iRMX®
C Library Reference

Order Number: 611047-003

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIXO is a
registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension.
MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of
Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software,
Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of
TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of
Digital Equipment Corporation. Visual Basic and Visual C++ are trademarks of Microsoft Corporation. All
Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows,
Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of
Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a
trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.

Copyright © 1992 - 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 08/92
-002 Revision One 11/93
-003 Revision Two. Chapter 2 header file content replaced with C Library 11/95

functional groupings.

Quick Contents

Chapter 1. Introduction

Chapter 2. Functional Groupings
Chapter 3. Functions

Index

Service Information

C Library Reference

Notational Conventions

Descriptive text in this manual uses these notational conventions:

C library functions and macros appéke this, for exampldprintf() . C
functions are indicated by tl{g suffix. iIRMX system calls appeéke this and
have arrg_ prefix, for exampleq_exit_io_job.

Standard C language syntax as used in your program, including constants,
keywords, identifiers, and types, appdiisthis . Variable names also appear
like this , for examplaype, member.

Filenames and book titles appéike this for exampleconfig:r?eny System Call
Reference In addition, C header filenames are indicated by surrourding
characters.

If ANSI appears in the heading, this is an ANSI functiorstdib appears, this
function requires that the calling task has access to the standard streB@S. |If
appears in the function heading, this is a DOS function.

These abbreviations are used:

Abbreviation Meaning

ANSI American National Standard for Information Systems, C
programming language

BIOS Basic I/O system layer for the iIRMX OS

<CR> Carriage-return character

C task Process (task) that uses the C library

EIOS Extended I/O system layer for the iIRMX OS

Epoch time 00:00:00, January 1, 1970, GMT

GMT Greenwich mean time

HI Human Interface layer for the iRMX OS

ICU iIRMX Interactive Configuration Utility

I/O Input/output

<LF> Line-feed character

stdio Indicates that access to the standard stresidin:stdout

andstderris required

Related Publications

For additional information about the C programming language and library
functions

See also: C: A Reference Manudly Harbison and Steele,
The Standard C Librarpy P.J. Plauger

The term ANSI indicates that a function conforms to the 1989 American National
Standard for Information Systems - Programming Language C (ANSI X3.159-
1989). The C library provides a superset of ANSI functionality, with additional
features defined by the IEEE Portable Operating System Interface for Computer
Environments (POSIX).

See also: IEEE Std 1003.1-198BEE Standard Portable Operating System
Interface for Computer Environmentopyright 1988, by The
Institute of Electrical and Electronics Engineers, Inc.

This standard provides locale-specific information, such as the alphabetic
international currency symbol.

See also: SO 4217 Codes for the Representation of Currency and Funds

Various mathematics reference books provide information about the Bessel
functions.

See also: Handbook of Mathematical Functio&bramowitz and Stegun;
Washington: U.S. Government Printing Office, 1964)

For further information refer to the manuals provided with your C compiler.

C Library Reference 5

Contents

1 Introduction

Shared C Library OVEerVIEW........ccouuuiiiiiiiiiii et 15
Shared C Library Advantages...........ccccceveeiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeaaaeees 16
Resources Allocated to C Tasks and JOBSccvvvvvvvvviiiiiiiiiiiiieieeeeee, 17

JOD RESOUICES.....cciiiiiieeee ettt 17
TaSK RESOUICES.....cceieeiiiiiiiiieeeeeeei e s 17

Supplied C LIBrary FileS ... 19
The Cstart MOQUIE........oiiiiii e 19

DOS SYNEAX. . eteettee ettt ettt e ettt e et e e e et e aeeaa e aae 19

Support for Development TOOISuuueiiiiie e 20
Header FileScooiiiieeee e 21

2 Functional Groupings

Character Processing FUNCHONS..........coiiiiiiiiiiie et 23

[fe] o1 (o] I 1T] o3 1T0] o = J SRS 24

CONVEISION FUNCHIONS .. .uuiiiieeeieeeeeeeiiiiies s e e et e e e e e e e e e e e eeeeennne 25

DOS Console /O FUNCLONS.cioiiiiiiiieiiieeee e 26

DOS Interface FUNCLIONScoooiiiiiiiiiieeeeeeeeeeee e 26

File Management Functions 27

INpuUt/OULPULt FUNCLIONS.....cooiiiiiiiiieeeeeeeeee e

IRMX-specific FUNCLIONScooooiiiiiiieeeeeeeeeee

Low-level 1/O FUNCLIONScooiiiiiiiiiiiiiiiiiiiis e e e e e e e e e e e e eeeeeeeeeeeeees 30

Math FUNCLIONS ..o e e e e e e e e e e e eeeeeees 30

=T o g To TV] Lo 1o o LS 32

Searching and Sorting FUNCLIONS ..o, 32

Storage AIOCAtioN FUNCHIONSuuuueiiiiiiiieeiee e s 33

String Processing FUNCHIOMNS.uuuiiiiiiieee ettt eeeeeeeveeeeeeees 33

Time and Date FUNCLIONSoovviiiiiiiiiiiiiiiisiss e e e e e e e e e ee e eeeeeeaeee 35

Variable Argument FUNCLIONS.........cccooiiiiiiiiiie e emmeee e 35

Driver Programming Concepts Contents 7

Functions

P2 L0} =1 (o] TR (o | I
BESSEI FUNCHIONS. ...ttt e e e e e e e e e eanas

o (oS- 11T Yo 1 0= o 1 N
o [0 1S o1 [0 1 =
_dos_creat, _dOS_CreatNeWccceiiieeuiieeiieeiiieee e e e et e e et eeeeeerenn s
_dos_findfirst, _dos_findnextccooviiiiiiiiiiii e 75
o (o ES TN (== .41 .o
o (o TS T o [=] (o =Y = S
A0S Qe HIME . e
o (o TSI o 1= 1 1] = S
o [0 XS o o1 o PR
N [0 1= Y= U
o (o ST =T =] o £

Contents

A0S SEIME ...t 85

B (o T oT=Y 111 L= PRSP 86
DS WIIEE et 87
(o [UT o 0 [V o)22 SRR 88
89
90
91
92
93
94
95
98
100
101
10 =11 010 1= 102
L0 1] £ 103
fllElENGEN. .. 104
FIHEINO e 105
FlOOF e e 106
FIUSNAIL.....coo e —— 107
FIMO e e e e e e e aeaaae 108
FOP BN e —— 109
101 L 110
1010 Lo 1 01U | (] = 111
L]0 11 1P 112
L1C=T=To PP 113
(== 114
FIEOPEN ... 115
L1022 T PP 116
L1507 0 117
TS BB ittt e ————— 118
[ES1]1 00T PUOPPPPPPPPTPPPIR 120
53 L 121
L1 L 122
0 - PR 123
LTS 124
[0 [oX PP 125
S (=L A= 1 [U10 0T 0] £ TP 126
QETC, GEICNAN e 128
getCh, GetCRE ... 129
OBV oo 130

Driver Programming Concepts Contents 9

Functions (continued)

10

o Yo TR o o i {1
T o 1 0] o PP
ISEAICHN ...

01T g Tolo] o) PSP PPTPPTTTRRRN
1= 0. o o
01T 101101 o PP PP PUUPPPPPPPPPTTPPIN
01T 10T o)V PP SUUPPPPPPP
11T 101 Tod o 1] « PP PP PP PPPPTRTRRR
IMEMIMOVE ...ttt ettt et et oo e e e ettt e ee e e bt e bbbt s s e e e et e e e eeeennbenns

Contents

132
133

13¢
137
13¢€
13¢
14C
141
142
144
14
146
147
14¢€
149
150
151
152
153
154
15!
15¢
157
158
159

161

162

163
164

166
167
16¢€
16¢
17C
171

17:
173
174

0] T [T 176

3127 | OSSR 177
o] 1= (| S SUPPPPPPPPUPPPPRTRN 178
(o] 01T o PP UP PP UPPTRR PPN 179
01T (0] SO OO PP PP 181
01011 P PP UUPPTTUPTTPIN 182
1101 PP 183
101 (o o 10} o] o = | PR 190
101 o TS 191
1T L= 1Y SO 192
CPUL_IMIX_COMIM Lttt e e e e et et e e e e e e bt e e e e eebba e s 193
PULS. .ttt ettt ettt e e et e et e et e e e e et eeene e e eeene 194
PULWW. ettt ettt e ettt e e et et e e e ettt e e e e e e e e e e eera s 195
(0o] o PP T PP UUPPPPPTRTSPPPTN 196
= 11T 2SS 198
7= 1 o 1P PUPPURR 200
L£=T= Lo PSSP 201
112 1| To oS SUPPPPPPPPRPPPPRTN 202
(=] =10 TSP PUPPPPR TR 203
L1117 T P 204

.o T PR PSUPPPPPPPTPIN 205
0110 1T 206
] o] PP PSS 207
SCANT e e 208

SO DU e —————— 213

S INTO c e ———— 214

£ =] 1 0.1 215
SEUOCAIE ... e 216
£ =1 10T = 218
SEIVBUT .. 220
SIONAL . 221
£ [TR [o T 224

(=TT o PP 225
S10] 0T o PP 226
ST s 228
S | PP 229
510 LU= PP 230

] = 1 [PSP 231
ES ST oF= o | 232
] - | PP PPN 233
Y1 (0> PP UPTUPPRP 234
] (o 0| U 235
SErCmMpP, SIrCMPI, STHCMIP ceeiiiiiiiiiiieeee s 236

Driver Programming Concepts Contents 11

12

LY 070] | RO 237

] 1 (0] 0)V TSP UPPTRRRPRN 238

] (01 o] o FH TP PTPR PPN 239
£ 1 (0 [o T 240
S L] 1 (o] (PR PRPR 241
] 1111 0= PP 242
ES] L L= 0 PPN 24/
£ (1T P UPPPPPRPRSPPIN 245
ES] 1 Lo | 24¢
] 1 0110 01 o TSP TUP RIS 247
(1103 o) TP UPPPPTTRUPUPPRN 248
ES 1 1T 111 o PSR 249

L] 1S P 250
ST PIK L. e 251
L] L (o1 o SR 252

£ 1 1= 253

5] £ 254

5] 157 0] P 255
5] 1 256
£S] (100 T S 1 (o IS 1 (o 11 | 257
] 100 259

5] (1 o P 261
£S04 1 262
£ 7= o 263
RS (= 1 264

TAN, AN L e aan 26"
L] 266
tiMe MACIOS, 1ZSEL PUM oo 267
EMIPDTIE e 268
(1101 15 = 11 0 T PP 26¢
toascii, tolower, _tolower, toupper, _tOUPPEr.....cccccvviiiiiiiiiiiiiii 270
L7257 < 271
(U] (o Y= TR 0 = R 273
UIMIASK oottt e e e e e et e e et e e e et e e e e e e e en e s so— 274
UNGEICK Lot e ettt e e e e e e e e eeeeeees 27¢
U] T o | PP 277
01110 0= PPN 278
va_arg, Va_end, VA_STArt...........uuuuuuuiiirioiee e 27"
viprintf, vprintf, VSPIINTE..........ooooi i 281
WCSTOMIDS ..o e 282
WCEOMID e e 283

1L (=P 284

Contents

Index

287

Service Information

Inside Back Cover

Tables
1-1. Input and Output Functions.................
1-2. Resources Used for C Tasks and Jobs

Driver Programming Concepts

Contents 13

Introduction

The shared C library includes functions and macros for applications that run in the
iRMX Y Operating System environment. This manual describes the iRMX shared
C library; it is intended for C program developers who are using a compiler that
follows ANSI and POSIX C language standards.

This manual assumes general knowledge of the C programming language, standard
programming techniques and the iRMX OS.

This chapter provides general information that is helpful in usin@ thibrary
Reference

e C library overview

e Supplied C library files

+ DOS syntax

« Support for non-Intel development tools

« Overview

Shared C Library Overview

The C library is available as an iRMX OS extension job to your application in one
of two ways:

* Run-time loadable jolzlib.job, loaded using the Hlysloadcommand

» Resident first-level job, set up using the Interactive Configuration Utility (ICU)
Sub-systems and Shared C Library screens

Instead of each C application having to link to its own copy of the library, this job

is a system-wide library that can be shared by all tasks and jobs in the system. This
greatly reduces the code size of individual applications as well as decreases the
time required to bind (link), load, and execute the applications. For example, if

you run five applications that call a certain C function and each application is
individually linked to a C library, the code for that function is loaded into memory
five different times. With the shared C library, there is only one copy of the

function loaded, and it is available to all five applications.

C Library Reference Chapter 1 15

You link each application to a small interface library, which provides access to the
shared C library.

Any number of tasks and jobs can share the C library. Each task can have its own
data segment; the data segment does not have to be shared. A few functions relat
to signal handling, such abort, raise, andsignal, are private to each task. These
functions are in the interface library linked to the task, not in the shared C library.

The shared C library supports many standard C functions that enable a task to
perform common, OS-independent operations without making direct, iRMX
OS-dependent system calls. You can mix shared C library calls with direct iRMX
system calls in your application.

The shared C library takes care of IRMX OS-dependent operations such as
multitasking, time-of-day, signal management, and environment management; this
enables you to create portable code using standard ANSI and POSIX programming
practices.

The C Library includes floating point functions and macros and links to the
standard floating point libraries; there are no separate libraries for floating point
applications.

Depending on your system configuration, the C library may not support all of the
functions mentioned in this manual.

See also: Supplied C Library Files, in this chapter
C Library,clib.job, System Configuration and Administration

Shared C Library Advantages

16

The C library can be shared concurrently by multiple tasks and jobs running on the
system. The advantages of the shared C library are:

Code size Only one small interface library, which provides access to the
shared C Library, is bound to the application.

Bind speed Only the application and interface library symbolic
information need to be processed.

Load speed The application which utilizes the shared C Library is much
smaller.

Execution speed Because the shared C Library is an iRMX OS extension, the

need for localized task and job management is eliminated. In
addition, many small functions are performed in the interface
library itself, rather than by the shared C library.

Chapter 1 Introduction

Each C job or task can have its own data segment; this segment does not have to be
shared with other C jobs or tasks using the library.

Resources Allocated to C Tasks and Jobs

The C library automatically manages common system resources such as I/O
interfaces and memory when your code makes calls that use these common
resources.

Job Resources

Each C job uses resources which count against the memory and object limits for the
job. When a C job is created, the C library allocates one private memory heap

from the job's memory pool; every C task is associated with its owner job's heap.
The C library allocates additional resources when a task in the job makes the first
call to a C library function; these resources consist of a bookkeeping segment for
heap managemerexit() registerstat() directory cache, and one synchronization
semaphore for the heap manager. When the job terminates, these resources are
automatically deleted. Thealloc mutual exclusion semaphore and amglloc

segments are also deleted when the job is deleted.

Task Resources

When a task makes the first C library call, some task-specific resources are
automatically allocated and maintained locally. These include data structures and
semaphores that support the task's operation in the multitasking environment.

The standard I/O functions are contained indtoo header file. When the first

call is made to astdiofunction, all of the standard streams are created, open for
sharing by all tasks. The stdio connections are cataloged using the existag

stdin :co: asstdout and:term: asstderr. These connections and the memory

required for them are added to the resources allocated to the task. They also count
against the memory and object limits for the job. Thus, if a task does not make
stdiocalls, it consumes fewer resources. You can minimize the total amount of
resources required by an application by having a single task thagtdadls

functions, or by dynamically creating and deleting tasks thasthtl functions.

The streams are opened using the iRMX system icplis_attach_fileand
rg_s_open

C Library Reference Chapter 1 17

Table 1-1 lists functions which are responsible for input and output.

Table 1-1. Input and Output Functions

chmod chsize close creat

_dup dup2 eof fclose
fcloseall fdopen fgetpos filelength
fopen freopen fstat ftell

getenv getuid isatty Iseek

Itell mkdir mktemp open

putenv remove rename rmdir

stat tmpfile tmpnam tzset

unlink utime _tzset_ptr _dos_close
_dos_creat _dos_creatnew _dos_findfirst _dos_findnext
_dos_getdate _dos_getftime _dos_open _dos_setdate
_dos_setftime _tzset_ptrs

The resources associated with a C task are not automatically freed when the task i
deleted withrq_delete_task Before you delete a C task usimg delete_task
delete the task's C library-specific resources using ¢etop()function.

Most resource allocations apply to each task; there are also resources allocated to
each job containing C library applications. Table 1-2 lists the resources used per
task and per job. Each connection object, mailbox, and semaphore consumes fror

the object limits for the job.

Table 1-2. Resources Used for C Tasks and Jobs

Resources Connection
Required For: Memory Semaphores Mailboxes Objects
Each Job 600 bytes 1
Each Task 300 bytes 2
Additional for each 400 bytes 3 6 3
stdio Task
18 Chapter 1 Introduction

Supplied C Library Files

The iIRMX OS provides header (include) files containing declarations for C library
functions and definitions of related macros and data types. The shared C library
loadable job iglib.job.

32-bit interface libraries are provided, as well as cstart modules which initialize
processes and catiain()

There are a variety of interface libraries supplied with the OS for the interface to C
library functions and iRMX system calls. For different Intel and non-Intel tools
you must bind (link) to different libraries.

See also: CstariC-386 Compiler User's Guide
Cstart modules to use with non-Intel compilétsygramming
Techniques
Interface librariesSystem Call Referencdsr a complete list of
interface libraries for different compilers,
Header files for a description of the include libraries, in this chapter,
clib.job, System Configuration and Administration

The Cstart Module

Each application must link to the cstart module. This code makes library calls that
set up an internal C environment for your application. To make initialization
changes in earlier (individually linked) versions of the C library, you would change
source code for the cstart module and reassemble it before linking to your code.
With the shared C library it is rarely necessary to make initialization changes in
cstart. However, there are two configuration changes you can make.

The source code for the cstart module defines values for two literals used in parsing
of command lines. Edit and re-assemble a copy of the cstart source code to change
these values:

« _ARGV_MAX, the maximum number of command-line parametarng

« _COMMAND_MAX, the maximum number of characters in a command line

DOS Syntax

You can use DOS syntax or iRMX syntax in all C library calls that require a
pathname argument. DOS backslashes are converted to iRMX forward slashes and
DOS device names are converted to iRMX logical names.

C Library Reference Chapter 1 19

Support for Development Tools

You can develop applications with DOS-based development tools by using these
provided iRMX elements:

« A set of common C header files, compatible with all supported compilers.
« A custom cstart module for each supported compiler.

- Aninterface library to the shared clib, for each supported compiler.

+ An OMF translator to conver¢xeand expfiles to OMF-386.

See also: Programming Techniqudsr more details on third-party compilers,
System Call Referencir information on interface libraries

The following configuration and compiler control header files control program
compilation without being compiler-specific.

<_align.h> Starts 2-byte/4-byte structure alignment (16-bit/32-bit compilers);
default header file, required to support multiple compilers

<_noalign.h> Ends multiple-byte alignment (refer to <_align.h> above);
provides compiler-independent 1-byte structure alignment (no
alignment)

<yvals.h> Standard C values and support definitions that help make the

other header files compiler-independent

<_restore.h> Returns structure alignment to the compiler default

20 Chapter 1 Introduction

Header Files

The header files described here contain declarations for C library functions and
definitions of related macros and data types. For more complete and detailed
information, see the header files themselves.

See also: Header fileSystem Call Referencier a list of iRMX OS-specific

header files

A CAUTION

For the C functions to work properly, you must use the header
files, and you must not change them.

Header File Contents

<_align.h> Starts 2-byte/4-byte alignment (16-bit/32-bit compilers);
default header file, required to support multiple compilers

<assert.h> Assert macro (diagnostic tool)

<ctype.h> Character handling functions and macros

<conio.h> DOS-specific console 1/O functions

<direct.h> Directory management functions and types

<dos.h> DOS system call macros

<errno.h> Error indication macros

<fcntl.h> File access mode and status flag macros

<float.h> Floating-point types and constants

<io.h> File input/output functions

<limits.h> Ranges of integer and character types

<locale.h> Locale-specific functions, types, and macros

<math.h> Floating-point math functions and macros

<_noalign.h>

<process.h>
<_restore.h>
<rmxtypes.h>

Ends multiple-byte alignment (refer 40 align.h> above);
provides compiler-independent 1-byte alignment (no
alignment)

Task execution and identification functions and types
Returns structure alignment to the compiler default

Makes iRMX PL/M data types available to C programmers

<search.h> Linear search functions

<setjmp.h> Non-local jump functions and environment structure
<share.h> Access, sharing and inheritance rights

<signal.h> Signal handling functions and signals

<stdarg.h> Variable-argument list macros

<stddef.h> Common types and macros

<stdio.h> Stream input/output functions, macros, and types
<stdlib.h> Utility functions, macros, and types

C Library Reference

Chapter 1 21

22

Header File
<string.h>
<sys/stat.h>

<sys/types.h>
<sys/utime.h>
<time.h>
<udi_c.h>
<unistd.h>
<yvals.h>

Contents

String handling functions

File information functions, macros, manifest constants,
and types

File information primitive types

utime function and type

Date/time functions, macros, and types

iIRMX UDI system calls

Symbolic constants used Beek()function

Standard C values and support definitions that help make the
other header files compiler-independent

You must include the appropriate header files in order to use the functions. The
description of each function lists the required include statements.

Chapter 1

Introduction

Functional Groupings

This chapter lists all the C functions, grouped to identify the functions that are
appropriate for a specific purpose.

Character Processing Functions

These functions classify and convert characters for text manipulation.

isalnum
isalpha

isascii

iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
toascii
tolower

_tolower
toupper
_toupper

C Library Reference

Test for alphanumeric character.
Test for alphabetical character.

Test if a character-coded integer is an ASCII code (i.e., between 0
and 0x7F inclusive).

Test for control character.

Test for decimal digit.

Test for printable character (excluding space).
Test for lowercase character.

Test for printable character (including space).
Test for punctuation character.

Test for white space character.

Test for uppercase character.

Test for hexadecimal digit.

Converts character to ASCII.

Converts uppercase character to lowercase.
Converts uppercase character to lowercase if appropriate.
Converts lowercase character to uppercase.

Converts lowercase character to uppercase if appropriate.

Chapter 2 23

Control Functions

These functions control and monitor task execution.

abort Aborts the current job and returns the error code.

assert Prints a diagnostic message and aborts the calling task.

atexit Processes the specified function when the calling task terminates
normally.

exit Terminates the current job after cleanup.

_exit Terminates the current job immediately.

getenv Searches the environment-variable table for a specified entry.

getpid Gets the calling task's connection token (process ID).

getuid Gets the calling task's user ID.

longjmp Restores the context previously saved by setjimp.

onexit Registers a function to be called when the task terminates
normally.

putenv Adds new environment variables or modifies the values of
existing ones.

raise Sends a signal to the executing program.

setimp Saves the current context of the executing program and stores it
in the specified location.

signal Sets up one of several ways for a task to handle an interrupt
signal from the OS.

sleep Suspends a task for a specified number of seconds.

system Invokes the system call rq_c_send_command to execute an

iRMX command line.

24 Chapter 2 Functional Groupings

Conversion Functions

These functions cover a range of purposes including conversion of various data

types to strings and to wide characters.

ecvt
fevt
ftoa

gevt

itoa

itoh

Itoa

Itoh

Itos

mblen

mbstowcs

strtod

strol

strtoul

ultoa

utoa

wcstombs

wctomb

C Library Reference

Converts a value to a character string.
Converts a floating point value to a string.
Converts a double value to a formatted string.

Converts a double value to a string of significant digits and
places them in a specified location.

Converts an integer of the specified base to a null-terminated
string of characters and stores it.

Converts an integer into the equivalent null-terminated,
hexadecimal string and stores it.

Converts a long integer of the specified base to a null-terminated
string of characters and stores it.

Converts a long integer to a null-terminated hexadecimal string
and stores it.

Converts a long integer to a null-terminated string of characters
and stores it; negative base values are acceptable.

Gets the length and determines the validity of a multibyte
character.

Converts a sequence of multibyte characters to a sequence of
wide characters, as determined by the current locale; stores the
resulting wide-character string at the specified address.

Converts a string to double.
Converts a string to long.
Converts a string to unsigned long.

Converts unsigned long to a null-terminated string and stores it
without overflow checking.

Converts an integer to a null-terminated string and stores it
without overflow checking.

Converts a sequence of wide characters to a corresponding
sequence of multibyte characters.

Converts a wide character to a corresponding multibyte
characters.

Chapter 2

25

DOS Console I/0O Functions

These functions provide DOS-compatible ways for an application to get input from

or provide output to the console.

cgets
cprintf
cputs

cscanf

getch
getche
putch

ungetch

Gets a character string from the console and stores it.
Formats a string and prints to the console.
Writes a null-terminated string directly to the console.

Reads formatted data from the console into the specified
locations.

Reads a single character from the console without echoing.
Reads a single character and echoes the character read.
Writes a character directly (without buffering) to the console.

Pushes a character back to the console, causing that character
to be the next character read.

DOS Interface Functions

These functions provide a DOS-like interface for DOS program compatibility.

26

_dos_allocmem
_dos_close

_dos_creat,
_dos_creatnew

_dos_findfirst,
_dos_findnext

_dos_freemem

_dos_getdate
_dos_getftime
_dos_gettime
_dos_open
_dos _read
_dos_setdate
_dos_setftime
_dos_settime

_dos_write

Chapter 2

Allocates a block of memory.
Closes a file.

These functions create and open a new file with the
specified access attributes.

_dos_findfirst finds the first file with the specified name
and attributes; _dos_findnext finds the next file.

Releases a block of memory previously allocated by
_dos_allocmem.

Gets the current system date.

Gets the date and time that a file was last written.
Gets the current system time.

Opens an existing file.

Reads a specified number of bytes of data from a file.
Sets the current system date.

Sets the date and time that a file was last written.
Sets the current system time.

Writes a specified number of bytes from a buffer to a file.

Functional Groupings

File Management Functions

These functions manage the file system. This includes for making directories and
changing file attributes. This also includes functions for obtaining information
about a file’s length or a descriptor associated with a file.

chmod Changes the permission mode of a file.

chsize Extends or truncates the size of a file to the specified length.

filelength Gets the length of a file in bytes.

fstat Gets information on the file associated with the specified file
descriptor.

isatty Determines whether a file descriptor is associated with a
character device: a terminal, console, printer, or serial port.

mkdir Creates a new directory with the specified ownership and access
rights.

mktemp Creates a unique temporary filename.

rmdir Deletes a directory.

setmode Sets binary or text translation mode of a file.

stat Gets information on a file.

umask Sets the default file-permission mask of the current process to

the specified mode.

unlink Deletes a file.

Input/Output Functions

These functions provide ways to control the flow of an application.

clearerr Resets the error and end-of-file indicators for a stream.

fclose Closes a specified stream.

fcloseall Closes all open streams.

fdopen Opens a stream associated with a file descriptor, allowing a file
opened for low-level I/O to be buffered and formatted.

feof Tests for end-of-file on a stream.

ferror Tests for a read or write error on a stream.

fflush Flushes a buffered stream (has no effect on an unbuffered
stream).

C Library Reference Chapter 2 27

28

fgetc

fgetchar
fgetpos

fgets

fileno
flushall

fopen
fprintf
fputc

fputchar
fputs

fread
freopen
fscanf

fseek
fsetpos

ftell

fwrite

getc, getchar

gets
getw

perror

Chapter 2

Reads a single character from the current position of the
specified stream and increments the file pointer to the next
character.

Reads from a single character from stdin.

Gets a stream's file pointer position-indicator and stores it. This
function does not get the file pointer; use the ftell function
instead.

Reads a specified number of characters from a stream and
stores them in a string.

Gets the file descriptor associated with a stream.

Writes the contents of all buffers associated with open output
streams to their associated files.

Opens a file with the specified open mode.
Prints formatted data to a stream.

Writes a single character to an output stream at the current
position.

Writes a single character to stdout.
Writes a string to the stream at the current file pointer.

Reads up to the specified number of items of the specified size
from the input stream and stores them in a buffer.

Closes the file currently associated with a stream and reassigns
a new file to the stream.

Reads and formats character data from the current position of a
stream into the specified locations.

Moves the file pointer to a specified location in a stream.
Sets a stream's file pointer position-indicator.

Gets the current position of the file pointer for a stream.
Writes a specified number of characters to a stream.

Getc reads a single character from a stream and increments the
associated file pointer to point to the next character;
getchar reads from stdin.

Gets a line from stdin and stores it in the specified location.

Reads the next integer from a stream and increments the
associated file pointer (if there is one) to point to the next unread
value.

Prints an error message to stderr.

Functional Groupings

printf
putc
putchar
puts

putw
rename

rewind

rmtmp

scanf
setbuf
setvbuf
sprintf
sscanf

tmpfile

tmpnam

viprintf
vprintf

vsprintf

Prints formatted data to stdout.
Writes a character to a specified stream at the current position.
Writes a character to stdout.

Writes a string to stdout, replacing the string's terminating null
character \O with a newline character \n .

Writes an integer to the current position of a stream.
Renames a file or directory.

Repositions the file pointer to the beginning of a file and clears
the end-of-file indicator.

Removes all the temporary files that were created by tmpfile
from the current directory.

Reads from stdin at current position, and formats character data.
Allows the user to control buffering for a stream.

Controls stream buffering and buffer size.

Prints formatted data to a string.

Reads and formats character data from a string.

Creates a temporary file, opens in it binary read/write mode, and
returns a stream pointer to it.

Creates a temporary filename, which can open a temporary file
without overwriting an existing file.

Formats and sends data to the file specified by stream.
Sends data to stdout.

Sends data to the memory pointed to by buffer

IRMX-specific Functions

These functions provide C library access to OS-specific functions.

_cstop
_get_arguments
_get cs

_get ds

_get _info

_get_rmx_conn

_get ss

C Library Reference

Deletes the C resources allocated for a task.
Sets up the standard C command line parser.
Returns an application’s current code segment.
Returns an application’s current data segment.
Obtains specific C library information.

Translates a file descriptor to a valid iIRMX connection token,
usable as a parameter in iRMX system calls.

Returns an application’s current stack segment.

Chapter 2

29

_put_rmx_conn Places an iRMX connection token into the file descriptor table
and returns a valid file descriptor, usable as an argument in C
library calls.

_set_info Modifies C library information.

Low-level I/O Functions

These functions provide low-level ways to manage file processing

creat Creates a new file or opens an existing file for writing and
truncates it to length 0, destroying the previous contents.

eof Checks whether the file's current file pointer is EOF.

Iseek Moves the file pointer to a location specified as an offset from the
origin in a file.

Itell Sets the absolute position of the file pointer for the next I/O
operation.

open Opens a file and prepares it for subsequent reading or writing.

read Reads the specified number of bytes from a file into a buffer,
beginning at the current position of the file pointer.

sopen Opens a file for shared reading or writing.

write Writes data from a buffer to a file.

Math Functions

These functions provide such math functions as integer, floating point,
trigonometric operations.

abs Calculates the absolute value of an integer.

acos Calculates the arccosine of a double value.

asin Calculates the arcsine of a double value.

atan Calculates the arctangent of a double value.

atan2 Calculates the arctangent of the quotient of two doubles.

Bessel Compute the Bessel function.

functions

cabs Calculates the absolute value of a complex number.

ceil Calculates the ceiling (the smallest integer that is greater than or

equal to the value) of a double value.

cos Calculates the cosine.

30 Chapter 2 Functional Groupings

cosh
div

exp
fabs

floor

fmod
frexp
labs
Idexp
ldiv

log
log10
matherr
modf
pow
rand
sin

sinh
sqrt

srand

square
tan
tanh

C Library Reference

Calculates the hyperbolic cosine of an angle.

Divides the numerator by the denominator, computing the
guotient and the remainder of two integer values.

Calculates the exponential of a double value.
Calculates the absolute value of a double value.

Calculates the floor (largest integer that is less than or equal to a
value) of a double value.

Calculates the floating-point remainder.

Gets the mantissa and exponent of a double value.
Calculates the absolute value of a long integer.

Computes a real number from the mantissa and exponent.

Divides numerator by denominator, and computes the quotient
and remainder.

Calculates the natural logarithm of a value.

Calculates the base-10 logarithm.

Processes errors generated by the functions of the math library.
Splits a value into fractional and integer parts, retaining the sign.
Computes a value raised to the power of another value.
Generates a pseudo-random number.

Calculates the sine.

Calculates the hyperbolic sine of an angle.

Calculates the square root of a number.

Sets the starting point for generating a series of pseudo-random
integers.

Calculates the square of a number.
Calculates the tangent.

Calculates the hyperbolic tangent of the number.

Chapter 2 31

Memory Functions

These functions copy, compare, and set blocks of memory.

memccpy Copies characters from one buffer to another, halting when the
specified character is copied or when the specified number of
bytes have been copied.

memcpy Copies specified number of bytes from a source buffer to a
destination buffer.

memchr Finds the first occurrence of a character in a buffer and stops
when it finds the character or when it has checked the specified
number of bytes.

memcmp Compares the specified number of bytes of two buffers and
returns a value indicating their relationship.

memicmp Compares characters in two buffers byte-by-byte (case-
insensitive).

memmove Moves specified number of bytes from a source buffer to a
destination buffer.

memset Sets characters in a buffer to a specified character.

swab Copies while swapping bytes.

Searching and Sorting Functions

These functions provide efficient search and sort routines.

bsearch Performs a binary search of a sorted array.
Ifind Performs a linear search for a specified key in an unsorted array.
Isearch Performs a linear search for a specified value in an unsorted

array, appending the value to the array if not found.

gsort Performs a quick sort of an array, overwriting the input array with
the sorted elements.

32 Chapter 2 Functional Groupings

Storage Allocation Functions

These functions provide storage allocation management.

calloc

free
malloc

realloc

sbrk

Allocates and clears an array in memory; initializes each element
to 0.

Deallocates a memory block previously allocated by malloc.
Allocates a memory block of the specified size.

Changes the size of a previously allocated memory block or
allocates a new one.

Creates iRMX segments of the specified number of bytes.

String Processing Functions

The following functions provide string conversion, parsing, movement and
manipulation capabilities.

atof
atoi
atol

cstr

stremp,
strempi,
stricmp

strcat
strchr

streoll

strcpy
strespn
strdup
strerror
strlen

striwr

Strncat

strncmp

C Library Reference

Converts a character string to a double value.
Converts to an integer value.
Converts to a long integer value.

Converts a count-prefixed iRMX-style string to a null-terminated
C-style string and stores it.

Compare two null-terminated strings lexicographically.

Appends a null-terminated string to another string.
Searches for a character in a null-terminated string.

Compares null-terminated strings using locale-specific collating
sequences.

Copies a null-terminated string.

Finds a null-terminated substring in a string.
Duplicates null-terminated strings.

Gets a system error message.

Gets the length of a null-terminated string.

Converts uppercase letters in a null-terminated string to
lowercase. Other characters are not affected.

Appends characters to a string.

Compares substrings.

Chapter 2 33

strncpy Copies the specified number of characters from one string to

another.

strnicmp Compares substrings without regard to case.

strnset Sets the specified number of characters in a string to a
character.

strpbrk Searches a string for the first occurrence of any character in the
specified character set.

strrchr Searches a string for the last occurrence of a character.

strrev Reverses the order of the characters in a string.

strset Sets all characters in a string to a specified character.

strspn Finds the first character in a string that does not belong to a set
of characters in a substring.

strstr Finds a substring within a string.

strtok Finds the next token in a string.

strup Converts any lowercase letters in a null-terminated string to
uppercase.

strxfrm Transforms a string based on locale-specific information and
stores the result.

strtod Converts a string to double.

strol Converts to long.

strtoul Converts to an unsigned long.

udistr Converts a null-terminated C-style string to a count-prefixed

iIRMX-style string and stores it.

34 Chapter 2 Functional Groupings

Time and Date Functions

These functions provides ways to control and process the time and date

asctime

clock

ctime
difftime
gmtime
localeconv

localtime

mktime

setlocale
strftime

time

time macros,
_tzset ptr
tzset

utime

Converts a time stored as a structure to a character string.

Measures the time used by the calling task, from when the
calling task first began execution to the current time.

Converts a time stored as atime_t value to a character string.
Finds the difference between two time values.

Converts a time value to a structure.

Gets detailed information on locale settings.

Converts a time stored as atime_t value and corrects for the
local timezone.

Converts the time/date structure into a fully-defined structure
with normalized values and then converts it to calendar time.

Sets the task's current entire locale or specified portions of it.
Formats a time string.
Gets the system time.

Accesses daylight, timezone, and tzname environment variables.

Sets the time environment variables.

Sets the modification time for a file.

Variable Argument Functions

These functions provide a convenient way to access argument lists.

va_arg
va_end

va_start

C Library Reference

Retrieves current argument.
Resets argument list pointer.

Sets argument list pointer to first optional argument.

Chapter 2

35

Functions

This chapter presents C library function descriptions in alphabetical order. In these
descriptionsdoublemeans floating-point, double precision value.

You must include the appropriate header files in order to use the functions. The
description of each function lists the required include statements. To check the
errno value, you must include theerrno.h> header file.

Each C function (or group of related functions) contains a description with these
elements:

e Function heading

e Requiredtinclude statement(s)

* Function prototype(s)

« Description of argument(s)

» Description of behavior

» Description of successful returns followed by error returns

If ANSI appears in the function heading, this is an ANSI functiomOE appears

in the function heading, this is a DOS functionsttfio appears, this is a stdio
function, which requires that the calling task has access to the standard streams:
stdin stdout andstderr, along with the necessary connections and memory
requirements.

C Library Reference Chapter 3 37

abort ANSI

abort

Aborts the current task and returns an error code.

Syntax

#include <process.h>
#include <stdlib.h>
void abort (void);

Additional Information

Abort() does not flush stream buffers oraexit()/onexit() processing. It does
not return control to the caller.

This function callsaise (SIGABRT); the response to the signal depends on the
action defined in a prior call wignal(). The default action is for the calling task
to terminate with anexit() call.

This function is implemented in the C interface library (not in the shared C library)
and is private to each application.

See also: _exit(), raise(), signal()

Returns

Exit code 3 (default) to the parent job and terminates the task.

38 Chapter 3 Functions

ANSI

abs

abs

Calculates the absolute value of an integer.

Syntax

#include <stdlib.h>
#include <math.h>
int abs (int n);

Parameter

n Integer value whose absolute value is calculated.

See also: fabs(), labs(), cabs()

Returns
The absolute value result.

No error return.

C Library Reference

Chapter 3

39

acos ANS]I

acos

Calculates the arccosine of a double value.

Syntax

#include <math.h>

double acos (double x);

Parameter

X Value whose arccosine is calculated. Must be between -1 and 1.

See also: asin(), atan(), cos() matherr(), sin(), tan()

Returns

The arccosine result in the range Gttradians.

0 if x is less than -1 or greater than 1; the functionexet® to EDOM and prints a
DOMAIN error message tstderr.

This function does not return standard ANSI domain or range errors.

40 Chapter 3 Functions

ANSI asctime

asctime

Converts a time stored as a structure to a character string.

Syntax

#include <time.h>
char *asctime (const struct tm *timedate);

Parameter

timedate
A pointer to am time/date structure, usually obtained usgngtime() or
localtime().

Additional Information
The converted string contains exactly 26 characters and has this form:
Wed Jan 02 02:03:55 1980\n\0

All elements have a constant width. The newline charactand the null
charactek0 occupy the last two positions of the string.

This function uses a 24-hour clock.

The function uses a single statically allocated buffer to hold the return string. Each
call destroys the result of the previous call.

See also: Description of the structure elements ktime.h>,
localtime(), time(), tzset()
Returns
A pointer to the character string.

No error return.

C Library Reference Chapter 3 41

asin ANSI

asin
Calculates the arcsine of a double value.

Syntax

#include <math.h>

double asin (double x);

Parameter

X Value whose arcsine is calculated. Must be between -1 and 1.

See also: acos() atan(), cos() matherr(), sin(), tan()

Returns

The arcsine result in the rang®&?2 to 72 radians.

0 if x is less than -1 or greater than 1; function setso to EDOM and prints a
DOMAIN error message tstderr.

This function does not return standard ANSI domain or range errors.

42 Chapter 3 Functions

ANSI, stdio assert

assert

Prints a diagnostic message and aborts the calling task.

Syntax

#include <assert.h>
#include <stdio.h>
void assert (int expression);

Parameter

expression
C expression specifying assertion being tested.
Additional Information

This function calls thabort() function ifexpression is false (0). The
diagnostic message has this form:

Assertion failed: expression, file filename, line linenumber
Where:

filename Name of the source file.

linenumber
Line number of the assertion that failed in the source file.

No action is taken iéxpression s true (not 0).

Use theassert()macro in program development to identify program logic errors.
Choosesxpression so that it holds true only if the program is operating as
intended.

After a program has been debugged, renassert()calls from the program using
the special identifieNDEBUG If NDEBUGs defined by any value with/B
command-line option or with#define directive, the C preprocessor removes all
assert()calls from the program source.

See also: abort(), raise(), signal()

Returns
Nothing.

C Library Reference Chapter 3 43

atan, atan2 ANSI

atan, atan2
Atan() calculates the arctangent of a double vadt@n2() calculates the
arctangent of the quotient of two doubles.

Syntax

#include <math.h>

double atan (double x);

double atan2 (double x, double y);
Parameters

Y Any number(s) whose arctangent is calculated.

Additional Information

Theatan2() function uses the signs of both arguments to determine the quadrant of
the return value.

See also: acos() asin(), cos() matherr(), sin(), tan()

Returns
Atan() Returns the arctangent result in the rarmge to V2 radians.

Atan2() Returns the arctangent result in the rangdo Ttradians.
Returns 0 if both arguments are 0, s#ts10 to EDOM and prints a
DOMAIN error message tstderr.

This function does not return standard ANSI domain or range errors.

44 Chapter 3 Functions

ANSI atexit

atexit

Processes the specified function when the calling task terminates normally.

Syntax

#include <stdlib.h>

int atexit (void (_Pascal * func) (void));
Parameter

func Function(s) to be called; the called function(s) cannot take parameters. No more
than 32 functions can be registerédtexit() receives the addressfafc when
the task terminates normally, using thet() function.

Additional Information

Successive calls tatexit() create a register of functions that execute in LIFO
(last-in-first-out) order.

See also: exit(), onexit()

Returns

Value Meaning
0 Successful
Not O Error occurred, such as 32 exit functions already defined

C Library Reference Chapter 3 45

atof, atoi, atol ANSI

atof, atoi, atol

Atof() converts a character string to a double vaheif) converts to an integer
value;atol() converts to a long integer value.

Syntax

#include <math.h>

#include <stdlib.h>

double atof (const char *string);
int atoi (const char *string);
long atol (const char *string);

Parameter
string A sequence of characters that represent a numerical value of the specified type.
The maximum string size fatof() is 100 characters.

Additional Information

These functions stop reading the input string at the first character not recognizable
as part of a number. This character may be the null chakacterminating the
string.

Atof() expectsstring to have this form:

[whitespace] [sign] {[digits]|[.digits]} [d | D | e | E[sign]digits]

Where:
whitespace
Space and/or tab characters, which are ignored
sign Either plus (+) or minus (-).
digits Decimal digits. If no digits appear before the decimal point, at least

one must appear after it. There may be an exponent, which is an
introductory letter (d, D, e, or E) and an optionally signed integer.

46 Chapter 3 Functions

ANSI atof, atoi, atol

Atoi() andatol() do not recognize decimal points or exponents. sfifirey
argument for these functions has this form:

[whitespace] [sign] [digits]
Wherewhitespace, sign , anddigits are as described fatof().
Results are undefined on overflow.

See also: ecvt(), fevt(), gevt()

Returns
The converted value.

0 for atoi(), OL foratol(), and 0.0 fomtof(), if the input cannot be converted to a
value of the specified type.

C Library Reference Chapter 3 a7

Bessel Functions

Bessel Functions

Compute the Bessel function.

Syntax

#include <math.h>

double jO (double x);
double j1 (double x);
double jn (int n, double x);
double y0 (double x);
double y1 (double x);
double yn (int n, double x);

Parameters
X Value must be positive forO(), y1(), andyn().
n Integer order.

Additional Information

These functions are commonly used in the mathematics of electromagnetic wave
theory.

See also: Mathematics reference books, such adahébook of Mathematical
Functions(Abramowitz and Stegun; Washington: U.S. Government
Printing Office, 1964),matherr()

Returns

JO(), j1(), andjn() return the result of Bessel functions of the first kind: orders 0,
1, andn, respectively.

YO(), y1(), andyn() return the result of Bessel functions of the second kind:
orders 0, 1, and, respectively. Ik is negative, functions setrno to EDOM,
print a DOMAIN error message stderr, and return -HUGE_VAL.

This function does not return standard ANSI domain or range errors.

48 Chapter 3 Functions

ANSI bsearch

bsearch

Performs a binary search of a sorted array.

Syntax

#include <stdlib.h>

#include <search.h>

void *bsearch (const void *key, const void *base, size_t
num,size_t width, int (*compare) (const void
*elem1, const void *elem?2));

Parameters

key Value being sought.

base Pointer to base of array to be searched.
num Number of elements in the array.

width ~ Width of elements in bytes.

compare
Pointer to a user-supplied routine that compares two array elemients, and
elem2 , and returns a value specifying their relationship:

Value Meaning

<0 eleml less than elem2
=0 elem1 identical to elem?2
>0 eleml greater than elem2

eleml Pointer to the key for the search.

elem2 Pointer to the array element to be compared with the key.

Additional Information

The function calls theompare routine one or more times during the search,
passing pointers to two array elements on each call.

If the array you are searching is not in ascending sort disleaych()does not
work properly. If the array contains duplicate records with identical keys, there is
no way to predict which of the duplicate records will be locatebsearch()

See also: Ifind(), Isearch() gsort()

C Library Reference Chapter 3 49

bsearch ANSI

Returns
A pointer to the first occurrence kéy in the array pointed to byase .

A null pointer if a match is not found.

50 Chapter 3 Functions

ANSI cabs

cabs

Calculates the absolute value of a complex number.

Syntax

#include <math.h>
double_cabs(struct_complex z):
Parameter

z Complex number.

Additional Information

The complex number must be a structure of typeomplex . The structure is
composed of a real componenand an imaginary component A call tocabsis
equivalent to:

sqri(z.x*z.x + z.y*z.y)

See also: abs() fabs(), labs()

Returns

On overflow, this function callmatherr(), returns HUGE_VAL, and se&srno to
ERANGE.

C Library Reference Chapter 3 51

calloc ANSI

calloc

Allocates and clears an array in memory; initializes each element to 0.

Syntax

#include <stdlib.h>

void *calloc (size_t num, size_t size);

Parameters

num Number of elements to allocate storage space for.

size Length in bytes of each element.

Additional Information

The allocated memory is guaranteed to be suitably aligned for storage of any type
of object. To get a pointer to a type other thaid , use a type cast on the return
value.

See also: free(), malloc(), realloc()

Returns

A pointer to the allocated space.

52 Chapter 3 Functions

ANSI ceil

ceil
Calculates theeiling (the smallest integer that is greater than or equal to the value)
of a double value.

Syntax

#include <math.h>
double ceil (double x);

Parameter
X Value to calculate ceiling for.

See also: floor(), fmod()

Returns
The ceiling result.

No error return.

C Library Reference Chapter 3 53

cgets DOS

cgets

Gets a character string from the console and stores it.

Syntax

#include <conio.h>
char *cgets (char *buffer);

Parameter

buffer
Storage location for data. Must be a pointer to a character array. The first element
of the arraypuffer[0] , must contain the maximum length in characters of the
string to be read. The array must contain enough elements to hold the string, a
terminating null charactee , and two additional bytes.

Additional Information

This function continues to read characters until it reads a carriage-return line-feed
(<CR><LF>) combination, or the specified number of characters. If it reads a
<CR><LF> combination, it replaces the <CR><LF> with a null charaater

before storage. Thegets()function then stores the actual length of the string in
the second array elemehtiffer[1]

See also: getch(), getche()

Returns
A pointer to the start of the string, fatffer[2]

No error return.

54 Chapter 3 Functions

chmod

chmod

Changes the permission mode of a file.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

#include <io.h>

int chmod (const char *filename, mode_t pmode);

Parameters

filename
Pathname of existing file.

pmode New permission mode for file, which controls file ownership and access rights.

Additional Information

Pmode contains one or more of the manifest constants defineslysistat.h> The
meaning obmode is:

Value Meaning

S _IRGRP Read permission bit for POSIX file group

S _IROTH Read permission bit for POSIX World owner

S IRUSR Read permission bit for POSIX file owner

S_IRWXG Mask for POSIX file group

S_IRWXO Mask for POSIX World (other) owner

S IRWXU Mask for POSIX file owner

S _ISGID Set group ID on execution

S ISUID Set user ID on execution

S_IWGRP Write permission bit for POSIX file group

S_IWOTH Write permission bit for POSIX World owner
S_IWUSR Write permission bit for POSIX file owner

S_IXGRP Execute or search permission bit for POSIX file group
S _IXOTH Execute or search permission bit for POSIX World owner
S_IXUSR Execute or search permission bit for POSIX file owner

Join more than one constant with the bitwise-OR operpgjor (

C Library Reference Chapter 3 55

chmod

Return

56

This function translates POSIX file ownership rights this way:

POSIX Owner iIRMX Owner

Owner Owner 1 (first accessor)
Group Owner 2 (second accessor)
World (other) World

This function also translates POSIX access rights to the iRMX OS equivalent this
way:

POSIX Access Rights iRMX Access Rights

Read Read
Write Delete, Append, and Update
Execute Ignored (no iIRMX OS equivalent)

See also: creat(), fstat(), open() stat()

S

Value Meaning

0 Successful

-1 Error occurred; the function setgno to ENOENT, indicating that the

specified file could not be found.

Chapter 3 Functions

stdio chsize

chsize

Extends or truncates the size of a file to the specified length.

Syntax

#include <io.h>
int chsize (int handle, long size);

Parameters

handle Descriptor referring to an open file. The file must be open in a mode that permits
writing.

size New length of file in bytes.

Additional Information

If the file is extended, null charactaes are appended. If the file is truncated, all
data from the end of the shortened file to the original length of the file is lost.

The directory update is done when a file is closed. Consequently, while a program
is running, requests to determine the amount of free disk space may receive
inaccurate results.

See also: close() creat(), open()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function setg'no to one of these values:

EACCES Specified file is locked against access.

EBAD Specified file is read-only or an invalid file descriptor.
ENOSPC No space is left on device.

C Library Reference Chapter 3 57

clearerr ANSI, stdio

clearerr

Resets the error and end-of-file indicators for a stream.

Syntax

#include <stdio.h>

void clearerr (FILE *stream);
Parameter

stream Pointer toFILE structure.

Additional Information

Once the error indicator for a specified stream is set, operations on that stream
continue to return an error value. Invaktearerr() to reset the error indicator.
You can also cafiseek() fsetpos() orrewind() to do the same thing.

See also: eof(), feof(), ferror(), fseek() fsetpos() perror(), rewind()

Returns
Nothing.

58 Chapter 3 Functions

ANSI clock

clock
Measures the time used by the calling task, from when the calling task first began
execution to the current time.

Syntax

#include <time.h>
clock_t clock (void);

Additional Information

In the multitasking iRMX OS environment, this does not tell how much processor
time has been used by the calling task.

See also: difftime(), time()

Returns

The product of the time in seconds and the value of the CLOCKS_PER_SEC
constant. Divide the return value by the CLOCKS_PER_SEC constant to obtain
the actual time.

-1, cast aslock_t , if unsuccessful.

C Library Reference Chapter 3 59

close stdio

close

Closes a file.

Syntax

#include <io.h>

int close (int handle);

Parameter

handle Descriptor referring to an open file.

See also: chsize() creat(), dup(), dup2(), open() unlink()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function setgno to EBADF, indicating an invalid

file descriptor argument.

60 Chapter 3 Functions

ANSI cos, cosh

CosS, cosh

Coscalculates the cosine andshcalculates the hyperbolic cosine of an angle.

Syntax

#include <math.h>
double cos (double x);
double cosh (double x);

Parameter
X Angle in radians.

See also: acos() asin(), atan(), matherr(), sin(), tan()

Returns
The cosine or hyperbolic cosine.

Cos() Returns a PLOSS errorxfis large and a partial loss of significance in
the result occurs; function seteno to ERANGE.

Prints a TLOSS messagedulerrand returns 0 ik is so large that
significance in the result is completely lost; function setso to
ERANGE.

Cosh() Returns HUGE_VAL and se&srno to ERANGE if the result is too
large.

This function does not return standard ANSI domain or range errors.

C Library Reference Chapter 3 61

cprintf DOS

cprintf

Formats a string and prints to the console.

Syntax

#include <conio.h>
int cprintf (char *format [, argument] ...);

Parameters

format Format-control string.

argument
Optional arguments.
Additional Information
This function uses thgutch() function to output characters.

Eachargument (if any) is converted and output according to the corresponding
format specification.

Theformat argument has the form and function described inpthf()
function.

Cprintf() does not translate line-feed characters into carriage-return line-feed
combinations on output, unlike tifgrintf() , printf() , andsprintf() functions.

See also: fprintf() , printf() , sprintf(), vprintf()

Returns

The number of characters printed.

62 Chapter 3 Functions

DOS cputs

cputs

Writes a null-terminated string directly to the console.

Syntax

#include <conio.h>

int cputs (char *string);
Parameter

string Output string; must be null-terminated. A carriage-return line-feed (<CR><LF>)
combination is not automatically appended.

See also: putch()

Returns
Value Meaning
0 Successful
EOF Unsuccessful

C Library Reference Chapter 3 63

creat stdio

creat

Creates a new file and opens it for writing in the specified permission mode or
opens an existing file for writing and truncates it to length 0, destroying the
previous contents.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

#include <io.h>

int creat (const char *filename, mode_t pmode);

Parameters

filename
Pathname of file to be opened for writing.

pmode Permission mode, one or more of the manifest constants descrit@daa().
Join multiple constants with the bitwise-OR operatdr (Applies to newly created
files only.

Additional Information

Thecreat() function applies the default file-permission mask (set with the
umask() function) topmode before setting the permissions. A new file receives
the specified ownership and access rights after it is closed for the first time.

By default, files opened by this function are sharable by all tasks. If O_EXCL is
ORed withpmode, the file is opened with share-with-none permission, like UNIX.

This function translates POSIX file ownership rights and access rights as described
in chmod().

See also: chmod(), chsize() close() dup(), dup2(), open() sopen()
umask()

Returns
A descriptor for the created file.
-1 and setgrrno to one of these values if unsuccessful:

EACCES Pathname specifies an existing read-only file or specifies a directory
instead of a file.

EMFILE No more file descriptors available (too many open files).
ENOENT Pathname not found.

64 Chapter 3 Functions

DOS

cscanf

cscanf

Reads formatted data from the console into the specified locations.

Syntax

#include <conio.h>
int cscanf (char *format [, argument] ...);

Parameters

format

Format-control string.

argument

Optional arguments; must be a pointer to a variable with a type that corresponds to
a type specifier ifiormat .

Additional Information

Theformat controls the interpretation of the input fields and has the same form
and function as described seanf()

While cscanf()normally echoes the input character, it does not if the last call was
to ungetch()

This function usegetche()to read characters.

See also: fscanf(), scanf() sscanf()

Returns

The number of fields that were successfully converted and assigned; does not
include fields that were read but not assigned.

0 if no fields were assigned.

EOF for an attempt to read at end-of-file. This may occur when keyboard input is
redirected at the operating system command-line level.

C Library Reference Chapter 3 65

_cstop

_cstop

Deletes the C resources allocated for a task.

Syntax

#include <rmx_c.h>
_cstop (selector task_t);

Parameter

task_t iIRMX task token; O indicates remove the current task. If the task to be removed is
not the current task, it must not be using C library functions when you remove it.

Additional Information

Applications that dynamically create and delete C tasks should call
rg_suspend_task then_cstop()before deleting a task using_delete_task The
deleted C resources for the task include connectiosislity stdout stderr, the C
library information structur€INFO_STRUCT and other bookkeeping segments.

Each C task maintains its own resources. The minimum resources assigned to eac
task consist o€INFO_STRUCTand two synchronization semaphores for the task.
These are allocated on the first call to any C library function by the task. A task
can obtain the data @INFO_STRUCTwith the_get_info()function. The C task
resources also include storage space for the task's context, and a temporary storag
area for information pushed onto the stack by the C library.

Additional resources are established for a task on the first call tdinyunction.
These are:

- Additional bookkeeping area faiNFO_STRUCT(about 400 bytes)

- Connections tetdin stdout andstderr, along with two 1/O synchronization
mailboxes and one synchronization semaphore for each mailbox

- Two 512-byte I/O buffers, one each &idinandstdout allocated from the job
heap usingnalloc()

66 Chapter 3 Functions

_cstop

Any malloc() segments and thmealloc() mutual exclusion semaphore are not
deleted until the parent job is deleted, since they are global to the parent job.

Minimize the total amount of resources required by an application by dynamically
creating and deleting tasks that catliofunctions.

See also: exit(), _get_info() malloc(), <rmx_c.h>, stat()

Returns
Nothing.

C Library Reference Chapter 3 67

cstr, udistr

cstr, udistr

Cstr converts a count-prefixed iRMX-style string to a null-terminated C-style
string and stores itUdistr() converts a null-terminated C-style string to a count-
prefixed iRMX-style string and stores it.

Syntax

#include <string.h>
char *cstr (char *c_str, const char *udi_str);
char *udistr (char *udi_ptr, const char *c_ptr);

Parameters

c_str Pointer to a null-terminated (C convention) string.

udi_str
Pointer to a count-prefixed (iIRMX convention) string.

Additional Information

The string buffer focstr() must be large enough twld the string and theull

charactek0 string terminator. Since count-prefixed strings are restricted to 0 to
255 characters (range of the one-byte count), plus the terminating null character,
the string buffer can be 1 to 256 bytes long.

The string buffer foudistr() must be large enough to hold the string and the
leading one-byte length field for the count. W&den() to determine the required

length of the destination buffer. The buffer must be one byte longer than the value

returned bystrlen, sinceit returns the number of characters in the string excluding
the terminating null charact&r . The behavior ofidistr() for strings longer than
255 bytes is undefined.

The two pointers_ptr andudi_ptr normally point to separate string buffers.
However, if the arguments are identiaadstr() andcstr() still work correctly,
converting the indicated string in place.

See also: strlen(), <udi_c.h>

Returns
A pointer to the converted string.

No error return.

68 Chapter 3 Functions

ANSI, stdio ctime

ctime

Converts a time stored asime_t value to a character string.

Syntax

#include <time.h>
char *ctime (const time_t *timer);

Parameter

timer Stored time value to convert, usually obtained from a cdilirte().

Additional Information
The converted string contains exactly 26 characters and has this form:
Wed Jan 02 02:03:55 1980\n\0

All elements have a constant width. The newline charactand the null
charactek0 occupy the last two positions of the string.

A 24-hour clock is used.

Calls to thectime() function modify the single statically allocated buffer used by
thegmtime() and thdocaltime() functions. Each call to one of these functions
destroys the result of the previous call.

Thectime() function also shares a static buffer with &setime()function. Thus,
a call toctime() destroys the results of any previous caksotime()
localtime(), orgmtime().

See also: asctime() gmtime(), localtime(), time()

Returns
A pointer to the character string.

A null pointer if time represents a date before epoch time.

C Library Reference Chapter 3 69

difftime ANSI

difftime

Finds the difference between two time values.

Syntax

#include <time.h>

double difftime (time_t timerl, time_t timer0);
Parameters

timer0 Beginning time.

timerl Ending time.

See also: time()

Returns

The elapsed time in seconds.

70 Chapter 3 Functions

ANSI div

div
Divides the numerator by the denominator, computing the quotient and the
remainder of two integer values.

Syntax

#include <stdlib.h>

div_t div (int numer, int denom);
Parameters

numer Numerator.

denom Denominator. If O, the program will terminate with an error message.

See also: Idiv()

Returns
A div_t structure, described kstdlib.h>.

The sign of the quotient is the same as that of the mathematical quotient. Its
absolute value is the largest integer that is less than the absolute value of the
mathematical quotient.

C Library Reference Chapter 3 71

_dos_allocmem DOS

_dos_allocmem

Allocates a block of memory.

Syntax

#include <dos.h>
unsigned _dos_allocmem (unsigned size, unsigned *seg);

Parameters

size

seg

Block size to allocate in paragraphs (16-byte units).

Pointer to where segment token is returned.

Additional Information

Allocated blocks are always paragraph aligned. The memory heap is not used.

An iRMX segment is always created. This applies to all memory models,
including 32-bit flat.

If the request cannot be satisfied, the maximum possible size (in paragraphs) is
returned instead.

See also: calloc(), _dos_freemem(,)malloc()

Returns

72

Value Meaning
0 Successful
-1 Error occurred; the function seteno to ENOMEM, indicating

insufficient memory.

Chapter 3 Functions

DOS _dos_close

_dos_close

Closes a file.

Syntax

#include <dos.h>

unsigned _dos_close (int handle);

Parameter

handle Target file to closehandle was returned by the call that created or last opened the
file).

Additional Information

See also: close() creat(), _dos_creaf _dos_open(,)_dos_read()
_dos_write() dup(), open()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function setgno to EBADF, indicating an invalid
file handle.

C Library Reference Chapter 3 73

_dos_creat, dos_creatnew DOS

_dos_creat, dos_creatnew

These functions create and open a new file with the specified access attributes.

Syntax

#include <dos.h>
unsigned _dos_creat (const char *filename, unsigned attrib,

int *handle);
unsigned _dos_creatnew (const char *filename, unsigned attrib,
int *handle);
Parameters
filename

File pathname.
attrib File attributes.

handle Pointer to handle return buffer. The new file's handle is copied into the location
handle points to.

Additional Information

The file is opened for both read and write access. If file sharing is installed, the file
is opened in compatibility mode.

The_dos_creat()function erases an existing file's contents and leaves its attributes
unchanged.

The_dos_creatnew(Yunction fails if the file already exists.

Returns
Value Meaning
0 Successful
-1 Error occurred; the function setg'no to one of these values:

EACCES Access denied because the directory is full or, for
_dos_creat()only, the file exists and cannot be
overwritten.

EEXIST File already exists flos_creatnew(Jonly).

EMFILE Too many open file handles.
ENOENT Path or file not found.

74 Chapter 3 Functions

DOS _dos_findfirst, _dos_findnext

_dos_findfirst, _dos_findnext

_dos_findfirst finds the first file with the specified name and attributes;
_dos_findnextfinds the next file.

Syntax

#include <dos.h>

unsigned _dos_findfirst(const char *filename, unsigned attrib,
struct find_t *fileinfo);

unsigned _dos_findnext(struct find_t *fileinfo);

Parameters

filename
Target filename; may use wildcards * and ?.

attrib ~ Target file attributes.

fileinfo
Pointer to file-information buffer.

Additional Information
Theattrib argument can be any of these manifest constants:
_A NORMAL Normal. File can be read or written without restriction.

_A RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Returns information about normal
files as well as about files with this attribute.

_A SUBDIR Subdirectory. Returns information about normal files as well as
about files with this attribute.

Combine multiple constants with the bitwise-OR operdtir (

If theattrib argument to either of these functions is _A_RDONLY or
_A_SUBDIR, the function also returns any normal attribute files that match the
flename argument; a normal file does not have a read-only or directory attribute.

Information is returned infind_t structure, defined irdos.h>.

C Library Reference Chapter 3 75

_dos_findfirst, _dos_findnext DOS

The time format is:

Time Bits Contents

0-4 Number of 2-second increments (0-29)
5-10 Minutes (0-59)

11-15 Hours (0-23)

The date format is:

Date Bits Contents

0-4 Day of month (1-31)

5-8 Month (1-12)

9-15 Year (relative to 1980)

Do not alter the contents of tfiinfo buffer between a call to
_dos_findfirst() and all subsequent calls to théos_findnext()function.

The_dos_findnext()function finds the next name, if any, that matches the
arguments specified in a prior call tdos_findfirst(). Thefileinfo argument
must point to dind_t structure initialized by a previous call tdos_findfirst().
The contents of the structure will be altered as described if a match is found.

Returns

76

Value Meaning
0 Successful
-1 Error occurred; the function setgno to ENOENT, indicating that the

filename could not be matched.

Chapter 3 Functions

DOS _dos_freemem

_dos_freemem

Releases a block of memory previously allocateddrys_allocmem(.)

Syntax

#include <dos.h>

unsigned _dos_freemem (unsigned seg);
Parameter

seg Block to be released, a value returned by a previous catlds_allocmem(.)

Additional Information
The freed memory can no longer be used by the application program.

See also: _dos_allocmem()free()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function seteno to ENOMEM, indicating a bad

offset value (one that does not correspond to an offset returned by a
previous_dos_allocmem(xall) or invalid arena headers.

C Library Reference Chapter 3 77

_dos_getdate DOS

_dos_getdate

Gets the current system date.

Syntax

#include <dos.h>

void _dos_getdate (struct dosdate_t *date);
Parameter

date Current system date.

Additional Information
The date is returned indasdate_t structure, defined irdos.h>.
See also: _dos_gettime()_dos_setdate(,)_dos_settime(,)gmtime(),
localtime(), mktime(), time()
Returns
Nothing.

78 Chapter 3 Functions

DOS _dos_getftime

_dos_getftime

Gets the date and time that a file was last written.

Syntax
#include <dos.h>
unsigned _dos_getftime (int handle, unsigned *date,
unsigned *time);
Parameters
handle Target file; the file must be opened with a call ttos_open(Jor _dos_creat()
date Date-return buffer.

time Time-return buffer.

Additional Information

The date and time are returned in the words pointed ttatey andtime . The
values appear in the DOS date and time format as describedsnfindfirst.

See also: fstat(), stat()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function seteno to EBADF, indicating that an

invalid file handle was passed.

C Library Reference Chapter 3 79

_dos_gettime DOS

_dos_gettime

Gets the current system time.

Syntax

#include <dos.h>

void _dos_gettime (struct dostime_t *time);
Parameter

time Current system time.

Additional Information
The time is returned indostime_t structure, defined irdos.h>.
See also: _dos_getdate(,)_dos_setdate(,) _dos_settime(,)gmtime(),
localtime()
Returns
Nothing.

80 Chapter 3 Functions

DOS _dos_open

_dos_open

Opens an existing file.

Syntax

#include <dos.h>

#include <fcntl.h>

#include <share.h>

unsigned _dos_open (const char *filename, unsigned mode,
int *handle);

Syntax

Parameters

filename
Path to an existing file.

mode Specifies the file's access, sharing, and inheritance permissions.

handle Pointer to the handle for the opened file.

Additional Information

Themode argument specifies the file's access, sharing, and inheritance modes by
combining (with the OR operator) manifest constants from the three groups shown
below. At most, one access mode and one sharing mode can be specified at a time.

Constant Mode Meaning

O_RDONLY Access Read-only

O_WRONLY Access Write-only

O_RDWR Access Both read and write
SH_COMPAT Sharing Compatibility
SH_DENYRW Sharing Deny reading and writing
SH_DENYWR Sharing Deny writing
SH_DENYRD Sharing Deny reading
SH_DENYNO Sharing Deny neither

O_NOINHERIT Inheritance File is not inherited by the child process

See also: _dos_close(,)_dos_read()_dos_write()

C Library Reference Chapter 3 81

_dos_open DOS

Returns
Value Meaning
0 Successful
-1 Error occurred; the function setg'no to one of these:

EACCES Access denied (possible reasons include specifying a
directory or volume ID for filename, or opening a read-only
file for write access).

EINVAL Sharing mode specified when file sharing not installed, or
access-mode value is invalid.

EMFILE Too many open file handles.

ENOENT Path or file not found.

82 Chapter 3 Functions

DOS _dos_read

_dos_read

Reads a specified number of bytes of data from a file.

Syntax

#include <dos.h>
unsigned _dos_read (int handle, void *buffer, unsigned count,
unsigned *actual);

Parameters

handle File to read.

buffer Pointer to buffer to receive data.
count Number of bytes to read.

actual Pointer to the number of bytes actually read, which may be less than the number
requested.

Additional Information

If the number of bytes actually read is 0, it means the function tried to read at end-
of-file.

See also: _dos_close(,)_dos_open(,)_dos_write() read()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function setg'no to one of these:

EACCES Access denied (handle is not open for read access).
EBADF File handle is invalid.

C Library Reference Chapter 3 83

_dos_setdate DOS

_dos_setdate

Sets the current system date.

Syntax

#include <dos.h>
unsigned _dos_setdate (struct dosdate_t *date);

Parameter

date New system date.

Additional Information
The date is stored in thiesdate_t structure, defined irdos.h>.

See also: _dos_gettime()_dos_setdate(,)_dos_settime(,)gmtime(),
localtime(), mktime(), time()

Returns

Value Meaning
0 Successful
Not O Error occurred; the function setisno to EINVAL, indicating an invalid

date was specified.

84 Chapter 3 Functions

DOS _dos_setftime

_dos_setftime

Sets the date and time that a file was last written.

Syntax

#include <dos.h>
unsigned _dos_setftime (int handle, unsigned date,
unsigned time);

Parameters
handle Target file
date Date of last write

time Time of last write

Additional Information

Sets thedate andtime at which the file identified byiandle was last written to.
These values appear in the DOS date and time format:

Time Bits Meaning

0-4 Number of two-second increments (0-29)

5-10 Minutes (0-59)

11-15 Hours (0-23)

Date Bits Meaning

0-4 Day (1-31)

5-8 Month (1-12)

9-15 Year since 1980 (for example, 1989 is stored as 9)

See also: _dos_getftime() fstat(), stat()

Returns
Value Meaning
0 Successful
Not O Not successful; function seteno to EBADF, indicating that an

invalid file handle was passed.

C Library Reference Chapter 3 85

_dos_settime DOS

_dos_settime

Sets the current system time.

Syntax

#include <dos.h>
unsigned _dos_settime (struct dostime_t *time);

Parameter

time New system time.

Additional Information

Sets the current system time to the value stored idd$iene_t structure that
time points to, as defined kdos.h>.

See also: _dos_getdate(,)_dos_gettime()_dos_setdate(,)gmtime(),
localtime(), mktime()

Returns

Value Meaning
0 Successful
Not O Error occurred; the function setisno to EINVAL, indicating an invalid

time was specified.

86 Chapter 3 Functions

DOS _dos_write

_dos_write

Writes a specified number of bytes from a buffer to a file.

Syntax

#include <dos.h>
unsigned _dos_write (int handle, void const *buffer, unsigned
count, unsigned *actual);

Parameters

handle File to write to.

buffer Pointer to buffer to write from.
count Number of bytes to write.

actual Pointer to the number of bytes actually written, which can be less than the number
requested.

Additional Information

See also: _dos_close(,)_dos_open(,)_dos_read() write()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function setgno to one of these:
EACCES Access denietidndle references a file not open for write
access).

EBADF Invalid file handle.

C Library Reference Chapter 3 87

dup, dup2 stdio

dup, dup2

Dup creates a second file descriptor for an open file in the running task's file
descriptor table andup2 reassigns a file descriptor in the table.

Syntax

#include <io.h>
int dup (int handle);
int dup?2 (int handlel, int handle2);

Parameters

handle, handlel
Descriptor referring to an open file.

handle2
Any file descriptor value.
Additional Information

Operations on the file can be carried out using either the old or new file descriptor.
The type of access allowed for the file is unaffected by the creation of a new file
descriptor.

Thedup2() function forcesandle2 to refer to the same file 4andlel . If
handle2 is associated with an open file at the time of the call, that file is closed.

The C library keeps track of the number of duplications on a file connection. The
original connection will remain valid until the last duplication is closed or deleted.

See also: close() creat(), open()

Returns
Dup() returns the next available file descriptor for the file.
Dup2() returns O to indicate success.
Both functions return -1 if an error occurs andeseto to one of these values:
EBADF Invalid file descriptor.

EMFILE No more file descriptors available (too many open files).

88 Chapter 3 Functions

ecvt

ecvt

Converts a value to a character string.

Syntax

#include <stdlib.h>
char *ecvt (double value, int count, int *dec, int *sign);

Parameters
value Value to convert.
count Number of digits stored as a string. The function appends a null chaeacter

dec Points to an integer value giving the position of the decimal point with respect to
the beginning of the string. A 0 or negative integer value indicates that the decimal
point lies to the left of the first digit.

sign Points to an integer indicating the sign of the converted number.

Value Meaning

0 Positive

Not O Negative
Additional Information

Only digits are stored in the string. If the number of digitsine exceeds
count , the low-order digit is rounded. If there are fewer ttamt digits, the
string is padded with Os.

Obtain the position of the decimal point and the sigvatife from dec andsign
after the call.

This function uses a single statically allocated buffer for the conversion.
Subsequent calls overwrite the result.

See also: atof(), atoi(), atol(), fcvt(), gevt()

Returns
A pointer to the string of digits.

No error return.

C Library Reference Chapter 3 89

eof stdio

eof

Checks whether the file's current file pointer is EOF.

Syntax

#include <io.h>

int eof (int handle);

Parameter

handle Descriptor referring to an open file.

See also: clearerr(), feof(), ferror(), perror()

Returns
Value Meaning
1 Current position is end-of-file
0 Current position is not end-of-file
-1 Error occurred; the function setgno to EBADF, indicating an invalid

file descriptor

90 Chapter 3 Functions

ANSI exit, _exit

exit, _exit
Exit() terminates the calling task after cleanup aexit() terminates it
immediately.

Syntax

#include <process.h> /* for _exit() */
#include <stdlib.h>

void exit (int status);

void _exit (int status);

Parameter

status EXit status.

Additional Information

Exit() performs complete C library termination procedures. It calls the functions
registered bwtexit() andonexit() in LIFO order. It flushes all file buffers before
terminating the task and exits with the supplied status code.

_exit() performs quick C library termination procedures by invoking
rq_exit_io_job. It terminates the task, and informs the parent job with the supplied
status code. Typically, it sedtus to O to indicate a normal exit or to some

other value to indicate an error.

_exit() does not procesaexit() or onexit() functions or flush stream buffers.
See also: abort(), atexit(), onexit(),
rq_exit_io_job, System Call Reference
Returns
Nothing.

C Library Reference Chapter 3 91

exp ANSI

exp

Calculates the exponential of a double value.

Syntax

#include <math.h>

double exp (double x);

Parameter

X Value to calculate exponential for.

See also: log()

Returns
The exponential functionXe
HUGE_VAL on overflow, and the function seieno to ERANGE.
0 on underflow, but the function does noteseho.

This function does not return standard ANSI domain or range errors.

92 Chapter 3 Functions

ANSI fabs

fabs

Calculates the absolute value of a double value.

Syntax

#include <math.h>

double fabs (double x);

Parameter

X Value to calculate absolute value for.

See also: abs() labs(), cabs()

Returns
The absolute value.

No error return.

C Library Reference Chapter 3 93

fclose, fcloseall ANSI, stdio

fclose, fcloseall

Fclosecloses a specified stream dotbseallcloses all open streams.

Syntax

#include <stdio.h>
int fclose (FILE *stream);
int fcloseall (void);

Parameter

stream Pointer toFILE structure.

Additional Information

Thefcloseall()function closes all open streams excagin stdout andstderr. It
also closes and deletes any temporary files creatadifile().

In both functions, all buffers associated with the stream are flushed prior to closing.
System-allocated buffers are released when the stream is closed. Buffers assignec
by the user witlsetbuf() andsetvbuf() are not automatically released.

See also: close() fdopen(), fopen(), freopen()

Returns
Fclose()returns O if successful.
Fcloseall()returns the total number of streams closed.

Both functions return EOF to indicate an error.

94 Chapter 3 Functions

fcvt

fcvt

Converts a double value to a null-terminated string, indicating the sign and decimal
point location.
Syntax

#include <stdlib.h>
char *fcvt (double value, int count, int *dec, int *sign);

Parameters

value Value to convert. Stores the digitsvafue as a string and appends a null
characteko .

count Number of digits to store after decimal point. Excess digits are rounded off to
count places. If there are fewer thesunt digits, the string is padded with Os.

dec Points to an integer value, which gives the position of the decimal point with
respect to the beginning of the string. A 0 or negative integer value indicates that
the decimal point lies to the left of the first digit.

sign Points to an integer indicating the sigrvalfue .

Value Meaning

0 Positive

Not O Negative
Additional Information

Only digits are stored in the string. Obtain the position of the decimal point and
the sign ofvalue fromdec andsign after the call.

Thefcvt() function uses a single statically allocated buffer for the conversion.
Each call destroys the results of the previous call.

See also: atof(), atoi(), atol(), ecvt(), gcvt()

Returns
A pointer to the string of digits.

No error return.

C Library Reference Chapter 3 95

fdopen stdio

fdopen
Opens a stream associated with a file descriptor, allowing a file opened for low-
level 1/O to be buffered and formatted.

Syntax

#include <stdio.h>

FILE *fdopen (int handle, char *mode);

Parameters

handle Descriptor referring to an open file.

mode Specifies the open mode (type of access permitted) for the file.

Additional Information

This list gives thenode string, including required quotes, as used infoipen()
andfdopen() functions. It also relates theode string and the corresponding
oflag arguments used in tlopen()andsopen()functions.

Value Meaning

"r Opens for reading. If the file does not exist or cannot be found, the call
will fail. Relates to O_RDONLY.
"w" Opens an empty file for writing. If the given file exists, its contents are

destroyed. Relates to O_ WRONLY (usually O_WRONLY |
O_CREAT | O_TRUNC).

a" Opens for writing at the end of the file (appending); creates the file first
if it doesn't exist. Relates to O_WRONLY | O_APPEND (usually
O_WRONLY | O_CREAT | O_APPEND).

"r+" Opens for both reading and writing. The file must exist. Relates to
O_RDWR.
"w+" Opens an empty file for both reading and writing. If the given file

exists, its contents are destroyed. Relates to O_RDWR (usually
O_RDWR | O_CREAT | O_TRUNC).

"at+" Opens for reading and appending; creates the file first if it doesn't exist.
Relates to O_RDWR | O_APPEND (usually O_RDWR | O_APPEND |
O_CREAT)

Use thew" and'w+" types with care, as they can destroy existing files.

96 Chapter 3 Functions

stdio

fdopen

When a file is opened with the" or"a+" open mode, all write operations occur
at the end of the file, even if you've repositioned the file pointer dse®k()or
rewind(). Thus, existing data cannot be overwritten.

When the'r+" |, "w+" , or"a+" open mode is specified, both reading and writing
are allowed (the file is open for update). However, when you switch between
reading and writing, there must be an intervemigind() operation ofsetpos()
or fseek() which can reposition the file pointer, if desired.

In addition to these values, one of these characters can be includenoatdyut
between the quotation marks to specify the translation mode for <LF> characters.
Thet andb characters correspond to the constants used wpt®)andsopen()
functions, as listed below.

Value Meaning

t Open in text (translated) mode. <CR><LF> combinations are translated
into single <LF> characters on input and <LF> characters are translated
to <CR><LF> combinations on output.
<Ctrl-Z> is interpreted as an end-of-file character on input. In files
opened for reading or for reading/writing, checks for and removes
<Ctrl-Z> if possible, because <Ctrl-Z> may cafseek()to behave
improperly near the end of the file. Relates to O_TEXT.

b Open in binary (untranslated) mode; the above translations are
suppressed. Relates to O_BINARY.

If t orb is not given in thenode string, the translation mode is defined by the
default-mode variablefmode , contained ir<stdlib.h>.

Thet option is not part of the ANSI standard fopen() andfdopen(), do not use
it where ANSI portability is desired.

See also: fopen(), fclose() fcloseall() freopen(), open()

Returns

A pointer to the open stream.

A null pointer on error, such asorb appearing beformode.

C Library Reference Chapter 3 97

feof ANSI, stdio

feof

Tests for end-of-file on a stream.

Syntax

#include <stdio.h>
int feof (FILE *stream);

Parameter

stream Pointer toFILE structure.

Additional Information

Once end-of-file is reached, read operations return an end-of-file indicator until the
stream is closed or untiéwind(), fsetpos() fseek() orclearerr() is called.
Feof()is implemented as a macro.

See also: clearerr(), eof(), ferror(), perror()

Returns

Value Meaning
0 The current position is not end-of-file
Not O This is the first read operation that attempted to read past end-of-file

No error return.

98 Chapter 3 Functions

ANSI, stdio ferror

ferror

Tests for a read or write error on a stream.

Syntax

#include <stdio.h>
int ferror (FILE *stream);

Parameter

stream Pointer toFILE structure.

Additional Information

If an error occurred, the error indicator for the stream remains set until the stream is
closed or rewound, or untglearerr() is called. Ferror() is implemented as a
macro.

See also: clearerr(), eof(), feof(), fopen(), perror()

Returns

Value Meaning
0 Successful
Not O Error occurred

C Library Reference Chapter 3 99

fflush ANSI, stdio

fflush

Flushes a buffered stream (has no effect on an unbuffered stream).

Syntax

#include <stdio.h>
int fflush (FILE *stream);

Parameter

stream Pointer toFILE structure.

Additional Information

If the file associated witktream is open for outpufflush() writes the contents
of the buffer to the file. I§tream is open for inputfflush() clears the contents of
the buffer.

The stream remains open after the call.

Buffers are automatically flushed when they are full, witezam is closed, or
when a program terminates normally without clositigam .

See also: fclose() flushall(), setbuf()

Returns

Value Meaning
0 Buffer successfully flushed or
stream has no buffer or
stream is open for reading only
EOF Error occurred

100 Chapter 3 Functions

ANSI, stdio fgetc, fgetchar

fgetc, fgetchar
Fgetc()reads a single character from the current position of the specified stream
and increments the file pointer to the next charafgetchar() reads fronstdin
Syntax

#include <stdio.h>

int fgetc (FILE *stream);
int fgetchar (void);
Parameter

stream Pointer toFILE structure.

Additional Information
Thefgetchar() function is equivalent to
fgetc (stdin)

Fgetc()andfgetchar() are identical t@etc()andgetchar(), but they are
functions, not macros.

See also: fputc(), fputchar(), getc() getchar()

Returns
The integer value of the character read.

EOF on error or end-of-file. SindeOF is a legal integer value, ufe®f() or
ferror()) to distinguish between an error and an end-of-file condition.

C Library Reference Chapter 3 101

fgetpos ANSI, stdio

fgetpos
Gets a stream'’s file pointer position-indicator and stores it. This function does not
get the file pointer; use tHeell() function instead.

Syntax

#include <stdio.h>

int fgetpos (FILE *stream, fpos_t *pos);

Parameters

stream Pointer toFILE structure.

pos File pointer position-indicator storage.

Additional Information

The file pointer position-indicator value is storedgos_t format, which is used
only by thefgetpos()andfsetpos()functions. Thdsetpos()function can use
information stored imos to reset the file pointer fatream to its position at the
time fgetpos()was called.

See also: fsetpos()

Returns

Value Meaning
0 Successful
Not O Error occurred; the function seigno to one of these values:
EBADF The specified stream is not a valid file descriptor or is not
accessible.
EINVAL The stream value is invalid.

102 Chapter 3 Functions

ANSI fgets
fgets

Reads a specified number of characters from a stream and stores them in a string.
Syntax

#include <stdio.h>
char *fgets (char *string, int n, FILE *stream);

Parameters

string

n

Storage location for data. The newline character, if read, is included in the string.
A null charactek0 is appended.

Number of characters stored.nlis 1,string is empty.

stream Pointer toFILE structure.

Additional Information

Characters are read from the current stream position up to and including the first
newline characten , up to the end of the stream, or until the number of characters
read isn-1 , whichever comes first.

Thefgets()function is similar to thgets()function; howevergets()replaces the
newline character with a null character.

See also: fputs(), gets() puts()

Returns

Returns the string.

A null pointer on error or end-of-file. Udeof() orferror() to determine whether
an error occurred.

C Library Reference Chapter 3 103

filelength stdio

filelength

Gets the length in bytes of a file.

Syntax

#include <io.h>

long filelength (int handle);

Parameter

handle Descriptor referring to an open file, as returnecttsat() or open()

See also: chsize() creat(), fileno(), fstat(), open() stat()

Returns
The file length in bytes.

-1 on error. An invalid descriptor also setsno to EBADF.

104 Chapter 3 Functions

stdio fileno

fileno

Gets the file descriptor associated with a stream.

Syntax

#include <stdio.h>
int fileno (FILE *stream);

Parameter

stream Pointer toFILE structure.

Additional Information

This function lets you use the file descriptor I/O calls on streams; for example,
read(), write(), andlseek() To mix the two I/O systemggen()vs.fopen(),
read() vs.fread(), etc.), flush all I/O buffers when going from the buffered
system (for exampldwrite()) to the unbuffered system (for exampigite()).
Otherwise, you are likely to lose data.

Fileno() automatically flushes the 1/O buffers for the given stream.

See also: fdopen(), filelength(), fopen(), freopen()

Returns

The file descriptor currently associated with the stream. The result is undefined if
stream does not specify an open file.

No error return.

C Library Reference Chapter 3 105

floor ANSI

floor

Calculates théloor (largest integer that is less than or equal to a value) of a double
value.

Syntax

#include <math.h>

double floor (double x);

Parameter

X Value to calculate the floor for.

See also: ceil(), fmod()

Returns
The floor result.

No error return.

106 Chapter 3 Functions

stdio flushall

flushall
Writes the contents of all buffers associated with open output streams to their
associated files.

Syntax

#include <stdio.h>

int flushall (void);

Additional Information

Clears all input stream buffers of their current contents. All streams remain open
after the call. The next read operation reads new data into the buffers.

Buffers are automatically flushed when they are full, when streams are closed, or
when a program terminates normally without closing streams.

See also: fflush()

Returns
The number of open streams (input and output).

No error return.

C Library Reference Chapter 3 107

fmod ANSI

fmod

Calculates the floating-point remainder.

Syntax
#include <math.h>

double fmod (double x, double y);

Parameters

Y Floating-point values.

Additional Information

Calculates ofx/ y such that:

X=i*y+f
Where
i An integer.
f The floating-point remainderlf. has the same sign asand the

absolute value df is less than the absolute valugyof

See also: ceil(), fabs(), floor()

Returns
The remainder.
OifyisO.

This function does not return standard ANSI domain or range errors.

108 Chapter 3 Functions

ANSI, stdio fopen

fopen

Opens a file with the specified open mode.

Syntax

#include <stdio.h>
FILE *fopen (const char *filename, const char *mode);

Parameters

filename
Pathname of file.

mode Specifies the open mode (type of access permitted) for the file.

Additional Information

The character stringode, with required quotes, specifies the open mode for the
file, as described ifdopen().

See also: fdopen(), fclose() fcloseall() ferror(), fileno(), freopen(),
open(),setmode()
Returns
A pointer to the open file.

A null pointer on error.

C Library Reference Chapter 3 109

fprintf ANSI, stdio

fprintf

Prints formatted data to a stream.

Syntax

#include <stdio.h>
int fprintf (FILE *stream, const char *format
[, argument]...);

Parameters

stream Pointer toFILE structure.

format Formatted string consisting of ordinary characters, escape sequences, and (if
arguments follow) format specifications.

argument
Optional arguments.
Additional Information

The ordinary characters and escape sequences are cogtiedrto in order of
their appearance.

Theformat and optional arguments have the same form and function as described
in theprintf() function.

See also: fscanf(), printf() , sprintf()

Returns
The number of characters printed.

A negative value on output error.

110 Chapter 3 Functions

ANSI, stdio fputc, fputchar

fputc, fputchar

Fputc writes a single character to an output stream at the current position;
fputchar writes tostdout

Syntax

#include <stdio.h>

int fputc (int ¢, FILE *stream);

int fputchar (int c);

Parameters

c Character to be written.

stream Pointer toFILE structure.

Additional Information
Thefputchar() function is equivalent to
fputc (c, stdout)

Fputc() andfputchar() are similar tqoutc() andputchar(), but are functions
rather than macros.

See also: fgetc(), fgetchar(), putc(), putchar()

Returns
The character written.

EOF on error. SincBOF is a legal integer value, ulgror() to check for an
actual error.

C Library Reference Chapter 3 111

fputs

ANSI, stdio

fputs

Writes a string to the stream at the current file pointer.

Syntax

#include <stdio.h>
int fputs (const char *string, FILE *stream);

Parameters

string String to be output. The terminating null charaw@eis not copied.

stream Pointer toFILE structure.

See also: fgets() gets() puts()

Returns

Value Meaning
0 Successful
EOF Unsuccessful

112 Chapter 3

Functions

ANSI, stdio fread

fread

Reads up to the specified number of items of the specified size from the input
stream and stores them in a buffer.
Syntax

#include <stdio.h>
size_t fread (void *buffer, size_t size, size_t count,
FILE *stream);

Parameters

buffer ~Storage location for data.

size Item size in bytes.

count Maximum number of items to be read.

stream Pointer toFILE structure.

Additional Information

The file pointer associated wititream (if there is one) is increased by the number
of bytes actually read.

If the stream is opened in text mode, <CR><LF> pairs are replaced with single
<LF> characters. The replacement has no effect on the file pointer or the return
value.

The file pointer is indeterminate if an error occurs. The value of a partially read
item cannot be determined.

See also: fwrite(), read()

Returns

The number of full items actually read, which may be lessdbam if an error
occurs, if the end-of-file is encountered before reactingt , or if <CR>s were
removed.

0 and the buffer contents are unchangetzé orcount is 0.

0 on error. Use thieof() orferror() function to distinguish a read error from an
end-of-file condition.

C Library Reference Chapter 3 113

free ANSI

free

Deallocates a memory block.

Syntax

#include <stdlib.h>
void free (void *memblock);

Parameter

memblock
Points to a memory block previously allocated through a cakitoc(), malloc(),
orrealloc().

Additional Information

The number of bytes freed is the number of bytes specified when the block was
allocated, or reallocated, in the caseed#flloc(). After the call, the freed block is
available for allocation.

Attempting to free a memory block not allocated with the appropriate call (such as
thesbrk() function) may affect subsequent allocation and cause errors.

See also: calloc(), malloc(), realloc(), sbrk()

Returns
Nothing.

114 Chapter 3 Functions

ANSI, stdio freopen

freopen
Closes the file currently associated with a stream and reassigns a new file to the
stream.

Syntax

#include <stdio.h>
FILE *freopen (const char *filename, const char *mode,
FILE *stream);

Parameters

filename
Pathname of new file.

mode Open mode for the new file.

stream Pointer toFILE structure.

Additional Information

Thefreopen() function is typically used to redirestdin, stdout andstderrto
user-specified files.

Themode parameter is as describeddopen().
See also: fclose() fcloseall() fdopen(), fileno(), fopen(), open()
setmode()
Returns
A pointer to the newly opened file.

A null pointer value on error and the original file is closed.

C Library Reference Chapter 3 115

frexp ANSI

frexp

Gets the mantissa and exponent of a double value.

Syntax

#include <math.h>

double frexp (double X, int *expptr);
Parameters

X Value to find exponent for.

expptr Pointer to stored integer exponent

Additional Information

Breaks down the valueinto a mantissenand an exponemt, such that the
absolute value ahis greater than or equal to 0.5 and less than 1.0, and
x=m*2 N

See also: Idexp(), modf()
Returns
The mantissa value.

0 for both the mantissa and the exponenrtig O.

No error return.

116 Chapter 3 Functions

ANSI, stdio fscanf

fscanf

Reads and formats character data from the current position of a stream into the
specified locations.
Syntax

#include <stdio.h>
int fscanf (FILE *stream, const char *format [, argument]...);

Parameters
stream Pointer toFILE structure.

format Null-terminated format-control string, which controls the interpretation of the input
fields.

argument
Optional argument(s) specify location. Each argument must be a pointer to a
variable with a type that corresponds to a type specifiarimat . The results are
unpredictable if there are not enough arguments for the format specification. If
there are too many arguments, the extra arguments are evaluated but ignored.
Additional Information

Thefscanf() function reads all characterssttieam up to the first whitespace
character (space, tab, or newline), or the first character that cannot be converted
according tdormat .

Theformat parameter is as described in Hvanf()function.

See also: fprintf() , scanf() sscanf()

Returns

The number of fields that were successfully converted and assigned, not including
fields that were read but not assigned.

EOF for an error or end-of-file on stream before the first conversion.

0 if no fields were assigned.

C Library Reference Chapter 3 117

fseek

ANSI, stdio

fseek

Moves the file pointer to a specified location in a stream.

Syntax

#include <stdio.h>
int fseek (FILE *stream, long offset, int origin);

Parameters

stream Pointer toFILE structure.

offset

origin

Number of bytes from origin.

Initial position, specified as one of these, or beyond end-of-file. An attempt to
position the pointer before the beginning of the file causes an error.

Value Meaning

SEEK_CUR Current position of file pointer
SEEK_END End of file

SEEK_SET Beginning of file

Additional Information

118

This function clears the end-of-file indicator.

The next operation on the stream takes place at the new location. On a stream op«
for update, the next operation can be either a read or a write.

When a file is opened for appending data, the last I/O operation determines the
current file pointer position, not where the next write would occur. If no I/O
operation has yet occurred on a file opened for appending, the file position is the
start of the file.

For streams opened in text mofek()has limited use because <CR><LF>
translations can cause unexpected results. Thesaek()operations guaranteed

to work on streams opened in text mode are seeking with an offset of 0 relative to
anyorigin value, or from the beginning of the file with an offset value returned
by ftell().

Results are undefined on devices incapable of seeking, like terminals and printers.

See also: ftell(), Iseek() rewind()

Chapter 3 Functions

ANSI, stdio

fseek

Returns

Value Meaning
0 Successful
Not O Unsuccessful

C Library Reference

Chapter 3

119

fsetpos ANSI, stdio

fsetpos

Sets a stream's file pointer position-indicator.

Syntax

#include <stdio.h>
int fsetpos (FILE *stream, const fpos_t *pos);

Parameters

stream Pointer toFILE structure.

pos File pointer position-indicator storage, which is obtained in a prior call to
fgetpos()

Additional Information

This function clears the end-of-file indicator. After this call, the next operation on
the stream may be either input or output.

See also: fgetpos()

Returns

Value Meaning
0 Successful
Not O Error occurred; the function seigno to one of these values:
EBADF The specified stream is not a valid file descriptor or is not
accessible.
EINVAL The stream value is invalid.

120 Chapter 3 Functions

stdio fstat

fstat

Gets information on the file associated with the specified file descriptor.

Syntax

#include <sys/types.h>
#include <sys/stat.h>
int fstat (int handle, struct stat *buffer);

Parameters
handle Descriptor referring to an open file.

buffer Pointer to file-status structusgat .

Additional Information
The file-status structurgtat is defined incsys/stat.h>

If handle refers to a device, ttize andtime elements in thetat structure
are not meaningful.

Fstat() invokes the system calll_a_get_file_statusand adds the number of
seconds between epoch time and January 1, 1978, plus the local timezone factor,
defined intzset() This adjusts the time stamps of iRMX files to POSIX-standard
values.

This function performs a translation of iRMX OS file ownership rights and iRMX
OS access rights to POSIX as describedsiys/stat.h>

See also: chmod(), filelength(), stat(), <sys/stat.h> tzset()

Returns
Value Meaning
0 Successful
-1 Error occurred and the function setsno to EBADF, indicating an

invalid file descriptor

C Library Reference Chapter 3 121

ftell ANSI, stdio

ftell

Gets the current position of the file pointer for a stream.

Syntax

#include <stdio.h>
long ftell (FILE *stream);

Parameter

stream Pointer toFILE structure.

Additional Information

When a file is opened for appending data, the last I/O operation determines the
current file pointer position, not where the next write would occur. For example, if
a file is opened for an append and the last operation was a read, the file position is
the point where the next read operation would start, not where the next write would
start. When a file is opened for appending, the file pointer is moved to end-of-file
before any write operation. If no I/O operation has yet occurred on a file opened
for appending, the file position is the beginning of the file.

On devices incapable of seeking, such as terminals and printers, ostvelaen
does not refer to an open file, the return value is undefined.

See also: fseek() Iseek()

Returns

The current file position expressed as an offset relative to the beginritnganf .
The value returned may not reflect the physical byte offset for streams opened in
text mode, since text mode causes <CR><LF> translation ftélge with the

fseek()function to return to file locations correctly.

1L on error, and the function setsno to one of these values:

EBADF Bad file number. The stream argument is not a valid file descriptor
value or does not refer to an open file.

EINVAL Invalid argument. An invalid stream argument was passed to the
function.

122 Chapter 3 Functions

ftoa

ftoa

Converts a double value to a formatted string.

Syntax

#include <stdlib.h>
char *ftoa (double value, char *string, unsigned int iplaces,
unsigned int fplaces);

Parameters
value Value to convert.

string Pointer to a character array where a null-terminated character string is written.

iplaces
Desired number of significant integer digiiis () in the string.

fiaces Desired number of significant fractional digit§ () in the string. An integer
exponentéee) also returns in the string.
Additional Information
The converted string has this format
[-iii.fffE[-]eee
The value of the number is truncated, not rounded. The algorithritah@) uses

is accurate to eighteen significant digitsiplaces plusfplaces exceeds
eighteen, they are adjusted so that only eighteen significant digits are used.

For portability, use theprintf() %econversion specifier. Use the optional field
width and precision to control the number of fractional digits. Spgratf() %e
conversion specifier produces a string in the forjfdditiddE+ee , with one
integer digit left of the decimal point.

See also: sprintf()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 123

fwrite ANSI, stdio

fwrite

Writes a specified number of characters to a stream.

Syntax

#include <stdio.h>
size_t fwrite (const void *buffer, size_t size, size_t count,
FILE *stream);

Parameters

buffer Pointer to data to be written.

size Item size in bytes.

count Maximum number of items to be written.

stream Pointer toFILE structure.

Additional Information

The file pointer associated witttream (if there is one) is incremented by the
number of bytes actually written.

If stream is opened in text mode, each <CR> is replaced with a <CR><LF> pair.
The replacement has no effect on the return value.

See also: fread(), write()

Returns

The number of full items actually written, which may be less tvant if an
error occurs.

On error, the file-position indicator cannot be determined.

124 Chapter 3 Functions

gevt

gevt
Converts a double value to a string of significant digits, and places them in a
specified location.

Syntax

#include <stdlib.h>
char *gcvt (double value, int digits, char *buffer);

Parameters
value Value to convert.
digits Number of significant digits stored.

buffer ~ Storage location for result. Should be large enough to accommodate the converted
value plus a terminating null character, which is automatically appended.

Additional Information

There is no provision for overflow.

Thegcvt() function attempts to produce significant digits in decimal format. If
this is not possible, it produces them in exponential format. Trailing zeros may be
suppressed in the conversion.

See also: atof(), atoi(), atol(), ecvt(), fevt()

Returns
A pointer to the string.

No error return.

C Library Reference Chapter 3 125

_get_arguments

_get_arguments

Sets up the standard C command line parser.

Syntax
#include <rmx_c.h>

int _get_arguments (int *argc, char **argv, int argv_size,
char *cmd_buf, int buf_size);

Parameters
argc Count of command line arguments.

argv Array of pointers to arguments.
argv_size
Size ofargv array.
cmd_buf
Buffer containing parsed arguments pointed tatgy elements.
buf_size
Size ofcmd_buf array.

Additional Information

This function makes successive callsdqoc_get_charto retrieve characters one at
a time, parsing the command line into the standaydlargv for main().

The_get_arguments(unction can be called during run-time; however, the
startup code normally invokes this function before your application calls main().
You can modify the startup code if you have any application-specific initialization
requirements that need to be performed before main(). You can also modify the
startup code indirectly with the iRMX configuration process.

See also: Configuring the C librargystem Configuration and Administration

Command Line Parsing

Since_get_argumentsusesq_c_get_char, the HI CLI is bypassed. This allows
UNIX-style "-x" flags to be interpreted exactly as expected by a portable C
application. Also, the case of each command line argument is preserved; the
arguments are not forced to either upper or lower case.

Apostrophe (") and quotation (") characters delimit strings on the command line.
Quoted strings permit the use of HI special characters within the string, removing

126 Chapter 3 Functions

_get_arguments

the semantics of any characters within the string. For example, if an ampe&jsand (
is enclosed in quotation characters, the ampersand is no longer recognized as the
continuation character. The other special characters are the semjgolbe (ipe
symbol (), brackets[(and]), and the space.

Each of the pair of delimiters surrounding the string must be the same. To include
the quoting apostrophe or quotation character inside the string, you must specify
the quoting character twice, for exampienter the "™quoted string™ at

the prompt" . You can achieve the same effect by using the apostrophe, for
examplercan't"

The parser reduces two successive apostrophes or quotation characters outside of
another pair of apostrophes or quotation characters to one apostrophe or quotation
character. For exampl&here™ outside all pairs of quotation marks is reduced
to"here” . This takes place before parsing of the command line.

When a backslash (\) appears on the command line, the backslash is removed and
the next character is passed on to the application without interpretation. This is
helpful in porting programs that expect and use \ as an escape character.

See also: rg_c_get_char System Call Referencgetopt()

Returns

0 always returns.

C Library Reference Chapter 3 127

getc, getchar ANSI, stdio

getc, getchar
Getc() reads a single character from a stream and increments the associated file
pointer to point to the next charactgetchar() reads fromstdin

Syntax

#include <stdio.h>

int getc (FILE *stream);
int getchar (void);
Parameter

stream Pointer toFILE structure.

Additional Information
Thegetchar() macro is identical to:
getc (stdin)

Getc() andgetchar() are identical tdgetc() andfgetchar(), but are macros
rather than functions.

See also: fgetc(), fgetchar(), putc(), putchar()

Returns
The integer value of the character read.

EOF on error or end-of-file. SindeOF is a legal integer value, usef() or
ferror()) to distinguish between an error and an end-of-file condition.

128 Chapter 3 Functions

DOS getch, getche

getch, getche
Getch() reads a single character from the console without echgéatghe()
echoes the character read.

Syntax

#include <conio.h>

int getch (void);

int getche (void);

Additional Information
Neither function reads <Ctrl>-<C>.

When reading a function key or cursor-moving key, these functions must be called
twice; the first call returns 0 or Oxe0, and the second call returns the actual key
code.

See also: cgets() getchar(), ungetch()

Returns
The character read.

No error return.

C Library Reference Chapter 3 129

getenv ANSI, stdio

getenv

Searches the environment-variable table for a specified entry.

Syntax

#include <stdlib.h>
char *getenv (const char *varname);

Parameters

varname
Name of environment variable being sought. V¥é@ame argument should
match the case of the environment variable.

Additional Information

Thegetenv()function is case-sensitive.

The first call togetenv()sets up an environment-variable table shared by all tasks

using the C library. A prototype for the table is contained in theddefig:r?env
Whengetenv()is called for the first time, the table is initialized from
:config:r?env You can create an environment-variable file locafiypg:r?eny,
thatgetenv()uses in addition taonfig:r?eny as a basis for the table. The
maximum allowable number of entries in the environment-variable table is 40.
Entries in the?envfiles are of this form:

varname = [ASCII string]

A space character is required on both sides of the equal sitgtémf() parsing.
For example, a typical entry inonfig:r?envappears like this.

TZ = PST8PDT
See also: putenv(), tzset()
Environment variablesSystem Configuration and Administration
Returns

A pointer to the environment-variable table entry containing the current string
value ofvarname . To update the entry, pass this pointer topiltenv() call.

A null pointer if the given variable is not currently defined.

130 Chapter 3 Functions

_get_cs

_get_cs

Returns an application’s current code segment.

Syntax
#include <rmx_c.h>
selector _get_cs (void);

Additional Information

Use this function for obtaining an application’s code segment. This function can be
used for all memory models, i.e., compact and large, and it is the only function
which can used for accessing a flat model application’s code segment.

See also: _get_ds()_get_ss(ommands

Returns

The current value of the code segment register.

C Library Reference Chapter 3 131

_get_ds

_get _ds

Returns an application’s current data segment.

Syntax

#include <rmx_c.h>
selector _get_ds (void);

Additional Information

Use this function for obtaining an application’s data segment. This function can be
used for all memory models, i.e., compact and large, and it is the only function
which can used for accessing a flat model application’s data segment.

See also: _get _cs()_get_ss(ommands

Returns

The current value of the data segment register.

132 Chapter 3 Functions

_get_ss

_get_ss

Returns an application’s current stack segment.

Syntax
#include <rmx_c.h>

selector _get_ss (void);

Additional Information

Use this function for obtaining an application’s stack segment. This function can
be used for all memory models, i.e., compact and large, and it is the only function
which can used for accessing a flat model application’s stack segment.

See also: _get_cs()_get_ds()commands

Returns

The current value of the stack segment register.

C Library Reference Chapter 3 133

_get_info

_get_info

Obtains the C library informatioBINFO_STRUCTfor the calling task.

Syntax

#include <rmx_c.h>

int _get_info (unsigned int count, CINFO_STRUCT *cinfo);

Parameters

count Number of elements to be returnedCiNFO_STRUCT

cinfo Pointer toCINFO_STRUCT

Additional Information

TheCINFO_STRUCT part of the resources allocated to each task that uses the C
library, contains these elements:

Element
int num_eios_bufs

unsigned long *
accounting

unsigned short
num_accounting
int num_clib_functs

unsigned char *flags

134 Chapter 3

Description

Number of EIOS buffers per open file connection
allocated on behalf of the calling task. This is used in
the call torg_s_openmade by théopen() or open()
functions.
Pointer to an array containing a counter for each
configured function in the C library. The C library uses
this array to keep track of the number of times a function
has been called since the library was loaded, and to
indicate whether or not a function is configured.
Size of the accounting array.

Number of functions implemented in this version of the
C Library.

One entry per function indicating whether the function is
configured.

Functions

_get_info

|:| Note

For flat model applications only, treat the accounting and flags
parameters as two separate fields each in the structure. The first
field has the parameter name listed above and is a near pointer.
The second field has the same name with _seg appended at the
end. Itis a segment selector for the pointer. For example,
accounting is a pointer and accounting_seg is the selector to it.

See also: _cstop() <rmx_c.h> _set_info()

Returns
Value Meaning
0 Successful
-1 Unsuccessful

C Library Reference Chapter 3 135

getopt stdio

getopt

Gets the next argument option letter that matches recognized option letters.

Syntax

#include <stdio.h>

char getopt (int argc, char **argv, char optstring);

char *optarg /* Global variables affected by getopt() */
int optind

Parameters

argc, argv
Standard command line arguments passed to main().

optstring
A string of recognized option letters.
Additional Information

This function compares command line arguments fouradgw with optstring
The found argument is indicated in the global variabpearg andoptind
whereoptarg points to the argument, andtind is set to thargv index of the
next argument on the command line. On return fgerapt , optarg is set to
point to the start of the option argument, if any.

If a letter inoptstring is followed by a colon, the option is expected to have an
argument that may be separated by white space in the command line.

See also: _get_arguments

Returns
The next letter imrgv that matches a letter aptstring

EOF when all options have been processed.

136 Chapter 3 Functions

getpid, getuid

getpid, getuid
Getpid gets the calling task's connection token (processgéid gets the calling
task's user ID.

Syntax

#include <process.h>

pid_t getpid (void);

uid_t getuid (void);

Additional Information
Getuid() invokes the system callg_get_default_userandrq_inspect_user

See also: rg_get_default_user rq_inspect_user System Call Reference
mktemp()

Returns

No error return.

C Library Reference Chapter 3 137

_get_rmx_conn stdio

_get_rmx_conn

Translates a file descriptor to a valid iRMX connection token, usable as a
parameter in iRMX system calls.

Syntax

#include <rmx_c.h>
selector _get_rmx_conn (int handle);

Parameter

handle Descriptor referring to an open file.

Additional Information

Use this function in code that mixes C library functions with direct iRMX system
calls.

File descriptors are maintained on a per-task basis. When a file is opened, a small
non-negative file descriptor is returned as specified by POSIX. The file descriptor
is not an iRMX connection; it is an index into an internal table of iIRMX
connections.

|:| Note

C string tokens arehar values separated by delimiter characters;
an iRMX connection token isselector value. Do not confuse
the C concept of a character string token with the iIRMX
connection token.

See also: _put_rmx_conn, <rmx_c.h>

Returns
A valid iRMX connection token.

-1 if unsuccessful.

138 Chapter 3 Functions

ANSI, stdio gets

gets

Gets a line fronstdinand stores it in the specified location.

Syntax

#include <stdio.h>

char *gets (char *buffer);
Parameter

buffer ~ Storage location for input string.

Additional Information

The line consists of all characters up to and including the first newline character
\n . Thegets()function replaces the newline character with a null charscter
before returning the line.

Thefgets()function retains the newline character.

See also: fgets() fputs(), puts()

Returns
Returns its argument if successful.

A null pointer on error or end-of-file. Uderror() orfeof() to determine which
one has occurred.

C Library Reference Chapter 3 139

getw stdio

getw
Reads the next integer from a stream and increments the associated file pointer (if
there is one) to point to the next unread value.

Syntax

#include <stdio.h>

int getw (FILE *stream);

Parameter

stream Pointer toFILE structure.

Additional Information
Thegetw() function does not assume any special alignment of items in the stream.

Thegetw() function is provided primarily for compatibility with previous libraries.
Portability problems may occur witketw(), since the integer size and byte
ordering can differ across systems.

See also: putw()

Returns
The integer value read.

EOF on error or end-of-file. Since the EOF value is also a legitimate integer value,
usefeof() orferror() to verify an end-of-file or error condition.

140 Chapter 3 Functions

ANSI gmtime

gmtime

Converts a time value to a structure.

Syntax

#include <time.h>
struct tm *gmtime (const time_t *timer);

Parameter

timer Pointer to storetim structure, which represents the seconds elapsed since epoch
time. This value is usually obtained from a call totthee() function.

Additional Information

Thegmtime() function breaks down th@mer value and stores it inta
structure. The structure result reflects GMT, not local time.

Thegmtime(), mktime(), andlocaltime() functions use a single statically
allocated structure to hold the result. Subsequent calls to these functions destroy
the result of any previous call.

See also: asctime() localtime(), time(), <time.h> for description ofm
structure
Returns
A pointer to them structure.

No error return.

C Library Reference Chapter 3 141

is Functions ANSI

IS Functions

Test integers representing ASCII characters for specified conditions.

Syntax

#include <ctype.h>
int isalnum (int c);
int isalpha (int c);
int isascii (int c);
int iscntrl (int c);
int isdigit (int c);
int isgraph (int c);
int islower (int c);
int isprint (int c);
int ispunct (int c);
int isspace (int c);
int isupper (int c);
int isxdigit (int c);

Parameter

c Integer to be tested.

Additional Information
These functions are implemented as functions and macros. The test conditions are

Function Test Conditions

isalnum() Alphanumeric (A-Z, a-z, or 0-9)
isalpha() Letter (A-Z or a-z)

isascii() ASCII character (Ox00-0x7F)

iscntrl() Control character (0x00-0x1F or 0x7F)
isdigit() Digit (0-9)

isgraph() Printable character except space
islower() Lowercase letter (a-z)

isprint() Printable character (0x20-0x7E)
ispunct() Punctuation character

isspace() White-space character (0x09-0x0D or 0x20)
isupper() Uppercase letter (A-2Z)

isxdigit() Hexadecimal digit (A-F, a-f, or 0-9)

142 Chapter 3 Functions

ANSI is Functions

All of these functions excefgascii()produce a defined result only for integer
values corresponding to the ASCII character set, or for the nonASCII value EOF.

See also: toascii(), tolower(), toupper()

Returns
Value Meaning
Not O The integer satisfies the test condition.
0 It does not.

C Library Reference Chapter 3 143

Isatty stdio

isatty
Determines whether a file descriptor is associated with a character device: a
terminal, console, printer, or serial port.

Syntax

#include <io.h>

int isatty (int handle);

Parameter

handle Descriptor referring to device to be tested.

Returns

Value Meaning

Not O The device is a character device.

0 Itis not. Ifhandle is an invalid file descriptor, the function also sets
errno to EBADF.

144 Chapter 3 Functions

itoa

itoa
Converts an integer of the specified base to a null-terminated string of characters
and stores it.

Syntax

#include <stdlib.h>

char *itoa (int value, char *string, int radix);
Parameters

value Number to convert.

string String result, up to 17 bytes.

radix Specifies the base @alue ; must be in the range 2-36.

Additional Information

If radix equals 10 andalue is negative, the first character of the staseitig
is the minus sign-().

If radix is greater than 10, digits in the converted string representing values 10
through 35 are the charactershroughz.

See also: Itoa(), ultoa()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 145

itoh

itoh
Converts an integer into the equivalent null-terminated, hexadecimal string and
stores it.

Syntax

#include <stdlib.h>
char *itoh (int n, char *buffer);

Parameters

n Integer to convert.

buffer Pointer to a string. The buffer must be large enough to hold the largest integer on
the target system.

Additional Information

Theitoh() function converts all non-numeric hexadecimal characters to lower
case. This function also does not place a leading 0 character in the buffer.

For portability, use theprintf() %x conversion specifier.

See also: sprintf()

Returns
A pointer to the converted string.

No error return.

146 Chapter 3 Functions

ANSI

labs

labs

Calculates the absolute value of a long integer.

Syntax

#include <stdlib.h>

#include <math.h>

long labs (long n);

Parameter

n Long integer to calculate absolute value for.

See also: abs() fabs(), cabs()

Returns
The absolute value result.

No error return.

C Library Reference

Chapter 3

147

ldexp ANSI

ldexp

Computes a real number from the mantissa and exponent.

Syntax

#include <math.h>
double Idexp (double x, int exp);

Parameters
X Mantissa value.
exp Integer exponent.

See also: frexp(), modf()

Returns
Returnsx * 2€XP

+HUGE_VAL (depending on the sign ®j on overflow, and the function sets
errno to ERANGE.

This function does not return standard ANSI domain or range errors.

148 Chapter 3 Functions

ANSI Idiv

Idiv
Divides numerator by denominator, and computes the quotient and remainder.

Syntax

#include <stdlib.h>
Idiv_t Idiv (long int numer, long int denom);

Parameters

numer Numerator.

denom Denominator. If the denominator is O, the program will terminate with an error
message.

Additional Information

The sign of the quotient is the same as that of the mathematical quotient. Its
absolute value is the largest integer that is less than the absolute value of the
mathematical quotient.

Theldiv() function is similar to theiv() function, except that the arguments and
the members of the returned structure are long integers.

See also: div()

Returns

Aldiv_t structure, comprising both the quotient and the remainder, defined in
<stdlib.h>.

C Library Reference Chapter 3 149

Ifind

Ifind

Performs a linear search for a specified key in an unsorted array.

Syntax

#include <search.h>

char *Ifind (const void *key, const void *base,
unsigned int *num, unsigned int width,
int (*compare) (const void *elem1,
const void *elem2));

Parameters

key Value being sought.

base Pointer to base of the array to be searched.
num Number of elements in the array.

width ~ Width of elements in bytes.

compare
Pointer to a user-supplied routine that compares two array elemients, and
elem2 , and returns a value specifying their relationship.

eleml Pointer to the key for the search.

elem2 Pointer to the array element to be compared with the key.

Additional Information

Thelfind() function calls theompare routine one or more times during the

search, passing pointers to two array elements on each call. This routine must
compare the elements, then return a non-0 value if the elements are different, or 0
if the elements are identical.

See also: bsearch() Isearch() gsort()

Returns
A pointer to the array element that matckeg.

A null pointer if a match is not found.

150 Chapter 3 Functions

ANSI localeconv

localeconv

Gets detailed information on locale settings.

Syntax

#include <locale.h>

struct Iconv *localeconv (void);
Additional Information

This information is stored inlaonv structure, defined irlocale.h>. Subsequent
calls tosetlocale()with category values of LC_ALL, LC_MONETARY, or
LC_NUMERIC will overwrite the contents of this structure.

See also: <locale.h>, setlocale() strcoll(), strftime(), strxfrm()

Returns

A pointer to ariconv structure.

C Library Reference Chapter 3 151

localtime ANSI, stdio

localtime

Converts a time stored asime_t value and corrects for the local timezone.

Syntax

#include <time.h>
struct tm *localtime (const time_t *timer);

Parameter

timer Pointer to stored time, which represents the seconds elapsed since epoch time; this
value is usually obtained from thiene() function.

Additional Information

Thelocaltime() function makes corrections for the local timezone if the user first
sets the environment variabi&. Then, three other environment variables
(timezone , daylight , andtzname) are automatically set as well.

See also: Description of these variable&set()
Tz is not part of the ANSI standard definitionlotaltime().

Thegmtime(), mktime(), andlocaltime() functions use a single statically
allocatedm structure for the conversion. Each call to one of these functions
destroys the result of the previous call.

See also: asctime() ctime(), gmtime(), time()

Returns

A pointer to them structure, which has the integer elements described in
<time.h>.

152 Chapter 3 Functions

ANSI log, log10

log, log10
Log() calculates the natural logarithm of a value Bgd 0()calculates the base-
10 logarithm.

Syntax

#include <math.h>
double log (double x);
double log10 (double x);

Parameter

X Value to find logarithm for.

See also: exp(), matherr(), pow()

Returns
The logarithm of the argument

-HUGE_VAL if x is negative; the function prints a DOMAIN error message to
stderrand seterrno to EDOM.

-HUGE_VAL if x is 0; the function prints a SING error messagstderrand sets
errno to ERANGE.

These functions do not return standard ANSI domain or range errors.

C Library Reference Chapter 3 153

longjmp ANSI

longjmp

Restores the context, previously savedémp().

Syntax

#include <setjmp.h>
void longjmp (jmp_buf context, int value);

Parameters

context
Context previously stored Isetimp().

value Value to be returned teetjmp(); must be non-0. If 0, the value 1 is returned to
the previoussetjmp() call.

Additional Information

The previous call tsetjmp() causes the current context to be savembitext

A subsequent call tongjmp() restores the context and returns control to the point
immediately following the correspondisgtjmp() call. Execution resumes as if
value had just been returned Bgtjmp().

The values of all local variables (except register variables) that are accessible to th
routine receiving control contain the values they had vitwegimp() was called.
The values of register variables are unpredictable.

Observe these restrictions when udorggjmp():

- Do not assume that the values of the register variables will remain the same.
The values of register variables in the routine caliegymp() may not be
restored to the proper values aftargimp() is executed.

- Do not usdongjmp() to transfer control out of an interrupt-handling routine.

See also: setjmp()

Returns
Nothing.

154 Chapter 3 Functions

Isearch

Isearch

Performs a linear search for a specified value in an unsorted array, appending the
value to the array if not found.
Syntax

#include <search.h>

char *Isearch (const void *key, const void *base, unsigned int
*num, unsigned int width, int (*compare)
(const void *elem1, const void *elem2));

Parameters
key Value being sought.
base Pointer to base of the array to be searched.

num Number of elements in the array.

width ~ Width of elements in bytes.

compare
Pointer to a user-supplied routine that compares two array elemients, and
elem2 , and returns a value specifying their relationship.

eleml Pointer to the key for the search.

elem2 Pointer to the array element to be compared with the key.

Additional Information

Thelsearch()function calls theompare routine one or more times during the
search, passing pointers to two array elements on each call. This routine must
compare the elements, then return a non-0 value if the elements are different, or 0
if the elements are identical.

See also: bsearch() Ifind()

Returns
A pointer to the array element that matckeg.

A pointer to the newly added element in the array if a match is not found.

C Library Reference Chapter 3 155

Iseek stdio

Iseek

Moves the file pointer to a location specified as an offset from the origin in a file.

Syntax

#include <io.h>
#include <unistd.h>
off_t Iseek (int handle, off_t offset, int origin);

Parameters
handle Descriptor referring to an open file.

offset Number of bytes fromorigin , specified as one of these constants, or beyond end-
of-file.

Value Meaning

SEEK_SET Beginning of file

SEEK_CUR Current position of file pointer
SEEK_END End of file

origin Initial position.

Additional Information
The next operation on the file occurs at the new location.

Thelseek()function can reposition the pointer anywhere in a file and beyond the
end of the file. An attempt to position the pointer before the beginning of the file
causes an error.

Results are undefined on devices incapable of seeking, like terminals and printers.

See also: fseek()

Returns
The offset, in bytes, of the new position from the beginning of the file.
-1L on error, and the function segno to one of these values:
EBADF Invalid file descriptor.

EINVAL Invalid value fororigin , or position specified byffset is before
the beginning of the file.

156 Chapter 3 Functions

stdio

Itell

ltell

Sets the absolute position of the file pointer for the next 1/O operation.

Syntax

#include <io.h>

long ltell (int handle);
Parameter

handle Descriptor referring to an open file.

Additional Information
This function is equivalent to
Iseek (handle, OL, SEEK_CUR)

See also: Iseek()

Returns

The absolute position of the next byte in the file.

-1 with errno set to EBADF if unsuccessful.

C Library Reference

Chapter 3

157

[toa

ltoa
Converts a long integer of the specified base to a null-terminated string of
characters and stores it.

Syntax

#include <stdlib.h>
char *ltoa (long value, char *string, int radix);

Parameters
value Number to convert.
string String result, up to 34 bytes.

radix ~ Base ofvalue ; must be in the range 2-36.

Additional Information

If radix equals 10 andalue is negative, the first character of the stored string is
the minus sign (-).

If radix is greater than 10, digits in the converted string representing values 10
through 35 are the charactershroughz.

See also: itoa(), Itos(), utoa()

Returns
A pointer to the converted string.

No error return.

158 Chapter 3 Functions

Itoh

ltoh

Converts a long integer to a null-terminated hexadecimal string and stores it.

Syntax

#include <stdlib.h>

char *ltoh (unsigned long value, char *string);
Parameters

value Integer to convert.

string String result, up to 34 bytes.

Additional Information
This function does not place leading O characters in the result.

This function produces hexadecimal characters in lower a&sé. (For
portability, use theprintf() %Ix conversion specifier.

See also: sprintf()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 159

ltos

ltos
Converts a long integer to a null-terminated string of characters and stores it;
negative base values are acceptable.

Syntax

#include <stdlib.h>
char *ltos (long value, char *string, int radix);

Parameters
value Number to convert.
string String result, up to 34 bytes.

radix ~ Base ofvalue ; must be in the range 2 to 36 or -2 to -36.

Additional Information
The absolute value @adix is passed to this function as the number base.

Digits in the converted string representing values 10 through 35 are the characters
throughz.

See also: Itoa(), Itoh()

Returns
A pointer to the converted string.

No error return.

160 Chapter 3 Functions

ANSI malloc

malloc

Allocates a memory block of the specified size.

Syntax

#include <stdlib.h>

void *malloc (size_t size);
Parameter

size Bytes to allocate.

Additional Information

The allocated block may be larger than the specified size, including space required
for alignment and maintenance information. The memory is suitably aligned for
storage of any type of object.

Always examine the return fromalloc(), even if the amount of memory
requested is small.

See also: calloc(), free(), realloc()

Returns

A pointer to the allocated space. To get a pointer to a type otherdidanuse a
type cast on the return value.

For a size of 0 bytespalloc() returns a NULL.

If unsuccessful, it returns a NULL pointer.

|:| Note

For a size of 0 bytes, the NULL returnedrbglloc() is a
non-standard implementation.

C Library Reference Chapter 3 161

matherr

matherr

Processes errors generated by the functions of the math library.

Syntax

#include <math.h>
int matherr (struct exception *except);

Parameter

except Pointer to an exception structure.

Additional Information

When an error occurs in a math functiamtherr() is called with a pointer to the
exception structure defined irmath.h>.,

See also: acos() asin(), atan(), Bessel functions;os() exp(), log(),
pow(), sin(), sqrt(), tan()
Returns

Value Meaning
Not O Successful
0 Error occurred

162 Chapter 3 Functions

ANSI mblen

mblen

Gets the length and determines the validity of a multibyte character.

Syntax

#include <stdlib.h>

int mblen (const char *mbstr, size_t count);

Parameters

mbstr A pointer to a sequence of bytes (a multibyte character) to check.
count The number of bytes to check.

See also: mbstowcs() mbtowc(), westombs() wectomb()

Returns
The length, in bytes, of the multibyte character.
0 if mbstr is a null pointer or the object that it points to is the wide-character null.

-1 if the object thatbstr points to does not form a valid multibyte character
within the firstcount characters, up to MB_CUR_MAX.

C Library Reference Chapter 3 163

mbstowcs ANSI

mbstowcs

Converts a sequence of multibyte characters to a sequence of wide characters, as
determined by the current locale; stores the resulting wide-character string at the
specified address.

Syntax

#include <stdlib.h>
size_t mbstowcs (wchar_t *wcstr, const char *1mbstr,
size_t count);

Parameters
westr The address of a sequence of wide characters.
mbstr The address of a sequence of multibyte characters.

count The number of multibyte characters to convert.

Additional Information

If mbstowcs()encounters the null character either before or wheeount

occurs, it converts the null character to a wide-character null and stops. Thus, the
wide-character string atcstr is null-terminated only if it encounters a null
character during conversion.

If the sequences pointed to Wwystr andmbstr overlap, the behavior is
undefined.

The result is similar to a series of callanibtowc().

See also: mblen(), mbtowc(), westombs() wctomb()

Returns

The number of converted multibyte charactersocont if the wide-character
string is not null-terminated.

-1 on encountering an invalid multibyte character.

164 Chapter 3 Functions

ANSI mbtowc

mbtowc

Converts a multibyte character to a corresponding wide character.

Syntax

#include <stdlib.h>
int mbtowc (wchar_t *wchar, const char *mbchar, size_t count);

Parameters
wchar A pointer to the wide character produced.
mbchar A pointer to a sequence of bytes (a multibyte character).

count The number of bytes to check.

Additional Information
Mbtowec() will not examine more than MB_CUR_MAX bytes.

See also: mblen(), mbstowcs() westombs() wetomb()

Returns
The length in bytes of the multibyte character.
0 if mbchar is a null pointer or the object that it points to is a wide-character null.

-1 if the object thatnbchar points to does not form a valid multibyte character
within the firstcount characters.

C Library Reference Chapter 3 165

memccpy

memccpy
Copies characters from one buffer to another, halting when the specified character
is copied or when the specified number of bytes have been copied.

Syntax

#include <string.h>

void * memccpy (void *dest, void *src, int c,

unsigned int count);

Parameters

dest Pointer to destination buffer.

src Pointer to source buffer.

c Last character to copy.

count Number of characters.

See also: memchr(), memcmp() memcpy() memset()

Returns
A pointer to the byte idest that immediately follows the character

A null pointer if unsuccessful.

166 Chapter 3 Functions

ANSI memchr

memchr

Finds the first occurrence of a character in a buffer and stops when it finds the
character or when it has checked the specified number of bytes.

Syntax

#include <string.h>
void *memchr (const void *buf, int ¢, size_t count);

Parameters
buf Pointer to buffer.
c Character to look for.

count Number of characters to check for.

See also: memccpy() memcmp() memcpy() memset() strchr()

Returns
A pointer to the first location af in buf .

A null pointer if unsuccessful.

C Library Reference Chapter 3 167

memcmp ANS]I

memcmp
Compares the specified number of bytes of two buffers and returns a value
indicating their relationship.

Syntax

#include <string.h>
int memcmp (const void *bufl, const void *buf2, size_t count);

Parameters

bufl First buffer.

buf2 Second buffer.

count Number of characters.

See also: memccpy() memchr(), memcpy() memset() strcmp(),

strncmp()
Returns
Value Meaning
<0 bufl less than buf2
=0 bufl identical to buf2
>0 bufl greater than buf2

168 Chapter 3 Functions

ANSI memcpy

memcpy

Copies specified number of bytes from a source buffer to a destination buffer.

Syntax

#include <string.h>
void *memcpy (void *dest, const void *src, size_t count);

Parameters
dest Buffer to copy to.
src Buffer to copy from.

count Number of characters to copy.

Additional Information

If the source and destination overlapemcpy()does not ensure that the original
source bytes in the overlapping region are copied before being overwritten. Use
memmove()to handle overlapping regions.

See also: memccpy() memchr(), memcmp() memmove() memset()
strepy(), strncpy()

Returns

A pointer todest .

C Library Reference Chapter 3 169

memicmp

memicmp

Compares characters in two buffers byte-by-byte (case-insensitive).

Syntax

#include <string.h>
int memicmp (void *bufl, void *buf2, unsigned int count);

Parameters
bufl First buffer.
buf2 Second buffer.
count Number of characters to compare.
See also: memccpy() memchr(), memcmp() memcpy() memset()
stricmp(), strnicmp()
Returns
The relationship of the two buffers.

Value Meaning

<0 bufl less than buf2
=0 bufl identical to buf2
>0 bufl greater than buf2

170 Chapter 3 Functions

ANSI memmove

memmove

Moves a specified number of bytes from a source buffer to a destination buffer.

Syntax

#include <string.h>

void *memmove (void *dest, const void *src, size_t count);
Parameters

dest Pointer to destination buffer.

src Pointer to source buffer.

count Number of characters to copy.

Additional Information

If some regions of the source area and the destination overlap, this function ensures
that characters in the overlapping region are copied before being overwritten.

See also: memccpy() memcpy() strncpy()

Returns

A pointer todest .

C Library Reference Chapter 3 171

memset

ANSI

memset

Sets characters in a buffer to a specified character.

Syntax

#include <string.h>

void *memset (void *dest, int ¢, size_t count);
Parameters

dest Pointer to destination.

c Character to set to.

count Number of characters to set.

See also: memccpy() memchr(), memcmp()} memcpy() strnset()

Returns

A pointer todest .

172 Chapter 3

Functions

mkdir

mkdir

Creates a new directory with the specified ownership and access rights.

Syntax

#include <direct.h>
int mkdir (const char *pathname, mode_t pmode);

Parameters

pathname

pmode

Pathname of the directory to create. Name the new directory according to the rules
for the iRMX OS.

See also: Command Referender rules for naming directories

Permission mode: the ownership and access rights as one or more of the manifest
constants described ahmod(). Join more than one constant with the bitwise-OR
operator).

Additional Information

Themkdir() function applies the default file-permission mask (set with the
umask() function) topmode before setting the permissions.

By default, this function creates directories that all tasks can share. If O_EXCL is
ORed withpmode, the file is opened with share-with-none permission, like UNIX.

This function performs a translation of POSIX file ownership rights and POSIX
access rights to the iRMX OS equivalent as describedrimod().

See also: <errno.h>, chmod(), umask()

Returns

Value Meaning
0 Successful
-1 Unsuccessful; the function setisno to EACCES, EEXIST, ENOENT,

ENOSPC, or ENOTDIR

C Library Reference Chapter 3 173

mktemp

mktemp

Creates a unique temporary filename.

Syntax

#include <io.h>
char *mktemp (char *template);

Parameter

template

Filename template.

Additional Information

174

Creates a unique filename by modifying a template argument in the form:

baseXXXXXX
Where:
base Is the part of the new filename that you supply, andthare

placeholders for the part supplied tmktemp().

This function preservasase and replaces the six trailings with an alphanumeric
character followed by a five-digit value. The alphanumeric charadehs first
time mktemp() is called with a given template. The five-digit value is a unique
number based upon the calling task ID.

In subsequent calls from the same task with copies of the same template,

mktemp() checks to see if previously returned names have already been used to
create files. If no file exists for a given nametemp() returns that name. If

files exist for all previously returned namesktemp() creates a new name by
replacing the alphanumeric character in the name with the next available lowercase
letter. For example, if the first name returnet)i®345 and this name is used to
create a file, the next name returned wilt&E2345 . When creating new names
mktemp() uses, in orde and then the lowercase lettarthroughz.

The first call tomktemp() modifies the original template. If you caflktemp()
again with the same template (that is, the original one), an error returns.

Themktemp() function does not create or open files, only filenames.

See also: fopen(), getpid(), open() tmpnam(), tmpfile()

Chapter 3 Functions

mktemp

Returns
A pointer to the modified template.

A null pointer if thetemplate argument is badly formed or no more unique names
can be created from the given template.

C Library Reference Chapter 3 175

mktime ANSI

mktime

Converts the time/date structure into a fully defined structure with normalized
values and then converts it to calendar time.

Syntax

#include <time.h>
time_t mktime (struct tm *timedate);

Parameter

timedate
Time/date structurem, possibly incomplete.

Additional Information

The converted time has the same encoding as the values returnediimg(he
function.

The elements of thin structure contain the values describedtime.h>.

The original values of then_wday andtm_yday components itm, and the

original values of the other components are not restricted to their normal ranges. If
successfulmktime() sets the values ah_wday andtm_yday appropriately, and

sets the other components to represent the specified calendar time, but with their
values forced to the normal ranges; the final valuenofday is not set until

tm_mon andtm_year are determined.

Thegmtime() andlocaltime() functions use a single statically allocated buffer for
the conversion. If you supply this bufferrtiktime(), it destroys the previous
contents .

See also: asctime() ctime(), gmtime(), localtime(), time(), <time.h>

Returns
The specified calendar time encoded asre_t
-1 cast as typgme_t if the calendar time cannot be represented.

-1l if timedate references a date before epoch time.

176 Chapter 3 Functions

ANSI modf

modf

Splits a value into fractional and integer parts, retaining the sign.

Syntax

#include <math.h>

double modf (double x, double *intptr);

Parameters

X Value to split.

intptr ~ Pointer to integer portion stored as a double value.

See also: frexp(), l[dexp()

Returns
The signed fractional portion af

No error return.

C Library Reference Chapter 3 177

onexit

onexit

Registers a function to be called when the task terminates normally.

Syntax

#include <stdlib.h>
onexit_t onexit (onexit_t func);

Parameter

func Pointer to function(s) to be called on normal termination usxkit§). The
functions passed tonexit() cannot take parameters.

Additional Information

Successive calls tonexit() create a register of functions that execute in LIFO
(last-in, first-out) order. You can register a maximum of 32 functions.

The ANSI-standaratexit() function does the same thingasexit(); use it
instead obnexit() when ANSI portability is desired.

See also: atexit(), exit()

Returns
A pointer to the function(s) to call.

A null pointer if the number of functions exceeds 32.

178 Chapter 3 Functions

stdio open

open

Opens a file and prepares it for subsequent reading or writing.

Syntax

#include <fcntl.h>

#include <io.h>

#include <sys/stat.h>

int open (const char *filename, int oflag [, int pmode]));

Parameters

filename
Filename of file to open.

oflag Open mode (type of operations allowed) as an integer expression formed from one
or more of the manifest constants definedfientl.h>. Oflag must contain either
O_RDONLY, O_RDWR, or O_ WRONLY. Combine two or more of the constants
with the bitwise-OR operatof Y. There is no default.

pmode Permission mode, required when specifying O_CREAT. Ignored if the file exists.
Specifies the file's ownership and access rights, which are set when the new file is
closed for the first time. Contains one or more of the manifest constants described
in chmod().

Additional Information

Theopen()function applies the default file-permission mask set withuthask()
function topmode before setting the permissions.

By default, this function creates files that all tasks can share. If O_EXCL is ORed
with pmode, the file is opened with share-with-none permission, like UNIX.

This function makes the system aal s_openand performs a translation of
POSIX file ownership rights and POSIX access rights to the iRMX OS equivalent
as described inohmod().

See also: chmod(), close() creat(), dup(), dup2(), <fcntl.h>, fopen(),
<sys/stat.h> sopen() umask(), in this manual
rq_s_open System Call Reference

C Library Reference Chapter 3 179

open stdio

Returns
A file descriptor for the opened file.
-1 on error, and the function setsno to one of these values:

EACCES Given pathname is a directory; or
an attempt was made to open a read-only file for writing; or
a sharing violation occurred (the file's share mode does not allow the
specified operations).

EEXIST The O_CREAT and O_EXCL flags are specified, but the named file
already exists.

EINVAL Aninvalid oflag orpmode argument was given.
EMFILE No more file descriptors available (too many open files).
ENOENT File or pathname not found.

180 Chapter 3 Functions

ANSI, stdio perror

perror

Prints an error messagedilerr.

Syntax

#include <stdio.h>
void perror (const char *string);

Parameter

string Message to print.

Additional Information

Thestring argument prints first, followed by a colon, the system error message
for the last library call that produced the error, and a newline character.

If string is a null pointer or a pointer to a null stripggrror() prints only the
system error message.

The actual error number is stored in the varigtao. The system error messages
are accessed througis_errlist , an array of messages ordered by error
number. Theerror() function prints the appropriate error message by using the
errno value as an index &ys_errlist . The value of the variabkys nerr is
defined as the maximum number of elements irsykeerrlist array.

To produce accurate results, gagrrror() immediately after an error occurs.
Otherwise, therrno value may be overwritten by subsequent calls.

See also: clearerr(), <errno.h>, ferror(), strerror()

Returns
Nothing.

C Library Reference Chapter 3 181

pow ANSI

pow

Computes a value raised to the power of another value.

Syntax

#include <math.h>
double pow (double x, double y);

Parameters
X Number to be raised.
y Power to raisa to.

Additional Information

Thepow() function does not recognize integral double values greater #an 2
such as 1.0E100.

See also: exp(), log(), sqrt()

Returns
The value ok”.
1lifx isnot 0.0 ang is 0.0.
0, and the function se&srno to EDOM ifx is 0.0 and; is negative.

0 ,and the function se&srno to EDOM and prints a DOMAIN error message to
stderrif bothx andy are 0.0, or ik is negative ang is not an integer.

+tHUGE_VAL, and seterrno to ERANGE if an overflow results. No message is
printed on overflow or underflow.

This function does not return standard ANSI domain or range errors.

182 Chapter 3 Functions

ANSI, stdio printf

printf

Prints formatted data &tdout

Syntax

#include <stdio.h>
int printf (const char *format [, argument]...);

Parameters

format Formatted string consisting of ordinary characters, escape sequences, and (if
arguments follow) format specifications that determine the output format for the
arguments.

argument
Optional arguments.

Additional Information

The ordinary characters and escape sequences are cogtéduiin order of their
appearance. For example, the line:

printf("Line one\n\t\tLine two\n");
produces the output:

Line one
Line two

Format specifications always begin with a percent sigmiid are read left to

right. Whenprintf() encounters the first format specification, it converts and
outputs the value of the first argument aftemat . The second format

specification causgwintf() to convert and output the second argument, and so on.
If there are more arguments than format specificatjonistf() ignores the extra
arguments. The results are undefined if there are fewer arguments than format
specifications.

C Library Reference Chapter 3 183

printf ANSI, stdio

Format Specification
A format specification, consisting of optional and required elements, has the form:
%][flags] [width] [.precision] [F | N | h || L] type

Each element of the format specification is a single character or number signifying
a particular format option. The optioremgument list provides values for the

width andprecision fields. The simplest format specification contains only the
percent sign andtgpe character (for exampless). The optional fields,

appearing before the requirggle character, control other aspects of the
formatting.

These are the fields inpintf() format specification:

Field Description

flags Optional character or characters that control output justification and
sign printing, blanks, decimal points, and octal and hexadecimal
prefixes. More than one flag can appear in a format specification.

See also: Flag Directives

width Optional number that specifies minimum number of output
characters.

precision Optional number that specifies maximum number of characters
printed for all or part of the output field, or minimum number of
digits printed for integer values.

See also: Precision Specification

F, N Optional prefixes that refer to the distance to the object being printed

(near or far). F and N are not part of the ANSI definition for

printf() .

h, I, L Optional prefixes that determine the size of the argument expected, as
shown below:

h Used with the integer types d, i, 0, X, and X to specify that
the argument is short integer, or with u to specify short
unsigned int. If used with %p, it indicates a 16-bit pointer,
which is ignored.

I Used with d, i, 0, X, and X types to specify that the
argument is long integer, or with u to specify long unsigned
integer; also used with e, E, f, g, and G types to specify
double rather than float. If used with %p, it indicates a 32-

bit pointer.
L Used with e, E, f, g, and G types to specify long double.
type Required character that determines whether the associated argument

is interpreted as a character, a string, or a number.
See also: Type Field Characters

184 Chapter 3 Functions

ANSI, stdio printf

If a percent sign is followed by a character that has no meaning as a format field,
the character is copied stdout For example, to print a percent-sign character,
use%%

Flag Directives

Theseflag directives may appear in a format specification:

Flag Meaning Default
- Left justify the result within the given field Right justify.
width.
+ Prefix the output value with a + or - sign if - sign appears only
the output value is of a signed type. for negative signed
values.
0 If width is prefixed with 0, Os are added untilNo padding.

the minimum width is reached. If 0 and -
appear, the 0 is ignored. If O is specified with
an integer format (i, u, x, X, o, d), the O is
ignored.
blank Prefix the output value with a blank if the No blank appears.
output value is signed and positive; the blank
is ignored if both the blank and + flags
appear.

When used with the o, x, or X format, the # No blank appears.
flag prefixes any non-0 output value with 0,
0x, or OX, respectively.

When used with the e, E, or f format, the # Decimal point
flag forces the output value to contain a appears only if digits
decimal point in all cases. follow it.

When used with the g or G format, the # flagdecimal point
forces the output value to contain a decimalappears only if digits
point in all cases and prevents the truncatioffiollow it. Trailing Os
of trailing Os. are truncated.

Ignored when used with c, d, i, u, or s.

Width Specification

Thewidth specification is a non-negative decimal integer that controls the
minimum number of printed characters. If the number of characters in the output
value is less than the specified width, blanks are added to the left or the right of the
values, depending on whether the - flag is specified until the minimum width is
reached. If width is prefixed with @rintf() adds0s until the minimum width is
reached (not useful for left-justified numbers).

C Library Reference Chapter 3 185

printf

ANSI, stdio

The width specification never causes a value to be truncated. If the number of
characters in the output value is greater than the specified widtigtor is not
given, all characters of the value are printed, subject to the precision specification.

The width specification may be an asterisk (*), in which case an integer argument
from theargument list supplies the value. The width specification must precede
the value being formatted in thegument list. A nonexistent or small field width
does not truncate a field; if the result of a conversion is wider than the field width,
the field expands to contain the conversion result.

Precision Specification

186

Theprecision specification specifies a non-negative decimal integer, preceded
by a period (.), which specifies the number of characters to print, the number of
decimal places, or the number of significant digits. The precision specification can
cause truncation of the output value, or rounding in the case of a double value. If
printf() specifiegprecision is 0 and the value to convert@s the result is no
characters output, as shown below:

printf("%.0d", 0); /* No characters output */

The precision specification may be an asterisk (*), in which case an integer
argument from the argument list supplies the value. The precision argument must
precede the value being formatted in the argument list.

The interpretation of the precision value and the default precision (if omitted)
depend on thgp e, as shown below:

Type Meaning Default

d, i, u, 0,x, X The precision specifies the minimum If precision is 0 or
number of digits to print. If the numberomitted entirely, or if
of digits in the argument is less than the period (.) appears
precision, the output value is padded onvithout a number
the left with 0s. The value is not following it, the
truncated when the number of digits precision is set to 1.
exceeds precision.

e E The precision specifies the number of Default precision is 6;
digits to print after the decimal point. if precision is 0 or the
The last printed digit is rounded. period (.) appears

without a number
following it, no
decimal point is
printed.

Chapter 3 Functions

ANSI, stdio printf

Type Meaning Default

f The precision value specifies the Default precision is 6;
number of digits after the decimal pointif precision is 0, or if
If a decimal point appears, at least onethe period (.) appears
digit appears before it. The value is without a number
rounded to the appropriate number of following it, no

digits. decimal point is
printed.

g,G The precision specifies the maximum Six significant digits
number of significant digits printed. If are printed, with any
specified as 0, treated as 1. trailing Os truncated.
The precision has no effect. Character is printed.
The precision specifies the maximum Characters are printed
number of characters to print. until a null character
Characters in excess of precision are nig encountered.
printed.

If the argument corresponding to a double specifier is infinite, indefinite, or not a
number (NAN), theprintf() function gives this output:

Value Output

+ infinity 1.#INFrandom-digits

- infinity -1.#INFrandom-digits
Indefinite digit.#INDrandom-digits

Not a number (NAN) digit.#NANrandom-digits

Distance and Size Specification

The format specification fields andN refer to the distance to the object being read
(near or far), antl and! refer to the size of the object being read (16-bit short or
32-bit long). The= andN specifications are accepted, for compatibility with other
compilers, but they are ignored. This list provides some example usageldf,

[, andL.

C Library Reference Chapter 3 187

printf

ANSI, stdio

Program Code
printf ("%Ns");
printf ("%Fs");
printf ("%Nn");
printf ("%Fn");
printf ("%hp");
printf ("%Ip");
printf ("%Nhn");
printf ("%NIn");
printf ("%Fhn");
printf ("%FIn");

Action

Print near string

Print far string

Store char count in near int
Store char count in far int

Print a 16-bit pointer (XXxXxxxxx)
Print a 32-bit pointer (XXXXXXxx)
Store char count in near short int
Store char count in near long int
Store char count in far short int
Store char count in far int

The specificationg%hs” and"%ls" are meaningless fintf (). The
specifications%Np" and"%Fp" are aliases fowohp" and"%lp" for
compatibility with earlier compilers.

Type Field Characters

188

Thetype character is the only required format field for grentf() function. It
appears after any optional format fields and determines how the associated
argument is interpreted.

Char Type
d int

i int

u int

o] int

X int

X int

f double
e double
E double
g double

Chapter 3

Output Format

Signed decimal integer.

Signed integer.

Unsigned decimal integer.

Unsigned octal integer.

Unsigned hexadecimal integer, using abcdef.
Unsigned hexadecimal integer, using ABCDEF-.

Signed value having the form [-]dddd.dddd, where dddd is
one or more decimal digits, depending upon the magnitude
of the number, and the requested precision.

Signed value having the form [-]d.dddd e [sign]ddd, where d
is a single decimal digit, dddd is one or more decimal digits,
ddd is exactly three decimal digits, and sign is + or -.

Same as the e format, except that E introduces the exponent.

Signed value printed in f or e format (the one most compact
for the given value and precision). e is used only when the
exponent of the value is less than -4 or greater than or equal
to the precision. Trailing Os are truncated and the decimal
point appears only if any digits follow it.

Functions

ANSI, stdio printf

Char Type Output Format

G double Same as the g format, except that G introduces the exponent
(where appropriate).

C int Single character.

s string Characters printed up to the first null character \O or until
the precision value is reached.

n pointer Points to number of characters successfully written so far to
the stream or buffer; this value is stored in the integer whose
address is given as the argument.

p pointer Prints the address pointed to by the argument in a form

dependent on the memory model:

16-bit large or compact model caller: xxxx:yyyy
which is <segment>:<16-bit offset>

32-bit compact model caller: xXxxx:yyyyyyyy
which is <segment>:<32-bit offset>

32-bit flat model caller: yyyyyyyy
which is <32-bit offset> only

See also: fprintf() , scanf() sprintf(), vfprintf() , vprintf() , vsprintf()

Returns

The number of characters printed.

A negative value on error.

C Library Reference

Chapter 3 189

putc, putchar ANSI, stdio

putc, putchar

Putc() writes a character to a specified stream at the current pogitituinar()
writes tostdout

Syntax

#include <stdio.h>

int putc (int ¢, FILE *stream);

int putchar (int c¢);

Parameters

c Character to be written.

stream Pointer toFILE structure.

Additional Information
Theputchar() function is identical to:
putc (c, stdout)
Any integer can be passedpotc(), but it only writes the lower 8 bits.
These functions are implemented as both macros and functions.

See also: fputc(), fputchar(), getc() getchar()

Returns
The character written.

EOF on error.

190 Chapter 3 Functions

DOS

putch

putch

Writes a character directly (without buffering) to the console.

Syntax

#include <conio.h>

int putch (int c);

Parameter

c Character to be output.

See also: getch() getche()

Returns
Value Meaning
c Successful
EOF Unsuccessful

C Library Reference

Chapter 3

191

putenv

stdio

putenv

Adds new environment variables or modifies the values of existing ones.

Syntax

#include <stdlib.h>
int putenv (const char *envstring);

Parameter

envstring

Environment-variable table entry definition, which must be a character string of
this form:

varname = string
Where:
varname The name of the environment variable to be added or modified.

string The variable's value. A space character is required on both sides of
the equal sign foiscanf() parsing.

Additional Information

Environment variables customize the environment in which a task executes. This
function affects only the current environment; it does not modify the environment-
variable table files.

If varname is already part of the environment, its value is replacesiring ;
otherwise, the new variable is placed in the first empty slot in the environment-
variable table. If you specify a vahdrname and nullstring , the environment
variable is removed.

There is one environment-variable table shared by all tasks using the C library. If
the table has not been initialized by a previous cajketenv() putenv() first
callsgetenv()before proceeding.

See also: getenv() in this manual
Environment variableSystem Configuration and Administration

Returns

Value Meaning
0 Successful
-1 Error occurred

Chapter 3 Functions

stdio _put_rmx_conn

_put_rmx_conn

Places an iRMX connection token into the file descriptor table and returns a valid
file descriptor, usable as an argument in C library calls.

Syntax

#include <rmx_c.h>
int _put_rmx_conn (selector connection);

Parameter

connection
Valid iRMX file connection token.
Additional Information

Use this function in code that mixes direct iRMX system calls with C library
functions.

A file descriptor table, managed internally by the C library, is associated with each
task using the library. This table maps C file descriptors to iRMX file connections.
The table is fixed in size. The maximum number of open files per task is 32 for
compatibility with UNIX systems process limit.

See also: <rmx_c.h> _get_rmx_conn

Returns
A valid file descriptor for the iRMX connection token.

-1 if unsuccessful.

C Library Reference Chapter 3 193

puts

ANSI, stdio

puts

Writes a string testdout replacing the string's terminating null charat®ewith a

newline characten .

Syntax
#include <stdio.h>
int puts (const char *string);
Parameter
string String to be output.
See also: fputs(), gets()

Returns
A non-negative value.

EOF if unsuccessful.

194 Chapter 3

Functions

putw

putw

Writes an integer to the current position of a stream.

Syntax

#include <stdio.h>

int putw (int binint, FILE *stream);
Parameters

binint Binary integer to be output.

stream Pointer toFILE structure.

Additional Information

The putw() function does not affect the alignment of items in the stream, nor does
it assume any special alignment.

See also: getw()

Returns
The value written.

EOF on error. Since EOF is also a legitimate integer valudeuse() to verify
an error.

C Library Reference Chapter 3 195

gsort ANSI

gsort

Performs a quick sort of an array, overwriting the input array with the sorted
elements.

Syntax

#include <stdlib.h>

#include <search.h>

void gsort (void *base, size_t num, size_t width,
int (*compare)(const void *elem1,
const void *elem2));

Parameters
base Pointer to the base of the array to be sorted and overwritten.

num Array size in number of elements.

width Element size in bytes.

compare
Pointer to a user-supplied routine that compares two array eleraknts (and
elem2) and returns a value specifying their relationship:

Value Meaning

<0 elem1 less than elem2
=0 eleml equivalent to elem2
>0 eleml greater than elem2

eleml Pointer to the key for the sort.

elem2 Pointer to the array element to compare with the key.

Additional Information

Thegsort() function calls theompare routine one or more times during the sort,
passing pointers to two array elements on each call:

compare ((void *) elem1, (void *) elem2);

196 Chapter 3 Functions

ANSI gsort

The function sorts the array in ascending order, as defined lyrtipare routine.
To sort the array in descending order, reverse the sense of greater-than and less-
than in thecompare routine.

See also: bsearch() Isearch()

Returns
Nothing.

C Library Reference Chapter 3 197

raise

ANSI

raise

Sends a signal to the executing program.

Syntax

#include <signal.h>
int raise (int sig);

Parameter

sig Signal to send.

Additional Information

If a signal-handling routine faig has been installed by a prior callsignal(),
raise() causes that routine to execute. Signal-handling is maintained locally to the
calling task, not globally to all tasks using the C library.

If no handler routine has been installed for a particular signal, the default signal-

handling is as follows:

Signal Meaning

SIGABRT Abnormal termination
SIGALLOC Memory allocation failure
SIGBREAK <Ctrl-Break> signal
SIGFPE Floating-point exception
SIGFREE Bad free pointer
SIGILL lllegal instruction
SIGINT Interactive attention
SIGREAD Read error

SIGSEGV Segment violation
SIGTERM Termination request
SIGUSR1 User-defined

SIGUSR2 User-defined

SIGUSR3 User-defined
SIGWRITE Write error

See also: abort(), _exit(), signal()

Default Action

Calls _exit(3)
Returns without error
Ignored

Calls _exit(3)

Calls _exit(3)

Calls _exit(3)

Calls _exit(3)

Ignored

Sets errno to EDOM and retu
Calls _exit(3)

Ignored

Ignored

Ignored

Ignored

This function is implemented in the C interface library (not in the shared C library),

and is private to each application.

198 Chapter 3

Functions

ANSI raise
Returns

Value Meaning

0 Successful

Not 0 Unsuccessful
C Library Reference Chapter 3 199

rand ANSI

rand

Generates a pseudo-random number.

Syntax

#include <stdlib.h>

int rand (void);

Additional Information

Use thesrand() function to seed the pseudo-random-number generator before
callingrand().

See also: srand()

Returns
A pseudo-random integer in the range 0 to RAND_MAX.

No error return.

200 Chapter 3 Functions

read

read

Reads the specified number of bytes from a file into a buffer, beginning at the
current position of the file pointer.

Syntax

#include <io.h>
int read (int handle, char *buffer, unsigned int count);

Parameters
handle Descriptor referring to an open file.
buffer ~Storage location for data.

count Maximum number of bytes to read.

Additional Information
After the read operation, the file pointer points to the next unread character.

In text mode, each <CR><LF> pair is replaced with a single <LF> character. Only
the single <LF> character is counted in the return value. The replacement does not
affect the file pointer.

See also: creat(), fread(), open() write()

Returns

The number of bytes actually read, usuabliynt . Less tharount if there are
fewer tharcount bytes left in the file, or if the file was opened in text mode.

0 indicates an attempt to read at end-of-file.

-1 indicates an error, and the function stso to EBADF, indicating that the
given descriptor is invalid, the file is not open for reading, or the file is locked.

C Library Reference Chapter 3 201

realloc ANSI

realloc

Changes the size of a previously allocated memory block or allocates a new one.

Syntax

#include <stdlib.h>
void *realloc (void *memblock, size_t size);

Parameters

memblock
Pointer to the beginning of the previously allocated memory block or to a block
that has been freed, as long as there has been no intervening call to the
correspondingalloc(), malloc(), orrealloc() function.

size New size in bytes.

Additional Information

If memblock is a null pointerrealloc() functions in the same way amalloc()
and allocates a new block sife bytes. Ifmemblock is not a null pointer, it
should be a pointer returned bglloc(), malloc(), or a prior call taealloc().

The contents of the block are unchanged up to the shorter of the new and old sizes
although the new block may be in a different location.

The storage space pointed to by the return value is guaranteed to be suitably
aligned for storage of any type of object. To get a pointer to a type other than
void , use a type cast on the return value.

See also: calloc(), free(), malloc()

Returns

A void pointer to the reallocated (and possibly moved) memory block. The
reallocated block is marked in use.

A null pointer ifsize is 0 and thenemblock argument is not a null pointer, or if

there is not enough available memory to expand the block to the given size. In the
first case, the original block is freed. In the second, the original block is
unchanged.

202 Chapter 3 Functions

ANSI rename

rename

Renames a file or directory.

Syntax

#include <stdio.h>
#include <io.h>
int rename (const char *oldname, const char *newname);

Parameters

oldname
Pathname of an existing file or directory to change.

newname
Pathname of a new file or directory.

Additional Information

This function invokes the system cadl s_rename_fileto rename the file or
directory to the new name.

See also: rg_s_rename_file System Call Reference

Returns

Value Meaning
0 Successful
Not 0 Unsuccessful and the function seisho to one of these values:

EACCES File or directory specified by newname already exists or
could not be created (invalid path); or

oldname is a directory and newname specifies a different
path.

ENOENT File or pathname specified by oldname not found.
EXDEV Attempt to move a file to a different device.

C Library Reference Chapter 3 203

rewind ANSI, stdio

rewind
Repositions the file pointer to the beginning of a file and clears the end-of-file
indicator.

Syntax

#include <stdio.h>
void rewind (FILE *stream);

Parameter

stream Pointer toFILE structure.

Additional Information
A call torewind() is nearly equivalent to:
(void) fseek (stream, OL, SEEK_SET);

Rewind() clears the error indicators for thigeam ; fseek()does not.Fseek()
returns a value that indicates whether the pointer was successfully moved;
rewind() does not.

You can use theewind() function to clear the keyboard buffer. Spedafglin
associated with the keyboard by defaultsteesam .

Returns
Nothing.

204 Chapter 3 Functions

rmdir

rmdir

Deletes a directory.

Syntax

#include <direct.h>
int rmdir (const char *dirname);

Parameter

dirname
Pathname of the directory to be removed. The directory must be empty, and it
must not be the current working directory or the root directory.

See also: mkdir()

Returns
Value Meaning
0 Successful
-1 Unsuccessful and the function setmo to one of these values:

EACCES The given pathname is not a directory; or
the directory is not empty; or

the directory is the current working directory or the root
directory.

ENOENT Pathname not found.

C Library Reference Chapter 3 205

rmtmp stdio

rmtmp

Removes all the temporary files that were createtipfile() from the current
directory.

Syntax
#include <stdio.h>

int rmtmp (void);

Additional Information
Usermtmp() only in the same directory in which the temporary files were created.

See also: flushall('), tmpfile(), tmpnam()

Returns

The number of temporary files closed and deleted.

206 Chapter 3 Functions

sbrk

sbrk

Creates iRMX segments of the specified number of bytes.

Syntax

#include <stdlib.h>
void *sbrk (unsigned segsize);

Parameter
segsize

Number of bytes to be acquired; must be greater than 0.
Additional Information

For non-flat model applications, this function uses the system call
rq_create_segment To return segments acquiredsiyk() to the memory pool,
use the system call|_delete_segment

For flat model applicationsbrk() uses the system cafjv_allocate instead of
rq_create_segment Also, you should useyv_free, instead of
rq_delete_segmentto delete segments acquiredstyk().

To return the created segment to the heap usérg) or realloc(), usemalloc()
to get memory instead sbrk().

See also: free(), malloc(), realloc(), in this manual
rq_create_segmentrq_delete_segmentSystem Call Reference
Returns
The address of the acquired memory area.

A null pointer if the allocation request cannot be satisfied.

C Library Reference Chapter 3 207

scanf ANSI, stdio

scanf

Reads fronstdinat current position, and formats character data.

Syntax

#include <stdio.h>
int scanf (const char *format [,argument]...);

Parameters

format Null-terminated format-control string, which determines the interpretation of the
input field. Can contain whitespace and nonwhitespace characters, and format
specifications.

argument
Optional argument(s), which may include the location to read to; must be a pointer
to a variable corresponding to a type specified ifdlmat argument. If there
are too many arguments for the givermat , the extra arguments are evaluated
but ignored. The results are unpredictable if there are not enough arguments.

Additional Information

Thescanf() function reads all charactersstdinup to the first whitespace
character (space, tab, or newline), or the first character that cannot be converted
according tdformat ; this is the input field.

The format string is read from left to right. A whitespace characterrirat
causescanf()to read, but not store, all consecutive whitespace characters in the
input field up to the next nonwhitespace character. A nonwhitespace character in
format causescanf()to read, but not store, all matching characters. A format
specification causescanf()to read and convert applicable characters in the input
field into values of a particular type, to be stored in the optional arguments as they
are read fronstdin

Format specifications always have a preceding percent%dallowed by a
format-control character. Additional optional format-control characters may also
appear. Ifis followed by a character that has no meaning as a format-control
character, that character and these characters (up to thd meettreated as an
ordinary sequence of characters that is, a sequence of characters that must match
the input. For example, to specify a percent-sign character to be inpuidase

An asterisk (*) following théssuppresses storage of the next input field that is
interpreted as a field of the specified type. The field is scanned but not stored.

208 Chapter 3 Functions

ANSI, stdio

scanf

If a character irstdin conflicts with the format specificatioscanf() terminates.
The character is left istdinas if it had not been read.

Here are some exampdeanf() statements:

Statement Meaning

scanf("%Ns", &x); Read a string into memory

scanf("%Fs", &x); Read a string into memory

scanf("%Nd", &x); Read an int into memory

scanf("%Fd", &x); Read an int into memory

scanf("%NId", &x); Read a long int into memory
scanf("%FId", &x); Read a long int into memory
scanf("%Nhp", &x); Read a 16-bit pointer into memory
scanf("%NIp", &x); Read a 32-bit pointer into memory
scanf("%Fhp", &x); Read a 16-bit pointer into memory
scanf("%FIp", &x); Read a 32-bit pointer into memory

Format Specification

A format specification, which consists of optional and required fields, has this

form:

%[*] [width] [{F | N}] [{h | }]type

Each field of the format specification is a single character or number signifying a
particular format option. The optional fields appear before the reqyped
character. These are the fields iscanf()format specification:

Field
width

F, N

C Library Reference

Description

A positive decimal integer controlling the maximum number of
characters to be read fratdin No more than width characters are
converted and stored at the corresponding argument. Fewer than
width characters may be read if a white-space character (space, tab,
or newline) or a character that cannot be converted according to the
given format occurs before width is reached.

The optional F and N prefixes are accepted for compatibility with
other compilers, but they are ignored. F and N refer to the distance
to the object being read in (far or near). The F and N prefixes are
not part of the ANSI definition fascanf()and should not be used
when ANSI portability is desired.

Chapter 3 209

scanf

ANSI, stdio

Field
h, I, L

type

Description

Optional prefixes that determine the type required for the argument
expected (I and h are ignored if specified for any other type), as
shown below:

h Used with the integer types d, i, 0, X, and X to specify that the
argument is short integer, or with u to specify short unsigned
int. If used with %p, it indicates a 16-bit pointer, which is
ignored.

I Used with d, i, 0, x, and X type characters to specify that the
argument is long integer, or with u to specify long unsigned
integer; also used with e, E, f, g, and G types to specify double
rather than float. If used with %p, it indicates a 32-bit pointer.

L Used with e, E, f, g, and G types to specify long double.

Required character that determines the required type for the
associated argument.

Type Field Characters

These are thigpe characters and their meanings:

Character
d
o}
X

Input Type Argument Type
Decimal integer Pointer to int.
Octal integer Pointer to int.
Hex integer Pointer to int. Since the input

for %x format specifier is
always interpreted &s
hexadecimal number, the input
should not include a leading Ox.
(If Ox isincluded, the O is
interpreted as hexadecimal

input value.)
Decimal, hexadecimal, or octal Pointer to int.
integer.
Unsigned decimal integer Pointer to unsigned int.
Unsigned decimal integer Pointer to unsigned int.

210 Chapter 3 Functions

ANSI, stdio scanf

Character Input Type Argument Type

e, E, f,g, G Double. Value consisting of an Pointer to double.
optional sign (+ or -), a series of
one or more digits containing a
decimalpoint, and an optional
exponent (e or Bpllowed by an
optionally signednteger value.

1c Character Whitespace Pointer to char.
charactershat are ordinarily
skipped are read whenis
specified; to reathe next
nonwhitespaceharacter, use
%1s.

S String. Pointer to character array large
enoughfor input field plus a
terminating nulicharacter \0,
which is automatically
appended.

n No input read. Pointer to int, into which the
number ofcharacters
successfully read is stored.

p Address in a form dependent on Pointer to pointer to void.
the memory model:

16-bit large or compact model caller: xxxx:yyyy
which is <segment>:<16-bit offset>

32-bit compact model caller: xxxx:yyyyyyyy
which is <segment>:<32-bit offset>

32-bit flat model caller: yyyyyyyy
which is <32-bit offset>

C Library Reference Chapter 3 211

scanf ANSI, stdio

Additional Information

To read strings not delimited by space characters, substitute a set of characters in
brackets[(]) for thes (string) type character. The corresponding input field is

read up to the first character that does not appear in the bracketed character set. |
the first character in the set is a caret ("), the effect is reversed: the input field is
read up to the first character that does appear in the rest of the character set.

The format specification®[a-z] and%[z-a] are interpreted as equivalent to
%[abcde...zZ] . This is not required by the ANSI specification.

To store a string without storing a terminating null charaoteuse the
specificatiortonc, wheren is a decimal integer. Then theype character
indicates that the argument is a pointer to a character array. The cleacters
are read from the input stream into the specified location, and no null ch&@acter
is appended. Ifi is not specified, the default value for it is 1.

See also: fscanf(), printf() , sscanf() vfprintf() , vprintf() , vsprintf()

Returns

The number of fields converted and assigned, which may be less than the number
requested. Does not include fields that were read but not assigned.

EOF if the end-of-file is encountered in the first attempt to read a character.

212 Chapter 3 Functions

ANSI, stdio setbuf

setbuf

Allows the user to control buffering for a stream.

Syntax

#include <stdio.h>
void setbuf (FILE *stream, char *buffer);

Parameters

stream Pointer toFILE structure; must refer to an open stream file that has not been read
or written.

buffer User-allocated buffer.

Additional Information

If the buffer argument is a null pointer, the stream is unbuffered. If not, the
buffer must point to a character array of length BUFSIZ. This user-specified buffer
is used for I/O buffering instead of the default system-allocated buffer for the given
stream.

Thestderrstream is unbuffered by default, but may be assigned buffers with
setbuf().

Use thesetvbuf() function for new codesetbuf() is retained for compatibility
with existing code.

See also: fclose() fopen(), setvbuf()

Returns
Nothing.

C Library Reference Chapter 3 213

_set_info

_set_info
Modifies thenum_eios_bufs (number of EIOS buffers per open file connection)
field for a task in the C library information struct@isNFO_STRUCT

Syntax

#include <rmx_c.h>

int _set_info (unsigned int count, CINFO_STRUCT *cinfo);

Parameters

count Number of elements iIBINFO_STRUCT obtained frontinfo_count constant.

cinfo Pointer toCINFO_STRUCTfor a task.

Additional Information
All of the other fields iIlCINFO_STRUCTare read-only.
Verify the change using theget_info()function.

See also: _get_info() <rmx_c.h>

Returns
Value Meaning
0 Successful
-1 Unsuccessful

214 Chapter 3 Functions

ANSI setjmp

setjmp
Saves the current context of the executing program and stores it in the specified
location.

Syntax

#include <setjmp.h>
int setjmp (jmp_buf context);

Parameter

context
Structure in which the current context is stored.

Additional Information

Thejmp_buf structure is usable only as an argument for the subselguegihp()
call; jmp_buf is defined internally to the C library.

Used togethersetjmp() andlongjmp() provide a way to execute a nonlocal goto.
They typically pass execution control to error-handling or recovery code in a
previously called routine without using the normal calling or return conventions.

A subsequent call tongjmp() restores the context and resumes execution at the
pointsetjmp() was called. All local variables except register variables, accessible
to the routine receiving control, contain the values they had ségmp() was

called. Global variables are unaffected.

See also: longjmp(), <setjmp.h>

Returns
0 after saving the context of the executing program.

Whensetjmp() returns as a result oflangjmp() call, it returns thealue
argument ofongjmp() or returns 1 if thealue argument ofongjmp() is O.

No error return.

C Library Reference Chapter 3 215

setlocale ANSI

setlocale

Sets the task's current entire locale or specified portions of it.

Syntax

#include <locale.h>
char *setlocale (int category, const char *locale);

Parameters

category
Specifies which portion of a task's locale information to use.

locale Pointer to a string containing the name of the locale for which certain aspects of
your program can be customized. C specifies the minimal ANSI-conforming locale
for C translation. Ifocale points to an empty string, the locale is the
implementation-defined native locale.

Additional Information

Some locale-dependent aspects include the formatting of dates and the display
format for monetary values.

These are the manifest constants used focdtegory argument and the parts of
the program affected:

Value Program Parts Affected

LC_ALL All categories listed below.

LC_COLLATE Thestrcoll() andstrxfrm() functions.

LC _CTYPE The character-handling functions excepiddigit() and

isxdigit(), which are unaffected.

LC_MONETARY Monetary formatting information returned by the
localeconv()function.

LC_NUMERIC Decimal point character for the formatted output functions
such agprintf(), for the data conversion functions, and for
the nonmonetary formatting information returned by the
localeconv()function.

LC_TIME The strftime() function.

See also: localeconv() strcoll(), strftime(), strxfrm()

216 Chapter 3 Functions

ANSI setlocale

Returns
One of these:

« A pointer to the string associated with the specified category for the new
locale. Use the pointer in subsequent calls to restore that part of the program's
locale information. Later calls s&etlocale()will overwrite the string.

- A pointer to the string associated with the category of the program's locale. It
does not change the program's current locale setting lifdhle argument is
a null pointer.

« A null pointer. It does not change the program's current locale settings if the
locale or category is invalid.

C Library Reference Chapter 3 217

setmode stdio

setmode

Sets binary or text translation mode of a file.

Syntax

#include <fcntl.h>
#include <io.h>
int setmode (int handle, int mode);

Parameters
handle Descriptor referring to an open file.

mode New translation mode.

Additional Information
Themode must be one of these manifest constants:

Value Meaning

O_TEXT Sets text (translated) mode. <CR><LF> combinations are
translated into a single <LF> character on input. <LF>
characters are translated into <CR><LF> combinations on
output.

O_BINARY Sets binary (untranslated) mode and suppresses the above
translations.

The setmode(Jfunction is typically used to modify the default translation mode of
stdin stdout andstderr, but can be used on any file.

|:| Note

If multiple tasks or jobs are collecting data from the same file or
stream, use binary mode. Otherwise, the task or job receives
scrambled data.

Do not try to change a stream's mode while the stream buffer is
active. Calfflush() first.

See also: creat(), fopen(), open()

218 Chapter 3 Functions

stdio setmode

Returns
The previous translation mode.

-1 on error, and the function setsno to one of these values:
EBADF Invalid file descriptor.

EINVAL Invalid mode argument (neither O_TEXT nor O_BINARY).

C Library Reference Chapter 3 219

setvbuf ANSI, stdio

setvbuf

Controls stream buffering and buffer size.

Syntax

#include <stdio.h>

int setvbuf (FILE *stream, char *buffer, int mode,
size_t size);

Parameters

stream Pointer toFILE structure; must refer to an open stream file that has not been read
from or written to since it was opened.

buffer Pointer to a user-allocated character array used for buffering. If a null pointer
referencesduffer , a buffer ofsize bytes is automatically allocated.

mode Buffering mode.

Value Meaning

_IOFBF Full buffering; that is, buffer is used as the buffer and size is used as t
of the buffer.

_IONBF No buffer is used, regardless of buffer or size.

size Size of buffer. Legal values are greater than 0 and less than INT_MAX.

See also: fclose() fopen(), <limits.h>, setbuf()

Returns

Value Meaning
0 Successful
Not O An illegal type or buffer size was specified

220 Chapter 3 Functions

ANSI signal

signal

Sets up one of several ways for a task to handle an interrupt signal from the OS.

Syntax

#include <signal.h>
void (*signal (int sig, void (*func)(int sig [,int subcode])))
(int sig);

Parameters

sig Signal value. Must be one of the manifest constants definesignal.h>

func Specifies what action is taken. Must be either a function address or one of the
manifest constants defined<signal.h>.

subcode
Optional subcode to the signal number.

Additional Information

This function is implemented in the shared C library interface library (not in the
shared C library), and is private to each application.

Thesig argument must be one of these manifest constants:

Value Meaning

SIGABRT Abnormal termination
SIGALLOC Memory allocation failure
SIGBREAK <Ctrl-Break> signal

SIGFPE Floating-point exception
SIGFREE Bad free pointer
SIGILL lllegal instruction
SIGINT Interactive attention
SIGREAD Read error

SIGSEGV Segment violation
SIGTERM Termination request
SIGUSR1 User-defined

SIGUSR2 User-defined

SIGUSR3 User-defined

SIGWRITE Write error

C Library Reference Chapter 3 221

signal ANSI

Thefunc must be either a function address or one of these manifest constants:

Value Meaning

SIG_DFL Uses system-default response. The system-default response for all si
except SIGUSR1, SIGUSR2, and SIGUSRS is to abort the calling prog
using_exit(). The default response for SIGUSR1, SIGUSR2, and SIG
is to ignore the signal.

SIG_IGN Ignores interrupt signal. This value should never be given for SIGFPE
the floating-point state of the process is left undefined.

Function Installs the specified function as the handler for the given signal.

address

Additional Information

For all signals except SIGFPE and SIGUSRYX, the function is passeid the
argument and executed.

For SIGFPE, the function pointed to fuyic is passed two arguments, SIGFPE

and an integer error subcode, FPE_xxx; then the function is executed. The value o
func is not reset upon receiving the signal. To recover from floating-point
exceptions, ussetjmp() in conjunction witHongjmp(). If the function returns,

the calling task resumes execution with the floating-point state of the process left
undefined.

If the function returns, the calling task resumes execution immediately following
the point at which it received the interrupt signal. This is true regardless of the
type of signal or operating mode.

Before the specified function is executed, the valueraf is set to SIG_DFL.

The next interrupt signal is treated as described above for SIG_DFL, unless an
intervening call tasignal() specifies otherwise. This allows the program to reset
signals in the called function.

Since signal-handler routines are normally called asynchronously when an interrupt
occurs, it is possible that your signal-handler function will assume control when an
operation is incomplete and in an unknown state. Certain restrictions therefore
apply to the C functions used in your signal-handler routine:

« Do not issue low-level or standard I/O functions, for exarmgletf() ,
read(), write(), andfread().

« Do not call heap routines or any function that uses the heap routines, for
examplemalloc(), strdup(), or putenv().

« Do not use théongjmp() function.

See also: abort(), raise(), _exit(), <signal.h>

222 Chapter 3 Functions

ANSI signal

Returns

The previous value dfinc . For example, if the previous valuefofic was
SIG_IGN, the return value will be SIG_IGN.

-1 on error such as invalilg orfunc values, and the function segno to
EINVAL.

C Library Reference Chapter 3 223

sin, sinh ANSI

sin, sinh

Sin calculates the sine asthh calculates the hyperbolic sine of an angle.

Syntax

#include <math.h>
double sin (double x);
double sinh (double x);

Parameter
X Angle in radians.

See also: acos() asin(), atan(), cos() tan()

Returns
Sin() Returns the sine of.

Generates a PLOSS errokifs large and partial loss of significance
in the result occurs; function seteno to ERANGE.

Prints a TLOSS messagedulerrand returns 0 ik is so large that
significance is completely lost; function setsno to ERANGE.

Sinh() Returns the hyperbolic sine of

ReturnstHUGE_VAL, and the function setsrno to ERANGE if the
result is too large.

These functions do not return standard ANSI domain or range errors.

224 Chapter 3 Functions

sleep

sleep

Suspends a task for a specified number of seconds.

Syntax
#include <process.h>

unsigned int sleep (unsigned int seconds);

Parameter

seconds
Number of seconds to suspend a task.

Additional Information
This function invokes the system call sleep

See also: rqg_sleep System Call Reference

Returns

Always returns 0.

C Library Reference Chapter 3 225

sopen

sopen

Opens a file for shared reading or writing.

Syntax

#include <fcntl.h>

#include <share.h>

#include <sys/stat.h>

#include <io.h>

int sopen (const char *filename, int oflag, int shflag,

int pmode);
Parameters
filename
Filename to be opened.
oflag Type of operations allowed (open mode). Combine one or more of the manifest
constants described apen()with the bitwise-OR operatof).
shflag Type of sharing allowed (share mode).
pmode Permission mode, which specifies the file's ownership and access rights; required

only when O_CREAT is specified. Otherwise, argument is ignored. The manifest
constants are describedahmod(). Join them with the bitwise-OR operatf}).(

Additional Information

226

Shflag must be one of these manifest constants:

Value Meaning

SH_DENYRW Denies read and write access to file.
SH DENYWR Denies write access to file.

SH DENYRD Denies read access to file.

SH DENYNO Permits read and write access.

Ownership and access rights are set when the new file is closed for the first time.

Thesopen()function applies the default file-permission mask (set with the
umask() function) topmode before setting the permissions.

This function performs a translation of POSIX file ownership rights and POSIX
access rights to the iRMX OS equivalent as describetdrimod().

See also: close() creat(), fopen(), open() umask()

Chapter 3 Functions

sopen

Returns
A descriptor for the opened file.
-1 indicates an error, and the function setsio to one of these values:

EACCES Given pathname is a directory; or
The file is read-only but an open for writing was attempted; or
A sharing violation occurred because the file's share mode does not
allow the specified operations.

EEXIST The O_CREAT and O_EXCL flags are specified, but the named file
already exists.

EINVAL Aninvalid oflag orshflag argument was given.
EMFILE No more file descriptors available (too many open files).
ENOENT File or pathname not found.

C Library Reference Chapter 3 227

sprintf ANSI

sprintf

Prints formatted data to a string.

Syntax

#include <stdio.h>
int sprintf (char *buffer, const char *format [, argument]...);

Parameters
buffer Output string.

format Formatted string consisting of ordinary characters, escape sequences, and, if
arguments appear, format specifications. fbh@at and optional arguments
have the same form and function asphetf() function.

argument
Optional arguments.
Additional Information

The ordinary characters and escape sequences are copig@rto in order of
their appearance.

A null charactef0 is appended to the end of the characters written.

See also: fprintf() , printf() , sscanf()

Returns

The number of characters storedirfdfer , not counting the terminating null
character.

228 Chapter 3 Functions

ANSI sqrt

sgrt

Calculates the square root of a number.

Syntax

#include <math.h>

double sqgrt (double x);

Parameter

X Nonnegative value to calculate root for.

See also: exp(), log(), matherr(), pow()

Returns
The square-root result.

0 if x is negative, prints a DOMAIN error messagstierrand setrrno to
EDOM.

This function does not return standard ANSI domain or range errors.

C Library Reference Chapter 3 229

square

square

Calculates the square of a number.

Syntax

#include <math.h>

double square (double x);
Parameter

X Number to be squared.

See also: exp(), log(), matherr(), pow()

Returns
The square result.

This function does not return standard ANSI domain or range errors.

230 Chapter 3 Functions

ANSI srand

srand

Sets the starting point for generating a series of pseudorandom integers.

Syntax

#include <stdlib.h>

void srand (unsigned int seed);
Parameter

seed Starting point for random-number generation. Use 1 to reinitialize the generator.

Additional Information

Therand() function retrieves pseudorandom numbers. Catimgl() before any
call tosrand() generates the same sequence as caltanyl() with seed passed
as 1.

See also: rand()

Returns
Nothing.

C Library Reference Chapter 3 231

sscanf ANSI, stdio

sscanf

Reads and formats character data from a string.

Syntax

#include <stdio.h>
int sscanf (const char *buffer, const char *format
[, argument]...);

Parameters
buffer Source string.

format Null-terminated format-control string which controls the interpretation of the input
fields and has the same form and function asatheat argument as in the
scanf()function.

argument
Optional argument. Must be a pointer to a variable with a type that corresponds to
a type specifier ifiormat .

Additional Information

Reads data frorhuffer into the locations given bgrgument (if any).

Thesscanf()function reads all charactersbnoffer up to the first whitespace
character (space, tab, or newline), or the first charactefoth&tt cannot

convert. If there are too many arguments for the giwenat , the extra

arguments are evaluated but ignored. The results are unpredictable if there are no
enough arguments for the format specification.

See also: fscanf(), scanf() sprintf()

Returns

The number of fields that were successfully converted and assigned, but not fields
that were read but not assigned.

0 if no fields were assigned.

EOF if the attempted read was at end-of-string.

232 Chapter 3 Functions

stdio stat

Stat

Gets informatioron a file.

Syntax

#include <sys/types.h>
#include <sys/stat.h>
int stat (const char *filename, struct stat *buffer);

Parameters

filename
Pathname of an open file to get information on.

buffer Pointer to file-status structusgat . The fields oktat are described in
<sys/stat.h>.

Additional Information

Stat() invokes the system call_a_get_file_statusand adds the number of

seconds between epoch time and January 1, 1978, plus the local timezone factor, an
environment variable describedtzset() This adjusts the time stamps of iRMX

files to POSIX-standard values.

Stat() caches up to two directory connections and the associated pathnames to
provide a performance boost for tasks that make repeated cstidg(tpfor files

under either of the two cached directories. The cache reduces the overhead
incurred while parsing a long pathname and attaching each directory along the way.
If the directory is not in the cache, a connection is obtained through a call to
rq_attach_file, and entered into the cache. The oldest entry in the two-deep cache
is then deleted. The cache is part of the single C library environment; required
memory is allocated on the first usestdt().

This function performs a translation of iIRMX OS file ownership rights and iRMX
OS access rights to POSIX as describedsiys/stat.h>

See also: chmod(), filelength(), fstat(), <sys/stat.h>

Returns
Value Meaning
0 File-status information is obtained
-1 Error occurred; the function setgno to EBADF, indicating an invalid
filename

C Library Reference Chapter 3 233

strcat ANSI

strcat

Appends a null-terminated string to another string.

Syntax

#include <string.h>
char *strcat (char *string1, const char *string2);

Parameters

stringl
Destination string; must contain a null character marking the end of the string.

string2
Source string appendeddtingl ; must contain a null character marking the end
of the string.

Additional Information

Terminates the resulting string with a null charager No overflow checking is
performed when strings are appended.

See also: strncat(), strncmp(), strncpy(), strnicmp(), strrchr(), strspn()

Returns

A pointer to the concatenated string.

234 Chapter 3 Functions

ANSI strchr

strchr

Searches for a character in a null-terminated string.

Syntax

#include <string.h>

char *strchr (const char *string, int c);
Parameters

string ~ String to search; must contain a null charagemarking the end of the string; the
terminating null character is included in the search.

c Character to be located.
See also: strcspn(), strncat(), strncmp(), strncpy(), strnicmp(), strpbrk(),
strrchr(), strspn(), strstr()
Returns

A pointer to the first occurrence ofin the string. The character may be the null
characteko .

A null pointer if the character is not found.

C Library Reference Chapter 3 235

strcmp, strcmpi, stricmp ANSI

strcmp, strcmpi, stricmp

Compare two null-terminated strings lexicographically.

Syntax

#include <string.h>

int strcmp (const char *stringl, const char *string2);
int strcmpi (const char *stringl, const char *string2);
int stricmp (const char *stringl, const char *string2);

Parameters
stringl, string2

Strings to compare; must contain null characiersnarking the end of the strings.
Additional Information

Thestrempi() andstricmp() functions are case-insensitive versionstoedmp().
They work identically in all other respects.

See also: memcmp() memicmp(), strncat(), strncmp(), strncpy(),
strnicmp(), strrchr(), strspn()
Returns
A value indicating the relationship:

Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

236 Chapter 3 Functions

ANSI strcoll

strcoll

Compares null-terminated strings using locale-specific collating sequences.

Syntax

#include <string.h>
int strcoll (const char *string1, const char *string2);

Parameters

stringl, string2
Strings to compare; must contain null characiersnarking the end of the strings.

See also: localeconv() setlocale() strcmp(), strncmp(), strxfrm(')

Returns
A value indicating the relationship:

Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

C Library Reference Chapter 3 237

strcopy ANSI

strcpy

Copies a null-terminated string.

Syntax

#include <string.h>
char *strcpy (char *stringl, const char *string2);

Parameters

stringl
Destination string; must contain a null charat®emarking the end of the string.

string2

Source string, including the terminating null character.
Additional Information

No overflow checking is performed when strings are copied.

See also: strcat(), strcmp(), strncat(), strncmp(), strncpy(), strnicmp(),
strrchr(), strspn()

Returns

Returnsstringl

238 Chapter 3 Functions

ANSI strcspn

strcspn

Finds a null-terminated substring in a string.

Syntax

#include <string.h>
size_t strcspn (const char *stringl, const char *string2);

Parameters

stringl
Source string; must contain a null charat®emarking the end of the string.

string2
Character set to search for; must contain a null char@cterarking the end of the
string.

Additional Information
Terminating null characters are not considered in the search.

See also: strncat(), strncmp(), strncpy(), strnicmp(), strrchr(), strspn()

Returns

The index of the first characterstringl belonging to the set of characters
specified bystring2 . This value is equivalent to the length of the initial substring
of stringl consisting entirely of characters notsiring2

0 if stringl begins with a character frostring2

C Library Reference Chapter 3 239

strdup

strdup

Duplicates null-terminated strings.

Syntax

#include <string.h>

char *strdup (const char *string);
Parameter

string Source string; must contain a null charas@emarking the end of the string.

Additional Information

The function allocates storage space from the heap for a copy of string, using
malloc().

See also: strcat(), strcmp(), strncat(), strncmp(), strncpy(), strnicmp(),
strrchr(), strspn()
Returns
A pointer to the storage space containing the copied string.

A null pointer if storage cannot be allocated.

240 Chapter 3 Functions

ANSI strerror

strerror

Gets a system error message.

Syntax

#include <string.h>

char *strerror (int errnum);

char *_strerror (const char *string);
Parameter

errnum Error number to map to an error-message string.

Additional Information

The function itself does not actually print the message. To send or print the
message, use an output function sucpeasor().

See also: clearerr(), ferror(), perror()

Returns

A pointer to the error-message string.

C Library Reference Chapter 3 241

strftime ANSI, stdio

strftime

Formats a time string.

Syntax

#include <time.h>
size_t strftime (char *string, size_t maxsize, const char
*format, const struct tm *timedate);

Parameters
string Output string.

maxsize
Maximum length of string.

format Format control string; normal characters and format specifications.

timedate
Time/date structureum.
Additional Information

Format specifications have a preceding percent $fgmpfeceding characters are
copied unchanged &iring . The LC_TIME category of the current locale affects
the output formatting oftrftime().

The format specifications are:

Format Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%cC Date and time representation appropriate for the locale
%d Day of the month as a decimal number (01 - 31)
%H Hour in 24-hour format (00 - 23)

%I Hour in 12-hour format (01 - 12)

%] Day of the year as a decimal number (001 - 366)
%m Month as a decimal number (01 - 12)

%M Minute as a decimal number (00 - 59)

%p Current locale's AM/PM indicator for a 12-hour clock
%S Second as a decimal number (00 - 61)

242 Chapter 3 Functions

ANSI, stdio

strftime

Format
%U
%w
%W
00X

%X

%y
%Y

%z
%%

See also:

Returns

Description

Week of year as decimal number; Sunday is first day of week (00 - 53)
Weekday as a decimal number (0 - 6; Sunday is 0)

Week of year as decimal number; Monday is first day of week (00 - 53)
Date representation for current locale

Time representation for current locale

Year without the century as a decimal number (00 - 99)

Year with the century as a decimal number

Timezone name or abbreviation; no characters if timezone is unknown
Percent sign

asctime() localeconv() setlocale() strxfrm()

The number of characters placediiing if the total number of resulting
characters, including the terminating null, is not more thaxsize .

0 and the contents of the string are indeterminate if the result is larger than

maxsize .

C Library Reference Chapter 3 243

strlen ANSI

strlen

Gets the length of a null-terminated string.

Syntax

#include <string.h
size_t strlen (const char *string);

Parameter
string String to find length of.

Returns

The string length in bytes sfring , not including the terminating null character
\0 .

No error return.

244 Chapter 3 Functions

striwr

striwr

Converts uppercase letters in a null-terminated string to lowercase. Other
characters are not affected.

Syntax

#include <string.h>
char *striwr (char *string);

Parameter
string ~ String to convert.

See also: strupr()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 245

strncat ANS]I

strncat

Appends characters to a string.

Syntax

#include <string.h>
char *strncat (char *stringl, const char *string2 size_t
count);

Parameters

stringl
Destination string.

string2
Source string.

count Number of characters to be appended.

Additional Information

Appends at most the firsbunt characters oftring2 tostringl and
terminates the resulting string with a null charactercolit is greater than the
length ofstring2 , the length oftring2 is used in place afount .

See also: strcat(), strcmp(), strepy(), strncmp(), strncpy(), strnicmp(),
strrchr(), strset(), strspn()

Returns

A pointer to the concatenated string.

246 Chapter 3 Functions

ANSI strncmp

strncmp

Compares substrings.

Syntax

#include <string.h>
int strncmp (const char *string1, const char *string2,
size_t count);

Parameters

stringl, string2
Strings to compare.

count Number of characters compared.

Additional Information
Lexicographically compares the firgiunt characters aoftringl ~ andstring2
Thestrnicmp() function is a case-insensitive versionsthcmp.
See also: strcat(), strcmp(), strcpy(), strncat(), strncpy(), strrchr(),
strset(), strspn()
Returns
A value indicating the relationship between the substrings:

Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

C Library Reference Chapter 3 247

strncopy ANSI

strncpy

Copies the specified number of characters from one string to another.

Syntax

#include <string.h>
char *strncpy (char *stringl, const char *string2,

size_t count);

Parameters

stringl

string2

count

Destination string.

Source string.

Number of characters copied.

Additional Information

Copiescount characters aftring2 to stringl

If count is less than the length sfiing2 , a null charactei0 is not appended
automatically to the copied string. déunt is greater than the length sifing2
thestringl result is padded with null characters up to lergtimt .

The behavior oftrncpy() is undefined if the address ranges of the source and
destination strings overlap.

See also: strcat(), strcmp(), strepy(), strncat(), strncmp(), strnicmp(),
strrchr(), strset(), strspn()

Returns

248

Returnsstringl

Chapter 3 Functions

strnicmp

strnicmp

Compares substrings without regard to case.

Syntax

#include <string.h>
int strnicmp (const char *string1, const char *string2,
size_t count);

Parameters

stringl, string2
Strings to compare.

count Number of characters compared.

Additional Information
Lexicographically compares the first count characterdrioigl andstring2
Thestrnicmp() function is a case-insensitive versiorsthcmp().
See also: strcat(), strcmp(), strepy(), strncat(), strncpy(), strrchr(),
strset(), strspn()
Returns
A value indicating the relationship:

Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

C Library Reference Chapter 3 249

strnset

strnset

Sets the specified number of characters in a string to a character.

Syntax

#include <string.h>

char *strnset (char *string, int ¢, size_t count);
Parameters

string ~ String to be set.

c Character to set the string to.

count Maximum number of characters to set.

Additional Information

If count is greater than the length sifing , the length oétring is used in
place ofcount

See also: strcat(), strcmp(), strcpy(), strset()

Returns

A pointer to the altered string.

250 Chapter 3 Functions

ANSI strpbrk

strpbrk
Searches a string for the first occurrence of any character in the specified character
set.

Syntax

#include <string.h>

char *strpbrk (const char *string1, const char *string2);

Parameters

stringl
String to search.

string2
Character set to search for.
Additional Information
The terminating null charact® is not included in the search.

See also: strchr(), strrchr()

Returns
A pointer to the found character.

A null pointer ifstringl andstring2 have no characters in common.

C Library Reference Chapter 3 251

strrchr ANSI

strrchr

Searches a string for the last occurrence of a character.

Syntax

#include <string.h>
char *strrchr (const char *string, int c);

Parameters

string String to search.

c Character to find.

Additional Information
The string's terminating null character is included in the search.
Usestrchr(') to find the first occurrence afin string
See also: strchr(), strespn(), strncat(), strncmp(), strncpy(), strnicmp(),
strpbrk(), strspn()
Returns
A pointer to the last occurrence of the character in the string.

A null pointer if the character is not found.

252 Chapter 3 Functions

strrev

strrev

Reverses the order of the characters in a string.

Syntax

#include <string.h>

char *strrev (char *string);
Parameter

string String to be reversed.

Additional Information
The terminating null charact® remains in place.

See also: strcpy, strset

Returns
A pointer to the altered string.

No error return.

C Library Reference Chapter 3 253

strset

strset

Sets all characters in a string to a specified character.

Syntax

#include <string.h>

char *strset (char *string, int c);
Parameters

string ~ String to be set.

c Character to set the string to.

Additional Information
Does not set the terminating null charasgerto c.

See also: memset() strcat(), strcemp(), strepy(), strnset()

Returns
A pointer to the altered string.

No error return.

254 Chapter 3

Functions

ANSI strspn

strspn
Finds the first character in a string that does not belong to a set of characters in a
substring.

Syntax

#include <string.h>
size_t strspn (const char *stringl, const char *string2);

Parameters

stringl
String to search.

string2
Character set.
Additional Information

The null characteld terminatingstring2 is not considered in the matching
process.

See also: strespn(), strncat(), strnemp(), strncpy(), strnicmp(), strrchr()

Returns

An integer value specifying the length of the segmentringl consisting
entirely of characters istring2

0 if stringl begins with a character notstring2

C Library Reference Chapter 3 255

strstr ANS]I

strstr

Finds a substring within a string.

Syntax

#include <string.h>
char *strstr (const char *stringl1, const char *string2);

Parameters

stringl
String to search.

string2
String to search for.

See also: strcspn(), strncat(), strncmp(), strncpy(), strnicmp(), strpbrk(),
strrchr(), strspn()
Returns
A pointer to the first occurrence sifing2 in stringl

A null pointer if the string is not found.

256 Chapter 3 Functions

ANSI strtod, strtol, strtoul

strtod, strtol, strtoul

Strtod converts a string to doublstrtol converts to longstrtoul converts to
unsigned long.

Syntax

#include <stdlib.h>

double strtod (const char *nptr, char **endptr);

long strtol (const char *nptr, char **endptr, int base);

unsigned long strtoul (const char *nptr, char **endptr,
int base);

Parameters

nptr String to convert; a sequence of characters that can be interpreted as a numerical
value of the specified type.

endptr End of scan.

base Number base to use.

Additional Information

Thestrtod() function expectaptr to point to a string with this form:

[whitespace] [sign] [digits] [.digits] [d | D | e | E [sign] digits]

The first character that does not fit this form stops the scan.

Thestrtol() function expectsptr to point to a string with this form:
[whitespace] [sign] [0] [x | X] [digits]

Thestrtoul() function expectaptr to point to a string with this form:
[whitespace] [+]-]1[0][x| X] [digits]

These functions stop reading the string at the first character they cannot recognize
as part of a number. This may be the null charagtext the end of the string.

With strtol() or strtoul(), this terminating character can also be the first numeric
character greater than or equabtse . If endptr is not a null pointer, a pointer

to the character that stopped the scan is stored at the location pointed to by

endptr .

If no conversion can be performed (no valid digits are found or an invalid base is
specified), the value afptr is stored at the location pointed to dndptr .

C Library Reference Chapter 3 257

strtod, strtol, strtoul ANSI

Base Meaning

Between 2 and 36 Base used as the base of the number.

0 The initial characters of the string pointed to by nptr
determine the base.

1st char =0 and The string is interpreted as an octal integer; otherwise,

2nd char not=xor X itis interpreted as a decimal number.

1st char =0 and The string is interpreted as a hexadecimal integer.

2nd char = x or X
1st char = 1 through 9 The string is interpreted as a decimal integer.

a through z or Are assigned the values 10 through 35; only letters
A through Z whose assigned values are less than base are permitted.

Thestrtoul() function allows a plusH) or minus () sign prefix; a leading minus
sign indicates that the return value is negated.

See also: atof(), atol()

Returns
Strtod() Returns the converted value.

ReturnstHUGE_VAL when the representation would cause an
overflow.

Returns 0 if no conversion could be performed or an underflow
occurred.

Strtol() Returns the converted value.

Returns LONG_MAX or LONG_MIN when the representation would
cause an overflow.

Returns 0 if no conversion could be performed.
Strtoul() Returns the converted value, if any.

Returns 0 if no conversion can be performed.

Returns ULONG_MAX on overflow.

258 Chapter 3 Functions

ANSI strtok

strtok

Finds the next token in a string.

Syntax

#include <string.h>
char *strtok (char *string1, const char *string2);

Parameters

stringl
String containing token(s); may be separated by one or more of the delimiters from
string2

string2
Set of delimiter characters.

Additional Information

This function readstringl as a series of zero or more tokens stridg2 as
the set of characters serving as delimiters of the tokestgrigl

Use a series of calls strtok() to break out tokens frostringl . In the first

call, strtok() searches for the first tokenstringl, skipping leading delimiters.
To read the next token frostringl , call strtok() with a null pointer value for
thestringl argument. The null pointer argument causte®k() to search for

the next token in the previous token string. The set of delimiters may vary from
call to call, scstring2 can take any value.

Calls to this function will modifystringl , since each timstrtok() is called it
inserts a null charact&d after the token istringl

See also: _get_rmx_conn() strcspn(), strspn()

|:| Note

C string tokens arehar values separated by delimiter characters;
an iRMX connection token isselector value obtained from a
call to_get_rmx_conn()or iRMX system calls. Do not confuse
the C concept of a character string token with the IRMX
connection token.

C Library Reference Chapter 3 259

strtok ANSI

Returns

A pointer to the first token istringl the first timestrtok() is called. All tokens
are null-terminated.

A pointer to the next token in the string on subsequent calls with the same token
string.

A null pointer means there are no more tokens.

260 Chapter 3 Functions

strupr

strupr

Converts any lowercase letters in a null-terminated string to uppercase.

Syntax

#include <string.h>

char *strupr (char *string);
Parameter

string String to be capitalized.

Additional Information
Does not affect characters other than lowercase.

See also: strlwr()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 261

strxfrm ANSI

strxfrm

Transforms a string based on locale-specific information and stores the result.

Syntax

#include <string.h>
size_t strxfrm (char *string1, const char *string2,
size_t count);

Parameters

stringl
String to which transformed versionsifing2 is returned.

string2
String to transform.

count Maximum number of characters to be placestiimgl

Additional Information

The transformation is made using the information in the locale-specific
LC_COLLATE macro.

The value of this expression is the size of the array needed to hold the
transformation of the source string:

1 + strxfrm (NULL, string, 0);

The C libraries support the C locale only; tistrxfrm() is equivalent to these
commands:

strncpy (_stringl, _string2, _count);
return (strlen (_string2));

After the transformation, a call gtrcmp() with the two transformed strings will
yield identical results to a call &ircoll() applied to the original two strings.

See also: localeconv() setlocale() strncmp()

Returns
The length of the transformed string, not counting the terminating null character.

If the return value is greater than or equaldont , the contents aftringl are
unpredictable.

262 Chapter 3 Functions

DOS swab

swab

Copies while swapping bytes.

Syntax

#include <stdlib.h>
void swab (const char *src, char *dest, int n);

Parameters

src Points to the source buffer.

dest Points to a buffer to which the source buffer is copied, with each pair of bytes
swapped.

n The number of bytes to be copied.

Additional Information

Useswabto copyn bytes from thearc buffer while swapping each pair of
adjacent bytes.

If n is odd, the last byte is copied directly from she buffer to thedest buffer,
with no byte swapping.

Returns
Nothing.

C Library Reference Chapter 3 263

system stdio

system

Invokes the system call_c_send_commando execute an iRMX command line.

Syntax

#include <stdlib.h>
int system (const char *command);

Parameter

command
Command to be executed; it can be any valid HI command, user program, or alias.
Additional Information

Thesystem()function may be invoked multiple times with an ampersand (&) in
the last character @dmmand, to extend the command line. The connection is
maintained untisystem()is invoked without an &.

See also: rg_c_send_commangdSystem Call Reference

Returns

Value Meaning

0 Successfulcommandis not NULL and the command interpreter is
successfully started.

0 And sets errno to ENOENT, if the command interpreter is not found.

Not 0 If commandis NULL and the command interpreter is found.

-1 Error occurred, and the function setsno to one of these values:
E2BIG Command line exceeds 128 bytes.

ENOMEM One of these:

Not enough memory is available to execute the command,
or

The available memory has been corrupted, or

An invalid block exists, indicating that the process making
the call was not allocated properly.

264 Chapter 3 Functions

ANSI tan, tanh

tan, tanh
Tan() calculates the tangent atahh() calculates the hyperbolic tangent of the
number.

Syntax

#include <math.h>
double tan (double x);
double tanh (double x);

Parameter
X Angle to calculate in radians.

See also: acos() asin(), atan(), cos() sin()

Returns
Tan() Returns the tangent af

Returns a PLOSS error and setso to ERANGE ifx is large and a
partial loss of significance in the result may occur.

Returns O, prints a TLOSS error messaggtderr, and setgrrno to
ERANGE ifx is so large that significance is totally lost.

Tanh() Returns the hyperbolic tangentxaf
No error return fotanh().

These functions do not return standard ANSI domain or range errors.

C Library Reference Chapter 3 265

time ANSI, stdio

time
Gets the system time.

Syntax

#include <time.h>

time_t time (time_t *timer);

Parameter

timer Storage location for the return value. This parameter may be a null pointer, in
which case the return value is not stored.

Additional Information

This function calls the system cad]_get_time and adds an adjustment factor: the
number of seconds between epoch time and January 1, 1978, plus the local
timezone factomz, described inzset() This adjusts the IRMX OS time value to
a POSIX-standard value.

See also: asctime() ctime(), gmtime(), localtime(), tzset()

Returns
The number of seconds elapsed since epoch time, according to the system clock.

No error return.

266 Chapter 3 Functions

time macros, _tzset_ptr

time macros, _tzset ptr

Accesses daylight, timezone, and tzname environment variables.

Syntax

#include <time.h>
#include <reent.h>
struct _tzset {
char *_tzname[2];
long _timezone;
int _daylight;
}
struct _tzset *_tzset_ptr (void);
#define daylight (_tzset_ptr()->_daylight)
#define timezone (_tzset_ptr()->_timezone)
#define tzname (_tzset_ptr()->_tzname);

Additional Information
Thedaylight() macro accesses thdaylight flag.

Value Meaning
1 Daylight-savings-time is in effect (default).
0 Daylight-savings-time is not in effect.

Thetimezone()macro accesses the value that represents the difference in seconds
between GMT and local time.

Thetzname()macro accesses a pair of pointers to the timezone name and
daylight-savings-time name. For exampi@ame[0] could point to EST and
tzname[1] could point to EDT. The default strings are PST and PDT.

The_tzset_ptrfunction uses thetzset structure that contains members
corresponding ttename, timezone anddaylight. Each of these macros calls
_tzset_ptr.

See also: tzset() <time.h>

Returns
Pointer to_tzset

Null pointer if unsuccessful.

C Library Reference Chapter 3 267

tmpfile ANSI, stdio

tmpfile
Creates a temporary file, opens in it binary read/write mode, and returns a stream
pointer to it.

Syntax

#include <stdio.h>

FILE *tmpfile (void);

Additional Information

The temporary file is automatically deleted when the file is closed, when the
program terminates normally, or whentmp() is called, assuming that the
current working directory does not change.

See also: rmtmp(), open() tmpnam()

Returns
A stream pointer.

A null pointer if unsuccessful.

268 Chapter 3 Functions

ANSI tmpnam
tmpnam
Creates a temporary filename, which can open a temporary file without overwriting
an existing file.
Syntax

#include <stdio.h>
char *tmpnam (char *string);

Parameter

string

Pointer to the temporary filename.

Additional Information

If string is a null pointertmpnam() leaves the result in an internal static buffer.
Thus any subsequent calls destroy this value.

If string is not a null pointer, it is assumed to reference a string buffer of at least
L_tmpnam bytes. The function will generate unique filenames for up to
TMP_MAX calls.

The character string thahpnam() creates consists of the path prefix, defined by
P_tmpdir , followed by a sequence consisting of the digit characters 0 through 9;
the numerical value of this string can range from 1 to 65,535.

Changing the definitions af tmpnam or P_tmpdir in <stdio.h>does not change
the operation ofmpnam().

See also: mktmp(), tmpfile()

Returns

A pointer to the temporary filename generated.

A null pointer if it is impossible to create the name or the name is not unique.

C Library Reference Chapter 3 269

toascii, tolower, _tolower, toupper, _toupper ANSI

toascii, tolower, _tolower, toupper, _toupper

Convert single characters.

Syntax

#include <ctype.h>
#include <stdlib.h>
int toascii (int c¢);
int tolower (int c);
int _tolower (int c);
int toupper (int c);
int _toupper (int c);

Parameter

c Character to convert.

Additional Information

These functions are implemented both as functions and as macros. To use the
function versions, remove the macro definitions throtgidef directives, or do
not include<ctype.h>

Function Description

toascii() Converts ¢ to ASCII character. Thascii() function sets all but
the low-order 7 bits of ¢ to 0, so that the converted value represents
an ASCII character. If c already represents an ASCII character, c is
unchanged.

tolower() Converts c to lowercase if ¢ represents an uppercase letter.

_tolower() Converts c to lowercase only when ¢ represents an uppercase letter;
the result is undefined if ¢ is not.

toupper() Converts c to uppercase if ¢ represents a lowercase letter.

_toupper() Converts c to uppercase only when c represents a lowercase letter;
the result is undefined if ¢ is not.

See also: is functions

Return Value
The converted character.

No error return.

270 Chapter 3 Functions

stdio tzset

tzset

Sets the time environment variables.

Syntax

#include <time.h>

void tzset (void);

int daylight /* Global variables set by function */
long timezone;

char *tzname|[2]

Additional Information

This function callgetenv()to obtain the current setting of the environment
variableTz, then assigns values to three global variablieglight , timezone ,
andtzname . Thelocaltime() function uses these variables to make corrections
from GMT to local time, antime() uses these variables to compute GMT from
system time.

The Tz environment variable has the following syntax:

[:]J<std><std_offset>[<dst>[<dst_offset>][,<sdate>[/<stime>]
,<edate>[/<etime>]]]

Where:

[[] ,indicates how the system clock is set. If a semi-colon is present, the time is
set to Local Time. No semi-colon indicates that the POSIX-compliant setting of
Universal Constant Time (UCT) is used.

Where:

Local Time means that functions will not need to do shifts for
timezone, but will not shift for daylight savings time. The user must
reset the system clock twice a year by hand to account for these. All
iIRMX file timestamps and CUSPs report the local time.

UCT means that functions will automatically handle timezone shifts
and daylight savings time switches. All iRMX file timestamps are in
UCT. The iRMX date/time CUSPs report in UCT even though the
system says Local Time.

C Library Reference Chapter 3 271

tzset

stdio

<std> (Standard Time) anddst> (Daylight Savings Time) are
_POSIX_TZNAME_MAJn length and are typically a three character string of the
form xST or xDT, such a®ST.

<std_offset> , <dset_offset> , <stime> , and<etime> have the format:
[+]-]<hours>[:<minutes>[:<seconds>]]

The default i2:00:00

<sdate> (DST start date) anckdate> (DST end date) have the format:
<julian0>|J<julian1>|M<month>.<week>.<day>
Where:

<julian0> is 0 to 365

<julianl> is 1to 366

<month> is 1 to 12

<week> is 1 to 5 where 5 is the last week of the month
<day> is 0 (Sunday) to 6 (Saturday)

The default is implementation-specific (U.S. law since 1987 st&atéd4.:0 ”
andM10.5.0).

These values are assigned to the variaddgkght |, timezone , andtzname
whentzset()is called:

Variable Value and Meaning

daylight Indicates whether daylight savings time is observed locally (1) or
not (0). To check the state of this variable, callltraltime()
function and see if theen_isdst field is 1 or 0.

timezone Seconds west of UCT if positive or seconds east of UCT if
negative.

tzname[0] String value of the timezone name from the TZ setting; default is
PST

tzname[1] String value of the daylight savings time name; default is PDT. An

empty string must appear if daylight savings time is never in effect,
as in certain states and localities.

See also: asctime() getenv() gmtime(), localtime(), putenv(), time(), time
macros

Returns

272

Nothing.

Chapter 3 Functions

ultoa, utoa

ultoa, utoa
Ultoa converts unsigned long amtba converts an integer to a null-terminated
string and stores it, without overflow checking.

Syntax

#include <stdlib.h>
char *ultoa (unsigned long value, char *string, int radix);
char *utoa (unsigned int value, char *string, int radix);

Parameters
value Number to convert.

string ~ String result.

radix ~ Base ofvalue ; must be in the range 2-36.

Additional Information

Thestring buffer must be large enough to accommodate the largest
representation of a long integer thadix calls for. For example, on an iRMX

system, the largest signed values represented in a 32-bit integer are -2,147,483,648
and +2,147,483,647. In base 2, their binary representations are 1 and thirty-one
trailing Os, and 0 and thirty-one trailing 1s, respectively. With the sign and
terminating null character, the minimum buffer size would be thirty-four bytes for
binary representation.

For portability, usesprintf's %lo, %ld, or%Ix conversion specifiers, ibdix is 8,
10, or 16, when callingltoa(). Usesprintf's%aq %d, or %xconversion specifiers,
if radix is 8, 10, or 16, when callingoa().

With radix greater than 10, digits in the converted string representing values 10
through 35 are the charactershroughz.

See also: itoa(), Itoa(), sprintf()

Returns

A pointer to the string.

No error return.

C Library Reference Chapter 3 273

umask

umask

Sets the default file-permission mask of the current process to the specified mode.

Syntax

#include
#include
#include

<io.h>
<sys/stat.h>
<sys/types.h>

mode_t umask (mode_t pmode);

Param

pmode

eter

Default permission mode.

Additional Information

274

The file-permission mask is applied to the permission mode specified in calls to
creat(), open() orsopen() The permission mode determines the file's ownership
and access rights; the file-permission mask affects only access rights. If a bit in the
mask is 1, the corresponding bit in the file's requested permission mode value is se
to O (disallowed). If a bit in the mask is 0, the corresponding bit is left unchanged.
The permission mode for a new file is not set until the file is closed for the first
time.

The argumenpmode is a constant expression containing one or more of the
manifest constants definedssys/stat.h> Join more than one constant with the
bitwise-OR operator] ().

Value Meaning

S IRGRP Read permission bit for POSIX file group

S IROTH Read permission bit for POSIX World (other) owner

S IRUSR Read permission for POSIX file owner

S _IWGRP Write permission bit for POSIX file group

S _IWOTH Write permission bit for POSIX World owner

S _IWUSR Write permission for POSIX file owner

S _IXGRP Execute or search permission bit for POSIX file group

S _IXOTH Execute or search permission bit for POSIX World owner
S _IXUSR Execute or search permission for POSIX file owner

See also: chmod(), creat(), mkdir(), open() <sys/stat.h>

Chapter 3 Functions

umask

Returns
The previous value gfmode.

No error return.

C Library Reference Chapter 3 275

ungetch DOS

ungetch
Pushes a character back to the console, causing that character to be the next
character read.

Syntax

#include <conio.h>

int ungetch (int c);

Parameter

c Character to be pushed; must not be EOF

Additional Information

Read the next character usigetch()or getche() This function fails if it is
called more than once before the next read.

See also: cscanf() getch() getche()

Returns
Value Meaning
c Successful
EOF Error

276 Chapter 3 Functions

unlink

unlink

Deletes a file.

Syntax

#include <io.h> /* OR */
#include <stdio.h>
int unlink (const char *filename);

Parameter

filename
Name of file to delete.

See also: close() remove()

Returns
Value Meaning
0 Successful
-1 Error. The function setsrno to one of these values:

EACCES Pathname specifies a read-only file.
ENOENT File or pathname not found, or pathname specifies a
directory.

C Library Reference Chapter 3 277

utime

utime

Sets the modification time for a file.

Syntax

#include <sys\types.h>
#include <sys/utime.h>
int utime (const char *filename, struct utimbuf *times);

Parameters

filename
File on which to set modification time. The process must have write access to the

file.

times Pointer to stored time values. tithes is a NULL pointer, the modification time is
set to the current time. Otherwisienes must point to aitimbuf ~ structure,
defined insys\utime.h

Additional Information

The modification time is set from the modtime field in tiienbuf structure.
Although this structure contains a field for access time, only the modification time

is set.
See also: asctime() ctime(), fstat(), ftime(), gmtime(), localtime(), stat(),
time()
Returns
Value Meaning
0 The file-modification time was changed
-1 Time was unchanged and the function setso to one of these values:

EACCES Pathname specifies directory or read-only file.

EINVAL Invalid argument; the times argument is invalid.

EMFILE Too many open files (the file must be opened to change its
modification time).

ENOENT Filename or pathname not found.

278 Chapter 3 Functions

ANSI

va_arg, va_end, va_start

va_arg, va_end, va_start

Access variable-argument lists.

Syntax

#include <stdarg.h>
#include <stdio.h>

type va_arg (va_list arg_ptr, type);
void va_end (va_list arg_ptr);
void va_start (va_list arg_ptr, prev_param);

Parameters
arg_ptr

Pointer to variable-argument list.

prev_param

Parameter preceding first optional argument.

type Type of argument to be retrieved.

Additional Information

These macros provide a portable way to access a function's arguments when the
function takes a variable number of arguments. Useahstart() macro before
usingva_arg() for the first time. The macros behave as follows:

Macro
va_arg()

va_end()

va_start()

C Library Reference

Description

Retrieves type parameter from the location givemrgy ptr
Incrementsarg_ptr to point to the next argument in the list, using
the size of type parameter to determine where the next argument
starts. Use this macro multiple times to retrieve all arguments from
the list.

After all arguments have been retrieved, resgfsptr to a null
pointer.

Setsarg_ptr to the first optional argument in the variable-argument
list. Thearg_ptr argument must be of tva_list type. The
argumenprev_param is the name of the required parameter
immediately preceding the first optional argument in the argument
list. If prev_param is declared with the register storage class, the
macro's behavior is undefined.

Chapter 3 279

va_arg, va_end, va_start ANSI

The macros assume that the function takes a fixed number of required arguments,
followed by a variable-argument list.

See also: <stdarg.h>, viprintf() , vprintf() , vsprintf()

Returns
Va_arg() returns the current argument.

Va_start() andva_end()do not return values.

280 Chapter 3 Functions

ANSI, stdio viprintf, vprintf, vsprintf

viprintf, vprintf, vsprintf

Viprintf() formats and sends data to the file specifiedtliyam , vprintf() sends
data to standard output, amsprintf() sends data to the memory pointed to by
buffer

Syntax

#include <stdio.h>
#include <stdarg.h>
int vfprintf (FILE *stream, const char *format,

va_list argptr);

int vprintf (const char *format, va_list argptr);
int vsprintf (char *buffer, const char *format,

va_list argptr);

Parameters

stream
format
argptr
buffer

Pointer toFILE structure.
Formatted string.
Pointer to list of arguments.

Storage location for output.

Additional Information

These functions are similar to their counterpfotitf() , printf() , andsprintf(),
but each accepts a pointer to a variable-argument list instead of additional
arguments.

Theformat argument has the same form and function as foprin&() function.

Theargptr parameter has typa_list . Theargptr parameter points to a list
of arguments that are converted and output according to the corresponding format
specifications in théormat argument.

See also: printf() for a description oformat , fprintf() , sprintf(), va_arg(),
va_end() va_start()

Returns

The number of characters written, not counting the terminating null character.

A negative value if an output error occurs.

C Library Reference Chapter 3 281

wcstombs ANSI

wcstombs
Converts a sequence of wide characters to a corresponding sequence of multibyte
characters.

Syntax

#include <stdlib.h>
size_t westombs (char *mbstr, const wchar_t *wcstr,
size_t count);

Parameters
mbstr The address of a sequence of multibyte characters which have been converted.
westr The address of a sequence of wide characters to convert.

count The number of bytes to convert.

Additional Information

If westombs()encounters the wide-character null, either before or whemnt

occurs, it converts it to the multibyte null character (a 16-bit 0) and stops. Thus,
the multibyte character string mbstr is null-terminated only ifvcstombs()
encounters a wide-character null character during conversion. If the sequences
pointed to bywcstr andmbstr overlap, the behavior efcstombs()is undefined.

See also: mblen(), mbstowcs() mbtowc(), wctomb()

Returns

The number of converted multibyte characters, excluding the wide-character null
character.

-1 cast to typaize_t if a wide character cannot be converted to a multibyte
character.

282 Chapter 3 Functions

ANSI wctomb

wctomb
Converts a wide character to the corresponding multibyte character and stores it in
a specified location.

Syntax

#include <stdlib.h>

int wctomb (char *mbchar, wchar_t wchar);

Parameters

mbchar The address of a converted multibyte character.

wchar A wide character to convert.

See also: mblen(), mbstowcs() westombs()

Returns
The number of bytes, never greater than MB_CUR_MAX, in the wide character.
0 if wchar is the wide-character null.

-1 if the conversion is not possible in the current locale.

C Library Reference Chapter 3 283

write stdio

write

Writes data from a buffer to a file.

Syntax

#include <io.h>
int write (int handle, const char *buffer, unsigned int count);

Parameters
handle Descriptor referring to an open file.
buffer Data to be written.

count Number of bytes.

Additional Information

Writing begins at the current file pointer position. If the file is open for appending,
the operation begins at the end-of-file. After writing, the file pointer increases by
the number of bytes actually written.

When writing more than 2 gigabytes to a file, the return value must be of type
unsigned integer. However, the maximum number of bytes that can be written to a
file at one time is 4 gigabytes -2, since 4 gigabytes -1 (or OXFFFFFFF) is
indistinguishable from -1 and would return an error.

Whenwrite() is received, the file descriptor is checked for text or binary mode.

If the file was opened in text mode, the output buffer is written up to each <LF>
character, then a <CR><LF> pair is written separately. If multiple tasks are
writing to the same output, scrambling will occur in text mode; use binary mode.
When writing to files opened in text mode, thete() function treats a <Ctrl-Z>
character as the logical end-of-file. When writing to a dewvicite() treats a
<Ctrl-Z> in the buffer as an output terminator.

See also: fwrite(), open() read()

284 Chapter 3 Functions

stdio write

Returns

The number of bytes actually written, not including <CR><LF> pairs. May be less
thancount , as when disk space is filled befamint bytes are written.

-1 on error, and the function seisno to one of these values:
EBADF Invalid file descriptor or file not opened for writing.
ENOSPC No space left on device.

C Library Reference Chapter 3 285

Index

A

abort functions, 24
abort() function, 38
aborting, task, 43
abs() function, 39

absolute value, calculating, 39, 51, 93, 147

accounting array, 134
acos() function, 40
<_align.h> file, 20, 21
allocating

C task resources, 66

directory cache memory, 233

memory array, 52

memory blocks, 72, 161, 202

stream buffer, 213
ANSI, conforming locale, 216
ANSI function, 37
appending

array, 155

characters to string, 246

string to string, 234
arccosine, calculating, 40
arcsine, calculating, 42
arctangent, calculating, 44
argc/argv parameters, 126
array, sorting, 196
asctime() function, 41
asin() function, 42
assert() function, 43
<assert.h>file, 21
atan() function, 44
atan2() function, 44
atexit() function, 45
atof() function, 46
atoi() function, 46
atol() function, 46

C Library Reference

B

Bessel functions, computing, 48
binary

mode, 97
search, 49
translation mode, 218

bitwise-OR operator, 56, 64, 173, 179,

226, 274

bookkeeping area, 66
bsearch() function, 49
buffering mode, 220
buffers

comparing, 168, 170
copying, 166, 169
copying while swapping bytes, 263
finding character in, 167
flushing, 107

modifying EIOS, 214
moving, 171

setting, 220

setting character, 172
setting for stream, 213
writing to file, 87

BUFSIZ, 213
bytes from file, reading, 83

C

C command line parser, 126
C library

code segment, getting, 131

data segment, getting, 132
information structure, getting, 134
overview, 15

stack segment, getting, 133

C strings, converting, 68
C task resources, 18, 66

Index

287

c_info structure, 134
cabs() function, 51
cache, stat() function, 233
calculating
absolute value, 39, 51, 93, 147
arccosine, 40
arcsine, 42
arctangent, 44
ceiling, 53
cosine, 61
exponential, 92
floating-point remainder, 108
floor, 106
hyperbolic cosine, 61
hyperbolic sine, 224
hyperbolic tangent, 265
logarithms, 153
number from mantissa and exponent, 148
number raised to power, 182
quotient and remainder, 71, 149
sine, 224
square, 230
square root, 229
tangent, 265
calloc() function, 52
ceil() function, 53
ceiling, calculating, 53
cgets() function, 54

character
multibyte, 163, 164, 165
wide, 164, 165

character processing functions, 23
character string, getting from console, 54
character string token, 260
characters
choosing next read, 276
converting, 270
chmod() function, 55
chsize() function, 57
cifc32.lib, 19
cinfo_count, 134
cleanup at exit, 91
clearerr(') function, 58

288 Index

clearing
error and end-of-file indicators, 58
memory, 52
open output streams, 107
stream, 100
clib.job, 15
clock() function, 59
CLOCKS_PER_SEC constant, 59
close() function, 60
closing
file, 60, 73, 115
stream, 94
command line
arguments, getting, 126
executing, 264
extending, 264
option, recognizing, 136
parsing, 126
standard arguments, 136
compare routine, 49, 150, 155, 196
comparing
buffers, 168, 170
command line arguments, 136
strings, 236, 237
substrings, 247, 249
computing Bessel functions, 48
config r?env file, 130
configuring, C library, 16
<conio.h>file, 21
connection token, 138
console, writing to, 191
context of executing program, 215
control functions, 24
converting
C string to UDI string, 68
characters read from stdin, 208
characters to ASCII, lowercase, or
uppercase, 270
integer to string, 145, 146, 273
long integer to string, 158, 159, 160, 273
multibyte to wide characters, 164, 165
number to string, 89, 95, 123, 125
string to integer, 46, 257
string to locale-specific string, 262
string to long integer, 46
string to lowercase, 245
string to number, 46, 257

string to uppercase, 261 default <Ctrl-C> handler, 221

time structure to string, 41 default action
time structure to time_t value, 176 flag directives, 185
time_t value to string, 69 signals, 198
time_t value to time structure, 141, 152 default daylight, 271
UDI string to C string, 68 default daylight-savings-time, 267
wide to multibyte characters, 282, 283 default file sharing, 64
copying default file-permission mask, 274
buffers, 166, 169 default keyboard stream, 204
buffers while swapping bytes, 263 default open mode, 179
file descriptor, 88 default precision, 186
string, 238, 240, 248 default share mode, 173, 179
cos() function, 61 default signal-handling, 198
cosh() function, 61 default system-allocated buffer, 213
cosine, calculating, 61 default timezone, 271
cprintf() function, 62 default tzname, 271
cputs() function, 63 default-mode variable, 97
creat() function, 64 deleting
creating C task resources, 66
environment-variable file, 130 directories, 205
exit register, 45, 178 files, 277
file descriptor, 88 memory segments, 207
files, 64 temporary files, 94, 206
memory segments, 207 descriptor table, file, 193
new directory, 173 diagnostic message, 43
temporary file, 268 difftime(') function, 70
temporary filename, 174, 269 <direct.h> file, 21
cscanf() function, 65 directories
cstart, 19 caching, 233
general description, 19 creating, 173
cstr() function, 68 deleting, 205
ctime() function, 69 renaming, 203
<Ctrl-C> handler, 221 updating, 57
<ctype.h>file, 21 div() function, 71
dividing, 149
D <dos.h>file, 21
DOS function, 37
data, reading, 65 DOS interface functions, 26
date dos_close() function, 73
getting, 78 dos_creat() function, 74
setting, 84 dos_creatnew() function, 74
daylight, 272 dos_findfirst() function, 75
macro, 267 dos_findnext() function, 75
variable, 271 dos_freeman() function, 77
daylight-savings-time name, 272 dos_getdate() function, 78
deallocating, memory blocks, 114 dos_getftime() function, 79
debugging, 43 dos_gettime() function, 80

C Library Reference Index 289

dos_open() function, 81
dos_read() function, 83
dos_setdate() function, 84
dos_setftime() function, 85
dos_settime() function, 86
dos_write() function, 87
double value
converting to string, 95, 125
splitting, 177
dup() function, 88
dup2() function, 88
duplicating file connections, 88

E

ecvt() function, 89
EIOS buffers, 134, 214
end-of-file, 90
stream, 98
end-of-file indicators
resetting, 58
environment variables, 192
getting, 130
time, 271
TZ, 152
environment-variable table, 130, 192
eof() function, 90
<errno.h> file, 21
error indicators, resetting, 58
error messages
getting, 241
writing to stderr, 181
examining, strings, 251
exception structure, math, 162
executing program
saving context, 215
signalling, 198
executing system commands, 264
exit functions, maximum number of, 45
exit() function, 91
exiting, task, 91
exp() function, 92
exponent, 148
getting, 116
exponential, calculating, 92

290 Index

F

fabs() function, 93
fclose() function, 94
fcloseall() function, 94
fevt() function, 95
fdopen() function, 96
feof() function, 98
ferror() function, 99
fflush() function, 100
fgetc() function, 101
fgetchar() function, 101
fgetpos() function, 102
fgets() function, 103
file access, setting, 74
file descriptor, 88, 138

associations, 144
getting, 105

file descriptor table, 88, 193
file files, list, 21
file information

getting, 79, 121
setting, 85

file pointers

getting position, 102, 122
moving, 118, 156, 204
setting absolute position, 157
setting position, 120

filelength() function, 104
filename, creating temporary, 174
fileno() function, 105
file-permission mask, 274

files

closing, 60, 73, 115
connection duplications, 88
creating, 64, 74

creating temporary, 268
creating temporary name, 269
deleting, 277

deleting temporary, 206
finding, 75

getting information on, 233
getting length, 104

opening, 64, 74, 81, 109, 115, 179, 226
reading, 83

reading to buffer, 201
renaming, 203

setting modification time, 278
setting size, 57
sharing, 64, 179
sharing default, 173
translation mode, 218
file-status structure, 233
finding
character in buffer, 167
character in string, 235, 252
character token in string, 259
files, 75
substring in string, 239, 255, 256
first-level jobs, C library, 15
FLAT model, code segment, 131
FLAT model, data segment, 132
FLAT model, stack segment, 133
<float.h> file, 21
floating-point remainder, 108
floor(') function, 106
flushall(') function, 107
fmod() function, 108
<fnctl.h> file, 21
fopen() function, 109
format specification
formatted output string, 184
scanned input, 209
time string, 242
format-control string, 208
formatted
input, 208
string, 183
formatting
character data from stdin, 208

character data from stream, 117, 208

character data from string, 232

output data, 183

time string, 242
fprintf() function, 110
fputc() function, 111
fputchar() function, 111
fputs() function, 112
fread() function, 113
free() function, 114
freopen() function, 115
fscanf() function, 117
fseek() function, 118
fsetpos() function, 120

C Library Reference

fstat() function, 121
ftell(') function, 122
ftoa() function, 123
functions, by name
_cstop(), 66
_dos_allocmem(), 72
_exit(), 91
_get_arguments(), 126
_get_cs(), 131,132
_get_info(), 134
_get_rmx_conn(), 138
_get_ss(), 133
_put_rmx_conn(), 193
_set_info(), 214
_tolower(), 270
_toupper(), 270
abort(), 38
abs(), 39
acos(), 40
asctime(), 41
asin(), 42
assert(), 43
atan(), 44
atan2(), 44
atexit(), 45
atof(), 46
atoi(), 46
atol(), 46
Bessel, 48
bsearch(), 49
calloc(), 52
ceil(), 53
cgets(), 54
chmod(), 55
chsize(), 57
clearerr(), 58
clock(), 59
close(), 60
cos(), 61
cosh(), 61
cprintf(), 62
cputs(), 63
creat(), 64
cscanf(), 65
cstr(), 68
ctime(), 69
difftime(), 70

Index

291

functions, by name (continued)
div(), 71
dos_close(), 73
dos_creat(), 74
dos_creatnew(), 74
dos_findfirst(), 75
dos_findnext(), 75
dos_freemem(), 77
dos_getdate(), 78
dos_getftime(), 79
dos_gettime(), 80
dos_open(), 81
dos_read(), 83
dos_setdate(), 84
dos_settime(), 86
dos_write(), 87
dup(), 88
dup2(), 88
ecvt(), 89

eof(), 90

exit(), 91

exp(), 92

fabs(), 93
fclose(), 94
fcloseall(), 94
fevt(), 95
fdopen(), 96
feof(), 98
ferror(), 99
fflush(), 100
fgetc(), 101
fgetchar(), 101
fgetpos(), 102
fgets(), 103
filelength(), 104
fileno(), 105
floor(), 106
flushall(), 107
fmod(), 108
fopen(), 109
fprintf(), 110
fputc(), 111
fputchar(), 111
fputs(), 112
fread(), 113
free(), 114
freopen(), 115

Index

frexp(), 116
fscanf(), 117
fseek(), 118
fsetpos(), 120
fstat(), 121
ftell(), 122
ftoa(), 123
fwrite(), 124
gevt(), 125
getc(), 128
getch(), 129
getchar(), 128
getche(), 129
getenv(), 130
getopt(), 136
getpid(), 137
gets(), 139
getuid(), 137
getw(), 140
gmtime(), 141
isalnum(), 142
isalpha(), 142
isascii(), 142
isatty(), 144
iscntrl(), 142
isdigit(), 142
isgraph(), 142
islower(), 142
isprint(), 142
ispunct(), 142
isspace(), 142
isupper(), 142
isxdigit(), 142
itoa(), 145
itoh(), 146
j0(), 48

ji1(), 48

in(), 48
labs(), 147
Idexp(), 148
Idiv(), 149
Ifind('), 150
localeconv(), 151
localtime(), 152
log(), 153
log10(), 153
longjmp(), 154

functions, by name (continued)

Isearch()), 155
Iseek(), 156
Itell(), 157
Itoa(), 158
ltoh(), 159
Itos(), 160
malloc(), 161
matherr(), 162
mblen(), 163
mbstowcs(), 164
mbtowc(), 165
memccpy(), 166
memchr(), 167
memcmp(), 168
memcpy(), 169
memicmp(), 170
memmove(), 171
memset(), 172
mkdir(), 173
mktemp(), 174
mktime(), 176
modf(), 177
onexit(), 178
open(), 179
perror(), 181
pow(), 182
printf(), 183
putc(), 190
putch(), 191
putchar(), 190
putenv(), 192
puts(), 194
putw(), 195
gsort(), 196
raise(), 198
rand(), 200
read(), 201
realloc(), 202
rename(), 203
rewind(), 204
rmdir(), 205
rmtmp(), 206
sbrk(), 207
scanf(), 208
setbuf(), 213
setimp(), 215

C Library Reference

setlocale(), 216
setmode(), 218
setvbuf(), 220
signal(), 221
sin(), 224
sinh(), 224
sleep(), 225
sopen(), 226
sprintf(), 228
sqrt(), 229
square(), 230
srand(), 231
sscanf(), 232
stat(), 233
strcat(), 234
strchr(), 235
stremp(), 236
strempi(), 236
streoll(), 237
strcpy(), 238
strespn(), 239
strdup(), 240
strerror(), 241
stritime(), 242
stricmp(), 236
strlen(), 244
striwr(), 245
strncat(), 246
strncmp(), 247
strncpy(), 248
strnicmp(), 249
strnset(), 250
strpbrk(), 251
strrchr(), 252
strrev(), 253
strset(), 254
strspn(), 255
strstr(), 256
strtod(), 257
strtok(), 259
strtol(), 257
strtoul(), 257
strupr(), 261
strxfrm(), 262
swab(), 263
system(), 264
tan(), 265

Index

293

functions, by name (continued)
tanh(), 265
time macros, 267
time(), 266
tmpfile(), 268
tmpnam(), 269
toascii(), 270
tolower(), 270
tzset(), 271
udistr(), 68
umask(), 274
ungetch(), 276
unlink(), 277
utime(), 278
va_arg(), 279
va_end(), 279
va_start(), 279
viprintf(), 281
vprintf(), 281
vsprintf(), 281
wcstombs(), 282
wctomb(), 283
write(), 284
yo(), 48
y1(). 48
yn(), 48
fwrite() function, 124

G

gevt() function, 125
generating pseudo-random numbers, 200
getc() function, 128
getch() function, 129
getchar() function, 128
getche() function, 129
getenv() function, 130
getopt() function, 136
getpid() function, 137
gets() function, 139
getuid() function, 137
getw() function, 140
gmtime() function, 141
goto, 215

294 Index

H

handling, signal, 198, 221

heap management, 17
hyperbolic cosine, calculating, 61
hyperbolic sine, 224

hyperbolic tangent, 265

information structure, C library, 134
integer
calculating absolute value, 147
converting to string, 145, 146
getting from stream, 140
test conditions, 142
interface library, C, 16, 19
interrupts, handling, 221
<io.h> file, 21
isalnum functions, 23
isalnum() function, 142
isalpha() function, 142
isascii() function, 142
isatty() function, 144
iscntrl() function, 142
isdigit() function, 142
isgraph() function, 142
islower() function, 142
isprint() function, 142
ispunct() function, 142
isspace() function, 142
isupper() function, 142
isxdigit() function, 142
itoa() function, 145
itoh()) function, 146

J

jO() function, 48
j1() function, 48
jmp_buf structure, 215
jn() function, 48
jobs, C library, 15

L mbstowcs() function, 164
mbtowc() function, 165
labs() function, 147 measuring time, 59
Idexp() function, 148 memccpy() function, 166
Idiv() function, 149 memchr() function, 167
ifind() function, 150 memcmp() function, 168

libraries, interface, 16, 19 .
<limits.h> file, 21 memepy() function, 169

linear search, 150, 155 memicmp() function, 170
lines, getting from stdin, 139 memmove() function, 171
loadable jobs, C library, 15 memory

allocating, 202
locale, setting task's, 216 allocating array, 52
<locale.h>file, 21 allocating blocks, 72
locale settings, getting, 151 clearing array, 52

localeconv() function, 151
localtime() function, 152
log() function, 153
log10() function, 153
logarithms, 153

comparing characters, 170
copying buffers, 166, 169
creating iRMX segments, 207
moving buffers, 171

long integer, converting to string, 158, releasing blocks, 77

159, 160 setting characters in buffer, 172
longjmp() function, 154 memory block
Isearch() function, 155 allocating, 161
Iseek() function, 156 deallocating, 114

Itell(') function, 157
Itoa() function, 158
Itoh(') function, 159
Itos() function, 160

memset() function, 172
minimizing C task resources, 67
mkdir() function, 173
mktemp() function, 174
mktime() function, 176

M modf() function, 177
main() function, 126 modification time, setting, 278
malloc() function, 161 moving
return value, 161 buffer, 171
mantissa, 148 file pointer, 118, 156, 204
getting, 116 memory, 202
mapping multibyte character, getting length, 163

error number to error message, 241
file descriptors to connections, 193
POSIX to iRMX file permissions, 56 N

<math.h>file, 21 NDEBUG, 43

math errors, 162 lian.h>file. 20. 2
math exception structure, 162 <_noalign.h>te, .21

matherr() function, 162 nonlocgl goto, 215
maximum, number of open files, 193 num_eios_bufs, 134, 214
mblen() function, 163 number, converting to string, 89

C Library Reference Index 295

O Q

O_BINARY translation mode, 218 gsort() function, 196
O_TEXT translation mode, 218 quotient, 149
onexit() function, 178 calculating, 71
open files per task, 193
open mode, 96, 109, 115, 179 R
open() function, 179
opening r?env file, 130
files, 64, 81, 109, 115, 179, 226 raise() function, 198
stream, 96 rand() function, 200
optarg, 136 read() function, 201
optind, 136 reading
OS extension, C library, 15 bytes from file, 83
character data from stdin, 128, 208
P character data from stream, 101, 117, 128
character data from string, 232
parsing, commands, 126 character from console4-, 129
permission mode, 179, 226, 274 format specification, 183, 208
setting, 55 formatted data, 65
perror() function, 181 from file to buffer, 201
pointers from stream to buffer, 113
getting to type other than void, 202 integer from stream, 140
getting type other than void, 52, 161 string from stream, 103
POSIX realloc() function, 202
access rights, 56 reassigning
file descriptor, 138 file descriptor, 88
file ownership rights, 56 file to stream, 115
permission, 64 redirecting, stdin, stdout and stderr, 115
pow() function, 182 register of functions, 178
printf() function, 183 releasing, memory blocks, 77
printing remainder, 108, 149
error message to stderr, 181 calculating, 71
formatted data to stream, 110 rename() function, 203
formatted string to string, 228 renaming
to console, 62 directories, 203
process ID, getting, 137 files, 203
prog r?env file, 130 resetting
pseudo-random integer generator seed, 231 error and end-of-file indicators, 58
pseudo-random numbers, generating, 200 file pointer, 102
putc() function, 190 resident jobs, C library, 15
putch() function, 191 resources
putchar() function, 190 C task, 18
putenv() function, 192 for C applications, 18
puts() function, 194 for C tasks and jobs, 17
putw() function, 195 resources, stdio functions, 66

restoring, context, 154

296 Index

reversing string characters, 253 searching

rewind() function, 204 environment-variable table, 130
rmdir() function, 205 sorted array, 49

rmtmp() function, 206 strings, 235, 251, 252, 255, 256, 259
rq_a_get_file_status call, 121, 233 unsorted array, 150, 155

SEEK_CUR, 118
SEEK_END, 118
SEEK_SET, 118
setbuf() function, 213
setjmp() function, 215
setlocale(') function, 216
setmode() function, 218

rq_attach_file call, 233
rq_c_get_char call, 126
rq_c_send_command call, 264
rq_catalog_object call, 17
rq_create_segment call, 207
rq_delete_segment call, 207

rg_delete_task call, 18, 66 setting

rq_exit_io_job call, 91 <Ctrl-C> handler, 221
rq_get_default_user call, 137 absolute position of file pointer, 157
rq_get_time call, 266 characters in buffer, 172
rq_inspect_user call, 137 characters in string, 254
rq_logical_attach_device call, 17 current locale, 216
rq_s_attach_file call, 17 date, 84

exit status, 91

file pointer, 204

file pointer position, 120

file size, 57

file-permission mask, 274
number of EIOS buffers, 214

rq_s_open call, 134
rq_s_rename_file call, 203
rq_sleep call, 225
run-time job, C library, 15

S open mode, 179, 226
permission mode, 55, 64, 173, 179, 226

S_IRGRP, 55 pseudo-random integer generator

S_lROTH, 55 seed, 231

S _IRUSR, 55 share mode, 226

S_IRWXG, 55 signal-handler, 221

S_IRWXO, 55 stream buffering, 213, 220

S_IRWXU, 55 string characters, 250

S_ISGID, 55 system date, 84

S_ISUID, 55 system time, 86

S_IWGRP, 55 time, 86 _

S IWOTH. 55 time environment variables, 271

S:IWUSR: 55 tt)rafnsl?tion_mod(;,20218

S IXGRP, 55 setvbuf() function,

- share mode, 226

S IXOTH, 55 . .

S_ S shared C library, overview, 15

—I?(U R, 55 sharing

saving, contgxt, 215 output stream, 284

sbrk() function, 207 same file, 284

scanf() function, 208 standard streams, 18

scrambled data, 284 SIG_DFL, 222

search, binary, 49 SIG_IGN, 222

C Library Reference Index 297

SIGABRT, 198

default action, 38
SIGALLOC, 198
SIGBREAK, 198
SIGFPE, 198
SIGFREE, 198
SIGILL, 198
SIGINT, 198
signal handling, 16
signal() function, 221
signal-handling

control, 221

default, 198
signalling, executing program, 198
SIGREAD, 198
SIGSEGV, 198
SIGTERM, 198
SIGUSR1, 198
SIGUSR2, 198
SIGUSR3, 198
SIGWRITE, 198
sin(') function, 224
sine, 224
sinh() function, 224
sleep() function, 225
sopen() function, 226
splitting double value, 177
sprintf(') function, 228
sqrt() function, 229
square root, 229
square() function, 230
square, calculating, 230
srand() function, 231
sscanf() function, 232
startup code, 19, 126
stat structure, 233
stat() function, 233
stderr, 17, 66

writing to, 181
stdin, 17, 66

getting lines from, 139

reading from, 128, 208
stdio functions, 37
stdout, 17, 66

writing character to, 190

writing string to, 194

writing to, 111, 183

298 Index

strcat() function, 234
strchr() function, 235
stremp() function, 236
strempi() function, 236
strcoll() function, 237
strepy() function, 238
strespn() function, 239
strdup() function, 240
stream
clearing, 100
closing, 94
errors, 99
file descriptor, 105
file pointer position, 102
getting file pointer, 122
opening, 96
printing to, 110
reading, 101, 103
reading from, 113, 117, 128
reading integer from, 140
setting buffering, 213
setting file pointer, 120
writing character to, 190
writing integer to, 195
writing to, 112, 124
stream buffering, control, 220
strerror() function, 241
strftime() function, 242
stricmp() function, 236
string format
atof(), atoi() and atol(), 46
output string, 184
string length, getting, 244
strings
appending, 234
appending characters, 246
comparing, 236, 237
comparing substrings, 247, 249
converting lowercase to uppercase, 261
converting to double, long, or unsigned
long, 257
converting to locale-specific string, 262
converting uppercase to lowercase, 245
copying, 238, 248
duplicating, 240
finding characters in, 235
finding substring in, 239, 256

finding tokens in, 259
formatting character data, 232
reading character data, 232
reversing characters, 253
searching, 251, 252, 255
setting characters in, 250, 254
strlen() function, 244
striwr() function, 245
strncat() function, 246
strnecmp() function, 247
strncpy() function, 248
strnicmp() function, 249
strnset() function, 250
strpbrk() function, 251
strrchr() function, 252
strrev() function, 253
strset() function, 254
strspn() function, 255
strstr(') function, 256
strtod() function, 257
strtok() function, 259
strtol() function, 257
strtoul() function, 257
strupr() function, 261
strxfrm(') function, 262
substrings, comparing, 247, 249
suspending, tasks, 225
swab function, 263
sys_errlist, 181
sys_nerr, 181
sysload command, 16
system date
getting, 78
setting, 84
system time
getting, 80, 266
setting, 86
system() function, 264

T

tan() function, 265
tangent, 265
tanh() function, 265
task ID, 137

C Library Reference

tasks
aborting, 43
C resources, 66
current locale, 216
deleting, 18, 66
handling interrupt, 221

maximum number of open files, 193

measuring time used by, 59

modifying EIOS buffer count, 214

normal termination, 45
performance boost, 233
resources of, 134
suspending, 225
terminating, 91
temporary files, deleting, 206
terminating
calling task, 91
task, 91
testing
character device, 144
end-of-file, 90, 98
error on stream, 99
expression, 43
integers, 142
multibyte character, 163

temporary filename uniqueness, 174

text mode, 97

text translation mode, 218

time
converting to calendar, 176
converting to local, 152
converting to structure, 141
getting, 80
getting system, 266
measuring, 59
setting, 86

values, finding difference between, 70

time environment variables, 267, 271
time string, 242
converting, 41, 69
formatting, 242
time structure, 176
time() function, 266
timezone, 272
timezone macro, 267
timezone variable, 271
tm structure, 152, 176

Index

299

tmpfile() function, 268
tmpnam() function, 269
toascii() function, 270
tokens
character string, 260
getting for calling task, 137
iRMX connection, 138
tolower() function, 270
toupper() function, 270
translation
file descriptor to connection token, 138
iIRMX to POSIX time stamps, 121,
233, 266
POSIX to iRMX access rights, 56
POSIX to iRMX file ownership, 56
translation mode, 97, 218
tzname, 272
tzname macro, 267
tzname variable, 271
tzset() function, 271

U

UDI string, converting, 68
udistr() function, 68
ultoa() function, 273
umask() function, 274
ungetch() function, 276
unlink() function, 277
user ID, 137

getting, 137
utime() function, 278
utoa() function, 273

Vv

va_arg() function, 279
va_end() function, 279
va_start() function, 279

300 Index

variable-argument list, 279, 281
vfprintf() function, 281
vprintf() function, 281

vsprintf() function, 281

w

wcstombs() function, 282

wctomb() function, 283

wide characters, 164, 165
converting, 282, 283

World owner, 55

write() function, 284

writing
character to stream, 124
character to stream, stdout, 190
data to file, 284
error message to stderr, 181
formatted data to stream, 110

formatted string to stdout, 183, 281

formatted string to stream, 281

formatted string to string, 228, 281

from buffer to file, 87

integer to stream, 195

single character to stdout, 111
single character to stream, 111
string to stdout, 194

string to stream, 112

to console, 63

Y

yO() function, 48
y1() function, 48
<restore.h>file, 20
yn() function, 48
<yvals.h>file, 20

iRMX®C Library Reference

611047-003

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

»« Manual organization O O O O

» Technical accuracy 0 O O O

» Completeness 0 O O O

» Clarity of concepts and wording O O O O

» Quality of examples and illustrations O O O O

» Overall ease of use O O O O

Comments:

Please list any errors you found (include page number):

Name

Company Name

Address

May we contact you? Phone

Thank you for taking the time to fill out this form.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

OPD Technical Publications, HF2-72
Intel Corporation

5200 NE Elam Y oung Parkway
Hillsboro, OR 97124-9978

Please fold here and close the card with tape. Do not staple.

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

International Sales Offices

AUSTRALIA

Intel Australia Pty. Ltd.

Unit 1A

2 Aquatic Drive

Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street

1st Floor

East Kw. Vic., 3102
Melbourne

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA

Intel Semiconductor of Canada, Ltd.
999 Canada Place

Suite 404, #11

Vancouver V6C 3E2

British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive

Suite 250

Ottawa K2B 8H6

Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MOW 6H8

Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday

Suite 115

Tour East

Pt. Claire H9R 5N3

Quebec

CHINA/HONG KONG

Intel PRC Corporation

China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004

Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway

Central

Hong Kong

FINLAND

Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison-BP 303

78054 St. Quentin-en-Yvelines
Cedex

GERMANY

Intel GmbH

Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza

St. Mark's Road
Bangalore 560001

ISRAEL

Intel Semiconductor Ltd.

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation Italia S.p.A.
Milanofiori Palazzo E

20094 Assago

Milano

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.

Bldg. Kumagaya

2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.

2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA

Intel Korea, Ltd.

16th Floor, Life Bldg.

61 Yoido-dong, Youngdeungpo-
Ku

Seoul 150-010

MEXICO

Intel Technologica de Mexico
S.A.de C.V.

Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS

Intel Semiconductor B.V.
Postbus 84130

3009 CC Rotterdam

RUSSIA

Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square

Singapore 1130

SPAIN

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvagen 24

171 36 Solna

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office

8th Floor, No. 205

Bank Tower Bldg.

Tung Hua N. Road

Taipei

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support

Contacting us is easy. Be sure that you have the following information available:

or software config

Your phone and FAX numbers ready
Complete description of your hardware o

Your

uration(s) Com

product’s product code

Current version of all software you use

plete problem description

Type of Service

How to contact us

FaxBACK*

Using any touch-tone phone,

U.S. and Canada: (800) 628-2283

fax-on-demand system have technical documents sentfto (916) 356-3105
your fax machine. Know your

24 hrs a day, 7 days a wee¢kax number before calling. Europe: +44-1793-496644

Intel PC and LAN Information on products, U.S and Canada: (503) 264-7999

Enhancement Support documentation, software driversEurope: +44-1793-432954

BBS

24 hrs a day, 7 days a wet

firmware upgrades, tools,
presentations, troubleshooting.
2k

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a wet

Worldwide customer support:
information and technical
support for designers, engineer
and users of 32-bit iRMX OS
cland Multibus product families.

Worldwide Locations:

(check your local listing)
Sl
Type: GO INTELC once online.

Customer Support

Intel Multibus Support engineer
offering technical advice and
troubleshooting information on
the latest Multibus products.

sU.S. and Canada: (800) 257-5404
(503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Europe: +44-1793-641464
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT

Hardware Repair

Multibus board and system
repair.

U.S. and Canada: (800) 628-8686
(602) 554-4904
FAX: (602) 554-6653
Hrs: M-F; 7-5 PST
Europe: +44-1793-40352(
FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering | Worldwide: Contact your local Intel
information on the latest iRMX office or distributor
and Multibus products and theif U.S. and Canada: (800) 438-4769
availability. (503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Correspondence Worldwide: Europe:

Mail letters to:

Intel Customer Support
Mailstop HF3-55

5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way

Swindon, Wiltshire

England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	iRMX® C Library Reference
	Quick Contents
	Related Publications
	Contents
	1. Introduction
	Shared C Library Overview
	Shared C Library Advantages
	Resources Allocated to C Tasks and Jobs

	Supplied C Library Files
	The Cstart Module

	DOS Syntax
	Support for Development Tools
	Header Files

	2. Functional Groupings
	Character Processing Functions
	Control Functions
	Conversion Functions
	DOS Console I/O Functions
	DOS Interface Functions
	File Management Functions
	Input/Output Functions
	iRMX-specific Functions
	Low-level I/O Functions
	Math Functions
	Memory Functions
	Searching and Sorting Functions
	Storage Allocation Functions
	String Processing Functions
	Time and Date Functions
	Variable Argument Functions

	3. Functions
	abort
	abs
	acos
	asctime
	asin
	assert
	atan, atan2
	atexit
	atof, atoi, atol
	Bessel Functions
	bsearch
	cabs
	calloc
	ceil
	cgets
	chmod
	chsize
	clearerr
	clock
	close
	cos, cosh
	cprintf
	cputs
	creat
	cscanf
	_cstop
	cstr, udistr
	ctime
	difftime
	div
	_dos_allocmem
	_dos_close
	_dos_creat, _dos_creatnew
	_dos_findfirst, _dos_findnext
	_dos_freemem
	_dos_getdate
	_dos_getftime
	_dos_gettime
	_dos_open
	_dos_read
	_dos_setdate
	_dos_setftime
	_dos_settime
	_dos_write
	dup, dup2
	ecvt
	eof
	exit, _exit
	exp
	fabs
	fclose, fcloseall
	fcvt
	fdopen
	feof
	ferror
	fflush
	fgetc, fgetchar
	fgetpos
	fgets
	filelength
	fileno
	floor
	flushall
	fmod
	fopen
	fprintf
	fputc, fputchar
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	ftell
	ftoa
	fwrite
	gcvt
	_get_arguments
	getc, getchar
	getch, getche
	getenv
	_get_cs
	_get_ds
	_get_ss
	_get_info
	getopt
	getpid, getuid
	_get_rmx_conn
	gets
	getw
	gmtime
	is Functions
	isatty
	itoa
	itoh
	labs
	ldexp
	ldiv
	lfind
	localeconv
	localtime
	log, log10
	longjmp
	lsearch
	lseek
	ltell
	ltoa
	ltoh
	ltos
	malloc
	matherr
	mblen
	mbstowcs
	mbtowc
	memccpy
	memchr
	memcmp
	memcpy
	memicmp
	memmove
	memset
	mkdir
	mktemp
	mktime
	modf
	onexit
	open
	perror
	pow
	printf
	putc, putchar
	putch
	putenv
	_put_rmx_conn
	puts
	putw
	qsort
	raise
	rand
	read
	realloc
	rename
	rewind
	rmdir
	rmtmp
	sbrk
	scanf
	setbuf
	_set_info
	setjmp
	setlocale
	setmode
	setvbuf
	signal
	sin, sinh
	sleep
	sopen
	sprintf
	sqrt
	square
	srand
	sscanf
	stat
	strcat
	strchr
	strcmp, strcmpi, stricmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strftime
	strlen
	strlwr
	strncat
	strncmp
	strncpy
	strnicmp
	strnset
	strpbrk
	strrchr
	strrev
	strset
	strspn
	strstr
	strtod, strtol, strtoul
	strtok
	strupr
	strxfrm
	swab
	system
	tan, tanh
	time
	time macros, _tzset_ptr
	tmpfile
	tmpnam
	toascii, tolower, _tolower, toupper, _toupper
	tzset
	ultoa, utoa
	umask
	ungetch
	unlink
	utime
	va_arg, va_end, va_start
	vfprintf, vprintf, vsprintf
	wcstombs
	wctomb
	write

	Index
	Service Information

