library ldd.lib. The
procedures are described in later chapters.

ldd.lib Contains the linkable utility procedure and driver modules provided in
loadable and reconfigurable form. The library is found in the
/rmx386/lib directory along with the standard iRMX interface
libraries.

Command Reference Appendix E 631

ICU-configurable Drivers For iRMX III Systems
Table E-3 lists the ICU-configurable random access, terminal, and custom drivers.

See also: ICU help screens for complete reference and usage information

Table E-3. Supplied ICU-configurable Device Drivers

Type Device Driver
Random Access or
Common

Mass Storage Controller (MSC) driver *
Line printer driver for SBX 350
Line printer driver for x86/12
PCI driver **
SBC 208 diskette driver
SBC 220 SMD driver

Terminal Terminal Communications Controller (TCC) driver
ATCS Driver ***
8251A terminal driver
8274 terminal driver
82530 terminal driver

Custom Byte bucket driver
RAM-disk driver

* Supports the SBC 214, SBC 215G, and SBC 221 controllers, and the SBX 217C
controller when mounted on the SBC 215G board

** Supports the SBC 386/258 and 386/258D, 386/12S, 486/12S, 486/133SE, and 486/166SE
board

*** The SBC 186/410 cannot pass error codes when the device cannot be attached;
subsequent read/write operations will fail

The PCI driver includes generic SCSI DUIBs, gscw_ N (for 1024-byte granularity)
and gscw5_ N (for 512-byte granularity) where N is the SCSI target ID of the
device. The generic DUIBs allow you to format new SCSI hard disk drives, as well
as attach, read and write to them, without creating a specific DUIB for each SCSI
hard disk drive. You must configure the rq_pci_a parameter in the BPS file
when using the gscw_ N DUIBs.

See also: Table E-8 of this appendix
Partitioning information, Appendix F
BPS parameters, MSA for the iRMX Operating System

The OS reads the disk geometry and defect management information from the hard
disk drive and uses its defaults when you use the format command.

✏ Note
You cannot use the generic DUIBs with ROM applications.

632 Appendix E Physical Device Names

See also: UPCI PCI Driver Unit Information and IPCI PCI Driver Device-unit
Information ICU help screens, particularly the GRA parameter

The PCI driver also includes SCSI DUIB, scw_N where N is the device-unit
number of the device. This DUIBs allow you to attach, read and write iRMX
preformatted SCSI hard disk drives.

See also: Table E-8 of this appendix

Physical Device Names
The tables in this section list the physical device names for disk drives, tape drives,
and terminals, as supplied by default drivers in the operating system. You can
make other device names available by loading device drivers. Physical names
identify a particular Device Unit Information Block (DUIB) that specifies the
physical characteristics of the device.

See also: Loadable device drivers, System Configuration and Administration
physname command, Chapter 2

You use the physical names for disk and tape devices in the attachdevice and
mirror commands. The physical name you use to attach a device is also used by
the format and backup commands to properly format the device. Therefore, it is
important to use the name that specifically describes the device characteristics, or
use the gscw_ N DUIBs provided. The non-generic DUIBs listed in the tables
specify product names. If a device by a different manufacturer corresponds to the
physical characteristics of a device listed in the table (number of cylinders, heads,
etc.), you may use the physical name in the table.

If a device is already formatted and you are attaching it to read or write files (but
not to back up files), you may attach it under a generic name (scw_N) listed in the
appropriate table.

You use the physical names for terminals in the attachdevice, connect, lock, and
unlock commands. You also specify terminal physical names in the
:config:terminals file.

See also: attachdevice, mirror , format , backup, connect, lock, and unlock
commands, Chapter 2

iRMX for Windows/PCs Systems

Command Reference Appendix E 633

iRMX for Windows and iRMX for PCs Systems
The following tables list the default device names for iRMX for Windows and
iRMX for PCs.

Table E-4. iRMX for Windows/PCs Default Device Names

Device Names
Drive 1 Drive 2 Device Type Density

Bytes/
Sector

Tracks/
Inch

iRMX-FORMAT DISKETTE DRIVES

a b 5.25 inch uniform format,
360 Kbyte

Double 512 48

ah bh 5.25 inch uniform format,
1.2 Mbyte

High 512 96

am bm 3.5 inch, 7.2 Mbyte Double 512 135
amh bmh 3.5 inch, 1.44 Mbyte High 512 135
amo bmo 3.5 inch, 2.88 Mbyte High 512 135

iRMX-FORMAT HARD DISK DRIVES

c_rmx d_rmx First iRMX partition on the drive
c_rmx0 d_rmx0 The whole physical drive
c_rmx1 d_rmx1 First partition on the drive, including DOS or other partitions
c_rmx2 d_rmx2 Second partition on the drive, including DOS or other partitions
c_rmx3 d_rmx3 Third partition on the drive, including DOS or other partitions
c_rmx4 d_rmx4 Fourth partition on the drive, including DOS or other partitions
Device Names Device Type

DOS-FORMAT LOGICAL DRIVES (iRMX For Windows only)

a_dos ... b_dos Correspond to DOS drives A: through Z:, using the EDOS filedriver (if
those drives are available under DOS)

c_dos ... z_dos Correspond to DOS drives A: through Z:, using the DOS filedriver (if
those drives are available under DOS)

OTHER DEVICES

com1 com2 Same as DOS COM1 and COM2
lpt1* ... lpt3** Same as DOS LPT1 to LPT3
d_cons* DOS console device (CON)

* Installed by loadable jobs or device drivers

Table E-5. PC Terminal Device Names

Controller Device Names Unit
Serial Port com1

com2
0
0

Console d_cons 0

iRMX for Windows/PCs Systems

634 Appendix E Physical Device Names

✏ Note
The PCI driver makes available a set of DUIBs including generic
DUIBS for SCSI devices and for partitioned SCSI devices.
Partitioned SCSI hard disk drives have different DUIBs than non-
partitioned drives. Refer to Appendix F for information on how
partitions are specified.

See also: Tables of DUIBs in pcidrv, System Configuration
and Administration

Multibus I and II Systems iRMX III OS

Command Reference Appendix E 635

iRMX III Systems
The tables in this section list device names for iRMX III systems using various
controller boards.

iRMX III Multibus I and Multibus II Systems
The tables in this section list device names available on Multibus I and Multibus II
systems running the iRMX III OS.

Table E-6. Device Names for SBC 214, 221, and 215G/217C/218A Controllers

Device
Names Device Type

Unit
Number Sides Density

Bytes/
Sector

Tracks/
Inch

5.25-INCH DISKETTE DRIVES

wqf0* Teac 55GFR 8 2 High 512 96
wqf1* Teac 55GFR 9 2 High 512 96
wdf0* Shugart 460 9 2 Double 512 48
wdf1* Shugart 460 9 2 Double 512 48
wdos0* Shugart 460 9 2 Double 512 48
wmf0 Shugart 450 8 2 Double 512 48
wmf1 Shugart 450 9 2 Double 512 48
wmfdy0 Shugart 460 8 2 Double 512 96
wmfdy1 Shugart 460 9 2 Double 512 96

* Uniform granularity, other diskettes use iRMX standard granularity continued

iRMX III OS Multibus I and II Systems

636 Appendix E Physical Device Names

Table E-6. Device Names for SBC 214, 221, and 215G/217C/218A Controllers
(continued)

Device Names Device Type Unit Number Bytes/Sector

HARD DISK DRIVES

w0 generic drive 0 1024
w1 generic drive 1 1024
cm0 CMI 5412 0 1024
cm1 CMI 5412 1 1024
cmb0 CMI 5419 and Fujitsu M2235 0 1024
cmb1 CMI 5419 and Fujitsu M2235 1 1024
mma0 Maxtor XT-1140 0 1024
mma1 Maxtor XT-1140 1 1024
mmb0 Maxtor XT-1085 0 1024
mmb1 Maxtor XT-1085 1 1024
mmc0 Maxtor XT-4170E 0 1024
mmc1 Maxtor XT-4170E 1 1024
mmd0 Maxtor XT-4380E 0 1024
mmd1 Maxtor XT-4380E 1 1024
mme0 Maxtor XT-8760E 0 1024
mme1 Maxtor XT-8760E 1 1024
qma0 Quantum Q540 0 1024
qma1 Quantum Q540 1 1024
sma0 Seagate ST-225 0 1024
sma1 Seagate ST-225 1 1024
tma0 Toshiba MK56FB 0 1024
tma1 Toshiba MK56FB 0 1024

5.25-INCH CARTRIDGE TAPE DRIVES

wta0 Archive 12 N/A

ADDITIONAL DEVICE NAMES FOR iSBC 221S CONTROLLER ONLY

GW500M_0 Generic 500 Mbyte drive 0 512
GW500M_1 Generic 500 Mbyte drive 1 512
GW700M_0 Generic 700 Mbyte drive 0 512
GW700M_1 Generic 700 Mbyte drive 1 512
GW1G_0 Generic 1 Gbyte drive 0 512
GW1G_1 Generic 1 Gbyte drive 1 512
GW2G_0 Generic 2 Gbyte drive 0 512
GW2G_1 Generic 2 Gbyte drive 1 512
GW4G_0 Generic 4 Gbyte drive 0 512
GW4G_1 Generic 4 Gbyte drive 1 512

Multibus I and II Systems iRMX III OS

Command Reference Appendix E 637

Table E-7. Device Names for SBC 386/12S and 486/12S SCSI Controllers

Device Names
Example
Device Type

SCSI
Adapter

SCSI-ID
Number Density

Bytes/
Sector

5.25-INCH DISKETTE DRIVES

sqf0* Teac 55GFR NCR ADP-20 0 high 512
sqf1* Teac 55GFR NCR ADP-20 1 high 512
sdf0* Teac 55GFR NCR ADP-20 0 double 512
sdf1* Teac 55GFR NCR ADP-20 1 double 512
smf0** Teac 55GFR NCR ADP-20 0 double 512
smf1** Teac 55GFR NCR ADP-20 1 double 512
t55_0* Teac 55GFR*** N/A 0 high 512
t55_1* Teac 55GFR*** N/A 1 high 512
t55D_0* Teac 55GFR*** N/A 0 double 512
t55D_1* Teac 55GFR*** N/A 1 double 512
Device Names Device Type SCSI-ID (N) Bytes/Sector

5.25-INCH CARTRIDGE TAPE DRIVES

sta0 Archive 2125S 6 N/A

OPTICAL DRIVES

OPT 1G1G_N Maxoptix Tahiti II 0, 1, 2, 3 1024
OPT 1G1G5_N Maxoptix Tahiti II 0, 1, 2, 3 512
OPT 650M_N Maxoptix Tahiti II 0, 1, 2, 3 1024
OPT 650M5_N Maxoptix Tahiti II 0, 1, 2, 3 512
* Uniform granularity
** Using the SCSI interface, smf0/1 diskettes that have iRMX Standard granularity can be read only if

they are formatted on a Multibus I system with the parameters:
format :F:disk ms=0 ext=41. They cannot be written to or formatted on a SCSI device.

*** The SCSI adapter is part of this drive. No separate SCSI adapter board (for example, an NCR
ADP-20) is required.

See also: Table E-8 for Hard Drive names
PCI Generic SCSI DUIB, Driver Programming Concepts
MSA for the iRMX Operating System Manual

iRMX III OS Multibus I and II Systems

638 Appendix E Physical Device Names

Table E-8. Device Names for SBC 386/258(D) and 486/133SE Controllers

Device Names
Example
Device Type

SCSI
Adapter

SCSI-ID
Number Density

Bytes/
Sector

5.25-INCH DISKETTE DRIVES

wqf0* Teac 55GFR NCR ADP-20 0 high 512
wqf1* Teac 55GFR NCR ADP-20 1 high 512
wdf0* Teac 55GFR NCR ADP-20 0 double 512
wdf1* Teac 55GFR NCR ADP-20 1 double 512
wmf0** Teac 55GFR NCR ADP-20 0 double 512
wmf1** Teac 55GFR NCR ADP-20 1 double 512
t55_0* Teac 55GFR*** N/A 0 high 512
t55_1* Teac 55GFR*** N/A 1 high 512
t55D_0* Teac 55GFR*** N/A 0 double 512
t55D_0* Teac 55GFR*** N/A 1 double 512

3.5-INCH DISKETTE DRIVES

t235_0* FD-235HF*** N/A 0 high 512
t235_1* FD-235HF*** N/A 1 high 512
Device Names Device Type SCSI-ID (N) Bytes/Sector

OPTICAL DRIVES

OPT 1G1G_N Maxoptix Tahiti II 0, 1, 2, 3 1024
OPT 1G1G5_N Maxoptix Tahiti II 0, 1, 2, 3 512
OPT 650M_N Maxoptix Tahiti II 0, 1, 2, 3 1024
OPT 650M5_N Maxoptix Tahiti II 0, 1, 2, 3 512

* Uniform granularity continued
** Using the SCSI interface, wmf0/1 diskettes that have iRMX Standard granularity can be read only if

they are formatted on a Multibus I system with the parameters:
format :F:disk ms=0 ext=41. They cannot be written to or formatted on a SCSI device.

*** The SCSI adapter is part of this drive. No separate SCSI adapter board (for example, an NCR ADP-20)
is required.

Multibus I and II Systems iRMX III OS

Command Reference Appendix E 639

✏ Note
The DUIBs wmf0 and wmf1, which refer to standard format
iNDX-compatible diskettes, are only present for backward
compatibility and are not recommended. Their use is strictly
READ-ONLY.

Table E-8. Device Names for SBC 386/258(D) and 486/133SE Controllers (continued)

Device Names Device Type SCSI-ID (N) Bytes/Sector

HARD DISK DRIVES

scw_N* Generic SCSI 2, 3 1024
gscw5_N Generic SCSI 2, 3 512
gscw_N Generic SCSI 2, 3 1024
gscw5_NMxEy Generic Partitioned SCSI 2, 3 512
m4170_N Maxtor XT-4170S 2, 3 1024
m4380_N Maxtor XT-4380S 2, 3 1024
m8380_N Maxtor XT-8380S 2, 3 1024
m8760_N Maxtor XT-8760S 2, 3 1024

5.25-INCH CARTRIDGE TAPE DRIVES

wta0 wtab0 Archive 2125S 6 N/A

* This DUIB can be used to access SCSI hard drives that have been formatted with the iRMX format
command, without creating a specific DUIB for each type of disk.

See also: PCI Generic SCSI DUIB, Driver Programming Concepts

✏ Note
Partitioned SCSI hard disk drives have different DUIBs than non-
partitioned drives. Refer to Appendix F for information on how
partitions are specified.

iRMX III OS Multibus I and II Systems

640 Appendix E Physical Device Names

Table E-9 lists standard physical device names of terminals. Where a board
number appears, the ICU definition file supports multiple instances of the
controller board.

Table E-9. Multibus I Terminal Device Names

Controller CPU Boards Device Names Unit
8251A SBC 386/2x/3x t0 0
8247 SBC 386/12(S) t1 0

SBC 486/12(S)
SBC 544A SBC 386/12(S) t3 1

SBC 486/12(S) t4 2
t5 3

SBC 188/56 SBC 386/12(S)
SBC 486/12(S)
SBC 386/2X/3X

SBC 548 SBC 386/12(S)
SBC 486/12(S)

Controller CPU Boards Device Names Unit Board
SBC 547 SBC 386/2X/3X t547_0 ... t547_7 0-7 1

t547_8 ... t547_1 0-7 2
t547_16 ... t547_23 0-7 3

Multibus I and II Systems iRMX III OS

Command Reference Appendix E 641

Table E-10 lists standard physical device names of Multibus II terminals. ATCS
devices refer to devices defined by the Asynchronous Terminal Controller Server.

See also: ATCS driver, ICU User’s Guide and Quick Reference
atcsdrv, System Configuration and Administration

Table E-10. Multibus II Terminal Device Names

Controller CPU Board Device Name Unit

82530 SBC 386/100 (with SBX 354) t82530_0 0
SBC 386/116 (with SBX 354) t82530_1 1
SBC 386/120 (with SBX 354)
SBC 386/133
SBC 386/258D
SBC 486/125
SBC 486/150
SBC 486/133SE
SBC 486/166SE

82091AA P5090/120ISE COM1 0
SBC P5090- COM2 0

ATCS DEVICE NAMES: All Multibus II definition files that include the ATCS device driver
provide the same ATCS device names

Controller Boards: CPU Boards:
SBC 186/410 or 186/450
MIXn86/020(A) with MIX/450 modules
MPI 450

Any Multibus II CPU or I/O Server Board
hosting the ATCS/450 Server Job

Board ID Device Names Unit Instance

186/410 t_atcs_a0 ... t_atcs_a11 0-11 1
186/450 t_atcs_b0 ... t_atcs_b11 0-11 1
MIXn86/020(A) (with MIX/450
modules)

t_atcs_c0 ... t_atcs_c35 0-35 1

486/125 (used for any CPU board) t_atcs_d0 ... t_atcs_d35 0-35 1
486/133SE atcs_con_0 0 1
(used for any I/O server board) t279_0 ... t279_4 0-4 1

iRMX III OS Other Controller Boards

642 Appendix E Physical Device Names

Table E-11 lists suggested physical device names for iRMX III systems using other
controller boards.

Table E-11. Suggested Physical Device Names for Other Devices

Device
Names

Device
Type

Unit
Number Sides Density

Bytes/
Sector

Tracks/
Inch

8-INCH DISKETTE DRIVES CONTROLLED BY THE SBC 208 BOARD

af0 Shugart SA800 0 1 Single 128 77
af1 Shugart SA800 1 1 Single 128 77
afd0 Shugart SA800 0 1 Double 256 77
afd1 Shugart SA800 1 1 Double 256 77
afdd0 Shugart SA850/SA851 0 2 Double 256 77
afdd1 Shugart SA850/SA851 1 2 Double 256 77
afdx0 Shugart SA850/SA851 0 2 Double 1024 77
afdx1 Shugart SA850/SA851 1 2 Double 1024 77

5.25-INCH DISKETTE DRIVES CONTROLLED BY THE SBC 208 BOARD

amf0 Shugart 450 0 2 Double 512 48
amf1 Shugart 450 1 2 Double 512 48
amfdy0 Shugart 460 0 2 Double 512 96
amfdy1 Shugart 460 1 2 Double 512 96

continued

Other Controller Boards iRMX III OS

Command Reference Appendix E 643

Table E-11. Suggested Physical Device Names For Other Devices (continued)

Device Names Device Type Unit Number Bytes/Sector

HARD DISK DRIVES CONTROLLED BY THE SBC 186/224A BOARD

w0 generic 0 1024
w1 generic 1 1024
cm0 CMI 5412 0 1024
cm1 CMI 5412 1 1024
cmb0 CMI 5419 and Fujitsu M2235 0 1024
cmb1 CMI 5419 and Fujitsu M2235 1 1024
qma0 Quantum Q540 0 1024
qma1 Quantum Q540 1 1024
mma0 Maxtor XT-1140 0 1024
mma1 Maxtor XT-1140 1 1024
mmb0 Maxtor XT-1085 0 1024
mmb1 Maxtor XT-1085 1 1024

5.25-INCH CARTRIDGE TAPE DRIVES Controlled by the SBC 186/224A Board

wta0 QIC-02 12 N/A

STORAGE MODULE DISK DRIVES (SMD) Controlled by the SBC 220 Board

smd0 0 1024
smd1 1 1024

■■ ■■ ■■

Command Reference Appendix F 645

Partitioning PCI Hard Disk Drives F
This appendix describes how you can use the iRMX OS to configure partitions on a
SCSI hard disk managed by the iRMX PCI (peripheral controller interface) driver.
The typical use of partitions in the iRMX OS is to provide multiple system devices
(:sd:) on a single hard disk in a Multibus II system. A file server board runs the
PCI server and controls the hard disk. Diskless boards in the system that boot
dependently each use a separate partition as the :sd: device.

See also: The ICU definition files p90scpp.bck and 433scpp.bck for examples of
DUIBs on partitioned devices

To partition a hard disk, you first attach the full drive with an attachdevice
command and perform a low-level format with the iRMX format command. Then
partition the drive with the rdisk command. After partitioning, you attach each
partition with the appropriate DUIB name for that partition, then format each
partition to install the appropriate file system. For example, you could install an
iRMX file system on one partition and DOS on another.

The Partition Table
The rdisk utility sets up a partition table compatible with DOS 3.3 and later, which
supports a linked list of partitions within an Extended Partition table entry. An
Extended Partition entry is not a partition itself, but it lets you add logical drives,
each of which is simply another partition on the hard disk Because DOS uses
alphabetic drive letters, it is limited to 24 logical devices (C-Z) on a hard disk.
However, because the mechanism is a linked list there is no inherent limit on the
number of partitions. The number of partitions under the iRMX OS is limited only
by the amount you want to subdivide your hard disk.

The partition table starts at byte 1BEH in the Master Partition Boot sector located
in the first physical sector of the hard disk drive. There are four 16-byte entries in
the partition table. Each entry describes the physical location of the partition on
the hard disk drive, the size of the partition, and the type of operating system. DOS
can use only two of these entries: one primary partition and one Extended partition
(which can hold multiple logical drives).

646 Appendix F Partitioning PCI Hard Disk Drives

Figure F-1 is an example of a partition table that has both DOS and iRMX
partitions. The first two entries indicate the DOS primary partition and DOS
extended partition. The extended partition is the beginning of a list pointing to two
additional DOS partitions. From this partition table, DOS finds three logical DOS
drives: D:, E:, and F: (assuming that this is not a disk drive from which DOS
boots, which would be drive C:). The DOS primary partition is drive d: and the
two logical drives in the Extended Partition are drives E: and F:.

Entries 3 and 4 in the partition table are an iRMX primary partition and an iRMX
Extended Partition, which contains two logical drives The iRMX OS is not limited
to one partition of each type. For example, you could have two iRMX primary
partitions and two iRMX extended partitions. Or you could have up to three iRMX
extended partitions. Entry 1 of the partition table must be a primary partition, not
an extended partition. There is no inherent limit on the number of logical drives
you can create within an iRMX extended partition.

DOS Partition

DOS Extended Partition

Master Boot Partition

DOS Partition DOS Partition

Extended Logical Drive(s)

OM04458

iRMX Partition

iRMX Extended Partition iRMX Partition iRMX Partition

Figure F-1. Partition Table With iRMX and DOS Partitions

Specifying iRMX Partitions
A special DUIB name supports partitioned SCSI hard disk drives, gscw5_ NMxEy .
This name is formed by adding a Master Boot Partition (M) number and Extended
Logical Drive (E) number to the generic SCSI disk drive DUIB. In this DUIB
name, substitute SCSI ID 2 or 3 for N. The M and E are part of the name. For x
and y, substitute:

x The number of the Master Boot Partition, in the range 1-4.

y The decimal number of the Extended Logical Drive. Only Master
Boot partitions 2-4 can have Extended Logical Drives.

Command Reference Appendix F 647

Example DUIB Name
The PCI DUIB gscw5_2 specifies a generic SCSI hard disk drive with 512-byte
granularity and a SCSI ID of 2. Using the example of Figure F-1, the DUIB
gscw5_2M3 describes the first iRMX partition. The DUIB gscw5_2M4E2 specifies
the second Extended Logical Drive of the iRMX extended partition.

How to Use PCI Partitioning
To prepare a hard disk drive for the installation of a new operating system, you
must perform three tasks:

1. Low-level format, with 512-byte granularity required for PCI support.
2. Partitioning
3. High-level format

If the hard disk drive is already formatted with the required granularity (512), a
low-level format is unnecessary. If, however, the hard disk drive is not formatted
with 512 byte granularity, you must perform a low level format. Use the iRMX
format command and specify either the named or dos option without the quick

option to perform the low-level format. If you do a named format, specify the msa
option to install the second-stage bootstrap loader on the disk; this is required if
you want to boot the iRMX OS from this disk.

After the drive is low-level formatted, use the rdisk command to partition the hard
disk and build the partition table. Typically, you also use the partitioning utility to
specify one of the primary partitions as the active boot partition.

After partitioning, use either the DOS or iRMX format command to perform a
high-level format on each partition. A high-level format writes OS-dependent file
system information (volume label, FAT, root directory, etc.). Before using the
iRMX format command, you must attach each partition with the attachdevice
command, specifying the DUIB name that identifies each partition.

Partitioning and Formatting Tools
These tools are used for partitioning and formatting PCI hard disk drives:
rdisk A DOS and iRMX command provided by the iRMX OS for

partitioning hard disk drives
format An iRMX command that can perform a low level format (physical

sectoring) and high level format (iRMX file system information)
of hard drives and diskettes

format A DOS command that can perform a high level format (DOS files
system information) of hard drives and diskettes

648 Appendix F Partitioning PCI Hard Disk Drives

▲▲! CAUTION
If a hard disk drive is partitioned with the DOS version of rdisk ,
use only the DOS version of rdisk to view or modify the partition
table. The different OS versions of rdisk get the CHS (cylinder,
head, sector) information in two different ways. The two ways
are not consistent and trying to use the two different versions of
rdisk interchangeably will corrupt the hard disk drive.

Partitioning Example for the iRMX III OS
This example includes a 20-slot Multibus II system with an I/O Server and six CPU
boards. The I/O Server board contains a diskette drive, a tape drive, and a 1 Gbyte
hard disk drive. Assuming that each CPU board requires a system disk, partition
the hard disk drive into six partitions of approximately equal size (165 Mbytes) to
hold the OS. The general procedure for partitioning the hard drive is:

1. Boot the iRMX OS from a diskette.

2. Attach the hard disk with the attachdevice command. Use a DUIB that
describes the entire hard disk, for example, gscw_2 .

3. Low-level format: Use the iRMX format command to install the MSA second
stage on the hard disk by specifying the named and MSA switches on the
command line. If the disk already has a low-level format with 512-byte
granularity, you can skip the low-level format by specifying the quick option.
At this point you need not specify the files option.

4. Partitioning: Use rdisk to partition the drive into six parts. The Master Boot
Partition Table will have only two entries, an iRMX primary partition and an
iRMX extended partition which is the header to a linked list of five partitions.

5. High-level format: Attach each partition with the appropriate DUIB name and
format the partition using the format command with the quick option to write
the file system information on the partition while skipping the low level
format. If you forget to specify the quick option, the PCI device driver
ignores a low level format request on a partition. Specify the files option
and any other options you want for each partition.

6. Use the ICU to create an iRMX OS image for each board in the system, with
the required DUIBs to recognize the disk partition(s) that OS will use. Install
the iRMX OS images and development tools on each formatted partition since
each partition will serve as a different board’s system disk.

Command Reference Appendix F 649

✏ Note
If you are installing the OS as described in the Installation and
Startup manual, most of the steps listed above are performed by
submit files during the installation. Steps 3 and 4 above are
covered by the partitioning instructions of Chapter 5, Step 4 in
the Installation manual. Steps 5 and 6 above are covered for
installation on the first partition by the instructions in Chapter 5,
Step 5 of the Installation manual.

After you install the OS on the first partition, you may choose to
perform the installation in Step 6 above by attaching subsequent
partitions and copying files from the first partition.

MSA Booting
The Bootstrap Loader operates in two stages. The first stage loader resides in
ROM and is independent of the OS. The first stage loads the second stage from the
mass storage device. The second stage loads the OS. The second stage bootstrap
process can follow one of three methods: independent, dependent, or quasi-
independent.

Boards that have a hard disk drive attached locally, such as the SBC 486/166SE or
SBC P5120ISE, can boot independently. The disks attached to these boards must
be formatted with the msa option. The msa option writes the MSA second stage at
the end of the disk. The exact location of the second stage is written into an entry
in the Bootloader Location Table (BOLT), also written by format . As long as
these tracks at the end of the disk space are not included in any partition, the
second stage is available to boot from. Rdisk reserves the last cylinder of the disk
for this purpose; it will not allow you to include that cylinder in any partition you
define.

The MSA second stage uses the bl_boot_master_part and
bl_boot_logical_part BPS parameters to specify which partition to boot from.
Use these parameters to override the default (active) boot partition. You must
specify these BPS parameters at the Master Test Handler (MTH) prompt using the
mp command. If you don’t enter the master partition number at the MTH prompt
and the hard disk drive is partitioned, with the master partition marked active, then
the second stage boots from that partition.

For example, to specify the primary iRMX partition from Figure F-1, you would set
bl_boot_master_part=3 because it is the third entry in the master partition
table.

650 Appendix F Partitioning PCI Hard Disk Drives

To specify the last iRMX logical drive partition from Figure F-1, you would set
bl_boot_master_part=4 and bl_boot_logical_part=2 . This partition is
the second logical drive entry in the fourth entry of the master partition table.

See also: BPS parameters, MSA for the iRMX Operating System

Partition Support for Multibus I Systems or PCs
The iRMX partitioning support is only provided for SCSI drives controlled by the
PCI driver. Support is thus limited for systems other than the iRMX III OS in a
Multibus II chassis.

Multibus I Systems
These limitations apply in a Multibus I system:

• There is no boot support for partitioned drives

• Once booted, PCI can support a second disk drive that has been partitioned, but
this does not allow for booting diskless boards from individual partitions, as in
a Multibus II system. Thus there is little point in partitioning the drive.

PC Systems
On a PC or PC-compatible board in a Multibus system you can run iRMX for
Windows or iRMX for PCs. These limitations apply to such systems:

• There is no boot support for partitioned drives

• The DUIBs to support partitioning are provided by the loadable PCI driver,
pcidrv. However, these DUIBs are not available until the driver is loaded from
the disk, so they can support only a second disk drive that has been partitioned,
after booting.

■■ ■■ ■■

Command Reference Index 651

Index

! command, 34, 61
& character

for continuing command lines, 30
> character, 37
< character, 37
<Ctrl-Q> keys, 439
<Ctrl-S> keys, 439
> (displaynextblock) DVU command, 545
< (displaypreviousblock) DVU command, 546
/ (slash) character

as pathname separator, 26
; (semicolon) as comment character, 30
? (question mark) character

as wildcard, 28
in hidden files, 30

A
abbreviating

command names, 34
command parameters, 33
commands, 73

absolutely-located files, 374
access rights, 25

changing, 118
code definitions, 148
displaying, 145, 465
for backup, 98
for deleting DOS files, 134
for deleting iRMX files, 133
for deleting remote files, 134
for DOS files, 330
meaning, 325
remote directories, 124
remote files, 149, 327

root directory, 200
setting, 325
specifying, 326

accessing
DOS files, 84
iRMX files from Unix or Xenix, 111
logical names, 83

accounting command, 63
accounting file, 603
add DVU command examples, 522
adding numbers, 521
addloc command, 66
address

broadcast, 244, 246
Ethernet, 79
Internet, 79
translation, 79

address DVU command, 525
examples, 528

address family,specifying in ifconfig
command, 244

aedit command, 70
AEDIT text editor, 70
after parameter, 33
AL (Application Loader), 20
alias command, 73

examples, 36, 77
alias table, 73

setting size of, 397
alias.csd file, 314
aliases

creating, 36, 73
default, 76
defining, 73
deleting, 129
displaying, 74
displaying definition, 73
examples, 36
for ic command, 238
in background job, 94

Index652

nesting, 36, 73
permanent storage, 74
system, 74
table of, 74
temporary storage, 74
uses, 36

allocate DVU command, 519
allocated fnodes, 510
allocating

fnodes, 519
volume blocks, 519

Application Loader, see AL
arithmetic DVU commands examples, 522
ARP tables, 79

displaying, 80
modifying, 81
permanent entries in, 80

arpbypass command, 79
ASCII characters, 160, 166, 440, 451
ASCII files, conversion to binary, 104
ASCII name for volume, 194
asterisk (*) character, 28
ATCS (Asynchronous Terminal Controller

Server), 641
devices, 641

attachdevice command, 46, 47, 48, 83
device names in, 632
examples, 43

attachfile command, 46, 47, 48, 89
changing the working directory, 50
creating and cataloging logical names, 48
examples, 40
limitations, 92
using with Posix, 46

attaching
devices, 83
diskette drives, 85
diskettes, 86
DOS-format diskettes, 87
files, 89

AU (Administrative Unit), iRMX-NET, 297
automatic device recognition, 588, 589

B
background command, 37, 93

examples, 30, 37, 95
background jobs, 91

cancelling, 93
deleting, 254
displaying, 252
memory pool sizes, 396
output limitations, 93
when logging off, 275

backup command, 96
caution, 96
with restore command, 99
with tapes, 43

backup fnode file
creating, 510
maintaining, 512

backup utility, DOS, 376
backup volume label, creating, 510
backup volumes, 98, 363
backupfnodes DVU command, 523

examples, 512, 524
bad blocks, 519

displaying, 559
bad blocks file, 510, 520, 567, 572, 573
bad blocks map file, 568, 576, 580, 604
bad track information, 154, 203
Basic I/O System, see BIOS
batch files, 416
bcl command, 104

examples, 105
bcl, definition, 104
bf (backupfnodes) DVU command, 523
binding, improving efficiency, 373
BIOS (Basic I/O System), 20

and debug command, 131
buffers, 409

BLD286, 66
BLD386, 66
block allocation, 519
block DVU command, 526

examples, 528
blocks

bad, map of, 604
indirect, 600, 608
indirect, description, 608

Command Reference Index 653

BND386, example of submit command, 417
BOLT (Bootloader Location Table), 592
boot system, information about, 422
bootdos command, 107
bootfile, 67, 262
bootloadable file, creating, 67
Bootloader Location Table (BOLT), 592
bootpd command, 108
bootrmx command, 110
Bootstrap Loader

blocks, 583
MSA first stage, 592
MSA second stage, 592
stages of, 204
third stage, 268

broadcast address, 244
setting in ifconfig command, 246

BSD, 246
byte bucket, 49
Byte Bucket device driver, 629

C
case command, 111

examples, 111
case-sensitive items

client system name, 297
converting filenames, 111
grep parameter, 228
password, 311
translating file contents, 451

cataloging, logical names, 48
cataloging logical names, 48
ccinfo file, 104, 105, 469
CDF (Client Definition File), 297
changeid command, 112
characters

finding, 70
in logical names, 46
special, 26, 27, 37
substituting, 70

checksums, 548, 552, 572
chkdsk command, 264
chmod command, 220
circumflex (^) character in pathnames, 26

CLI (Command Line Interpreter)
as initial program, 314
description, 21
environment values, 395
loadable, 113
prompt, 397

cli command, 113
CLI commands

compared with HI commands, 30
not allowed in esubmit file, 183
summary table, 56

Client Definition File, see CDF
colon (:) character, 46

in logical names, 46
COM1 and COM2 driver, 629
command aliases

creating, 36
entering, 34
examples, 36
nesting, 36
provided, 34
uses, 36

command interface
custom, 21
user-written, 20

Command Line Interpreter, see CLI
command lines

continuing, 30
maximum length, 30

command parameters
abbreviating, 33
to, over, and after, 33

command usage
abbreviating, 34, 73
aliases for, 34
case-sensitivity, 30, 45
CLI, 56
comment character ;, 30
continuing lines, 30
customizing, 35
deleting aliases, 129
DOS, 58
editing, 34, 61
entering, 30, 34
executing throughout directory, 452
HI (Human Interface), 56, 58
in esubmit file, 162

Index654

in makefile, 276
in submit file, 416
invoking, 34
iRMX-NET, 59
length of, 30
multiple pathnames, 29, 35
network, 59, 60
NFS, 45
on :$: logical name, 39
recalling, 34, 61, 232
search path, 35, 36
selecting, 20
summary table, 55
syntax, 31, 32, 45
table of, 55
TCP/IP, 45, 60
timing execution of, 448
using to/over/after parameters, 33
writing, 35

comment character ;
using, 30

comments in code, 30
communicating, using stream files, 23
configuration

and home directory, 50
and iRMX for Windows, 17
and logical names, 49, 51
and number of mailboxes, 53
and search paths, 35
for RAM disk, 267

configuration files directory, 49
configuring

for RAM disk, 67
public directories, 307

configuring interfaces, 242
connect command, 114

terminal names in, 632
connections

displaying, 302
to files, 91

console command, 116
examples, 116

console input
logical name for, 51
redirecting, 37

console input device, 51

console output
logical name for, 51
redirecting, 37

console output device, 51
continuation character, 30

setting, 163
continuing command lines, 30
conversion DVU commands

address, 525
block, 526
dec, 527
examples, 528
hex, 528

converting
absolute address into volume block

number, 526
block number into absolute address, 525

copy command, 27, 117
as background job, 30, 37
examples, 29, 30, 37, 42
limitations, 118

copydir command, 120
examples, 122

crdir (createdir) command, 124
crdir command (createdir), 124
createdir command, 124

examples, 38, 40
creating

backup volume label, 510
directories, 40
files, 24
large programs automatically, 276
mirror set, 491
r?save file, 510
r?save file, example, 511

Ctrl-Q keys, 439
Ctrl-S keys, 439
current working directory, 50

D
d (displaybyte) DVU command, 533
Data Link Layer, 247
datagrams, 335
date

default, 127
format, 126

Command Reference Index 655

date command, 126
db (displaybyte) DVU command, 533
dd (detachdevice) command, 138
dd (displaydirectory) DVU command, 537
dd command (detachdevice), 138
dealias command, 73, 129
debug command, 130

interrupts disabled by, 131
limitations, 130

debug monitor, 116
dec DVU command, 527

examples, 528
decimal equivalent of a number, finding, 527
default aliases, 76
default date, 127
default directory, 40
default prefix, 50
default route, 303, 381
default search path, 35
delete command, 133

examples, 41, 42
deletedir command, 135
deletename command, 137
deleting

directories, 41
server names and addresses, 137

detachdevice command, 138
detachfile command, 140
detaching

devices, 85, 138, 409
diskettes, 86
DOS-format diskettes, 87
files, 140

device drivers
built into iRMX for Windows, 627
Byte Bucket, 629
COM1 and COM2, 629
flexible disk, 628
hard disk, 627
loadable, 425, 630
loading, 17
supplied, 631

device names
in pathnames, 40
iRMX for PCs, 633, 634
iRMX for Windows, 633, 634
iRMX III, various controller boards, 642

Multibus I, 635
Multibus II, 635
using, 632
where used, 632

device recognition, automatic, 588, 589
Device Unit Information Block, see DUIB

names
deviceinfo command, 142
devices

attaching, 83
detaching, 85, 138, 409
physical names, 632

df (detachfile) command, 140
df (displayfnode) DVU command, 539
df command (detachfile), 140
dir command, 25, 38, 144

and hidden files, 30
examples, 21, 42, 147

directories
available to network, 307, 339, 357
combining, 121
command search path, 35
copying, 121
creating, 38, 40, 124
default, 40
deleting, 41
displaying, 38, 146, 537
fnodes, 510
home, 40, 50
naming, 24
naming conventions, 38
overwriting, 120
renaming, 41
root, 26

directory access
for backup, 98
remote, 124

directory tree, 24
disabling interfaces, 244
disconnect command, 151
disk DVU command, 530

examples, 532
disk mirroring

applications, 475, 477, 489
automatic enabling, 481, 482
benefits, 476
creating the mirror set, 491

Index656

disk protection, 498
event notification, 482
event notification, example, 493
failure detection, 478
hardware configuration, 483, 484, 485,

486, 487
maximum outstanding commands, 489
mirror set, definition, 476
mirror state structure, 498
operation, 477
operations, summary, 489
primary disk failure, 496
repair, 480
repair of system device, 480
repair off-line, example, 494, 496
repair on-line, example, 495, 497
repair options, 494
resynchronization, 478, 480
rollover, 478, 479
secondary disk failure, 494
setup, example, 491, 492
software configuration, 488
system device repair, 480
terminology, 476
using a_special, 498

Disk Verification Utility, see DVU. see DVU
diskette drives, attaching, 85
diskettes

attaching and detaching, 86
attaching and detaching, caution, 86
characteristics of 3 1/2-inch, 613
characteristics of 5 1/4-inch, 612
formats, 612
formatting, 43
interleave factor, 202
standard and uniform granularity, 207
track 0 abnormalities, 612

disks
bad track information, 203
detecting failure, 478
interleave factor, 202
making bootable, 205
mirroring, 291, 475
verifying, 152

diskverify command, 152, 196
examples, 156
in interactive mode, see DVU
interactive mode, 501

diskverify commands, see DVU commands
displaybyte DVU command, 533

examples, 533
displaydirectory DVU command, 537

examples, 538
displayfnode DVU command, 539

examples, 542
displaying

bad blocks, 559
bad track information, 556
DUIB names, 332
fnode fields, 539
fnodes from r?save file, 544
iRMX OS fixes, 471
volume block, 545, 546
working buffer, 533, 535

displaynextblock DVU command, 545
displaypreviousblock DVU command, 546
displaysavefnode DVU command, 544
displayword DVU command, 535

examples, 535
div DVU command examples, 522
dividing numbers, 521
dnb (displaynextblock) DVU command, 545
domain command, 159
DOS, interface, 375
DOS commands, summary table, 58
DOS directories, access rights, 330
DOS file driver, 84
DOS files, 23

access, 25, 84
access rights, 330
user, 330

DOS format option, 198
DOS NUL device, 49
DOS-format diskettes

attaching, 87
detaching, 87

dpb (displaypreviousblock) DVU
command, 546

dsf (displaysavefnode) DVU command, 544
DUIB names, 85, 114, 207, 291, 632

displaying, 332

Command Reference Index 657

dump command, 160
duplicate volume label file, 510, 605
duplicated lines, finding in files, 455
DVU (Disk Verification Utility)

aborting commands, 507
as single command, 152
caution, 502
command names, abbreviating, 505
command names, entering, 505
command parameters, 506
command radices, 506
directing output, 503
error messages, 508
exiting, 551, 560
functions, 501
interactive mode, 501
invocation error messages, 504
invoking, 503
parameters, 506
quitting, 560
radices, 506

DVU commands
< (displaypreviousblock), 546
> (displaynextblock), 545
aborting, 507
address, 525, 526
bf (backupfnodes), 523
conversion, 525
d (displaybyte), 533
db (displaybyte), 533
dd (displaydirectory), 537
dec, 527
df (displayfnode), 539
disk, 530
displaybyte, 533
displaydirectory, 537
displayfnode, 539
displaynextblock, 545
displaysavefnode, 544
displayword, 535
dnb (displaynextblock), 545
dpb (displaypreviousblock), 546
dsf (displaysavefnode), 544
dw (displayword), 535
e (exit), 551
editfnode, 547
editsavefnode, 550

ef (editfnode), 547
esf (editsavefnode), 550
exit, 551
fix, 552
free, 554
gb (getbadtrackinfo), 556
getbadtrackinfo, 556
h (help), 558
help, 558
hex, 528
lbb (listbadblocks), 559
listbadblocks, 559
q (quit), 560
quit, 560
r (read), 561
read, 561
restorefnode, 562
restorevolumelabel, 565
rf (restorefnode), 562
rvl (restorevolumelabel), 565
s (substitutebyte), 569
save, 567
sb (substitutebyte), 569
substitutebyte, 569
substituteword, 571
summary table, 517
sw (substituteword), 571
v (verify), 572
verify, 572
w (write), 581
write, 581

dw (displayword) DVU command, 535
dynamic terminals, 20

restricting access to, 312

E
e (exit) DVU command, 551
ECHO_REQUEST packets, 335
ECHO_RESPONSE packets, 335
editfnode DVU command, 547

examples, 548
editing

fnodes, 547
r?save fnodes, 550
working buffer, 569, 571

editsavefnode DVU command, 550

Index658

EDOS (Encapsulated DOS) files, 23
access, 25

EDOS file driver, 84
EDOS volume, 43
ef (editfnode) DVU command, 547
EIOS (Extended I/O System), 20

attached devices, 409
buffers, 409

enabling interfaces, 244
enetinfo command, 161
environment values, 395
error messages

description, 51
general HI, 51
general iRMX-NET, 53

errors
displaying network, 301
recording, 430
Streams, 304

esf (editsavefnode) DVU command, 550
esubmit command, 162

examples, 183
esubmit file, 162

using pause command, 319
/etc/stune.ini file, 234, 235, 337
Ethernet address, 105, 191, 247

displaying local, 161
format of, 226
getting local, 225, 255
mapping to Internet, 79
of boot clients, 105
of spokesman system, 189

examples
add DVU command, 522
address DVU command, 528
alias command, 36, 77
arithmetic DVU commands, 522
attachdevice command, 43
attachfile command, 40
background command, 30, 37, 95
backupfnodes DVU command, 512, 524
bcl command, 105
block DVU command, 528
case command, 111
command aliases, 36
console command, 116
conversion DVU commands, 528

copy command, 29, 30, 37, 42
copy command and wildcards, 28
copydir command, 122
createdir command, 38, 40
creating r?save file, 511
dec DVU command, 528
delete command, 42
dir command, 21, 42, 147
disk DVU command, 532
disk mirroring event notification, 493
disk mirroring setup, 491, 492
disk mirroring, off-line repair of primary

disk, 496
disk mirroring, off-line repair of secondary

disk, 494
disk mirroring, on-line repair of primary

disk, 497
disk mirroring, on-line repair of secondary

disk, 495
diskverify command, 156
displaybyte DVU command, 533
displaydirectory DVU command, 538
displayfnode DVU command, 542
displaying r?save file, 516
displaysavefnode DVU command, 516
displayword DVU command, 535
div DVU command, 522
DVU command radices, 506
editfnode DVU command, 548
esubmit command, 183
file tree, 24
format command, 43, 511
grep command, 229
help DVU command, 558
hex DVU command, 528
history command, 233
I/O redirection, 37
ic command, 239
listbadblocks DVU command, 559
loadable device driver, 630
loadrmx command, 263
locdata command, 267
logical names, 47
logicalnames command, 273
maintaining backup fnode file, 512
mod DVU command, 522
mul DVU command, 522

Command Reference Index 659

offer command, 307
pathname prefixes, 39
pathnames, 39
physname command, 333
remini command, 356
renaming directories, 41
restorefnode DVU command, 563
restorevolumelabel DVU

command, 515, 565
restoring fnodes, 513
restoring the volume label, 515
save DVU command, 568
shutdown command, 512
specifying volume names, 26
sub DVU command, 522
submit command, 417
substitutebyte DVU command, 570
substituteword DVU command, 571
sysload command, 428
traverse command, 452
verify DVU command, 513, 576
version command, 464
wildcards, 28
wildcards in pathnames, 29
write DVU command, 582
xlate command, 469

exit command, 187
exit DVU command, 551
exiting the DVU, 551, 560
Extended I/O System, see EIOS
extended memory

limitations, 375
requirements, 262

extension data, 200
required by HI, 200

extension objects, 250

F
fdisk utility, 352
file descriptor nodes, 595
file drivers, 24
file tree, 24
filenames, permitted characters, 24

files
access rights to, 25

changing, 118
DOS, 84, 330
for backup, 98
iRMX from Unix or Xenix, 111
network, 25
remote, 25

bad track, 203
concatenating, 29
connections to, 91
copying across directories, 118
creating, 24
denying network access to, 357
detaching, 140
displaying, 411
displaying in hexadecimal, 160
displaying in pages, 309
displaying names of, 453
DOS access to, 25
editing, 70
EDOS, 23
finding, 188
finding duplicate lines in, 455
granularity of, 200
hidden, 30
included in esubmit file, 180
initial, 595
long, 572, 608
map, 201
moving between volumes, 42
named, 23
naming conventions, 24
owner of, 25, 118
physical, 23
remote, 23
remote access to, 307, 327
searching for string in, 228
short, 602, 607, 608
size of, 572, 608, 611
sorting contents of, 415
stream, 23
system, 200
types of, 23, 598

as specified in fnodes, 572
user ID, 325
viewing, 70

Index660

find command, 188
findname command, 189
fix DVU command, 552
fixing

bad checksums, 552
volumes, 552

flexible disk driver, 628
fnode files, 509, 510, 602

backing up, 407, 523
structure, 509

fnodes (file descriptor nodes), 154, 199
access ID, 600
allocated, 510
allocating, 519
auxiliary bytes, 601
creation time, 598
data block identification, 599
description, 199, 595
displaying, 539
editing, 547
flags, 520, 597
for long files, 510, 611
for short files, 510, 608
freeing, 554
granularity, 598
last file access, 598
last modification, 598
owner, 598
parent, 572, 601
restoring, 513, 562
restoring, caution, 513
size (bytes) actual data, 598
size (bytes) data space, 600
structure, 596
type, 598
volume blocks, 599

format command, 192, 647
DOS option, 198
examples, 43, 511
quick option, 199

formatting
remote volumes, 43
volumes, 43, 44

formfeed in paginate command, 310
FPI (Front Panel Interrupt) server, 236
free DVU command, 554

free fnodes map file, 510, 520, 555, 567, 568,
572, 576, 579, 603

free space, 603
on volume, 143, 146, 200

free space map file, 579
freeing, fnodes, 554
FTP

commands, 213
get command, 214
macros, 215, 218
open command, 218
protocol commands, 222
put command, 218
server, 222

ftp command, 211
ftpd command, 222
ftpd server, 222
ftpd.log file, 222

G
gateway, 303, 377, 379
gb (getbadtrackinfo) DVU command, 556
getaddr command, 225
getbadtrackinfo DVU command, 556
getname command, 226
global object directory, 48, 50, 89, 91, 140
granularity, 44

device, 200
volume, 200

graphics interface modules
and :config:r?init file, 617
basic menu, 618
expanded menu, 622
for Multibus, 615
multiple windows, 616

grep command, 228
examples, 229

H
handling, disk failures, 494
hard disk driver, 627
hard disks, protecting, 498
headings used by the dir command, 148
help command, 230
help DVU command, 558

Command Reference Index 661

help files, 231
hex DVU command, 528

examples, 528
hexadecimal equivalent of a number,

finding, 528
HI (Human Interface), description, 20
HI (Human Interface) commands, 58

summary table, 56, 58
HI commands

compared with CLI commands, 30
description, 20
directory, 50

hidden files, 30, 200
specifying, 30

history command, 34, 232
examples, 233

home directory, 40, 50, 89
UNIX, 313

host, displaying name of, 235
host name, displaying, 302
hostid command, 234
hostname command, 235
host-unique ID, 399

I
I/O redirection, examples, 37
I/O requests, PCI buffering, 320
I/O streams, redirecting, 116
ic command, 236

examples, 239
ICMP (Internet Control Message

Protocol), 335
ICU (Interactive Configuration Utility), 17, 20

and client definition file, 297
directory, 50

ifconfig command, 242, 381
configuring a point-to-point interface, 245

iNA 960
boot file, 259
bootloadable files, 462, 466
Remote Boot Server, 104
software, 300
starting locally, 259
subsystem ID, 161
transport address format, 401

inamon command, 247

indirect block, 600, 608
description, 608
spanning more than one volume

block, 609
iNDX-based development, 207
inetinit daemon, 244
inetinit.cf file, 414
init_file_name parameter, 262
initial files, 595
initial program, 20
initstatus command, 248
Interactive Configuration Utility, see ICU
interactive jobs, 20, 48

deleting, 250
interconnect registers, 238
interconnect space, 236
interface between DOS, ROM BIOS, and iRMX

OS, 375
interfaces

configuring, 242
disabling, 244
displaying, 303
displaying configuration of, 243
enabling, 244

interleave factor, 44, 201
selecting, 202

Internet address
displaying local, 234
mapping to Ethernet, 79
of interface, 244

Internet Boot Protocol server, 108
iRMX for PCs

device names, 633, 634
remote booting, 356

iRMX for Windows, 17
debugging tools, 116
device names, 633, 634
layers, 20

iRMX layers, 19
iRMX volume

labels, 587
structure, 583

iRMX-NET
as optional layer, 20
description, 21

Index662

iRMX-NET commands, 22
directory, 50
summary table, 59

iSBX 279 board and graphics interface
modules, 615

iSBX 279(A) board
and debugging, 131
and graphics interface modules, 615

ISO volume label, 585
ISO-TP4, 21

J
job ID

background jobs, 93, 254
interactive jobs, 250

jobdelete command, 250
jobs

background, 91, 252
deleting background, 254
deleting interactive, 250
object directories, 48

jobs command, 252

K
keyb command, 253
kill command, 254

L
language products, directory, 49
lanstatus command, 255
large programs, creating automatically, 276
layers of iRMX OS, 19
lbb (listbadblocks) DVU command, 559
length of command lines, 30
line printer, logical name for, 50
line-editing keys, 34
listbadblocks DVU command, 559
listing

bad blocks, 559
commands entered, 34
current background jobs, 252
files and fnodes, 537
files in directory, 42
hidden files, 30

iRMX OS fixes, 471
objects in Name Server, 256

listname command, 256, 401
load command, 259
loadable device drivers, 85, 425, 427, 630

code examples, 630
include files, 630

loadname command, 226, 260
loadrmx command, 262

examples, 263
local object directory, 48, 51
location of files, 608
locdata command, 266

examples, 267
lock command, 270

terminal names in, 632
log file

accounting, 63
produced by esubmit file, 181

log files
enabling for FTP server, 222
enabling for tcplisten, 430

logical names
:$:, 50
:bb:, 49
:ci:, 51
:co:, 51
:config:, 49
:home:, 50
:icu:, 50
:lang:, 49
:lp:, 50
:prog:, 50
:rmx:, 50
:sd:, 50
:stream:, 50
:system:, 50
:util286:, 50
:utils:, 50
:work:, 50
access to, 48
accessing, 83
as prefixes, 47
cataloging, 48
creating, 46
default, 49
definition, 22

Command Reference Index 663

deleting, 138, 140
duration of validity, 91
for devices, 47, 83
for directories, 41, 47
for files, 47, 89
in background jobs, 48, 94
in pathnames, 26
listing, 272
order of search, 49
rules for, 46
syntax, 46
system-wide, 49
user, 50
with attachfile command, 89

logicalnames command, 46, 272
examples, 273
to view attached devices, 85

logoff, recording activity, 64
logoff command, 73, 275
logon

home directory, 89
recording activity, 64

logon command as HI command, 21
long files, 572, 608

fnode, 510, 611
loopback, MTU, 303
low-level format, 197

M
macro, FTP, 215, 218
macros, creating, 70
make command, 276
makefile, 276
map files, 201

rmxloc command, 374
MAP386, example, submit command, 418
marking bad blocks, 519
memory command, 290
memory pools

allocated to user, 290
changing values in modules, 299
for background jobs, 396
size for background job, 93
when debugging, 131

memory requirements, 262
Message Interprocess Protocol, see MIP

metacharacter, setting, 163
MIP (Message Interprocess Protocol), 53
mirror command, 291, 475

device names in, 632
mirroring, see disk mirroring
MIX 560 boards, 161
mkdep command, 295
mod DVU command examples, 522
modcdf command, 297
modinfo command, 299
mouse and graphics interface modules, 617
moving, files between volumes, 42
MSA Bootstrap Loader, 204

first stage, 592
second stage, 592

MSA, booting from a partitioned disk, 649
msaboot, 605
MTU

Ethernet, 303
loopback, 303

mul DVU command examples, 522
Multibus and graphics interface modules, 615
Multibus I

Bootstrap Loader, 204
device names, 635

Multibus II
Bootstrap Loader, 204
device names, 635
interconnect space, 236
locating and controlling boards, 236
network names, 226
slot ID, 236
slot ID in prompt, 397
slot ID in TSAP ID, 401

multiple pathnames, 27
multiplying numbers, 521

N
Name Server, 159

property types, 190
Name Server object table, 137, 256, 260,

399, 456
named file driver, 24, 83, 86
named files, 23

Index664

named volumes, 155, 197
structure, 583, 584
verifying, 572

naming
directories, 24, 38
files, 22, 24
using logical names, 46
volumes, benefits, 43

netinfo command, 300
netmask, 244, 381
netmask, setting in ifconfig command, 245
netstat command, 301, 378

-a option, 302
-sp option, 304

network controller board, 255, 259
network daemon, 429
network file access, 25
Network Management Facility (NMF), 247
network name, displaying, 302
network names

cataloging, 260
getting, 226

network routing, 247
network status daemon, 394
networking commands, 22
networking software, 21
NFS file driver, 84
NMF (Network Management Facility), 247
NMI (Non-Maskable Interrupt), 236
Nucleus, 20

and debug command, 131
NVT (Network Virtual Terminal)

commands, 435

O
object directories

cataloging logical names, 48
global, 48, 50, 89, 91, 140
local, 48, 51
order of search through, 49
root, 49, 83, 114, 138, 151

Object Module Format (OMF), 264
offer command, 307

examples, 307
OMF (Object Module Format), 264, 466
OMF286, 299, 466

OMF-386, reducing module size, 373
OMF386, 466
OMF86, 299, 466
OpenNET, 313

description, 21
optional parameters, 31
orphan fnodes, 552
over parameter, 33

P
packet traffic, 305
paginate command, 309
parameters

assigning, 36
entering, 32
optional, 31
order of entry, 32
to, over, and after, 33
with alias command, 74

partition table, 347, 646
DOS and iRMX, 646
structure of, 591
verifying, 349

partitions
caution, 347, 648
PCI disks, 645

DUIB, 646
example, 648

valid numbers, 347
password

client system, 297
creating or changing, 311

password command, 311
path command, 318
pathnames

circumflex (^) in, 26
definition, 22
entering, 38
examples, 39
full, 26
input and output, 29
listing, 318
prefix in, 39, 47
relative, 26
shortening, 40, 41
specifying, 26, 27

Command Reference Index 665

using, 39
using multiple, 27, 29
using wildcards in, 27

pause command, 319
PC, Bootstrap Loader, 204
pci command, 320
PCI driver, 208
PCI requests, direct, 320
PCI server, 320
pcnet command, 322
permit command, 25, 323
physical device names, 632
physical files, 23
physical ports, 114
physical volumes, 155

verifying, 572
physname command, 332

examples, 333
ping command, 335
port, displaying names, 302
Posix shell, 46
prefix, 47

default, 50
definition, 22
in pathname, 39
volume, 42

Program Table Index Register (PTIR), 237
prompt

psh, 337
setting, 397
telnet, 431, 432
telnet negotiation, 433
telnet Network Virtual Terminal, 434
while transferring files, 218

property types, 190, 226, 399
protected mode, 264
protocols

displaying, 302
displaying statistics for, 304

psh command, 337
PTIR (Program Table Index Register), 237
public directories, 307, 339, 357
publicdir command, 339

Q
q (quit) DVU command, 560
question mark (?) character, 28
quick format option, 199
quit DVU command, 560

R
r (read) DVU command, 561
r?badblockmap file, 200
r?fnodemap file, 200
r?logoff file, 314
r?logon file, 314
r?save file, 196, 200, 409, 510, 515, 523, 562,

565, 605
creating, 510
creating, example, 511
displaying, 515
displaying fnodes, 544

r?save fnodes, editing, 550
r?secondstage file, 592, 605
r?shutdown object, 408
r?spacemap file, 200
r?volumelabel file, 200
RAM disk, 67

loadable driver, 427
rarp command, 340
rarpd command, 341
rcp command, 342
rdisk command, 344, 647
rdisk command, caution, 648
read DVU command, 561
reading, volume blocks, 561
redirecting, I/O, example, 37
remini command, 356

example, 356
Remote Boot Server, 104
remote booting, iRMX for PCs, 356
remote device, backing up, 98
remote files, 23

access, 25
access rights, 149
displaying, 149
user ID, 327

remote server, in attachdevice command, 84
remote shell server, 388

Index666

remote systems, 86
remote volumes, formatting, 43
remove command, 357
rename command, 358

limitations, 42
renaming, directories, 41
repairing

primary disk of mirror set, 496
secondary disk of mirror set, 494
system device, 480

restore command, 361
with backup command, 99
with tapes, 43

restore utility, DOS, 376
restorefnode DVU command, 562

examples, 563
restorevolumelabel DVU command, 565

examples, 515, 565
restoring

fnodes, 562
volume label, 514, 515, 565

resynchronizing disks, 480
retension command, 368
Reverse ARP client, 340
Reverse ARP daemon, 341
rf (restorefnode) DVU command, 562
RFC

765, 223
854-861, TELNET, 433
959, 223

rlogin command, 369
rlogind command, 371
rmextdbg command, 373
rmxloc command, 374
rmxtsr command, 375
ROM BIOS, interface, 375
root directory, 26, 604

owner and accessors, 200
root object directory, 49, 83, 114, 138, 151
route command, 303, 377
routing table

changing, 378
default entries, 379
displaying, 303, 378

rpcinfo command, 384
rpstsr command, see iRMX for PCs Installation
rsh command, 386

rshd command, 388
ruptime command, 391
rvl (restorevolumelabel) DVU command, 565
rwho command, 393
rwhod command, 394

S
s (substitutebyte) DVU command, 569
save DVU command, 567

examples, 568
sb (substitutebyte) DVU command, 569
SCSI DUIB, generic, 631
search path, 36

default, 35
definition, 35
using, 35

security, 311
semicolon (;) as comment character, 30
serial ports, 114
server names, cataloging, 399
service information inside back cover, 17
set command, 395

with alias table, 73
setname command, 399
setting up disk mirroring, 491
setup utility, 352
share command, 402
short files, 607

fnode, 510, 608
showmount command, 405
shutdown command, 407

examples, 512
site commands, 220
size of files, 572, 608, 611
skim command, 411
slash (/) character, as pathname separator, 26
sleep command, 413
SLIP, 414
slipd, 414
slipd command, 414
slipd.cf file, 414
sort command, 415
space accounting file, 510
spokesman system, 189
standard granularity, 207

devices, 635, 637, 638

Command Reference Index 667

static terminals, 20
stream file connection

logical name for, 50
stream files, 23
Streams

displaying failed requests, 304
message buffers, 304

structures, named volume, 583
stune.ini file, 337

stores host name, 235
stores Internet address, 234

sub DVU command examples, 522
submit command, 74, 416

and esubmit command, 164
MAP386 example, 418

submit command as HI command, 21
submit file, 36, 416

used with esubmit command, 183
using pause command, 319

subnet IDs, searching, 159
subnet mask, setting in ifconfig command, 245
subnet routing, 381
subnetwork, 297, 327
substitutebyte DVU command, 569

examples, 570
substituteword DVU command, 571

examples, 571
substitution character, setting, 163
subtracting numbers, 521
super command, 420
super command as HI command, 21
super user

becoming another user, 112
becoming the, 420
exiting, 187

supplied device drivers, 631
iRMX for Windows, 627

sw (substituteword) DVU command, 571
symbolic names, see logical names
syntax of commands, 31

diagram, explanation, 32
sysinfo command, 422
sysload command, 425

examples, 428

system
displaying information about, 422
performance index, 422
shutting down, 407

System 520
and graphics interface modules, 615
multiple windows, 616

system aliases, 74
System Debug Monitor, 130
system device, 262

logical name for, 50
system files, 200

displaying ZAPs, 471
system manager, 420
system types, 17, 422

T
tapes

formatting, 98, 197
retensioning, 368

TCP/IP commands, summary, 60
tcpd.log file, 430
tcplisten command, 429
tcplisten daemon, 429
tcpstart.csd file, 244, 245, 378
TELNET

close command, 432
commands, 432
help command, 433
open command, 434
protocol server, 436
quit command, 434

telnet command, 431
telnetd command, 436
term command, 438
terminals

disconnecting, 151
displaying or changing attributes, 438
displaying status of, 248
iRMX III PC device names, 633
loadable drivers, 427
locked, 114, 151, 270, 408, 458
Multibus I device names, 640
Multibus II device names, 641
restricting access to, 312
setting type of, 396

Index668

static and dynamic, 20
virtual, 151, 270, 458

text
copying, 70
moving, 70

TFTP (Trivial File Transfer Protocol)
server, 444

tftp command, 441
tftpd command, 444
time command, 445
timer command, 448
tnrmx command, 431
to parameter, 33
tokens, 48
touch command, 449
track 0 abnormalities, diskettes, 612
traffic display, 305
trailer protocol, 246
translate command, 451
traverse command, 452

examples, 452
tree command, 453
TSAP ID, 190

table, 400
turn-around time, 202

U
UDF (User Definition File), 311, 327
ulimit command, 220
umask command, 220
uname command, 454
uniq command, 455
UNIX shell, 313
unloadname command, 261, 456
unlock command, 458

terminal names in, 632
unshare command, 460
unxlate command, 462
user

adding, 312
and logical names, 50
changing password, 311, 315
creating, 311
displaying current ID, 465
displaying information about, 315
listing access rights, 145

locking out, 270
remote, 307
removing, 314
verified, 112

user ID, 325
changing Super's, 112
displaying, 465
remote files, 327

utility programs, directory, 50

V
v (verify) DVU command, 572
valid partition numbers, 347
ver DOS command, 376
verified user, 25, 112, 420
verify DVU command, 572

examples, 513, 576
functions, 572

verifying
partition table, 349
volumes, 572

version command, 463
examples, 464

virtual terminals, 151, 270, 458
volume blocks

definition, 599
displaying, 545, 546
freeing, 554
reading, 561

volume free space map file, 510, 520, 555,
567, 568, 572, 576, 603

volume granularity, 200
volume label file, 200, 509, 510, 565, 604
volume labels, 584

creating backup, 510
iRMX, 587
ISO, 585
restoring, 514, 565
structure, 509
structure, iRMX, 587
structure, ISO, 585

volume map files, 201
volume name, 198
volumes

backup, 98, 363
definition, 22

Command Reference Index 669

displaying attributes, 153, 530
displaying information about, 142
fixing, 552
formatting, 43, 44
free space, 143, 146
granularity, 44
named, 197
named and physical, 155
naming, benefits, 43
on remote systems, 86
prefix, 42
specifying, 42
specifying names, 26
structure, 583
structure, named, 584
verifying, 572

W
w (write) DVU command, 581
whoami command, 465
wildcards

characters, 27
definition, 22
in pathnames, 29
order of use, 29
to display aliases, 74

using multiple, 28
when copying files, 118
when deleting aliases, 129

windows, multiple, on system 520, 616
word processing, 70
working buffer

changing contents, 570
definition, 534
displaying, 533
editing, 569, 571
writing, 581

working directory, 26, 50
changing, 40, 89

write DVU command, 581
examples, 582

X
xlate command, 259, 462, 466

examples, 469

Z
ZAPs, displaying, 471
zscan command, 471

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

■ Manual organization ❒ ❒ ❒ ❒

■ Technical accuracy ❒ ❒ ❒ ❒

■ Completeness ❒ ❒ ❒ ❒

■ Clarity of concepts and wording ❒ ❒ ❒ ❒

■ Quality of examples and illustrations ❒ ❒ ❒ ❒

■ Overall ease of use ❒ ❒ ❒ ❒

Comments: __

__

__

__

__

__

Please list any errors you found (include page number): ________________________________

__

__

__

__

__

Name __

Company Name __

Address ___

May we contact you? ______________________ Phone _______________________________

Thank you for taking the time to fill out this form.

iRMX® Command Reference
469158-004

Please fold here and close the card with tape. Do not staple.

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

BUSINESS REPLY MAIL

OPD Technical Publications, HF2-72
Intel Corporation
5200 NE Elam Young Parkway
Hillsboro, OR 97124-9978

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

International Sales Offices

AUSTRALIA
Intel Australia Pty. Ltd.
Unit 1A
2 Aquatic Drive
Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street
1st Floor
East Kw. Vic., 3102
Melbourne

BRAZIL
Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA
Intel Semiconductor of Canada, Ltd.
999 Canada Place
Suite 404, #11
Vancouver V6C 3E2
British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive
Suite 500
Rexdale M9W 6H8
Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday
Suite 115
Tour East
Pt. Claire H9R 5N3
Quebec

CHINA/HONG KONG
Intel PRC Corporation
China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004
Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway
Central
Hong Kong

FINLAND
Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE
Intel Corporation S.A.R.L.
1, Rue Edison-BP 303
78054 St. Quentin-en-Yvelines
Cedex

GERMANY
Intel GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany

INDIA
Intel Asia Electronics, Inc.
4/2, Samrah Plaza
St. Mark's Road
Bangalore 560001

ISRAEL
Intel Semiconductor Ltd.
Atidim Industrial Park-Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation Italia S.p.A.
Milanofiori Palazzo E
20094 Assago
Milano

JAPAN
Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.
2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.
2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA
Intel Korea, Ltd.
16th Floor, Life Bldg.
61 Yoido-dong, Youngdeungpo-
Ku
Seoul 150-010

MEXICO
Intel Technologica de Mexico
S.A. de C.V.
Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS
Intel Semiconductor B.V.
Postbus 84130
3009 CC Rotterdam

RUSSIA
Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE
Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square
Singapore 1130

SPAIN
Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvagen 24
171 36 Solna

TAIWAN
Intel Technology Far East Ltd.
Taiwan Branch Office
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support
Contacting us is easy. Be sure that you have the following information available:

• Your phone and FAX numbers ready • Your product’s product code
• Complete description of your hardware • Current version of all software you use

or software configuration(s) • Complete problem description

Type of Service How to contact us
FaxBACK*
fax-on-demand system

24 hrs a day, 7 days a week

Using any touch-tone phone,
have technical documents sent to
your fax machine. Know your
fax number before calling.

U.S. and Canada: (800) 628-2283
(916) 356-3105

Europe: +44-1793-496646
Intel PC and LAN
Enhancement Support
BBS

24 hrs a day, 7 days a week

Information on products,
documentation, software drivers,
firmware upgrades, tools,
presentations, troubleshooting.

U.S and Canada: (503) 264-7999
Europe: +44-1793-432955

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a week

Worldwide customer support:
information and technical
support for designers, engineers,
and users of 32-bit iRMX OS
and Multibus product families.

Worldwide Locations:
(check your local listing)

Type: GO INTELC once online.

Customer Support Intel Multibus Support engineers
offering technical advice and
troubleshooting information on
the latest Multibus products.

U.S. and Canada: (800) 257-5404
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Europe: +44-1793-641469
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT
Hardware Repair Multibus board and system

repair.
U.S. and Canada: (800) 628-8686

(602) 554-4904
FAX: (602) 554-6653

Hrs: M-F; 7-5 PST
Europe: +44-1793-403520

FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering
information on the latest iRMX
and Multibus products and their
availability.

Worldwide: Contact your local Intel
office or distributor

U.S. and Canada: (800) 438-4769
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Correspondence
Mail letters to:

Worldwide:

Intel Customer Support
Mailstop HF3-55
5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

Europe:

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way
Swindon, Wiltshire
England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	iRMX® Command Reference
	Quick Contents
	Contents
	1. Using Commands
	How to Use This Manual
	Commands Available on Your System
	The Human Interface (HI)
	The Command Line Interpreter (CLI)
	Networking Software

	Understanding the File Systems
	File Types
	Named File Tree
	File Access and User IDs
	Using Pathnames
	Using the Copy Command with Multiple Pathnames
	Using Wildcards in Filenames
	Specifying Hidden Files

	Entering Commands
	Command Syntax
	Using the To, Over, and After Parameters
	Abbreviating Parameters
	Abbreviating Command Names
	Recalling and Editing Commands
	Using Command Search Paths
	Creating Command Aliases
	Redirecting I/O

	Using Commands on Directories
	Displaying Files with the DIR Command
	Creating a New Directory
	Referring to a Directory
	Creating a Directory Within a Directory
	Changing Your Working Directory
	Renaming Directories
	Deleting a Directory

	Using Commands on Volumes
	Formatting a New Volume

	Using TCP/IP and NFS Commands
	Executing TCP/IP Commands
	Case Sensitivity in TCP/IP and NFS Command Syntax
	Executing OS Commands From a Posix Shell

	Creating and Using Logical Names
	Creating Logical Names for Devices
	Creating Logical Names for Files
	Where Logical Names are Stored
	Logical Names Created by the Operating System

	Error Messages
	General HI Error Messages
	General iRMX-NET Error Messages

	2. Command Descriptions
	Command Summary
	! command
	accounting
	addloc
	aedit
	alias
	arpbypass
	attachdevice
	attachfile
	background
	backup
	bcl
	bootdos
	bootpd
	bootrmx
	case
	changeid
	cli
	connect
	console
	copy
	copydir
	createdir
	date
	dealias
	debug
	delete
	deletedir
	deletename
	detachdevice
	detachfile
	deviceinfo
	dir
	disconnect
	diskverify
	domain
	dump
	enetinfo
	esubmit
	exit
	find
	findname
	format
	ftp
	ftpd
	getaddr
	getname
	grep
	help
	history
	hostid
	hostname
	ic
	ifconfig
	inamon
	initstatus
	jobdelete
	jobs
	keyb
	kill
	lanstatus
	listname
	load
	loadname
	loadrmx
	locdata
	lock
	logicalnames
	logoff
	make (mk)
	memory
	mirror
	mkdep
	modcdf
	modinfo
	netinfo
	netstat
	offer
	paginate
	password
	path
	pause
	pci
	pcnet
	permit
	physname
	ping
	psh
	publicdir
	rarp
	rarpd
	rcp
	rdisk
	remini
	remove
	rename
	restore
	retension
	rlogin
	rlogind
	rmextdbg
	rmxloc
	rmxtsr
	route
	rpcinfo
	rsh
	rshd
	ruptime
	rwho
	rwhod
	set
	setname
	share
	showmount
	shutdown
	skim
	sleep
	slipd
	sort
	submit
	super
	sysinfo
	sysload
	tcplisten
	telnet
	telnetd
	term
	tftp
	tftpd
	time
	timer
	touch
	translate
	traverse
	tree
	uname
	uniq
	unloadname
	unlock
	unshare
	unxlate
	version
	whoami
	xlate
	zscan

	A. Using Disk Mirroring
	Introduction
	Disk Mirroring Concepts
	Mirror Sets
	Failure Detection
	Rollover
	Rollover on Different Hard Disk Controllers

	On-line and Off-line Repair
	System Device Repair

	On-line Resynchronization
	Automatically Enabling Disk Mirroring
	Event Notification

	Disk Mirroring Configuration
	Hardware Configuration
	Mirror Set on One PCI Server
	Mirror Set Across SCSI Busses
	Mirror Set Across Two PCI Servers
	Mirror Set on Multiple Multibus II Systems

	Software Configuration
	Setting the Maximum Outstanding Commands

	Using Disk Mirroring
	Summary of Disk Mirroring Operations
	Tutorial: Using the Mirror Command
	Handling Events
	Handling Failures
	Handling Secondary Hard Disk Failure
	Handling Primary Hard Disk Failure

	Protecting Hard Disks
	Using A_special for Disk Mirroring
	Mirror State Structure

	B. Using Diskverify in Interactive Mode
	Introduction
	Invoking Diskverify
	Invocation Error Messages

	Using Diskverify Commands
	Abbreviating Command Names
	Using Parameters
	Abbreviating Parameters
	Specifying Input Radices
	Aborting Diskverify Commands

	Diskverify Error Messages
	Tutorial: Backing Up and Restoring Fnodes
	Structure of the Volume Label and Fnode File
	Creating the Backup Volume Label and Fnode File
	Maintaining the Backup Fnode File
	Restoring Fnodes
	Restoring the Volume Label
	Displaying R?save Fnodes

	Diskverify Command Descriptions
	Command Summary
	allocate
	arithmetic commands
	backupfnodes
	conversion commands
	address
	block
	dec
	hex

	disk
	displaybyte
	displayword
	displaydirectory
	displayfnode
	displaysavefnode
	displaynextblock
	displaypreviousblock
	editfnode
	editsavefnode
	exit
	fix
	free
	getbadtrackinfo
	help
	listbadblocks
	quit
	read
	restorefnode
	restorevolumelabel
	save
	substitutebyte
	substituteword
	verify
	Named1 Output
	Named2 Output
	Physical Output
	Named and All Output
	Verify Command Error Messages
	Named1 Error Messages
	Named2 Error Messages
	Physical Error Messages
	Miscellaneous Error Messages

	write

	C. Structure Of A Named Volume
	Introduction
	Volume Structure
	Volume Labels
	ISO Volume Label
	iRMX Volume Label and Partition Table
	Partition Table Structure

	Bootloader Location Table

	Initial Files
	Fnode File
	Fnode 0: Fnode File
	Fnode 1: Volume Free Space Map File
	Fnode 2: Free Fnodes Map File
	Fnode 3: Accounting File
	Fnode 4: Bad Blocks Map File
	Fnode 5: Volume Label File
	Fnode 6: Root Directory
	Fnodes 7 and 8: R?secondstage and R?save
	R?secondstage
	R?save

	Other Fnodes

	Short and Long Files
	Short Files
	Long Files

	Diskette Formats

	D. Real-Time Graphics Interface
	Description
	Using the Windows
	Using the Mouse
	Basic Menu
	Expanded Menu

	E. Supplied Device Drivers and Physical Device Names
	Supplied Device Drivers
	Preconfigured Drivers, iRMX For Windows and iRMX For PCs
	ROM BIOS-based Hard Disk Driver
	ROM BIOS-based Diskette Driver
	Byte Bucket Driver
	COM1 and COM2 Driver

	Loadable Device Drivers
	Loadable Device Driver Support Files

	ICU-configurable Drivers For iRMX III Systems

	Physical Device Names
	iRMX for Windows and iRMX for PCs Systems
	iRMX III Systems
	iRMX III Multibus I and Multibus II Systems
	Device Names for SBC 214, 221, and 215G/217C/218A Controllers
	Device Names for SBC 386/12S and 486/12S SCSI Controllers
	Device Names for SBC 386/258(D) and 486/133SE Controllers
	Multibus I Terminal Device Names
	Multibus II Terminal Device Names
	Suggested Physical Device Names for Other Devices

	F. Partitioning PCI Hard Disk Drives
	The Partition Table
	Specifying iRMX Partitions
	Example DUIB Name

	How to Use PCI Partitioning
	Partitioning and Formatting Tools

	Partitioning Example for the iRMX III OS
	MSA Booting
	Partition Support for Multibus I Systems or PCs
	Multibus I Systems
	PC Systems

	Index
	Service Information

