The Cedar Manual
Version 4.2

Release as [Indigo]<Cedar>Documentation>Manual.df
Came from [Indigo]<CedarDocs>Manual>Manual.df
Last edited By Jim Horning on June 8, 1983 6:45 pm

Abstract: Cedar is a new computing environment developed by CSL and ISL for use on
D-machines—Dorados, Dolphins, and Dandelions. This collection of documents describes Release
4.2 of Cedar, June 1983. It consists of a number of sections that have been separately written,
filed, updated, and checked. They may not be entirely consistent—the authors would appreciate
being informed of inconsistencies, either internal to the documentation, or between the
documentation and the system. Because various part of the system are still under intensive
development, any hardcopy documentation is probably out of date. Each of the major components
begins with a title sheet that lists the file name of its working ("came from") version, which may
be more up-to-date. In the following table of contents, items marked with * are short summaries;
you should obtain loose copies for quick reference.

XEROX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

DRAFT - For Internal Xerox Use Only - DRAFT

THE CEDAR MANUAL

Contents
Introdﬁction to Cedar
The Briefing Blurb
The Tioga Editor
How To Use Walnut

The Cedar Language

Cedar Language Overview

Cedar Safe Language Syntax™ (CLRMSafeGram.press)
Cedar Language Syntax
Cedar Language Reference Summary Sheets* (CLRMSumm.press)

Cedar Language Reference Manual [Bound Separately]

Cedar Programming

Annotated Cedar Examples
Stylizing Cedar Programs
Cedar Program Style Sheet* (StyleSheet.press)

Component Manuals (sorted alphabetically by title)

BugBane.tioga

DFFiles.tioga
DoradoBooting.press
LupineUsersGuide.press
NewStuff.tioga
ReleaseProcedures.bravo
TSetterDoc.tioga *
UserExec.tioga
UserProfileDoc.tioga
ViewerDoc.tioga

Component Library

Documented Interfaces
Cedar Catalog

CEDAR 42

* Whiteboard: cedar
Feset Freese INewBox NewWwB aAddSelected HELP Showlines Store

Cedar 4.2 Documentation (Preliminary)

Last edited by Jim Donahue June 1, 1283 1106 am, Jim Horning May 23, 1933 1;43 pm

This database gives a very preliminary version of online documentation for Cedar, It consists
of several Whiteboards, each of which contains references to other Whitehoards and to various
tiles that contain important intormation about the system, Ot, to browse around in it, just MIDOLE
click the icon for the manual and its various pieces {do the same to any of the icons on any
A hiteboard to see its contents), Also, check out the Briefing Fiurd below for the scoop on PARC
and Cedar (complements of Lyle Ramshaw) :

.

Manual :

Jf 3
CLRM.OF | i i =5 : :
i o3 :
ipefudes
i indludes 1hcludes 3

General
.DF

Cedarstyle |
OF

To find out more about the structure of Cedar, browse the Whiteboards given below—rthey
provide information about the hasic operation of Cedar, the Cedar Language, the major components
of the Cedar system (things yow’ll end up using all the time), the most widely used Cedar tools
(like the mail system, the file tool, =tc.) and the important programming interfaces of Cedar, Also,
read the Iriroduciion referenced below—it zives important Zeneral information about Cedar,

Baszics Language components Tools Interfaceas

The Briejfing Blurd i }: 1
glossary i [rest i [References | B

The truth about PARC and Cedar (from Lyle Ramshaw) || toda i | tioga i | tioga
-- averything you want to know about the local environment 3 5 3
{including some hints for gracious living) i i
USER PROFILE OPTIONS here I —: WHITERQARD INSTRUCTIONS:

UserProfile| b
=2 Doe i LEFT => move entity
)) tioga ' CTRL LEFT => delete entity

Wonder why some tool is acting o MIDDLE =» open icon

strangely? This may give you some & SHIFT MIDDLE = expand icon
RIGHT => zrow text hox

v 2 i Whiteboard
~ % h

" - a0 tioga

| Walnutsend :

- P I R B Ak B 3 BRiibooooooooonoonditl fem.

* Whiteboard: Basics
Feset Freeze MNewBox NewWB aAddislected HELP Showlinss Ztore

Cedar Basics
cedar
There are a number of files that you need to know about to understand h-:nw'
Cedar will behave when it runs on your machine; these include your user profile,
the catalogue of registered commands and the basi_c DF tiles that provide the Tool
common components of the system (like the compiler, hinder, the Viewers package, ools
etc,), Also below are references to the latest release message and how to bhoot a
User projfiie info User Exec irnfo
Documentation, default settings Userfuec - Documentation, default
and DF file Utilities commands and DF file
iHour O i H i it L i
b Juser i userprofile | ki Usertiec v [Registerad| B JUserEiec 3
i | protile s | or TS tioga i+ | commands | B | df "
i i 3 s | eatalogue| B B
Basic DF files [cedarcient] E:
df H
. CedarClient.df is the collection of the basic Cedar components; you will
find it useful as a roadmap for all of the other DF tiles that are used in Cedar, 0
CedarClientFat df includes more components and also the sources for a i
number of the important interfaces (bringover /a CedarClient,df will only . -,
bringover the Jbcd files for the interfaces, which makes it hard to start building Icedamuem N
programs although you can compile them,) Fat "
dt H

Handy toois

To read mail, edit
documents and print things
{the references to
documentation are on the

HEditTool |

Doradoe dooting .

) Dorado - :
One of the handy things to know Booting i
about {even if you’re using a public prass i

machine) is some of the magic behind
Dotado hooting -- here’s the scoop (in

WHITEBQARD INSTRUCTIONS:

LEFT => move entity

CTRL LEFT =» delets entity
MIDDLE => open icon

SHIFT MIDDLE =» expand icon
RIGHT => grow text box

Cedar 4.2 Release Message

411 the rews thal's fit to

...... ™" "
BOOOOOBOBOOBMEINNOO0000000000) BAARAARARAN MpAAARAARARRARAS

_'.’g’f,{ Whiteboard
Jtioga

Clowar
LR

EditTool

rrrrrrrrrr
0
.................

* Whiteboard: Language
Eezet Freeze NewBox New'WE 4Addselectad HELP showlines Store

Cedar Language

cedar

The Cedar programming language is an extension of hesa; it is described in the Overview
document Ziven below, See the Components and Interfaces whiteboards for some of the most
commonly used Cedar interfaces, The CLRM DF file contains ,press versions of the most
recent language documentation,

Components Interfaces CLRM.DF

|

Examples Documentation

Examples of the use of Cedar can be found in several places, The CedarExamples DF
file contains a CedarDocuments tinga file that includes five examples, including parts of the
Cedar system itself, Additionally, the information packet that Greg gave you has some
more examples using several of the important packages in the system,

Cadar -
Examples
.DF

irnjcludes

: Cadar -
. . Ezamples 1.
s —dncludes] tioga =% R
; mesa

-

ipeludes Mecludes
injcludes
" ; . sampletool |
mesa simple - i .mesa :
0 Example : i —— —
i mesa 3 i WHITEBQARD INSTRUCTIONS:

LEFT => move entity

CTRL LEFT =» delete entity
MIDDLE => open icon

SHIFT MIDDLE =2 expand icon
RIGHT =» grow text box

.\'::4’:::
Clovar

Walnutsend
W BIBZ 33

* Whitebhoard: Components
Feset Freeze DMNewBox NewWE Addfelected HELP Showlines Store

Important Cedar Components . sadas

The components of Cedar that you are likely to use most frequently include;

Viewers (the Cedar window manager),

Tioga (the Cedar editor),

the UserExec,

Cypress (the database system),

For 2ach of these components, we five the DF file containing all of the
sources and references to other whiteboards with further information on the
interfaces the components provide,

Viewers Tioga.df | [Usarfnes

df o " df i

Yiewers Tioga UsarExac Cypress
—

Additionally, there are a large number of other components of Cedar that you may find
usetul, The pla-e to look for them is in the Cedar catalog and the Cedar and ISL release
messages (the most recent of which is given below)

Cedar Calalog Cedar Release Message ¢4.2) ISL Release ¢d.1)

-

WRHRITEBQARD
INSTRUCTIONS:

LEFT => mowve entity

ctrl LEFT =» delzste entity
MIDDLE => open icon

thift MIDDLE => expand icon
RIGHT => grow text hox

..................
e . -
" a ';‘«: o s\-—/'
leditTaol Walnutsend i pa$ 3-sun
i 582 /33 e

* Whiteboard: Tools

FEeset Freeze NewBox New'WbB Addielected HELP fhowlines store
Cedar Tools sasar
Below, we reference a number of commonly useiul tools -- "Walnut {the Cadar
mail system), the DF Files software, the EditTool, the Tsetter (for type-setting
documentsy, Chat, Talker and Feminder, More information on the many other components
tools in Cedar can be found by looking in the Cedar catalog or in the release
messages for Cedar and the ISL sottware (see the Components whitsboard for
references to these files (The Reminder reference is to Warten’s version, which
is still being developed)
Walnut - . "
) - . . HowTousa- | Bi |walnut i
Walnut is the Cedar mail system {which Walnut | df i
uses Cypress), To become a Walnut user, tioga 3 "
Bringover the contents of the DF file and read i i 5
the documentation, Walnut is currently under [MRS i h
development, so it changes frequently as new
features are added and old ones updated
DFFiles or - .
) . . , L DFFiles i ofrilesret- | b
Using DF files is an important part of working in Cedar; Af w | Man i
the DFFiles DF file exports the Shiodel, VerityDF, 5 | press i
DFDelete and DFDisk programs that you will almost i 3
certainly have use for, TTniortunately, the documentation is 3 H
not done in Tioga -- rum
AIndigo/PrelSL/ShowPress/Show.ded and then open the
EqitTool TSetter Chat
Tioganos | b Tsetteroos | fi [rsartar | i ohatar B [chat.oes] b
g Tioga i Tioga i | df B 5 i
E "% chat lvy
| B i i ’
Talker references Reminder references WHITEBOARD INSTRUCTIONS:
i i - i _ i LEFT => move entity
talker.df| g |Taker i raminder | B JReminder | i otrl LEFT => delete entity
B i af i | tese # MIDDLE => open icon
b i 3 shift MIDODLE => expand icon
b 5; 3 3 RIGHT => grow text box

i
Clowver

* Whiteboard: Interfaces
Eezet Freeze MNewBox NewWE Addielectezd HELP Zfhowlines 3Store

Cedar Program Interfaces

cedar

Below, we give pointer to some of the major Cedar interfaces (again, more of
them can be found by perusing the release messages and the other information in
the Components whiteboard), The most frequently used Cedar interfaces include
IO and FilelQ, Rope, and the various UserExec and Viewer interfaces (the Components
Viewrer interfaces are descrited in the Viewer whiteboard), The InterfaceDoc DF
file zives more complete references,

Viewers o] UserEuae - : . '
Utilities Interface0o
) OF

Ropes [rope
prass i
A Rope is (nominally) an immutable object containg a sequence of
characters indexed starting at 0 for Size characters, The representation 5
allows certain operations to be performed without copying all of the i
characters at the expense of adding additional nodes to the object, (The "r:-—;:
Rope documentation is a ,press file, so use the Tsetter to print it} Rope j
mesa '
WHITEBRQARD
INSTRUCTIONS:

LEFT => move entity

ctrl LEFT = delete entity
MIDDLE => open icon

shift MIDOLE => 2xpand icon
RIGHT =»> grow text box

Lhiteboard |
Jtioga

i EditTool

. 0
il e e
Y SANPINN

Introduction to Cedar
Version 4.2

Release as [IndigoJKCedar>Documentation>Introduction.tioga, .press
came from [Indigo]<CedarDocs>Manual>Introduction.tioga, .press
By Jim Morris, Mark Brown, et al.
Last edited By Scott McGregor on October 12, 1982 9:57 am

By Jim Horning on December 20, 1982 6:12 pm

By Ed Taft on June 1, 1983 11:33 am

By Warren Teitelman on June 2, 1983 11:18 am

Abstract: This memo is a sort of operators’ manual for acquiring and using Cedar. It explains
the minimum you need to to know about most things, depending upon other documents for the
full story.

This memo is probably out of date if it is in hardcopy form. It is intended to document Release
4.2 of Cedar, June 1983, but some sections still reflect earlier releases.

[If you are reading this document on-line, try using the Tioga Levels and Lines menus
(it you can) to initially browse the top few levels of its structure before reading it
straight through.]

XEROX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

DRAFT - For Internal Xerox Use Only - DRAFT

INTRODUCTION TO CEDAR

Introduction to Cedar: Contents
0. Introduction
1. The Cedar World
1.0 Credentials
1.1 Screen Management and Input
1.2 User Exec
1.3 Files
1.4 User Profile
1.5 Walnut
1.6 Maintain
1.7 Setting up your disk
1.8 General Failure Modes
2. Programming in Cedar
2.1 Running programs
2.2 System Models
2.3 BugBane and CoPilot
3. References A
3.1 General References

3.2 Cedar Language References

CEDAR 4.2

INTRODUCTION TO CEDAR 3

0. Introduction

Cedar has a small, close-knit user community and it is changing very fast. Much useful information
is not written down or appears in informal messages. To learn about using the system you must take
some lessons from someone: get them to show you how to start a D-machine, how to use the mouse,
etc. To work effectively you must keep in touch with what is going on. If you are using Cedar put your
name on the CedarUsers mailing list. (See the section 1.6 for instructions on how to do it.) If you would
like to participate in or listen to design discussions, put your name on CedarDiscussion. If you are just
generally interested in what is going on try Cedarlnterest. Questions and bug reports should be sent to
CedarSupport—currently John Maxwell. Questions about a particular section this memo can be addressed
to the person(s) listed at the beginning of that section. Questions about specific packages and problems
should be addressed to the maintainers listed in the Catalog, with copies to CedarSupport; but, if you're
not sure whom to ask, the following people have a general knowledge of how to use the system: Atkinson,
Brown, Morris, Levin, Maxwell, McGregor, Paxton, Rovner, Satterthwaite, Schmidt.

Typographical conventions employed herein:
Names of keys appear in capital letters in a small, alternate font; e.g., SHIFT, ESC, RETURN
1is sometimes used for RETURN. :

Things that are typed or displayed on the screen appear in an alternate font; e.g., compile foo

When we describe fancy interactions in which a system completes commands, what you actually
type is underlined; e.g., OthelloDorado.eb_

CEDAR 4.2

[NTRODUCTION TO CEDAR 4

1. The Cedar World

To use Cedar you must first find a Dorado or Dolphin.

Cedar will usually be found in its idle state, displaying the words "Type Key" in the cursor. After
pressing a key on the keyboard, you will be asked to supply your name and password.

To awaken a slumbering Dorado press its boot button three times and wait for something to appear
on the screen (a minute or so).

To start Cedar on a wakened Dorado hold down the ¢ (for Cedar) key and boot the machine by
pressing the boot button three times.

To turn on a Dolphin press the start button on its maintenance panel and walt for something to
appear on the screen (a couple of minutes).

To start Cedar on an awakened Dolphin hold down the P (for Pilot) key and boot the machine by
pressing the boot button once.

[f Cedar is properly installed on the machine the cursor will turn into a cedar tree, and you will be
prompted for a name and password or just a password; if you don't know what to type, get help. If the
version number at the top of the screen is larger than 4.2, check for a newer version of this memo. If it
is smaller, get the new release using the instructions in section 1.7.2. If the screen says Othello. . ., typing
Rollback or Boot Client may get you to Cedar. Otherwise, you have no Cedar world; consult section
1.7 on how to get your disk set up.

1.0 Credentials Roy Levin

Cedar expects its user to be an individual registered with Grapevine. Whenever you enter the Cedar
world. you will be asked to supply your Grapevine RName and password. Once you have been
authenticated, Cedar will remember your credentials until you either (1) push the boot button, (2) boot
a non-Cedar partition (e.g., an Alto partition), or (3) push the "Idle"” button in the extreme upper right
corner of the screen. If you are not registered with Grapevine, contact your local support staff.

The precise form in which Cedar asks for your credentials depends upon the way in which the
credentials were originally installed. Public machines and some personal machines (at their owners’
option) have "unprotected” disks, meaning that Cedar will permit any individual recognized by Grapevine
to log in. Other personal machines, however, have "protected” disks, meaning that Cedar will only allow
a specific individual to log in. To change from a protected disk to an unprotected one or vice versa, use
Othello’s "Install Credentials” command.

1.1 Screen Management and Input Scott McGregor

The basis for screen management is the Viewer. In general, a viewer manifests itself as a rectangular
area on the screen. Some viewers simply display text, others are virtual buttons that invoke procedures
when clicked. We use the verb click to describe the acts of positioning the mouse-controlled cursor over
a viewer then depressing and releasing a mouse button. usually the left one. Middle click means to
depress the middle button, right click means to depress the right button, etc. In the past mouse buttons were
imagined to be red, yellow, and blue scanning from left to right. so you will occasionally see that terminology.

Across the top of the screen is a small message area where various comments about the system’s
status and behavior will appear. If the message is especially important, the message window will flash to
call the your attention to it. The large middle part of the screen is divided into two columns for displaying
tools and documents. Most tools and documents will initially appear as icons—small pictures at the
bottom of the screen. You can open an icon to see its contents by middle clicking it; holding down the
SHIFT key while clicking makes it consume the whole column. Left clicking an icon selects it, making it
the recipient of type-in from the keyboard. Icon keyboard commands include:

CEDAR 4.2

INTRODUCTION TO CEDAR 5

C Move the icon to the color display (assuming you have the hardware).
DEL Delete the icon.

L Move the icon to the left column.

M Move the icon to another column.

o} Open the icon (like middle clicking).

SHIFT-O Open the icon full size (like SHIFT middle clicking).

R Move the icon to the right column.

Open viewers display a menu of commands across the top when you move the cursor into the
caption (the black band at the top containing the name of the viewer). The commands are as follows:

Destroy Make the viewer disappear.

Adjust Change the size of the viewer or size of the column (see below).
Top Move the viewer to the top of the column.

<-- Move the viewer to the left column.

-> Move the viewer to the right column.

Grow Close all other viewers in the column.

Close Make the viewer iconic.

Middle clicking in the caption menu always invokes the Grow command, and Right clicking always
invokes Close. This allows you to invoke these frequently used operations without having to position
the mouse as accurately.

The height of a viewer in a column is computed from a set of hints, some determined by programs
and some indicated by the user. The program which created the viewer can specify a desired height
(such as in the EditTool and Watch viewers) or the program can request that the viewer receive a "fair
share™ of the available space (as in Tioga text viewers). The user may override these program hints by
clicking the Adjust caption menu command, entering a mode where a new height hint may be specified
with the mouse. Moving the cursor out of the original column changes the mode to allow the user to
specify a new column height and width. At any time while in adjust mode, simultaneously depressing
two mouse buttons cancels the adjust command.

Some menu items and button will be displayed with a strikeout bar through the text. These are
known as guarded commands, implying that command, if inadvertantly triggered, might cause -loss of
your current state. To invoke a guarded command. click once to remove the guard and then again to
trigger (within a few seconds or the guard will reappear).

In order to type something into a viewer., you must first establish the input focus by clicking
somewhere inside it. (If the viewer is a typescript viewer, i.e. one in which you and the system alternately
insert characters, as opposed to a Tioga document, you should make sure that you click the mouse in
the white space below the last character.) Left clicking in a text area positions the blinking caret that
indicates where your typed characters will appear. A sequence of text characters may be selected by left
clicking the first character and right clicking the last; they will appear video reversed, i.e., white on black.
Those characters then become the current selection which various buttons (e.g., Open) treat as an input
parameter. Whatever you type replaces the current selection when it is video reversed. There are many
other things to learn about selection described in the Tioga manual [G1]. Tioga is generally similar to
Laurel [G2].

There are some buttons at the right end of the message area. You can boot any of your system
volumes (e.g., Alto, Client, Othello) by clicking Boot to bring up a set of guarded buttons. The New
button creates a new text viewer that you can type new text into; typing a file name followed by LF will
load a file into it. The Open button creates a new text viewer for the file named by the current selection.
Clicking Idle causes the screen to turn black and display a dancing "Type Key" cursor. This is the
preferred way of ending a session without actually leaving the Cedar world; various volatile structures

CEDAR 4.2

INTRODUCTION TO CEDAR 6

will be made secure on the disk. If you subsequently hit a key, you will be asked to login, after which
the screen will be restored to its state at the time that Idle was invoked. The Fly button will display a
set of nine desktops, any one of which you can examine by left clicking. All of your icons are transferred
to the new desktop.

The checkpoint facility allows you to save the effect of a long set-up computation such as the one
that occurs after an installation of a release. Arm and click the Checkpoint button at the top of the
screen and wait for a while (about four minutes on a Dolphin). Don’t worry that the cursor won’t move
with the mouse. Then, whenever you start your Cedar world or click the Rollback button, you will find
yourself in this state. It is important to understand that rolling back only restores the state of the virtual
memory. It does not undo changes made to files or the directory. Thus you should create checkpoints
only when the system is in a quiescent state with no open files: otherwise, strange things might happen
after a rollback. If you want to overwrite a bcd (either by compiling or file transfer) that was loaded
prior to a checkpoint you should boot the Client volume and create a new checkpoint. Don’t make
checkpoints on public Dorados unless you know how to restore the standard one when you are done.

1.2 User Exec Warren Teitelman

Note: The following is summarized and extracted from the documentation of Cedar UserExec, [G14],
which also appears as as a separate section of the Cedar Manual. For more complete discussion, and lots
of examples, refer to this documentation, which can also be found on your disk as the file UserExec.tioga.

General Comments

The Cedar executive is called the UserExec. [t is an amalgam of the Alto Exec, a Cedar Language
interpreter, and a debugger—backed up by optional automatic error correction facilities similar to
InterLisp’s DWIM. For example, the UserExec can be used to load and run bcds, list, copy, rename,
and delete files, evaluate Cedar Language expressions, catch breaks and signals, and display the state of
a process that has been stopped by a break or signal.

The user interacts with a particular UserExec (you can have several around, even executing, at the
same time) through a special viewer called a WorkArea. Each WorkArea has a name, typically a single
letter, which is displayed as part of its caption. Each WorkArea also has a mode, which is either Executive
or Interpreter, also displayed as part of its caption. To "talk” to a particular UserExec, simply establish
the input focus by clicking in the bottom portion of the corresponding viewer, and then start typing.

Since the WorkArea is a viewer, all of the viewer facilities are available for manipulating the
WorkArea (see section 1.1). In particular. it can be grown, adjusted, scrolled, moved, closed (the UserExec
will continue running and/or outputting characters, you just won’t see them until you reopen the viewer),
opened, split, or even destroyed (which will abort any operation that is executing the next time it tries
to do input or output). Furthermore, since the viewer views a Tioga typescript, all of the Tioga editing
and selection mechanisms can be used with respect to the command line that you are composing: you
can edit this line to your hearts content. and when you terminate the command, it will look exactly like
you typed in the edited line.

New UserExecs and their corresponding WorkAreas can be created via the New menu button which
appears in the first line of each UserExec menu. This works even when a particular WorkArea seems to
have "died". Existing UserExecs can be destroyed via the Destroy Viewer menu button. If you destroy
your only WorkArea, an Exec button is posted at the top of the screen which you can use to create new
WorkAreas.

Events

CEDAR 4.2

INTRODUCTION TO CEDAR 7

Each user interaction with a UserExec is called an event. At the start of each event, the user is
prompted by & followed by the event number. The user then types in a command line consisting of the
name of a registered command, followed by its arguments, if any, and terminated by 3, ?, CTRL-X, or
esc. The UserExec then performs the indicated operation, prints the result, and prompts the user for
the next event. Typing DEL during the input of a command will abort the input, causing you to be
reprompted. Clicking the Stop menu button (or typing CTRL-DEL) during the exeuction of an event will
cause it to abort the current operation (but sometimes it takes a little while).

Terminating a command line with ? signifies a request for additional information. Specifically, ? by
itself prints a list of commands currently registered, ? after a registered command prints a description of
the command, and ? after a Cedar expression prints the type of (the value of) the expression. For
. example: :

&4 walnut?
Walnut Creates a viewer for sending or retrieving mail.
&5 « 3.2?

is of type REAL

&6 + Rope.Cat?

is of type PROC [r1, r2, r3, r4, r5, r6: ROPE « NIL] RETURNS [ROPE];
— returns the concatenation of up to six ropes (limit based on eval stack depth)
— BoundsFault occurs if the result gets too large

Terminating a command with CTRL-X means to “expand” the command, but not to execute it, i.e.
e.g. perform * expansion. Terminating a command with ESC means to "complete” the command, as far
as possible, but not to execute it.

Registered Commands

The following are some of the more useful registered commands. More commands can be discovered
through the use of 2.

@ takes a file name as argument. Treat the contents of the named file as a command file, i.e.
interpret the text as a sequence of commands. If {file} has no extension, look for a file of
the form {file}.commands or {file}.cm.

- Treat the remainder of the input line as a mesa expression to be evaluated. Evaluate the
expression and print its value. If the expression is terminated with ?, print the type of its
value, rather than the value. If the expression is terminated with !, print the value showing
the referents of all REFs and POINTERs to an unlimited depth.

Note: many users prefer to do interpretation of expressions in Interpreter WorkAreas or Action
WorkAreas (see below), in which case the « is automatically provided at the beginning of each
command line, and to use Executive WorkAreas for "executive” type of operations such as running
programs and manipulating files.

Bind Bind a list of configurations. See discussion of Compile menu button below.

Bringover Retrieve files using a specified df file (see 1.3.2)

ChangeAreaMode change an Executive WorkArea to an Interpreter WorkArea and
vice versa.

Compile Compile a list of modules. .

Copy Copy contents of one or more files to another. Syntax is Copy new « old1
old2 ... oldn.

Date Type today’'s date and time.

Delete Delete a list of files.

Fetch Copies remote file(s) to corresponding local file(s).

CEDAR 4.2

INTRODUCTION TO CEDAR 8

Help Provide more complete explanation of UserExec in a separate viewer.

List Print size and creation date for the indicated files.

ListByDates Print size and creation date for the indicated files, sorted by create date.

Login Supply user name and password.

Rename Rename a file. Syntax is Rename new « old.

Run Load and Start the named programs.

SModel Store files on remote servers using a specified df file. (see section 1.3.2)

TSetter Create a typesetter viewer for specified server, and use it to print named
documents

User Type the name of the logged-in user.

Walnut For sending or retrieving mail.

For convenience, a number of commonly used registered commands can also be invoked via menu
buttons that appear in the first line of the menu of each WorkArea. If it isn’t obvious what these menu
buttons do, consult [G14].

Interpreter Work Areas

When typing to an Interpreter WorkArea, the user is always prompted with &nn «, where nn is the
event number. What the user types following the « is treated as an expression to be evaluated in the
current context and default global context, if any, for the WorkArea. The value of the expression will be
assigned to the variable whose name precedes the «, i.e. &nn. This value can be referenced in later
expressions. As mentioned earlier, if ? is typed following an expression, the type of the expression, plus
other explanatory information, is printed.

The following is taken from an actual session with an Interpreter WorkArea. The italicized text at
the right is added commentary not printed by UserExec.

&2 « Rope.Cat["Ce", "dar"]y Note that Rope is the interface, not the implementation.
"Cedar"

&3 « LIST[1, 3.2, &]1 & evaluates o the previous result (&2 in this case.)
(t1, 13.2, "Cedar")
&4 « &3? What type of list did the interpreter produce?

is of type LORA: TYPE = LIST OF REF ANY

&5 « &3.firstt?
is of type INT

&6 + &3.rest.firstt?
is of type REAL

&7 « Listy
default global context changed to: Listimpi
{globalFrame: Listimpl}

&8 « Appendd[Reverse{&3],&3]]1 Note that Reverse is now interpreted as List. Reverse.
Appendd -> Append ? Yes Spelling correction.
("Cedar", t3.2, +1, t1, t3.2, "Cedar")

For more detailed information about exactly what subset of Cedar language expressions the interpreter
can handle see section 2.3.

Action WorkAreas

CEDAR 4.2

INTRODUCTION TO CEDAR 9

Actions occur when a program raises a signal or error that is not caught or encounters a breakpoint.
Whenever an action occurs, the corresponding process is stopped so that it can be examined, and control
transfers to a different WorkArea called an Action WorkArea, or ActionArea for short. An ActionArea
is an Interpreter WorkArea whose default context is the context of the action. The user can then walk
the stack and evaluate expressions. The user can also choose to ignore the action for the time being and
type some other command in a different WorkArea. If the user does not wish to pursue the cause of the
action at all, the simplest way to make it "go away" is to click Abort. For complete discussion of Action
Areas and ActionArea Commands, see [G14].

Using the History facility

Each WorkArea has associated with it a history of all of the events that have taken place in that
WorkArea. The user can examine this history via the History registered command, reexecute a particular
event or events using the Redo command, or substitute new parameters (text strings) into a particular
event or events and then reexecute them via the Use command.

Confirmation

Occasionally the UserExec will attempt to correct an error: e.g. a misspelled file name, an invalid
selector, syntax error, etc. [n this situation, two new menu buttons, Yes and No, will be posted in the
menu for the corresponding WorkArea. Depending on the settings in the user’s profile (see UserProfile.doc),
some errors will be corrected automatically, but in other cases, confirmation will be requested. When/if
the user is asked to confirm (depending on the settings in the user’s profile, some errors may be corrected automaticaily),
the user can confirm using these buttons, or by typing Y or N. If the user has typed ahead before the
need for confirmation was detected, the typeahead will be retained, and the user must confirm using the
Yes and No buttons.

1.3 Files

All of the material you are working on, including programs, is stored in files. Each different document
you handle will be stored on its own file. The file system is somewhat complicated by the fact that it
spans a network and developed in an evolutionary fashion.

1.3.1 Local and Remote Files Ed Taft

A file on your local disk is identified by its name, which is a string of letters (upper and lower case
can be used interchangeably), digits, and any of the punctuation characters +- . §. By convention, a
simple file name has two parts. which are called the main name and the extension: they are separated by
a period. For example, "Introduction.tioga” is a file name, with main name "Introduction” and extension
"tioga". File names cannot include blanks, or any punctuation characters except the ones just mentioned.

It is important to name your files in some systematic way, using the main name to identify it, and
the extension to tell what kind of file it is. Unless there is a good reason to do otherwise, it is best to
use one of the standard extensions given below.

Here is a list of extensions commonly encountered:

.bed Cedar object program

.config system configuration, input to binder

cm command file for the User Exec or other programs

.doc Tioga document (old convention)

df list of dated files for use in moving files between machines
.mesa Cedar or Mesa source code

CEDAR 4.2

INTRODUCTION TO CEDAR 10

.model system model
.press Press-format file, suitable for printing
.tioga Tioga document

The system doesn’t care whether you capitalize letters in file names or not (i.e., ALPHA, alpha, and
alLpHa refer to the same file), but it is a good idea to use capitalization to make names more readable.
This is especially useful when a name consists of more than one word, since blanks are not allowed in
file names: e.g., TripReport or MasterList. A file name with the form X$ is taken to be an older, backup
version of X. Many subsystems will save the previous version under such a name.

File servers are large repositories for files. A file server's disk typically has hundreds of times the
capacity of your local disk. Besides providing back-up for your local disk, they are the only reasonable
places to put files you wish others to see or want to access yourself from different machines. The only
reasonable way to do business is to keep your personal files backed up on a remote server. You should
not rest easily unless the latest versions of all your important files are on a remote server somewhere.

In general, the name of file in network has the form
[ServerKdirectory>subDirectories>name.extension!version

This form is sometimes called the full path name. The server is the name of the machine. Indigo,
Ivy, and MAXC are the local servers; the first two are instances of [FS—the interim file system. The
directory is the name of a project or person. Each user who has an account on a file server has his own
directory, named by his user name. Files within a directory may be organized into sub-directories (except
on MAXC). For example, the file named

<{Jones>Memos>ActivityReport.bravo!3

belongs in directory Jones, sub-directory Memos. You can have as many sub-directories as you wish
within your own directory. You can even have sub-directories within sub-directories, to as many levels
as you wish, subject to an overall limit of 99 characters in each file name. Subdirectories are entirely a
naming convention based upon the use of the character >; there are no special operations for dealing
with subdirectories. The name and extension serve the same purposes as on the local machine. When
you put a file onto a file server, if there is already a file with the same name, the new file is added, with
a version number one bigger than the old one. When you reference a file without specifying a version
you get the one with the largest version number. As you can see, it is almost never necessary for you to
specify a version number explicitly. (On MAXC, the character ; is used instead of ! to prefix a version
number.) Each file in the system carries a create time: the time when the content of the file was created.
This attribute serves as a server-independent version stamp.

You can name a group of files by using file name parterns containing the magic character * which
stands for any string of characters. For example, the pattern *.memo stands for all the files which have
the extension "memo", and the pattern *.BWL™* stands for all the files which have "BWL" as the first
three characters of the extension.

1.3.2 DF Files Eric Schmidt

As soon as you find yourself dealing with multiple files. you should devise DF files to help you
back up and retrieve them. A DF file is a human-readable file that describes a list of files with their
create dates. The simplest way to create a DF file is to list all the files of interest in a file and apply the
command SModel to it. For example, to create the DF file describing all the files mentioned in a previous
version of this memo we created the file init.df with the following content:

Directory [indigo]<Cedar>init>
Init.df
AltoSupport.cm

CEDAR 4.2

INTRODUCTION TO CEDAR "

Cedar.cm
DO0.cm
DORelease2.5.1.cm
Dorado.cm
DoradoRelease2.5.1.cm
RunPilot.bcd
Directory [indigo]<Cedar>documentation>
GettingStartedInCedar.memo
GettingStartedInCedar.press

We then typed
SModel init

to the User Exec. This transfered all the files to the remote directories, including an updated version
of init.df that contained the version numbers and create times of the files:

Directory [indigo]<Cedar>init>

[nitdf

AltoSupport.cm!l 22-Mar-82 9:47:24 PST
Cedar.cm!l 18-Mar-82 14:57:23 PST
D0.cm!2 22-Mar-82 10:38:37 PST
DORelease2.5.1.cm!3 22-Mar-82 10:55:02 PST
Dorado.cm!3 22-Mar-82 12:33:35 PST
DoradoRelease2.5.1.cm!l 22-Mar-82 10:11:30 PST
RunPilot.bed!l 2-Feb-82 23:37:34 PST

Directory [indigo][<Cedar>documentation>
GettingStartedInCedar.memo!1l 22-Mar-82 14:02:23 PST
GettingStartedInCedar.press!1 22-Mar-82 14:03:11 PST

Once you have a DF file, you can use the BringOver and SModel programs to manage the movement
of your system.

BringOver /a init

makes sure the local disk contains the proper versions of the files in init.df by retrieving new versions
automatically (/a) if needed. You should use full path names to specify a DF file if you want the remote
version to control things; e.g. :

BringOver /a [IndigoKCedar>initinit

After making changes to files, you can use SModel to write out the new versions; it compares the
create times on the local files with those in the DF file and transfers files when they differ. You can nest
DF files if your package requires another package. All of this is a simplification; see [G3] for more
information. If you are providing a component of a Cedar release you must read [G4] to learn the
proper way to use DF files for a Cedar release. You can learn a lot by looking at the DF files on
[Indigo]<KCedar>Top>.

1.3.3 The File Tool Larry Stewart

The File Tool—its iconic form looks like a file cabinet—is used for listing files on various machines
and transferring them. Its topmost section provides various fields for you to type in things and a few
mode buttons; click the field name and the cursor will move to its entry. The * notation can be used in
the first three fields to designate groups of files.

Directory designates a remote server and subdirectories; e.g., [Indigo]<Cedar>Top>. The * notation

can be used to designate multiple places.

CEDAR 4.2

INTRODUCTION TO CEDAR 12

Filename(s) is a sequence of files to be transferred or listed; subdirectories may be included; e.g.,
Docs>Intro.press. Remote file names are derived by concatenating Directory with these names.
The * notation can be used to designate multiple files. Entering @X will cause the contents
of file X to be used.

Local refers to local file names. It can be used if you wish to rename a single file as it is being
transferred. On a retrieve it names the destination file; on a store it names the source. The *
notation can be used to designate multiple files. Entering @X will cause the contents of file
X to be used.

DF File is the name of a DF file that fetch may be done through. See DFGet.

Connect Name and Password are needed for access to certain directories. You may omit the
password when connecting to a directory belonging to a project of which you are a member.

Update is a button that sets the mode of operation so that a file will be moved only if a version of
it already exists at the destination and has an earlier create date than the file to be moved.

Update>a does the same thing except the file will be moved even if it doesn’t exist at the destination;
most people prefer it.

ExportsOnly applies to fetches done through DF files.

Verify sets the mode so that you must confirm each transfer by clicking buttons that will be presented
to you in the middle section

The second section holds a set of buttons that represent commands.

Retrieve fetches the remote files given by the combination of Directory and Filename(s). If no
local name is given the short form of the remote one is used.

Store moves files to a remote machine. If no Local entry is present it uses the Filename(s).

Local-List displays information about the local files.

Remote-List displays information (version, size, creation time) about the remote file.

List-Options brings up a set of buttons that change the things printed out by the List commands.
Apply causes the new settings to take effect; Abort resets to the old settings.

Close shuts down the remote connection

DFGet retrieves the files listed in Filename(s) using a DF file to discover their full path names.
Directory is prepended to DF File to define the full path name of the DF file itself.

DFGetBoth is the same as DFGet but fetches the .mesa and .bcd for each name listed in Filename(s).

Local-Delete deletes the local files; it must be armed. Warning: Unlike certain systems, once you
have deleted a file, you cannot get it back. Proceed with caution.

Remote-Delete deletes the remote file; it must be armed.

The third section is an output typescript. The Stop button in the top-most menu can be used to
abort transfers and lists in an orderly way.

1.3.4 Chat and File Space Management Larry Stewart, Ed Taft

Sooner or latter you will run out of disk space on your IFS or MAXC directory. File space management
activities not supported by the File Tool or DF files can be carried out by connecting to a file server
with Chat. Chat uses a viewer to simulate a teletype computer terminal, and thereby enables you to talk
directly to executive programs running in various server machines.

To initiate a conversation with the executive in a server type Chat server -l to the User Exec. If all
goes well, you will see. a message from the server's executive and @ at the left margin prompting you
for type-in. If Chat has trouble getting connected, it will tell you its problem after trying for a few
seconds. This usually means that the server is broken: you might try again in a few minutes. To redirect
an existing Chat viewer to a sever type the server name into a window, select the name, and click Login.
If you click Connect rather than Login, you can login by hand: type

CEDAR 4.2

INTRODUCTION TO CEDAR 13

@Login (user) name (password) password

Whatever the server executive is doing, you can force it to stop by typing CTRL-C. On MAXC, you
may have to type CTRL-C several times in quick succession to get it to stop.

When you are finished talking to the server Executive, type

@Logout

(or Quit if the server is an [FS). Then click Disconnect. If the file server is an IFS, you will be
logged out automatically if you don’t type anything for three minutes. This is because I[FS can service
only a small number of users (currently nine) at once; the automatic logout is intended to prevent IFS
from being tied up by users who aren’t doing anything useful. Simply closing a chat viewer does not
shut down the connection unless you right click the Close button.

You type commands to IFS and to MAXC in more-or-less the same way (except for those commands
that have different names on the two systems); however, the responses from IFS and MAXC are usually
somewhat different. You may type ? at any point to obtain a brief explanation of what you are expected
to type in next. MAXC normally does not display the remainder of abbreviated commands; however, you
can force it to do so by terminating fields you type in with ESC rather than space.

To- delete all old versions of files (i.e., all but the highest-numbered version of each file), on IFS
type

@Delete *,

@ @Keep (# of versions) 1

@ @Confirm (all deletes automatically)

@@

on MAXC type

@Delver

Delete oldest? Yes

Delete 2nd newest? Yes

File(s):_

It is a good idea to do this fairly frequently, since old versions of files can pile up and waste a lot
of space. To find out how much space you are using on the file server, type

@DskStat

One [FS or MAXC page is equivalent to about four D-machine pages. You will notice that you also
have a disk limit which is the maximum number of pages you are permitted to use on the file server at
one time. If you exceed your disk limit, the server won't let you store any more files until you first delete
some existing ones to get you below your disk limit. To get your limit changed, consult your local support
staff.

You can direct your attention to some other directory by typing

@cConnect (to directory) OtherDir (password) password

You may omit the password when connecting back to your own directory, or when connecting to a
directory belonging to a project of which you are a member.

MAXC provides facilities for archiving files onto magnetic tape, where the cost of storing them is
negligible. You can get an archived file back within one day. To archive one or several files, type

@Archive File file1 file2 . . .

(Note that the command name consists of the two words "Archive File"; after that you should type
the names of the files you want to archive.) The files will be archived onto tape within a day or two.

CEDAR 4.2

[NTRODUCTION TO CEDAR 14

After this has been done, they will be deleted from the disk automatically, and you will get a message
notifying you that the archiving has been done.

MaXC keeps track of your archived files in an archive directory which you can list exactly like your
regular MAXC directory, using the Interrogate command rather than the Directory command; for example,

@Interrogate *.bravo

If the listing is of just one file, MAXC will ask you whether or not you want it retrieved from the
tape. If you say Yes, the file will appear on your MAXC directory within a day, and you will get a
message to that effect.

Because MAXC’s disk capacity is fairly small relative to the number of users who have MAXC
accounts, the disk occasionally becomes full and it becomes necessary for a forced archive to be performed
in order to make some space available. In a forced archive, all files that haven’t been referenced (retrieved,
printed, or whatever) in the past 90 days are written onto tape and deleted. You will be notified when
any of your files are archived for this reason, and the procedure for getting them back is the same as
given above.

1.4 User Profile Warren Teitelman

A number of components of Cedar permit the user to tailor Cedar’s behavior along certain predefined
dimensions via a mechanism called the user profile. Whenever you boot or rollback, your user profile is
consulted to obtain the value for these parameters. This operation is performed by consulting a file whose
name is <YourName>.profile, e.g., MBrown.Profile, or if no such file exists, User.Profile. The entries in
this profile are of the form

Key: Value

where, for any given key, the value is expected to be either TRUE/FALSE, a number, or a token
(a sequence of characters delimited by SP, CR, TAB, COMMA, COLON, or SEMICOLON, or an arbitrary
sequence of charcters delimited by quotes), or a sequence of tokens. Comments can appear at any point
in the profile, and are ignored.

More information may be found by examining UserProfile.doc, which lists all the currently available
options.

1.5 Walnut Rick Cattell

The program for reading and sending electronic mail in Cedar is called Walnut. It uses the database
management system as a repository for the messages. The documentation for Walnut can be found in
the file [IndigoKWalnutDoc>HowToUseWalnut.press; a copy of this documentation appears as a later
chapter of this manual.

1.6 Maintain Andrew Birrell

Various administrative tasks associated with mail, authentication and other uses of Grapevine can
be performed with the Maintain command. Bringover and RunAndCall Maintain. Its interface is layered
according to the complexity of the operations various people need to perform. Many users will need
only the level called "normal”. This allows you to inspect distribution lists, add or remove yourself from
lists, and change your password. When using Maintain, you must always specify names in full. Thus,
you must say "CSL+t.pa". not "CSL+". and "Birrell.pa”, not "Birrell"”.

To look at a distribution list (a "group” in Grapevine terminology), fill in the text field labelled
"Group” and click the "Members” button in the first line labelled "Type”. The "Summary"” button in
that line will show you the access controls associated with that group (which control who may add or

CEDAR 4.2

INTRODUCTION TO CEDAR 15

remove members). To add yourself to a group, fill in the "Group” field and click "Self” in the line
labelled "Add". Similarly, you can remove yourself with the line labelled "Remove”. Not all groups
allow you to add or remove yourself. If you're not allowed to change the group, you should send a
message to the owner of the group asking for the change. For example, you would send a message to
"Owner-CSLt.pa" to ask about "CSLt.pa”.

For the sake of security, it is a good idea to change your password occasionally (say, once a year).
To do this, make sure your name is in the text field labelled "Individual”, fill in your new password in
the line below, labelled "Argument”, then click "Password” in the line labelled "Set”. Passwords should
be at least six characters and unpronouncable. If you have an account on MAXC you will need to change
the password there via Chat, type

@cChange Password (of directory) name (old password) xxx (new password) yyy
1.7 Setting up your disk Eric Schmidt, Ed Taft
1.7.1 Getting to Othello

Othello is a general Pilot utility for setting up disks. There are variety of paths to Othello. On an
arbitrary machine in an arbitrary state hold down BS. RETURN, and ' while booting (on a Dorado, push
the boot button three times in quick succession). This places you in the Network Executive. The type-in
conventions are simple: ? lists the possible commands, 8S backspaces, DEL cancels the current line. To
start up a program from the NetExec, simply type the name of that program followed by RETURN or
esc. In fact, you need only type enough of the name to distinguish it from all the others; we shall
underline only that portion your need to type before the RETURN. You are currently on your way to
Othello; type

>MesaNetExec

placing you in the Mesa Network Executive which has similar typing conventions. From there type
>OthelloDorado.pb _

or

>OthelloD0.pb_ (For historical reasons Dolphins are sometimes cailed D0’s.)

depending upon whether you are using a Dorado or Dolphin. If you are in the Cedar world already,
you can simply boot Othello with the Boot button at the top of the screen.

When Othello starts, it will ask you to log in. You must supply your Grapevine registered name and
correct password before Othello will permit you to do anything else.

Now that you are in Othello you can use the standard command files described below for initializing
disks and getting releases. If you want to do non-standard things with Othello see section 4.8 of [GS].

Here are a few fine points about starting Othello:
When starting with a new disk which you plan to erase and format, you should say
>Switches: n_

to the Mesa Network Executive before starting Othello. This prevents Othello from attempting to
put the existing file system on-line when it starts up. It also permits you to log in as yourself even if
someone else’s credentials are installed on the disk; however, all Othello will allow you to do is to erase
the disk—you cannot examine the existing contents of someone else’s disk by this means.

On a Dolphin. if you ever want to boot your Cedar system from Othello rather than the boot button,
you must call for the Cedar microcode by typing

CEDAR 42

INTRODUCTION TO CEDAR 16

>SetVersions for germ and microcode
Germ: DO.eg_
Microcode: CedarDO0.eb

to the Mesa Network Executive before starting Othello.

1.7.2 Getting a New Release

The next section describes how to start with a brand new, unformatted disk. This section assumes
you already have a Cedar world set up, are happy with the distribution of space among your volumes,
but would like to upgrade your system to the latest release. (If you want to change the volume structure
read pp. 40-41 of [GS5].) If you have just set up your disk, there is no need to perform these operations.

First, you should perform some disk clean-up. There are two possible levels of clean-up: deleting
all the old BCDs and symbols files or erasing the volumes. You should at least do the former if there is
any chance that the new release introduces new versions of things. No end of confusion will result if old
versions of BCD files get mixed in with the new things. Erasing a volume takes longer and requires that
you evacuate and recover personal files, but it promotes compact files, clean directory structures, and
other healthful things. The utility DFDisk [G3] is useful in figuring out what you need to save. To erase
your Cedar Client volume, get into Othello and type

>Erase
Logical Volume Name: Client
Are you sure? [y or n]: y

Whether or not you erase, you can get latest release’s boot files by typing

>@
Command file: [Indigo]<Cedar>top>DoradoRelease.cm

or
Command file: [Indigo]<Cedar>top>D0ORelease.cm

New microcode, germ, and boot files will be fetched. On a Dolphin you will be put back into the
Alto world: boot while holding down P. On a Dorado you will be put directly into the Cedar world.

Getting a new release takes under two minutes, so only the most impatient people will want shortcuts
for updating a single item like the microcode. They should read the command file to see how to do it

1.7.3 Initializing a Disk

You should only do this step on your personal disk or machine; don't do this to a public machine’s
disk! This initial setup should work no matter whether your disk is blank, smashed, or already contains
a working version of Cedar. Besides taking time, this initial setting up discards the record of bad pages
each disk has, so you do not want to reformat your disk gratuitously. If you have a functioning Cedar
world and just want to get a new release or clean up your disk, go back to subsection 1.7.2.

To initialize a Dorado that has a new, unformatted disk. type to Othello
>@

Command file: [Indigo]<Cedar>top>FormatNewPrivateDorado4.cm

It is assumed that you have an Alto world on partition 5 of your disk. This command file will take
the other four partitions of the Dorado’s disk (1., 2. 3, and 4) and create four Pilot logical volumes: the
Client volume for Cedar, the Debugger volume for CoCedar. the Othello volume for general utility, and
the Booter volume for checkpoints. When the cedar tree cursor appears, go back to section 1.0.

CEDAR 4.2

INTRODUCTION TO CEDAR 17

If for some reason, you want to recreate standard logical volumes on a disk that has already been
formatted with partitions 1, 2, 3, and 4 dedicated to Cedar, use the command file
[Indigo]KCedar>Top>MakeDoradoDisk4.cm. This command file is identical to
FormatNewPrivateDorado4.cm except that the physical volume is not reformatted and your list of bad
disk pages is kept.

For Dolphin users, some ground rules:

(1) Your Dolphin should have 768K words of real memory, indicated by 3072 appearing on the
maintenance panel while you are in the Alto world. The hardware maintenance staff will add
memory to your Dolphin upon request. Make sure you have the latest memory controller
upgrade, too.)

(2) You should dedicate 3/4 of your disk space to Cedar/Pilot. This assumes that you are using
your Alto partition for just Bravo, SIL, and other nostalgia items. If you don’t now have a
small Alto disk partition, here is how to convert: FTP all personal files from your disk to
some safe place, like a file server; CopyDisk from [IndigoKBasicDisks>Mesa6-14.bfs to BFS1;
finally, FTP your personal files back.

To initialize a Dolphin Cedar world, type to Othello:

>@
Command file: [Indigo]<Cedar>top>FormatNewPrivateD0.cm

After about fifteen minutes, you should have an initialized Dolphin with 3/4 of its disk space
dedicated to Cedar. You will have three volumes on your machine: the Client volume for Cedar programs,
the Othello volume for general utility, and the Booter volume for checkpoints. Note that there is no
Debugger on your disk. Use BugBane for common bugs and teledebugging for cases BugBane can't
handle. A person with a Dorado will be happy to help you teledebug.

After all this you will find yourself back in the Alto world. Boot the machine while holding down
P, and you should be in the Cedar world, looking at the cedar tree. Go and read section 1.0.

If for some reason, you want to recreate standard logical volumes on a disk that has already been
formatted with 3/4 of the disk dedicated to Cedar, wuse the command file
[Indigo]<Cedar>Top>MakeD0ODisk.cm. This command file is identical to FormatNewPrivateD0.cm
except that the physical volume is not reformatted and your list of bad disk pages is kept.

If you want to devote your entire Dorado disk to Cedar (and eliminate the Alto partition entirely)
then use the command file [Indigo]<Cedar>top>FormatNewPrivateDorado5.cm. This will destroy
everything already on the disk, so be sure you have saved anything that you want preserved.

If you wish to configure your disk in other than the standard way (e.g., to use all of a disk for Cedar
on a Dolphin), consult a wizard.

1.7.4 Other Othello commands

If you find that you use Othello a lot, you may want to set things up so that the default action upon
booting the machine is to start Othello rather than to boot or roll back your Cedar Client world. This
enables you to get to Othello directly rather than via the long excursion through the MesaNetExec. The
procedure for setting things up this way is:

>Set Physical volume boot files

Logical volume name: Othello

Set physical volume boot file from this logical volume? Yes

Set physical volume pilot microcode from this logical volume? Yes
Set physical volume germ from this logical volume? Yes

Are you sure? Yes

CEDAR 4.2

INTRODUCTION TO CEDAR 18

>Set Debugger pointers

for debuggee logical volume: Othello
for debugger logical volume: Debugger
Are you sure? Yes

From Othello, you can roll back your Client world by saying "RollBack Client"; you can boot your
Client world by saying "Boot Client” followed by two CRs; and you can go directly to the debugger
either by typing CTRL-SWAT (the SWAT key is the unmarked one next to the right SHIFT key) or by saying
"Boot Debugger” and specifying switches of "w".

1.8 General Failure Modes

You may have the misfortune to encounter a bug in the Cedar system that causes it to crash. There
are various ways to recover from crashes.

If you seem to be stuck and the maintenance panel lights (on a Dorado they actually appear on the

screen) say:

910: This is displayed while booting or world-swapping and does not indicate a failure.

912: Version mismatch between the germ and boot file. Consult an expert.

915: Cedar tried to transfer control to a world-swap debugger, but there isn't one on your local
disk. See section 2.3.

920: This is displayed while booting or world-swapping and does not indicate a failure.

921: An unrecoverable disk error occurred while booting or world-swapping. Try again; but if the
problem persists you may need to rebuild your file system.

922: An Etherboot of Othello or some other program timed out; try again.

923: Something about your germ or boot file is wrong, try getting a new release of Cedar (per
section 1.7.3)

933: Something about your machine has changed since the Cedar checkpoint and/or Debugger
image was installed on the disk. Most likely either the disk pack was moved to another
machine or the machine’s Ethernet address was changed. Boot the Debugger, boot the Client,
and remake the checkpoint.

937: Unable to get the time from the Ethernet, most likely due to Ethernet or time server failure,
but possibly due to a hardware problem in your machine. If repeated failures occur, consult
a wizard.

957: This is a symptom of a hardware problem on Dolphins. Notify the hardware maintainers.

960: Wait for a while. possibly even 20 minutes. Your disk is being garbage-collected. Be patient;
booting merely starts the process over again.

Anything less than 900 typically indicates a microcode or hardware problem. Maintenance panel
codes less than 900 usually occur only on Dolphins. See [G6] for a list of Dolphin maintenance panel
codes. On a Dorado, a hardware or microcode-detected error usually halts the machine; the usual
manifestation is that the screen turns completely black or gray with diagonal stripes. Maintenance panel
codes above 900 but not in the above list are usually but not always due to hardware problems also.

If the maintenance panel says 990 (or, on a Dorado, no numbers are visible), but there is no response
to keyboard or mouse input. you need to get control somehow. In general, there are several levels of
fall-back to try. Starting from the least drastic:

0. Go to a world-swap debugger by typing CTRL-SWAT; the SWAT key is the unmarked one next to
the right SHIFT key. You can look around and then resume without losing anything. If your
machine doesn’t have a world-swap debugger installed, this may produce a maintenance panel
code of 915, as described above.

1. Type CTRL-LEFTSHIFT-SWAT to get to a world-swap debugger "delicately”. As with the previous

CEDAR 42

i
! |
INTRODUCTION TO CEDAR 19

step, this can produce a maintenance panel code of 915.

2. Click a Stop button or type CTRL-DEL in a viewer. This will sometimes stop a run-away program
and get the system behind the viewer to listen.

3. Perform a rollback (or boot if no checkpoint file exists) using either the Rollback button or the
physical boot button. This loses whatever is in virtual memory and open files.

4a. On Dorados, boot by a three button boot, holding down C. This fetches new microcode from
the net. »

4b. On Dolphins, press the start button on the maintenance panel and then perform step 2. The
main difference between a keyboard boot and a maintenance panel boot is that the former
requires the disk to be spun up and the machine already to be in a fairly good state, whereas
the latter will start the machine from an arbitrary state.

If the above methods fail to get your Cedar World up, there are problems with your file system.

5. There are various scavenging procedures available under Othello, described in [G5]: Check Drive,
Scavenge, Physical Volume Scavenge, and DEScavenger. Get an expert to help you with
these. These might recover the situation without much information loss.

6. Erase your client volume and get a new release, losing all non-backed up files. See section 1.7.3.
7. Initialize your disk and get a new release. See section 1.7.2.

CEDAR 42

INTRODUCTION TO CEDAR 20

2. Programming in Cedar
2.1 Running programs

You might try running the following example program:
-- Test.mesa, last modified by Jim Morris July 8, 1982 12:31 pm

DIRECTORY
10 USING [GetInt, PutF, CreateViewerStreams, int, STREAM],

UserExec USING [CommandProc, RegisterCommand]
Test: CEDAR PROGRAM IMPORTS IO, UserExec = BEGIN
in, out: [O.STREAM;

Compute: UserExec.CommandProc = BEGIN
i, j: INT;
out.PutF["Type me a couple of numbers: "];
i « in.Getlnt];
j *« in.Getlnd];
out.PutF["The sum of %g and %g is %g.\n", [0.int[i], [O.int[j], [O.int[i+j]]:
END;
[in, out] « IO.CreateViewerStreams["Compute.Log"];
UserExec.RegisterCommand["Compute”, Compute];
END.

To create this file click New, copy this text into the new file. and store the file as test.mesa (using
the Files sub-menu). You then compile and run it with the following interaction:

&1 compile-test

Loading Compiler.bcd. .

Compiling: test no errors
End of compilation

&2 Run test

&3 Compute

Now click anywhere inside the new viewer named Compute.Log, and type in two numbers, followed
by a RETURN.

2.2 System Models Eric Schmidt, Ed Satterthwaite

As soon as you start dealing with a system of programs you should consider using a system model
to describe and control them [G7]. There are two benefits: the modeller will figure out what you need
to. re-compile automatically, and it will replace modules in a running system so that you needn’t always
restart your program after fixing a bug. The following is a trivial system model whose only component
is the test program from above.

-- Trivial.Model, 24-Jun-82 17:53:12 PDT
OPEN @BasicCedar.model;

Trivial: PROC [IOImpl: IO,
UserExecImpl: UserExec,
Ropelmpl: Rope] RETURNS [] {
Bringover: TYPE = = @Bringover.bcd: -- detour to avoid parser bug
Main; CONTROL = = @Test.Mesa

CEDAR 42

INTRODUCTION TO CEDAR 21

]

The parameters of the procedure Trivial are implementations for the three interfaces IO, UserExec,
and Rope. Those interfaces are types declared in the file BasicCedar.model. When you run this model
the implementations will be supplied from already loaded programs.

To start the modeller type
run model

This will bring up the Modeller viewer. Type trivial in for ModelName and click StartMode! to tell
the modeller to read in and analyze the model. A series of messages to appear in the modeller’s lower
window, concluding with a line of dashes. Click Begin to start the program. This might cause Test.mesa
to be compiled; you must give it permission to compile (remember to click inside the viewer first) by
typing Y. The program will be loaded, the Compute.Log viewer will appear, and the command Compute
can be invoked from the User Exec, as before.

" e

To change the program to behave differently edit Test.mesa to change the "+" to a "-" and "sum”
to "difference”. Save the file and click Continue in the Modeller menu. This will cause Test.mesa to be
recompiled and reloaded. Invoke "Compute” from the User Exec again and try the new program. The
modeller may be shut down in an orderly way by clicking StopModel.

Currently, BugBane (see 2.3) may get confused about which version of the module you are talking
about. You should use the ResetCache button after each module replacement.
2.3 BugBane Russ Atkinson

BugBane provides the Cedar debugging facilities, which include a basic interpreter, primitives for
controlling programs by setting breakpoints, proceeding from breakpoints, and other such services. These
facilities are available to the user through the UserExec as described in section 1.2.

[nterpreter

The interpreter has access to all names defined in the global frames of loaded programs (including
types) plus all names in a special name space local to the interpreter. These special names all begin with
&.

The interpreter handles a subset of Cedar expressions. The following summary of the subset language
is from the BugBane documentation [G8]:

constants - fixed, REAL, Rope.ROPE, CHAR, BOOL, enumerated

simple variables evaluated according to search rules below

X.y X is @ RECORD, REF or POINTER TO RECORD, global frame

x[yl X is @ SEQUENCE or ARRAY, REF or POINTER TO SEQUENCE Or ARRAY
Plargs] P is a PROCEDURE taking given arguments

RT(args] a RECORD constructor where RT is a RECORD type

LIST[exprs] evaluates a list of expressions, producing a LIST OF REF ANY

XeY X and Y are expressions

The interpreter handles expressions containing arithmetic and logical operators (such as + and OR),
and conditional expressions (IF but not SELECT.) Sometimes it is necessary to write parentheses around
an expression to prevent the interpreter from getting confused. In general, you must prefix a procedure
name with the name of its interface or implementation module: e.g., Rope.Cat. However, if you evaluate
an unadorned interface or implementation module name, e.g., List, unprefixed names on later lines are
interpreted relative to that module.

CEDAR 4.2

|
INTRODUCTION TO CEDAR 22

In looking up a name, the interpreter

Checks to see if the name begins with &, and if so it binds to the named &-variable.

Otherwise, it searches the global default context, if any. The global default context can be set by
interpreting an unadorned module as described above, or via the UserExec command
SetContext.

Otherwise, it searches the current local context, if any. The local context is the sequence of local
frames and associated global frames in the call stack of the stopped process. See discussion
of Action Areas under section 1.2. ‘

If this fails, it searches the space of all interface names exported by loaded program modules. If
multiple instances of the same program module have been loaded, only the most recent one
will be seen. Also, the association of interfaces and programs works most of the time, but
may fail.

[f this fails, it tries to match the name with the name of a loaded program module (subject to the
three restrictions just mentioned). This search will not find individual components such as
variables contained in these global frames: such components must be qualified by the module
name.

Since the name lookup process can take a long time, it runs for only a certain time, and then says
that the name is undefined. If you know that a name in question would be found if it searched further,
you should follow the name with !. This will cause the lookup process to try with all its might and all
your time. However, you can always tell the lookup process to stop by typing CTRL-DEL or by clicking
the Stop button in the Work Area menu.

CoPilot

CoPilot is the backstop debugger for Cedar. See [GS5] for a complete description. In the very near
future, CoPilot will go away and be replaced by remote debugging in which the debugger is a full Cedar
system. If you find yourself in a situation which seems to require knowledge of CoPilot, you probably
should find a wizard.

CEDAR 4.2

INTRODUCTION TO CEDAR 23

3. References

[n general, the following directories are worth browsing:

[IndigoKCedar>Documentation>* is the general repository for documentation.

[Indigo]<Cedar>Top>*.df will list pointers to things in the release

[Indigo]<APilot>* for Pilot stuff. There is a list mapping short file names to path names on
Documentation>APilotFiles.txt : '

[Indigo]KCedar>Documentation>Cedar3.5Xref.press, .txt is an inverted listing giving the DF file for
every file in the release; it it helpful for finding things.

There are subdirectories of these directories depending on the package or subsystem involved. Use
* liberally when in doubt.

3.1 General References

In the following assume the file is on [IndigoKCedar> Documentation> unless a full path name is

explicitly given

[G1] Paxton, W., The Tioga Editor. In the Cedar Manual and TiogaDoc.press, .tioga.
The manual for the text editor and manuscript preparation system.

[G2] Brotz, D., Laurel Manual, CSL-81-6.

[G3] Schmidt, Eric, The DF Files Reference Manual, DFFilesRefMan.press.

[G4] Levin, Roy, Cedar Releases: Policies and Procedures, ReleaseProcedures.press/bravo

[GS] SDD, Pilot User’s Handbook. On [Iris|KPilot>Doc> PilotUsersHandbook.press.
You don’t need all of it and it’s a long document to print; borrow or obtain a hardcopy and look
at pages 47-92 for Cascade documentation if you deal with CoPilot extensively.

[G6] Fiala, Ed, [IndigoKDODocs>MPCodes.*.

[G7] Schmidt, E. and Lampson, B., Cedar System Modelling Reference Manual, ModelRefMan.Press.

[G8] Atkinson, BugBane, [Indigo]<Cedar>BugBane>BugBane.doc, BBV.doc, BugBane.shorts, and
BugBane.wish.

[G9] Horning, J. (ed.), The Cedar Catalog, In the Cedar Manual and Catalog.tioga/press.
A description of programs available for use and study.

[G10] Levin, The Release Messages, CedarRelease*.msg.
These messages describe the properties of each new release. They often contain vital pieces of
information about known bugs and how to avoid them. Obviously, the information in older messages
may be out of date.)

[G11] Ornstein, Dorado User Rules, posted by sign-up sheets opposite CSL coffee room.

[G12] Ramshaw, The Alto/Dolphin/Dorado Briefing Blurb, [MAXCKAltoDocs>BriefingBlurb.press.
Describes (almost) everything there was to know about the basic CSL/ISL computer environment
in 1981.

[G13] Lampson, B., Taft, E., Alto Users Handbook, November, 1978. The basic reference for using the
Alto system.

[G14] Teitelman, W., Cedar UserExec, UserExec.tioga, .tioga.press

3.2 Cedar Language References

[L1] Mitchell, Maybury, and Sweet, Mesa 5.0 Manual, CSL-79-3, April, 1979. The Mesa documentation
is fragmented across this and the next two references. so you need to be familiar with all three.

[L2] SDD, Mesa 6.0 Compiler Update, [IvylKMesa>Doc>Compiler60.press.
[L3] Satterthwaite et al., Cedar Mesa 6T5, [IndigoKCedarDocs>Lang>Cedar6T5.press. This is a detailed

CEDAR 4.2

INTRODUCTION TO CEDAR 24

description of the Cedar language, assuming one knows Mesa. Some changes since this document
are enumerated in a shorter document, Documentation>Cedar7T11.press.

[L4] Horning, J., Cedar Language Overview, Overview.tioga, .press; Lampson, B., Cedar Lanuguage
Reference Manual, Grammar, and Summary, CLRM.press, CLRMGram.press. CLRMSafeGram.press,
CLRMSumm.press; Mitchell, J., Annotated Cedar Examples, CedarExamples.tioga, .press.

[L5] Mitchell, J. Stylizing Cedar, cedarstyle.doc, .press, Cedar Style Sheet. stylesheet.sil, .press.

CEDAR 4.2

THE BRIEFING BLURB 2

Raison d’Etre

The purpose of this document is to help immigrants adapt to the local computing community. By
“the local community”, [mean primarily the Computer Science Lab, the Imaging Sciences Lab, and the
[ntegrated Design Lab of the Xerox Palo Alto Research Center, better known by the acronyms CSL,
[SL., and IDL respectively. [mmigrants to other computing communities within Xerox may also find this
document of interest, but [make no guarantees. [shall assume herein that said immigrants know quite
a bit about computer science in general. Hence, [shall concentrate upon discussing the idiosyncratic
characteristics of the local hardware environment, software environment, social environment, linguistic
environment, and the like.

You will doubtless read many documents while you are at Xerox. A common convention observed in many manuals and
memos is that fine points or items of complex technical content peripheral to the main discussion appear in small type. like this
paragraph. You will soon discover that you cannot resist reading this fine print and that, despite its diminutive stature, it draws
your eyes like a magnet. This document has such passages as well, just so that you can begin to enjoy ferreting out the diamonds
hidden in the mountain of coal.

There is a great deal of useful information available on-line at Xerox in the form of documents and
source programs. Reading them is often very helpful, but finding them can be a nuisance. Throughout
this document, references to on-line material are indicated by <n>, where n is a citation number in the
bibliography at the end of this document. Standard citations to the open literature appear as [n].

If you are fortunate enough to be reading this document from within Tioga (the Cedar editor), you
should pause at this point to try out the “Def’ command. If you were to select the three characters
*“$n>” in the preceding paragraph and then click the “Def’ command with the middle mouse button,
you would then find yourself looking at the place in this document where “<n>” is defined. that is. where
it appears followed by a colon. You could then get back to this section of the document by clicking the
“PrevPlace” command with any mouse button. The “Def’ command is almost as good as an automatic
indexing facility. On another topic, you might try clicking the “FirstLevelOnly” button (click *“Levels”
first if you can’t find the “FirstLevelOnly” button), and then clicking “MoreLevels” a few times. Try
scrolling a bit too. The Tioga ““levels” commands are almost as good as an automatic table of contents.

Reading a document from front to back can be mighty boring. Fortunately, this document is so
disorganized that it is not at all clear that it really has a front and a back in any normal sense. You
might as well just browse through and read the parts that look interesting. To help out the browsers in
my reading community, [have more or less abandoned the custom of being careful to define my terms
before [use them. Instead, all the relevant terms, acronyms, and the like have been collected in a
separate Glossary. Some information is contained only in the Glossary, so you may want to skim through
it later (or now, for that matter). The “Def” command in Tioga is particularly helpful when browsing the
Glossary from within Cedar: try selecting the word “Tioga”, and then clicking the “Def” button in the
Glossary viewer, for example. While wnung the Glossary, [assumed that you have a basic knowledge of computer science.
and a modicum of common sense: don't expect to find terms like “computer” and “network” in the Glossary.

1983 EDITION

The Briefing Blurb:

Exploring the Ethernet with Mouse and Keyboard
1983 Edition

By Lyle Ramshaw of PARC/CSL

An immigration document in the tradition of Roy Levin’'s A Field Guide to Aito-Land.

June 7, 1983
Filed on: [Indigo]KCedar>Documentation>BriefingBlurb.tioga, BriefingBlurb.press

Abstract: This document is a general introduction to the computing environment at PARC slanted
towards the needs and interests of newcomers to the Computer Science Laboratory. If you are
looking at this document on-line from within the editor named Tioga, you might want to use the
level-clipping functions to see the overall structure rather than simply plowing straight through.
Click the ‘‘Levels” button in the top menu, then click ‘‘FirstLevelOnly” in the new menu that
appears. That will show you the major section headings. Click ‘“MorelLevels” to see the
subsections, or click “AllLevels” to read the details.

XEROX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304
For Internal Use Only .

THE BRIEFING BLURB 3

Naming Things

At the outset, you should know something about the names of the creatures that you will find here.
The prevailing local philosophy about naming systems is perhaps somewhat different from the trend
elsewhere. We do have our share of alphabet soup, that is, systems and languages that are named by
acronyms of varying degrees of cuteness and artificiality; consider, for example: PARC, FTP, MAXC,
[FS. But we are trying to avoid making this situation any worse. To this worthy end, names for hardware
and software systems are frequently taken from the Sunset Western Garden Book [1}; Grapevine servers
are named after wines; Dorados are named after capital ships; Pilot releases are named after California
rivers. As this convention about names does not meet with universal approval, it seems inappropriate to
offer a justification of the underlying philosophy without offering equal time to the opposition. You
will doubtless provoke a far more interesting discussion if you advance your own views on naming to
almost anyone wandering in the corridors.

While we are on the general topic of the names of things, we should discuss for a moment the local
customs for constructing single identifiers out of multiple word phrases. Suppose that you would like to
name a variable in your program “name several words long”. [n some environments, a special character
that isn’'t a letter but that acts something like a letter is used as a word separator within identifiers; this
leads to names such as

“name!several!words!long” or “name several words long”.

No such character is in common use locally, however. Instead, shifting between upper and lower case
is used to show the word boundaries, leading to the name

“NameSeveralWordsLong”.

Some people, including Don Knuth, think that identifiers with mixed case look terribly ugly. [refuse
to get sucked into expressing my opinion in this document; once again, [exhort you to espouse your
views in the corridors.

There are several fine points that [should mention as well. As a general rule, case is significant for
identifiers in the local programming languages, but case is not significant in file names or in Grapevine
R-names. Thus, the Cedar identifiers “REF™, “‘Ref”, and “ref” are quite distinct, but the file names
“BriefingBlurb.tioga™ and “briefingblurb.tioga™ are equivalent, as are the R-names “Ramshaw.PA” and
“ramshaw.pa”. [n Mesa and Cedar, there is a further convention that the case of the first letter of an
identifier is used to distinguish fancy objects, such as procedures and types, from simple ones, such as
integers and reals. Thus, the identifier name “ProcWithFiveWordName™ begins with an upper case “P”,
but the name “integerWithFiveWordName” begins with a lower case “i”. The latter form looks very
strange to most people when they first see it. When you first tasted an olive, you probably didn't like
it Now, you probably do. Give these capitalization conventions the same chance that you would an
olive.

These capitalization conventions don't work too well when acronyms and normal words appear together in one identifier.
Suppose, for example, that [wanted to introduce an identifier named “FTP version number”. Logic would demand
“FTPVersionNumber”, but this doesn't look quite nght: many people would be probably wnte “FTPversionNumber” instead.
Of course, since a version number is probably an integer, 1t should really be "fTPVersionNumber” Ugh. Perhaps case is being
used for too many purposes?

1983 EDITION

THE BRIEFING BLURB 4

Local Hardware

Most of the offices and some of the alcoves around PARC have personal computers in them of one
flavor or another. The first of these was the Alto. There are more than a thousand Altos in existence
now, spread throughout Xerox, the four universities in the University Grant program (U. of Rochester, CMU,
MIT, and Stanford), and other places. In recent years, most of the local Altos have been replaced by various
flavors of D-machines: Dorados, Dolphins, and Dandelions. Both D-machines and Altos come equipped
with bitmap displays, mice, and Ethernet interfaces. Let’s discuss these components first, and then turn
our attention to the various personal computers that contain them.

N

Bitmap Displays

First, let’s talk about displays. Different displays use different representations of images. A character
display represents its image as a sequence of character codes. This is a very compact representation. but
not a very flexible one; text is all you can get, and probably in only a limited selection of fonts. A
vector display represents its image as a list of vector coordinates. This works very well for certain
varieties of line drawings, but not so well for filled areas or text. A bitmap display, on the other hand,
produces ari image by taking a large matrix of zeros and ones, and putting white where the zeros are
and black where the ones are (or vice versa). The great advantage of bitmap displays are their flexibility:
you can specify a tremendous number of images by giving even a relatively small array of bits. Cursors
and icons are two large classes of prominent examples. Of course, you do have to supply enough memory to hold
all those bits. Altos and D-machines store their bitmaps in main storage. An alternative would be to provide a special chunk
of memory on the side where the display’s image sits: such a memory is often called a frame buffer.

The primary display of the Alto is a bitmap that is 608 pixels wide by 808 pixels high. Such a
display is almost large enough to do a reasonable job of rendering a single 8.5" by 11" page of text.
The CRT on a D-machine has the long axis horizontal instead of vertical, giving a bitmap display that
is 1024 pixels wide by 808 high. It had to be 808 high so that D-machines could emulate Altos, of course. The extra
space allows you to have something else on the screen as well as the somewhat scrunched page of text
that you are editing.

Ere I leave you with a mistaken impression, let me note in passing that bitmap displays are not the
final solution to all of the world’s problems. Raster displays that can produce various levels of gray as
well as black and white can depict images free of the “jaggies” and other artifacts that are inherent in
bitmap displays [2]. And. for some purposes, color is well worth its substantial expense.

Mice

But now on to mice. A mouse has two obvious properties—it rolls and it clicks. Inside the machine,
the mouse position and the display cursor position are completely unrelated; but most software arranges
for the cursor to “track” the mouse’s movements. The three mouse buttons go by various names; “left”,
“middle”, and “right” is one set of names. The mouse buttons are also called *“red”, “yellow”, and
“blue” respectively, even though physically they are nearly always black. These colorful names were
proposed at an earlier time when some of the mice had their buttons running horizontally instead of
vertically. Using colors (even imaginary ones!) worked better than switching back and forth between the
nomenclatures “top-middle-bottom” and “left-middle-right”.

Mice also come in two basic flavors: mechanical and optical. Our current mechanical mice roil
on three balls: two small ones, and one large one. Motion of the large ball is sensed by two little wipers
inside the mouse, one sensing side to side rolling while the other senses forward and backward rolling.
The motion of each wiper drives a commutator, and little feelers slide along the commutator, producing
the electrical signals that the listening computer can decode. Building one of these little gadgets is not
quite as hard as building a Swiss watch, but it’s in the same league. The optical mice are a more recent

1983 EDITION

THE BRIEFING BLURB 5

innovation. An optical mouse lives on a special pad. covered with little white dots on a black background.
A lens in the mouse images a portion of the pad onto the surface of a custom integrated circuit. This
IC has sixteen light-sensitive regions, some of which notice that they are being shined on by the image
of a white dot on the pad. As the mouse slides along the pad on its Teflon-coated underbelly, the
images of the white dots move across the IC; it is subtly constructed so as to observe this phenomenon,
and take appropriate electrical action. For more details on this interesting application of a custom chip,
you might enjoy checking out Dick Lyon's blue-and-white report on the subject [3].

The Ethernet

Two’s company, three’s a network. A collection of machines within reasonable proximity is hooked
together by an Ethernet; if that doesn’t sound familiar, [know of some blue-and-whites that you might
like to browse [4,5]. Ethernets are connected to each other by Gateways and phone lines, which for
most purposes allow us to ignore the topology of the resulting network. The resulting network as a
whole is called an /nternet. Occasionally, it’s nice to know where things really are, and that's when a
map <6> is helpful.

Ethernets come in two flavors: old and new. The old one runs at 3 MBits/sec, and should now be
referred to as the “Experimental Ethernet”. The unqualified name “Ethernet” should be reserved for
the new one, the standardized version used in OSD products; it runs at 10 MBits/sec.

We all know how uncommunicative computers can be when left to their own devices. That's why
we invent careful protocols for them to use in talking to each other. There are two entire worlds of
protocols that are spoken on our various Ethernets as well: old and new. The oid ones are called
PUP-based (PARC Universal Packet) (7]. The new ones are known by the acronym NS (Network
Systems) [8, 9]. [I'm sure that the NS protocols must be documented. but I don't know where: sorry. Each protocol
world includes a hierarchy of protocols for various purposes such as transporting files, or sending and
receiving mail.

In addition to connecting up all of the personal computers, the network also includes a number of
machines generically called servers. Normally, servers have special purpose, expensive hardware attached
to them, such as large-capacity disks, or printers. Their purpose in life is to make that hardware available
to the local community. We tend to identify servers by function, so we talk about print servers, file
servers, name lookup servers, mailbox servers, tape servers, and so on. Many of the protocols for use of
the Ethernet were developed precisely so that personal computers could communicate effectively with
servers.

The Alto

The innards of the Alto are wonderfully described in a clear and informative blue-and-white report
[10]; I seriously recommend that you read it. In the very unlikely event that you need to know still
more about the Alto, you might try looking in the Alto hardware manual <11>. But for our purposes,
suffice it to say that the Alto is a 16-bit minicomputer whose primary claim to fame is that it comes
equipped with a bitmap display, a mouse, and an Ethernet interface. ’

D-Machines

The D-machines are a family of personal computers, each member of which has a name starting
with the letter “D”. As long as you don’t look too closely, D-machines look a lot alike. In particular,
they are all 16-bit computers with a microprogrammed processor that handles most of the [/O as well
running the user’s programs. And they all generally come equipped with a hard disk, a bitmap display,
a keyboard, a mouse, and an Ethernet interface. There are differences of course: in size, in speed, and
in flexibility.

1983 EDITION

THE BRIEFING BLURB 6

The Dolphin (formerly called the D0)

The Dolphin was one of the early D-machines, and there are still some of them around. Dolphins
are housed in the same sized chassis as Altos. You can tell that they aren’t Altos because they have
wide screen terminals, and because they don’t have a slot on top for a removable disk pack. Instead,
they use a 28MByte Winchester disk drive made by Shugart. Dolphins can talk to both 3 MBit and 10
MBit Ethernets.

The Dandelion

The Dandelion is the D-machine processor that is used in the Star products. [t comes in a box
about half the width of an Alto chassis, and roughly the same height and depth. Dandelions are less
flexible than Dolphins, since the microprocessor is shared among the various [/O devices and the
emulator in a fairly rigid round-robin fashion (associated with the terms “clicks” and “rounds™). As a
consequence, it isn't very easy to hang a new [/O device off of a Dandelion. On the other hand,
Dandelions are both faster and cheaper than Dolphins. Dandelions talk only to 10 MBit Ethernets.

The Dorado

Building large software systems is a demanding chore. It doesn’t help any when the hardware upon
which your programming environment is based doesn't have enough horsepower to support you
properly—that is, in the manner to which you would like to become accustomed. After some years of
trying to shoehorn large programs into Altos, CSL twisted the arms of its hardware folk and talked them
into building the Dorado, the current high-performance model in the D-machine line. The processor,
the instruction fetch unit, and the memory system of the Dorado have been written up in papers for
your enjoyment [12]. Dorados come equipped with an 80 MByte removable-pack disk drive at present;
new models may start showing up soon with a 315 MByte Winchester drive instead. Dorados talk only
to 3 MBit Ethernets at present.

A Dorado is roughly three to five times faster than an Alto when emulating an Alto, that is, running
BCPL. A Dorado runs compute-bound Mesa software roughly eight to ten times as fast as an Alto.
Because of the raw power of a Dorado, it is usually the computer of choice for substantial programming
projects. The primary difficulty about Dorados is that there aren’t enough of them (and the related fact that
they are rather tricky to build). Some people have their own, but others must share a pool of public machines.
Now, even though the Dorado disk drives have removable packs, it really isn’t very convenient to start.
your session of a public Dorado by mounting your own pack. The biggest difficulty is that you must be
at the processor to change the disk pack, and the processor is a long way away. Subsidiary difficulties
are that you must power down a Dorado in order to change the disk pack, and that T-80 disk packs are
difficult to label effectively. As a result, when you borrow a Dorado, you generally also want to borrow
at least some of the space on that Dorado’s local disk. In order for this sharing to work out well, certain
social taboos and customs concerning the use of such local disks have emerged, under the general rubric
of “living cleanly”. More on this topic anon.

In a return to the ways of the past, the Dorado processors are rack mounted in a remote, heavily
air-conditioned machine room. It was initially intended that the Dorado, like the Alto, would live in
your office. To prevent its noise output from driving you crazy, a very massive case was designed,
complete with many pounds of sound-deadening material. But experience indicated that Dorados ran
too hot when inside of these cabinets, and the concept of having Dorado processors in offices was
abandoned. With progress in general and VLSI in particular, there is hope that some successor to the
Dorado will once again come out of the machine room and into your office.

The Dicentra

1983 EDITION

THE BRIEFING BLURB 7

The Dicentra is the newest D-machine. Essentially, it consists of the processor of the Dandelion
with the tasking stuff striped out squeezed onto one Multibus card. [t communicates with its memory and with
[/0 devices over the Multibus. Dicentras will talk to any Ethernet, or any [/O device for that matter,
for which you can supply a Multibus interface card; that’s one of the Dicentra’s strengths. The initial
application of the Dicentra is as a processor for low cost [nternet gateways. The Dicentra and the Dandelion
are named after wildflowers partially because they are outgrowths of an initial design of Butler Lampson’s called the Wildflower.

The Daffodil

The Daffodil is a D-machine that doesn’t exist yet, but someday may. If so, it will be cheap to
build, since it will use custom integrated circuits. The Daffodil is product-related. Thus, please don't
talk about it too widely. I mention it hear only so that you will know what it is that Chuck Thacker is

talking about.
The Dragon

The Dragon is a high-performance processor based on custom integrated circuits that is being
designed in CSL; confusingly enough, though, the Dragon is not really a D-machine. For example, the
Dragon word size is 32 bits rather than 16. The underpinnings of Cedar will be adjusted as necessary
so that Cedar will run on a Dragon; but this will take some doing.

A few comments about Booting

All of the local processors come equipped with a hidden button called the “boot button™ that is
used to reinitialize the processor’s state. The Alto had just one boot button, hidden behind the keyboard;
pushing it booted the Alto. On Dolphins, the situation is only slightly more complex: there are two
boot buttons, one at the back of the keyboard, and the other on the processor chassis itself. They
perform roughly the same function, but the one on the chassis is a little more potent. On Dorados,
there is a lot more going on. There are really two computers involved, the main Dorado processor and
a separate microcomputer called the baseboard. It is the baseboard computer’'s job to monitor the power
supplies and temperature and to stage-manage the complex process of powering up and down the main
processor, including the correct initialization of all of its RAM’s. The boot button on a Dorado is
actually a way of communicating with this baseboard computer. You encode your request to the
baseboard computer by pushing the boot button repeatedly: each number of pushes means something
different. For details, see Ed Taft’s memo on the subject <13>. If the baseboard computer of the Dorado
has gone west for some reason (as occasionally happens), your only hope is to push the rea/ boot button,
a little white button located on the processor chassis itself, far, far away. Just as the boot button on the keyboard
is essendally a one-bit input device for the baseboard computer, the baseboard computer also has a one-bit output device: a green
light located on the processor chassis. Various patterns of flashing of this light mean various things, as detailed in <13>.

There is one more bit of folklore about booting that [can’t resist mentioning—every once in a while,
[have to throw in some subtle tidbit to keep the wizards who read this from getting bored. Our subject
this time is the “‘long push boot”. Suppose that you have been working on your Dorado for a while,
and you walk away to go to the bathroom. When you return and reach toward your keyboard, you get
a static shock. You are only mildly annoyed at this until you notice that the cursor is no longer tracking
the mouse, and the machine doesn’t seem to hear any of your keystrokes. The screen looks OK, but the
Dorado is ignoring all input. What has probably happened is that the microprocessor in your terminal
has been knocked out by the static shock. Yes, Virginia! In addition to the Dorado itself, and the
baseboard computer, there is also a microprocessor in your terminal (located in the display housing),
which observes your input actions and sends them on to the main processor under a protocol referred
to as “the seven-wire interface”. What you want to do now is to reboot the terminal microprocessor
without disturbing the state of the Dorado at all—after all, you were in the process of editing something,

1983 EDITION

THE BRIEFING BLURB 8

and you are now in danger of loosing those edits. What you should do is to depress the boot button
and hold it down for quite a while (more than 2.5 seconds); and then release it. This is known as a
“long push boot”, and it does just what you want under these conditions: it reboots your terminal
without affecting anything higher up.

MAXC: a blast from the past

Before we leave the topic of hardware completely, I should pause to mention the existence of MAXC
(the name is said to be an acronym for Multiple Access Xerox Computer). Over the years, the folk in
CSL built two MAXC’s. Each was a good-sized microprogrammed computer that spent its days emulating
a PDP-10: running TENEX, and timesharing away with the best of them. One of the MAXC’s still
survives, the one initially known as MAXC2. and it serves us now primarily as the Internet’s interface to the
Arpanet. Vestiges of MAXCL still survive as souvenirs in some people's offices. Most of the stuff going between the
[nternet and the Arpanet is electronic mail: our mail systems understand about Arpanet recipients, so
there is no need to talk to MAXC directly just to send Arpanet mail. There are a few other computing
tasks that MAXC can perform and that no one has yet had the energy to supply in some other way,
such as archiving files onto magnetic tape. But most folks should be able to spend their time here quite
happily without ever talking direcdy to MAXC.

1983 EDITION

THE BRIEFING BLURB 9

Local Programming Environments

Various programming environments have grown up around the various pieces of hardware mentioned
above. You can get a software merit badge simply by writing one non-trivial program in each envirnoment.

Programming on MAXC

Since we were discussing MAXC just a moment ago, let’s get it out of the way first. From a software
point of view, MAXC is a PDP-10. Thus, it is programmed either in the assembler Macro-10 or else in
one of a variety of higher level languages [14]. Fortunately, there aren’t all that many new programs
that have to be written to run on MAXC any more.

BCPL

The first high-level programming language used on the Alto was BCPL, and quite a bit of program
writing was done in that environment over the years. By now, however, essentially no new programming
is being done in BCPL. The language itself will be around for some time to come, since there are BCPL
programs that perform valuable services for us: the print server programs Press and Spruce and the file
server program [FS are three important examples.

Of the better-known computer languages, BCPL is closest to C. The fundamental data type in
BCPL is a sixteen-bit word. There are facilities in the language for building structured data objects
including records and pointers. But there is no type-checking in the language at all. For example, if
foo is a pointer to a record of type node that includes a field named nex:, that field is referenced in
BCPL by writing

“foo>>node.next”,

which means ‘“treat foo as a pointer to a node, and extract the next field”. In a strongly typed language,
you wouldn’t have to mention that foo was a pointer to a node, since the compiler would be keeping
track of the fact that foo was so declared. The BCPL compiler, however, thinks of foo as a sixteen bit
value, just like any other sixteen bit value. For example, it would be legal in BCPL to write

“(foo+ 7)>>node.next”, or “foo>>otherNode.next”.

Some of the strictness of the Mesa approach to type-checking and version matching discussed below may
be a reaction to BCPL's free-wheeling ways of handling these issues. Further details about the BCPL
language and environment can be found elsewhere <14, 15, 16>.

The debugger in the BCPL environment was named “Swat”. This name is preserved in the local
dialect as the name of the bottom of the three unmarked keys at the right edge of the keyboard. Various
debuggers may be invoked in various environments by depressing this key, perhaps in conjunction with
the left-hand shift key or the control key. (The right hand shift key won’t do; it is too close to the swat
key itself for comfort!)

Mesa

Mesa is a strongly typed. PASCAL-like implementation language designed and built locally. It first
ran on Altos. Herein, [shall call that system Alto/Mesa. Dolphins and Dorados (but not Dandelions)
can run Alto/Mesa by impersonating an Alto at some level. More recent instances of Mesa now run on
all of our D-machines under the Pilot operating system. In passing, [should observe that Pilot is an
operating system written in Mesa by folk in SDD. It is a heavier-weight operating system than the Alto
OS, providing its clients with multiprocessing, virtual memory, and mapped files.

Alto/Mesa programs do not use the Alto OS at all, mostly because Mesa and BCPL have rather

1985 EDITION

THE BRIEFING BLURB 10

different philosophies about the run-time world in which they exist. So the first thing that a Mesa
program does when running on an Alto is to junta away almost all of the OS, and set about building a
separate Mesa world. It is a considerable nuisance for Mesa and BCPL programs to communicate, since
their underlying instruction sets are completely different. So, most of the important OS facilities, such
as the file system, had to be re-implemented directly in Mesa. Mesa's memory management strategies
replace the revolutionary tactics of “junta” and “counter-junta” with the relative anarchy of segment
swapping.

A fair amount of software was written in Alto/Mesa, but little new programming is being done in
that environment; that is, Alto/Mesa isn't quite at dead as BCPL., but it is getting there. Perhaps the
crown jewels of Alto/Mesa are the systems Laurel, Grapevine, Mockingbird, and Griffin. You will be
hearing more about the former two in the section on electronic mail; to find out more about the latter
two, check out their entries in the Glossary.

The Pilot version of Mesa is the home to lots of active programming in several locations. First, it
is the system in which the Star product was and is being implemented by OSD. The programmers in
OSD have developed a set of tools for programming in Mesa variously called the “Tools Environment™
or “Tajo”. This body of software may soon be marketed under the name “the Mesa Development
Envirnoment”. In addition, Pilot Mesa is the current base of the Cedar project in CSL and ISL. More
on Cedar later.

Although Mesa programs look a lot like PASCAL programs when viewed in the small. Mesa provides
and enforces a modularization concept that allows large programs to be built up out of smaller pieces.
These smaller pieces are compiled separately, and yet the strong type checking of Mesa is enforced even
between different modules. The basic idea is to structure a system by determining certain abstract
collections of facilities that some portions of the system will supply to other portions. Such an abstraction
is called an “interface”, and it is codified for the compiler’s benefit in a Mesa source file called an
“interface module”. An interface module defines certain types, and specifies a collection of procedures
that act on values of those types. Only the procedure headers go into the interface module, not the
procedure bodies (except for INLINE's, sad to say). This makes sense, since all the interface module has to do
is to give the compiler enough information so that it can type-check programs that use the abstraction.

Having specified the interface, some lucky hacker then has the job of implementing it—that is, of
writing the procedure bodies that actually do the work. These procedure bodies go into a different type
of module called an “implementation module”. An implementation module is said to “export” the
interface that it is implementing; it may also “import” other interfaces that it needs to do its job,
interfaces that some other program will implement.

[n simple systems, each interface is exported by exactly one module. In such a system, there isn't
much question about who should be supplying which services to whom. In fact, in these simple cases,
the binding, that is, the resolution of imports and exports, can be done on the fly by the loader. But in
more complex cases, there might be several different modules in the system that can supply the same
service under somewhat different conditions. or with somewhat different performance. Then, the job of
describing exactly which modules are to supply which services to which other modules can become rather
subtle. A whole language was devised to describe these subtle cases, called C/Mesa. The Binder is the
program that reads a C/Mesa description. called a config, and builds a runnable system by filling imports
request from exports according to the recipe.

The Mesa language is described by a manual [18]. It lies somewhere between a tutorial and a
reference manual. Some people find some portions of it rather obscure; in particular, the discussion of
interfaces and implementations in Chapter 7 is often cited as confusing. To make matters a little worse,
that manual documents Mesa version 5.0; the current Alto/Mesa is version 6.0, and Pilot mesa has
advanced even further. From the point of view of the Mesa language itself, the most important changes
that have occurred since version 5.0 are the introduction of sequences and zones in version 6.0; they
are documented for your reading pleasure <19>. You may also be interested in Jim Morris’s comments

1983 EDITION

THE BRIEFING BLURB 11

on how programs should be structured in Mesa [20].

Smalltalk

Smalltalk was developed by the folk who now call themselves the Software Concepts Group (formerly
known as the Learning Research Group). The Smalltalk language is the purest local embodiment of
“object-oriented” programming:

A computing world is composed of “objects”.

The only way to manipulate an object is to be polite, and ask it to manipulate itself. One asks by
sending the object a message. All computing gets done by objects sending messages to other
objects.

Every object is an “instance” of some “class”.

The class definition specifies the behavior of all of its instances—that is, it specifies their behav1or
in response to the recipt of various messages.

Genealogists will recognize that ideas from both Simula and Lisp made their way into Smalltalk,
together with traces of many other languages.

For some years now, the folk in SCG have been working at trying to get the Smalltalk language
and system out into the great wide world. The first public event that came out of this effort was the
August 1981 issue of Byte magazine: it was devoted to Smalltalk-80, including a colorful cover drawing
of the now famous Smalltalk balloon. In addition, the SCG folk are writing several books about
Smalltalk, and they are planning to license the system itself to various outside vendors. The first of the
books, entitled Smalltalk-80: The Language and [ts Implementation, emerged from the presses at
Addison-Wesley just recently [21]. Future books will include Smalltalk-80: The Interactive Programming
Environment, and Smalltalk-80: Bits of History, Words of Advice.

Interlisp-D

LISP is the standard language of the Artificial Intelligence community. Pure LISP is basically a
computational incarnation of the lambda calculus; but the LISP dialects in common use are richer and
bigger languages than pure LISP. Interlisp is one dialect of LISP, an outgrowth of an earlier language
called BBN-LISP; for more historical details, read the first few pages of the Interlisp Reference Manual
[22]. One of the biggest strengths of Interlisp is the large body of software that has developed to assist
people programming in Interlisp. Consider the many features of Interlisp: an interpreter, a compatible
compiler, sophisticated debugging facilities, a structure-based editor, a DWIM (Do What [Mean) error
correction facility, a programmer’s assistant, the CLISP package for Algol-like syntax, the Masterscope
static program analysis database, and the Transor LISP-to-LISP translator, to name a few.

Interlisp itself has been implemented several times. Interlisp-10 is the widely-used version that runs
on PDP-10’s. Interlisp-D is an implementation of Interlisp on the D-machines [23], produced by folk
at PARC. In the process of building Interlisp-D, the boundary between Interlisp and the underlying
virtual machine was moved downward somewhat, to minimize the dependencies of Interlisp on its
software environment; that is, functions that were considered primitive in Interlisp-10 were implemented
in Lisp itself in Interlisp-D. But the principal innovations of Interlisp-D are the extensions that give the
Interlisp user access to the personal machine computing environment: network facilities and high-level
graphics facilities (including a window package) among them.

By the way, Interlisp has the honor of being the first system (to my knowledge) to use the prefix “Inter-". This prefix has
become quite the rage of late: Internet, Interpress. [nterscript—you get the general idea.

Cedar

1983 EDITION

THE BRIEFING BLURB 12

Back in 1978, folk in CSL began to consider the question of what programming environment we
would use on the emerging D-machines. A working group was formed to consider the programming
environments that then existed (Lisp, Mesa, and Smalltalk) and to form a catalog of programming
environment capabilities, ranked by both by value and by cost. A somewhat cleaned-up version of the
report of that working group is available as a blue-and-white for your perusal [24]. After pondering the
alternatives for a while, CSL chose to build a new programming environment, based on the Mesa
language, that would be the basis for most of our programming during the next few years. That new
environment is named “Cedar”.

Cedar documentation is in a constant state of flux; indeed, it might be said that Cedar as a whole,
not only its documentation, is in a constant state of flux. Much of the documentation for the current
release is accessible through a “.df” file named Manual.df <25>. Hardcopies of this packet of stuff,
entitled “The Cedar Manual”, are produced from time to time, and distributed to Cedar programmers.

The programming language underlying Cedar is essentially Mesa with garbage collection added.
Now, adding garbage collection actually changes things quite a bit. First of all, it changes programming
style in large systems tremendously. Without garbage collection, you have to enforce some set of
conventions about who owns the storage. When [call you and pass you a string argument, we must
agree whether I am just letting you look at my string, or [am actually turning over ownership of the
string to you. [f we don’t see eye to eye on this point, either we will end up both owning the string
(and you will aggravate me by changing my string!) or else neither of us will own it (and its storage will
never be reclaimed—a storage leak). Once garbage collection is available, most of these problems go
away: God. in the person of the garbage collector, owns all of the storage; it gets reclaimed when it is
no longer needed, and not before. But there is a price to be paid for this convenience. The garbage
collector takes time to do its work. In addition, all programmers must follow certain rules about using
pointers so as not to confuse the garbage collector about what is garbage and what is not.

Thus, programs in the programming language underlying Cedar look a lot like Mesa programs, but
they aren’t really Mesa programs at all, on a deeper level. To avoid confusion, we decided to use the
name “‘Cedar” to describe the Cedar programming language, as well as the environment built on top of
it. Cedar is really two programming langauges: a restricted subset called the safe language, and the
unrestricted full language. Programmers who stick to the safe language can rest secure in the confidence
that nothing that they can write could possibly confuse the garbage collector. Their bugs will not risk
bringing down the entire environment around them in a rubble of bits. Those who choose to veer
outside of the safe language had better know what they are doing.

Those who want to know more about Cedar are once again encouraged to dredge up a copy of the
Cedar Manual <25>. It includes documentation on how Cedar differs from Mesa, annotated examples
of Cedar programs, manuals for many of Cedar's component parts, a Cedar ‘catalog, and lots of other
good stuff. By the way, the most authoritative source for what the current Cedar compiler will do on
funny inputs can be found in a document called the Cedar Language Reference Manual, also known by
the acronym CLRM. This is logically part of the Cedar Manual, but it is currently bound separately,
and only available in draft form. The CLRM suggests a particular design philosophy for building a
polymorphic language that is a superset of the current Cedar, since that is the direction in which the
authors of the CLRM, Butler Lampson and Ed Satterthwaite, would like to nudge the Cedar language.

1983 EDITION

THE BRIEFING BLURB 13

Local Software

This section is a once-over-lightly introduction to some of the major software systems that are
available in the Alto and Cedar worlds. First, let me mumble some general words about how such
subsystems are documented. The most commonly used Alto subsystems are documented in a tome called
the Alto User’s Handbook [26]. The less commonly used ones are documented in a catalog entitled
“Alto Subsystems” <27>. In addition, Suzan Jerome wrote a Bravo primer aimed at non-programmers
[28]. In Cedar, the current best sources are the Cedar Manual mentioned above <25>, and a brand new
public database, sitting on Alpine, containing whiteboards of Cedar documentation. Unfortunately, [
won’t hear about the latter until Dealer tomorrow, so that [can’t tell you any more about it at the
moment; ['m sorry, but that’s life in a rapidly changing world. Wow! [I've seen the whiteboards stuff now. and
it's flashy! Maybe this is the last version of the Briefing Blurb that I'll ever have to write.

Filing

When programming in the Alto world, or in current Cedar, you are dealing with two different types
of file systems: local and remote. The local file system sits on your machine’s hard disk. Remote file
systems are located on file servers, machines with big disks that are willing to store files for you. Local
file systems have several unpleasant characteristics in comparison with the remote systems: they are
small, and they aren’t very reliable. Both of these problems have consequences.

Because local file systems are small, it isn't in general practical to store more than one version of a
file on the local disk. Thus, in our current local file systems, writing a “new version” of a file really
means writing on top of the old one. Nearly everyone who isn't accustomed to this (particularly PDP-10
hackers) gets burned by it at least once. There is one important exception to this general rule of “no
old versions”, however: our text editors maintain one backup copy of each file being edited as a separate
file, whose name ends with a dollar sign. That is, the backup copy of ““foo.tioga” is stored in the file
“foo.tioga$™, and similarly for Bravo. Note that our remote file servers do maintain multiple versions of
files. Letting old versions of things accurmnulate is one easy way to overflow your disk usage allocation
on a remote server.

No disk is completely reliable. Our remote file servers have automatic backup facilities that protect
us from catastrophic disk failures. But the local file systems have no such automatic protection. Since
this protection isn't provided automatically, it behooves you to adjust your behavior appropriately: make
sure that, on a regular basis, backup copies of the information on your local disk are put in some safe
place, such as on a remote file server where suitable precautions are constantly being taken by wizards
to protect against disk failure. Doing this is one facet of what is meant by the phrase Living Cleanly,
which deserves its own section.

Living Cleanly (also known as “Keeping your bags packed")

The phrases‘ “living cleanly” and “keeping your bags packed” refer to a particular style of use of
your local file system. In order to understand the cosmic issues involved. we should pause to discuss
the ways in which local and remote file systems have been used over the years.

Back in the Alto days, personal files were usually stored on one’s Alto disk pack, while project-related
and other public files were stored on remote servers. Careful folk would occasionally store backup copies
of their personal files on remote servers as well. in case of a head crash. But, as a general rule, one
thought of one’s Alto pack as the repository of one’s electronic state. This made sharing Altos quite
convenient, since you could turn any physical Alto into “your Alto” just by spinning up your disk pack.

In the glorious world of the Cedar future, all of your personal files as well as all public files will
live on file servers in the network. The disk attached to your personal computer will, from time to time,
contain copies of some of this network information, for performance reasons; but you won’t have to do

1983 EDITION

THE BRIEFING BLURB 14

anything to achieve this, and you won’t have to worry about how it is done. From the user’s point of
view, all files will act as if they were remote at all times. Indeed. except in a few funny cases, there
won’t even be any notion of “local file™; “file” will mean “remote file”.

At the moment, we are sitting in an unpleasant trasitional phase somewhere between these two styles
of usage of the local disk: we are attempting to simulate the latter state by means of manual methods
and social pressure. We want you to think of your data as really living out on the file servers. That is
the proper permanent home for your personal files as well as for public files. You will have to bring
copies of these files, both private and public, to your local disk in order to work on them. But, at the
end of each editing session, you should store the new versions of files that you have created back out to
their permanent remote homes. None of this happens automatically at present; you have to make it
happen manually by using various file shuffling tools, such as the “DF files” discussed below. Using
these tools is a hassle, and learning how to use them can be confusing. But, there are four important
benefits to be reaped from adopting a clean living life-style.

First, you are taking a step towards the glorious future.

Secondly, you are protecting yourself against failures of the local disk. A clean liver only holds
information on her local disk for the duration of an editing session. This puts a reasonable bound on
the amount of information that she can lose because of a disk crash.

Thirdly, there are various reasons why erasing your local disk is a good idea when updating to a
new release of the Cedar system: sometimes, in fact, it is required. Since clean living folk don’t keep
long term state on their local disks, this doesn’t bother them in the slightest.

Finally, and perhaps most importantly, clean living is the key to sharing disk space on machines
without removable disks. When you use a public Dolphin or Dorado, you are forced to share its disk
space with the other members of the community. This sharing is predicated on a policy of clean living:
when your session is over, you must store away all of your files on remote file servers. The person who
uses the machine next may need to free up some disk space; if so, she is perfectly entitled to delete
your files without qualm or pause. And you won't mind a bit, it says here, because you have been living
cleanly.

The above paragraph is the “letter of the law™ regarding the sharing of public disk space. People
who want to be well regarded should also pay some attention to the “spirit of the law™: sharing things
is always more pleasant when everyone acts with a modicum of politeness and care. Don’t delete the
previous user’s files if she was called away by some disaster and didn’t have a chance to clean up. Try
not to delete the standard system files, such as the Compiler, that sit in the local file system, since
whoever follows you will be justifiably aggravated by their absence. Even more important, if you do
exotic things such as bringing over non-standard versions of system files, try to put everything back to
normal when you leave ere you cause whoever follows you to become hopelessly confused.

Local file systems

The local file system in the Alto world is called either the “Alto file system™ or the “BFS”, the latter
being an acronym for Basic File System. The biggest that a BFS can be is 22,736 pages. This is
substantially bigger than the entire disk on an Alto. However, Dolphins and Dorados have much bigger
local disks. Hence, when a Dolphin or Dorado is emulating an Alto, its local disk is split up into separate
worlds called partitions, each containing a maximum-sized BFS. Dolphin disks can hold two full
partitions, while Dorado disks can hold five. What partition you are currently accessing is determined
by the contents of some registers that the disk microcode uses. There is a command called “partition”
in the Executive and the NetExec that allows you to change the current partition.

When operating in the Pilot world, a disk pack is called a physical volume, and it is divided into
worlds called logical volumes. (Pilot, you will recall, is the new operating system written in SDD.) The

1983 EDITION

THE BRIEFING BLURB 18

area of the disk devoted to Pilot volumes must be disjoint from the area devoted to Alto-style partitions.
Most Dolphins that run Cedar are set up with a half-sized Alto partition, and the other three-quarters
of the disk devoted to Pilot; most Dorados that run Cedar have one full-sized Alto partition, and the
other four-fifths of the disk devoted to Pilot.

In current Cedar, many programs still restrict you to working with files in the local file system,
which is maintained by Pilot in the appropriate logical volume. The editor Tioga, for example, will let
you read remote files specified by a full path name, but it won't let you edit them; only local files may
be modified. [n subsequent Cedar’s, there will be a new local file system and directory package, the
Nucleus and FS respectively, to go along with the new virtual memory manager (also part of the Nucleus).
These wonders will make it somewhat easier to ignore the existence of the local file system, except for
its beneficial effects on performance; that is, they will make clean living more nearly automatic.

All of our local file systems use a representation for files that drastically reduces the possibility of a
hardware or software error destroying the disk’s contents. The basic idea is that you must tell the disk
not only the address of the sector you want to read or write, but also what you think that sector holds.
This is implemented by dividing every sector into 3 parts: a header, a label, and a data field. Each field
may be independently read, written, or compared with memory during a single pass over the sector. The
Alto file system stuffs a unique identification of the disk block, consisting of a file serial number and
the page number within the file, into the label field. Now, when the software goes to write a sector, it
typically asks the hardware to compare the label contents against data in memory, and to abort the
writing of the data field if the compare fails. This makes it pretty difficult. though not impossible, to
write in the wrong place. Furthermore, it distributes the structural information needed to reconstruct
the file system over the whole disk, instead of localizing it in one place, the directory data structures,
where a local disaster might wipe it out. Each local file system also has a utility program cailed a
Scavenger that rebuilds the directory information by looking at all of the disk labels.

Remote file systems

The most important local file servers are [FS’s, an acronym for Interim File System (one of the
crown jewels of the BCPL programming environment). Like I always say, “temporary” means “until it breaks”. and
“permanent” means “until we change our minds”. [ndigo and Ivy are two prominent local IFS’s; Indigo stores
mostly project files, while Ivy stores mostly personal files. MAXC also serves as a file server for some
specialized applications. Juniper was CSL’s first attempt to build a distributed transactional file server;
it was one of the first large programs written in Mesa. Alpine is a new effort to build such a beast in
the context of Cedar, in support of distributed databases and other such wonderful things. Some Walnut
users have been storing their mail databases on Alpine for a month or more.

There is no coherent logic to the placement of “general interest” files and directories, nor even to
the division between Maxc, Indigo, and lvy. Browse through the glossary at the end of this document
to get a rough idea of what's around. If something was made available to the universities in the University Grant
program, then it is probably on Maxc (or archived off of Maxc), since Maxc is the machine that the university folk can access.

IFS supplies a general sub-directory structure which the Maxc file system lacks, and as a result there
are lots of place to look for a file on an [FS. For example, on Maxc you might look for

[MaxcKAltoDocs>MyFavoritePackage.press

while on IFS you would probably look for
[IndigoKPackages>Doc>MyFavoritePackage.press, or
[IndigoKPackages>MyFavoritePackage>Documentation.press,

or perhaps some other permutation. This requires a bit of creativity and a little practice. However, if
you get in the habit of using “*”’s in file name specifications, you will find all sorts of things you might

1983 EDITION

THE BRIEFING BLURB 16

not otherwise locate. Note that a “*”’ in a request to an [FS will expand into all possible sequences of
characters, including right angle brackets and periods. Thus, for example, a request for

<{Packages>*press

refers to all files on all subdirectories of the Packages directory that end with the characters “press”. A
“** won't match a left angle bracket. by the way. Thus, if you ask for “*.press”, you are referring to all Press files on the current
directory. If you ask for “<*press”, you are referring to all of the Press files on the entire IFS (expect such a search to take a
long time!).

Warning: Once you have gotten used to the [FS conventions about “*”’s in file names, you will
find the TENEX rules quite restrictive and unnatural. On TENEX, asterisks can be used for only two
purposes: either to wildcard the entire prefix of the filename or to wildcard the entire extension. If you .
want to refer to all of the files on a TENEX directory, you must say “*.*”, not just “*"; if you want to
refer to all of the files whose names start with an ““H”, you are simply out of luck. This lack of “forward
compatibility™ (the opposite of backward compatibility?) has tripped up many a searcher.

There is a movement afoot in the Cedar world to simplify our file naming conventions by replacing
the various flavors of brackets with a UNIX-like slash. Thus, in some Cedar systems, such as the
FileTool, the documentation file mentioned above could be referred to as

/Indigo/Packages/MyFavoritePackage/Documentation.press.

File Properties

The “size™ of a file is its length measured in disk pages; the “length” of a file is its length measured
in bytes. The “create date” of a file is the date and time at which the information in that particular
version .of the file was “‘created”, that is, the date when this that sequence of bytes came into being.
Copying a file from one file system to another does not change the create date, since the information in
the file, the sequence of bytes, is not affected. The create date is almost always what you want to know
about a file. Some of our systems also maintain a “‘write date™ or a “‘read date”, but they are less well
defined, and not as interesting.

Editing and Typesetting

In the outside world, document production systems are usually de-coupled from text editors. One
normally takes the text that one wants to include in a document, wraps it in mysterious commands
understood by a document processor, feeds it to that processor, and puzzles over the resulting jumble of
characters on the page. In short, one programs in the document processor’s language using conventional
programming tools—an editor, a compiler, and sometimes even a debugger. Programmers tend to think
this is neat; after all, one can do anything with a sufficiently powerful programming language. (Remember,
Turing machines supply a sufficiently powerful programming language too.) However, document processors of this sort
frequently define bizarre and semantically complex languages, and one soon discovers that all of the time
goes into the edit/compile/debug cycle, not careful prose composition.

Bravo is the editor and typesetter in the Alto world. and it represented a modest step away from
the programming paradigm for document production. A single program provided both the usual editing
functions and a reasonable collection of formatting tools. You can’t program Bravo as you would a
document “‘compiler”, but you can get very tolerable results in far less time. The secret is in the
philosophy: what you see on the screen is what you get on paper. You use the editing and formatting
commands to produce on the screen the page layout you want. Then, you tell Bravo to ship it to a print
server and presto! You have a hardcopy version of what you saw on the screen. Sounds simple, right?

Of course, it isn't quite that easy in practice. There are dozens of subtle points having to do with
fonts, margins, tabs, headings, and on and on. Bravo was a success because most of these issues are

1983 EDITION

THE BRIEFING BLUPLB 17

resolved more or less by fiat—someone prepared a collection of configuration parameters and a set of
forms that accommodated most document production. Many of the configuration options aren’t even
documented, so it is hard to get enough rope to hang yourself. The net effect is that one spent more
time composing and less time compiling.

In Bravo’s wake, several new editors of unformatted text appeared: the Laurel editor, and the editor
in the Tools Environment are prominent examples. The Laurel editor is particularly noteworthy in that
it pioneered the development of a modeless (or at least less modal) user interface for an editor. The
Star product editor and Tioga are more recent local editors in the full Bravo tradition: they can handle
formatting and multiple fonts. Tioga is the editor within Cedar, and its user interface is very close to
the widely beloved Laurel modeless interface—try going back to Bravo after using Tioga for a while,
and see how horrible it feels to have to remember to type “i” and "ESC” all the time. Tioga shows
formatted text on the screen. To get a hardcopy of that text, the current path involves running a
companion program called the TSetter, which will compose your pages for printing and send them to a
print server. Tioga’s documentation is particularly convenient, since it usually available in iconic form
at the bottom of the Cedar screen <29>.

Dealing with editor bugs

All text editors have bugs. Furthermore, you are often most likely to tickle one of the remaining
bugs in an editor when you are working furiously on a hard problem, and hence, have been editing for
a long time without saving the intermediate resuits. As fate would have it, these are exactly the times
when it is most damaging and most upsetting to lose your work. There is nothing quite like the sinking
feeling you get when a large number of your precious keystrokes gurgle away down the drain. Both
Bravo and Tioga have mechanisms that can, in some cases, save you from the horrible fate of having to
do all those hours of editing over again. Bravo attempts to safeguard you by keeping track of everything
that you have done during the editing session in a log file; in case of disaster, this log can be replayed
to recapture most of the effects of the session. I[f you have a disaster when editing in Bravo, be careful
NOT to respond by running Bravo again to assess the damage. By running Bravo again in the normal
way, you will instantly sacrifice all chance of benefiting from the log mechanism, since the log allows
replay only of the most recent session. What you want to do instead is run the program “‘BravoBug”
(*Bravo/R” is not an adequate substitute). It wouldn't be a bad idea to ask a wizard for help also.
While you are looking for a wizard, try and think of some good answer to the question “Why are you
using Bravo, anyway?”, which said wizard will almost certainly ask.

The most common—perhaps [should really say “the least rare"—source of editing disasters in Tioga
is problems with monitor locks. Unfortunately, this class of problem usually makes further progress in
any part of Cedar impossible, since Tioga is so basic to the Cedar system. If you can get to the CoCedar
debugger, you might be able to save your edits by calling the procedure

+ ViewerOpsImpl.SaveAllEdits[]

Rumor has it that Cedar versions from 4.2 on will allow you to invoke this procedure by hitting a special
collection of keys in Cedar itself, even after Tioga has become wedged. A further rumor has supplied more
details: holding down both the left and the right shift keys and the Swat key for more than 1 second will invoke SaveAllEdits[].
While the saving is taking place, the cursor will become a black box.

Printing

In general, our printers are built by taking a Xerox copier and adding electronics and a scanning
laser that produce a light image to be copied. There are many different types of such printers. and there
are multiple instances of each printer type as well. There are also many different programs that would
like to produce printed output. The Press print file format was our first answer to the problem of
allowing every printing client to use every printer. Press files are the Esperanto of printing. Most print

1983 EDITION

THE BRIEFING BLURB 18

servers demand that the documents that you send to them be in Press format. This means you have to
convert whatever you have in hand (often text) to Press format before a server will deign to print it.

Press file format <30> is hairy, and some print servers don’t support the full generality of Press.
Generally, however, such servers will simply ignore what they can't figure out, so you can safely send
them any Press file you have.

A Press file can ask that text be printed in one of an extensive collection of standard fonts.
Unfortunately, you must become a wizard in order to print with your own new font. You can't use a
new font unless it is added to the fout dictionary on your printer, and adding fonts to dictionaries is a
delicate operation: a sad state of affairs. If the Press file that you send to a printer asks for a font that
the printer doesn’t have, it will attempt a reasonable substitution, and, in the case of Spruce, tell you
about the substitution on the break page of your listing. If you have chronic font difficulties of this sort,
contact a wizard.

There is a new print file format under development, called Interpress. The print servers that are
part of the Star product speak a dialect of Interpress. A print file in [nterpress format is called a master.
Our local plans for printing Interpress masters involve converting them first into a printer-dependent
print file in so-called PD format (with conventional extension “.pd”). From there, a relatively simple
driver program on each printer should be able to produce the final output.

The rest of this section was contributed by Julian Orr of ISL:

PARC has a variety of printers available for your hardcopy needs. We have high volume printers
for quantities of text, listings, and documentation; we have slower printers with generally higher quality
for more complex files; and we have very slow printers for extremely high quality. All of our current
printers except Platemaker offer 384 spots per inch and share a common font dictionary. We use two
different software systems for printing Press files, both running on Altos: one is called Spruce, and the
other is called (confusingly) Press. Spruce offers speed and spooling, but it can only image characters
and rules, and not too many of them. This makes it limited in graphics applications. Furthermore,
Spruce is limited to the particular sizes of fonts that it has stored in its font dictionary: it does not know
how to build new sizes by converting from splines. Press is slower, but can handle arbitrary bitmaps,
and can produce odd-sized fonts from splines.

ISL is developing Interpress printing capabilities. Printing *“.pd” files is now an option on most
Press printers (that is, on printers running the program Press as opposed to Spruce). Just ship your
“pd” file to the printer in the standard way: it is smart enough to figure out whether what you have
sent it is in PD or Press format, and it will invoke PDPrint or Press as appropriate. Documentation on
these two printing programs is available, by the way <31, 32>. PD printing should not be undertaken
without consultation with a wizard.

Dover printers run Spruce for high volume printing, producing a page per second. CSL’s Dover,
named Clover, is found in room 2106; [SL’s Dover, named Menlo, is in room 2305. Samples of the
Dover font dictionary may be found next to Clover and Menlo. Instructions for modifying the queue
and generally running these Spruce printers are to be found next to their Alto terminals.

Lilac is our color Press printer and may be found in 2106 with Clover. It is a three color,
composite-black machine; it generally produces good quality output, but is occasionally temperamental.
Anyone interested in color printing or the state of Lilac should join the distribution list Lilacl.overst.pa.

In the ISL maze area, room 2301, we have an assortment of black and white Press printers, answering
variously to the names of RockNRoll, Quoth, and Stinger. The printers are two Ravens (Raven is a
Xerox product), one Hornet, and one Gnat (the latter two are prototypes). The print quality is normally
excellent. Instructions for interpreting status displays are posted locally. To be informed of which
printer is functioning and where, join the list [SLPrintt.pa. There should be three printers up for most
of the summer. Periodically one or another of these or Lilac are pre-empted for debugging.

1983 EDITION

THE BRIEFING BLURB 19

Our best quality printer is Platemaker, which is normally operated at 880 spots per inch, but can be
run up to 2200 spi; it is not normally useful to go beyond 1600. Platemaker uses a laser to write on
photographic paper or film. Color images can be done in individual separations, which are then merged
using the Chromalin process. The Platemaker printing process is used for final prints of fine images or
for printing masters for publication. [f you wish to have something printed, speak to Julian Orr, Eric
Larson, or Gary Starkweather.

Sending and Receiving Mail

We rely very heavily on an electronic mail system. We use it for mail and also for the type of
announcement that might, in other environments, be posted on a physical or electronic bulletin board.
In our environment, a physical bulletin board is pretty useless, since people spend too much of their
days staring at their terminals and too little wandering the halls. Electronic bulletin boards might work
satisfactorily. But a bulletin board, being a shared file to which many people have write access, is a
rather tricky thing in a distributed environment. [t probably presupposes a distributed transactional file
server, for example. Mumble. For whatever reason, the fact remains that we don't have an electronic
bulletin board facility at the moment. As a result, announcements of impending meetings, “for sale”
notices, and the like are all sent as messages directed at expansive distribution lists. [f you don’t check
your messages once a day or so, you will soon find yourself out of touch (and saddled with a mailbox
full of obsolete junk mail). And conversely, if you don’t make moves to get on the right distribution
lists early, you may miss lots of interesting mail. This business of using the message system for rapid distribution of
announcements can get out of hand One occasionally receives notices of the form: “meeting X will start in 2 minutes—all
interested parties please attend”.

Grapevine is the distributed transport mechanism that delivers the local mail [33]. When talking to
Grapevine, individuals are referred to by a two-part name called an “R-name”, which consists of a prefix
and a registry separated by a dot; for example. “Ramshaw.pa” means Ramshaw of Palo Alto. In
addition to delivering the mail, Grapevine also maintains a distributed database of distribution lists. A
distribution list is also referred to by an R-name, whose prefix conventionally ends in the character
up-arrow, as in “CSLt.pa”. Distribution lists are actually special cases of a construct called a Grapevine “group”. Groups
can be used for such purposes as controlling access to IFS directories. There is a program named Maintain that allows
you to query and update the state of the distribution list database. In fact, there are two versions of
Maintain: the documented one with the unfortunate teletype-style user interface is used from within
Laurel or the Mesa Development Environment <34>; the undocumented one with the futuristic menu
interface is used from within Cedar. Some distribution lists are set up so that you may add or remove
yourself using Maintain. If you try to add yourself to Foot.pa and Maintain won't let you, the proper
recourse is to send a message to the distribution list Owners-Foot.pa, asking that you please be added
to Foot.

At the moment, Grapevine pretty much has a monopoly on delivering the mail. But there are
several different programs that give users access to Grapevine's facilities from different environments.
From an Alto, one uses Laurel, which is mentioned elsewhere as a pioneer of modeless editor interfaces.
Even if you aren’t a Laurel user, [recommend that you read Chapter 6 of the Laurel Manual [35], which
is an enlightening and entertaining essay on proper manners in the use of the mail system. In the Mesa
Development Environment, the program Hardy provides services analogous to Laurel’s. From within
Cedar, most folk use Walnut, whose documentation appears as part of the Cedar Manual <25>. Walnut
represents a step towards the future in some respects, since Walnut uses Cypress, the Cedar database
management system, to store your mail in a database. Access to Grapevine from within Cedar can also
be had without the database frills through a program called Peanut, which stores your messages in a
structured Tioga document instead of in a database. Finally, in case travel should take you away from
your multi-function personal workstation, there are servers on the Internet known by the name “Lily”
to whom you can connect from any random teletype in order to peruse the mail sitting in your Grapevine
mailbox. :

1983 EDITION

THE BRIEFING BLURB 20

Packaging Systems and Controlling Versions

[n the BCPL world, the primary facility for packaging up a group of related files and either handing
them out or storing them for later recall was the dump file. A dump file, given conventional extension
“.dm”, is simply the concatenation of the dumpees, together with enough header information to allow
the dumpees to be pulled apart again. Dump files have fallen out of favor.

In the Alto/Mesa world. and more strongly, in the Cedar world. a collection of software called “DF
files” has grown up that attacks the problem of describing and packaging systems, detailing their
interdependencies, and controlling the versions of things. You can find out a lot about DF files by
reading Eric Schmidt’s dissertation [36]. You can find the answers to detailed questions about the
behavior of the various programs that deal with DF files by reading the reference manual for DF files
<37>. All that [will try to do here is to give you some idea of what DF files are good for, and how, in
a general sense, they are used. One way or another, all Cedar programmers must make their peace with
DF files: they perform valuable functions, and they have no current competition.

In the simplest case, a DF file just consists of a list of the names of a related set of files. At this
level, a DF file is something like a dump file: given the DF file, you can get at each of the files that it
describes. Of course, you want to be sure that you get the right versions of the described files, so just
having the DF file list their names isn’t quite enough. If there were an Internet-wide notion of version
number that made sense, we could get around this problem by specifying the version number along with
the file name. But there isn't. The closest thing to a Internet-wide unique identification stamp that we
have is the create date of the file. Thus, what a DF file really contains is a list of file names and
associated create dates.

The first program that you will meet that deals with DF files is Bringover. Bringover’s job is to
retrieve to your local file system the set of files described by a particular DF file. This would be
something of a challenge unless the DF file included some hint to Bringover concerning where in the
great, wide Internet the correct versions of these files might be found. So DF files do indeed include
such hints: in particular, they include specifications of remote directories on which to look. These
directories are just hints, in the sense that Bringover will always verify by checking the create date that
it is getting you the correct version of the specified file. [f Bringover can’t find the correct version on
the specified directory, it will issue a sprightly error message. Bringover has lots of bells and whistles.
For example, you can point it at either a local or a remote DF file; you can ask it to retrieve just a
selected subset of files to your local disk, rather than the entire set described by the DF file; or you
can individually consider the files one by one, deciding which you would like to retrieve and which you
wouldn’t.

Suppose that [am working on a collection of files, such as the sources for this Briefing Blurb. I
have made a DF file that describes them, and [can use Bringover to retrieve them from their remote
and permanent home to my local file system, where [can edit them. The next thing that [need is a
service that is symmetric to Bringover: after doing my editing, [want to put the new versions back on
the remote file server, along with a new DF file that describes the new versions. This function is
performed by SModel. I run SModel, and point it at the old DF file. SModel considers each file in -
turn, and looks to see if [have edited it; that is, it looks to see if the create date of that file in my local
file system is now different than the create date stored in the old DF file. If so, SModel deduces that I
have edited the file. It stores the new version that [have made out onto the remote directory. After
doing this for each file in turn, SModel writes a new version of the DF file itself, filling in all of the
create dates correctly to describe the new version of the entire ensemble. If the DF file describes itself. as most
DF files do, SModel is smart enough to make sure that the new version of the DF file is stored out to the remote server as well.
SModel also has lots of bells and whistles, but let’s not go into them.

[f that were the whole story, mere mortals could figure out DF files without straining their brains.
But there's more. So far, we have only discussed DF files as descriptions of ensembles of files. In fact,

1983 EDITION

THE BRIEFING BLURB 21

these ensembles are often components of large programs. And this has consequences.

First, there are two distinctly different reasons that you might have for retrieving a program: you
might want to change it, or you might just want to run it. In the latter case, you don't need to bring
over all of the sources; all that you need is the runnable *“.bcd”. We could handle this by having two
DF files: one for the users and the other for the maintainers. But that would be a disaster: the two
DF files would never agree! Instead, each DF file distinguishes between files that it “exports” and the
rest. The exported files are the ones that users need. while maintainers are assumed to need the entire
ensemble. You can warn Bringover that you are a user rather than a maintainer by giving it the *“/p”
switch (which stands for Public-only).

Secondly, some programs are going to depend upon other programs: that is, the programs themselves
will be “users” (“clients” is a better word here). This suggests that one DF file should be able to contain
another DF file. In fact, there should be several different kinds of containment, corresponding to such
phrases as: '

“They who maintain me also maintain the stuff described by the following DF file.”
“They who maintain me are also users (but not maintainers) of the stuff described . ..”
“They who use me are also users of the stuff described . ..”

You get the point? For more details on the ways that these things are done (“includes” and
“imports”), check out the reference manual.

In case you still aren’t convinced that things are complicated, it is now time to mention the fact that
DF files are used for yet another purpose: they describe components of the Cedar release. During the
Cedar release process, all of the new versions of Cedar components, which are sitting out on development
directories, must be checked for consistency, and then moved en masse to the official release directory.
And an entire new set of DF files must be produced, describing the released version of the system (as
opposed to the development version). This means, among other things, that some DF files must specify
two different remote directories: the development directory and the release directory. In addition, there
is a third DF file program, called VerifyDF, whose purpose is to perform cerwain consistency and
completeness checks on a DF file. By insisting that all component implementers have successfully run
VerifyDF on their components, the Cedar Release Master ensures that the release process has at least a
fighting chance of succeeding <38>.

In fact, there are several other programs related to DF files that are sometimes useful. DFDisk, for
example, looks at all of the files on your local disk and classifies them according to where they may be
found on remote servers. This is a convenient way to determine what local files need to be backed up
before erasing the local file system for some reason. For more on DFDisk, an introduction to DFDelete,
and more, see the DF files reference manual <37>.

DF files grew up over time in response to a mixed bag of needs. As they became more popular,
features were added one by one to make them more useful in these varying contexts. The resulting
system as a whole is rather hard to grok, but [hope that this introduction has given you a leg up on the
problem, at least.

1983 EDITION

THE BRIEFING BLURB 22

Some Tidbits of Lore

About CSL

CSL has a weekly meeting on Wednesday afternoons called Dealer, starting at 1:15. The name
comes from the concept of “dealer’s choice”—the dealer sets the ground rules and topic(s) for discussion.
When someone says she will “give a Dealer on X", she means that she will discuss X at some future
weekly meeting, taking about 15 minutes to do so (plus whatever discussion is generated). Generally,
such discussions are informal, and presentations of half-baked ideas are encouraged. The topic under
discussion may be long-range, ill-formed, controversial, or all of the above. Comments from the audience
are encouraged, indeed, provoked. More formal presentations occur at the Computer Forum on Thursday afternoons;
the Forum is not specifically a CSL function, and it is open to all Xerox employees, and sometimes also to outsiders. Dealers
are also used for announcements that are not appropriate for distribution by electronic mail. Members
of CSL are expected to make a serious effort to attend Dealer.

On occasions of great festivity, Dealer is replaced by a picnic on the hill (that is, Coyote Hill, across
Coyote Hill Road), with Mother Xerox picking up the tab.

The CSL Archives (not to be confused with TENEX archiving) are a collection of file cabinets and
3-ring binders that provide a continuing record of CSL technical activities. The archives are our primary
line of defense in legal matters pertaining to our projects. They also make interesting reading for anyone
curious about the history of any particular project.

There is also an institution known as the CSL Notebook, which exists to make all of the potentially
interesting documentary output of CSL folk easily accessible to all CSL folk. Trip reports, design
documents, immigration manuals (like this one): they should all be submitted to the CSL Notebook
<39>. If you thought that it was worth writing down, it is pretty likely that there are other folk in CSL
who would consider it worth reading, and submitting it to the CSL Notebook is one easy way to get it
read. (I believe that likely looking submissions to the CSL Notebook are considered for entry into the
CSL Archives as well.)

About ISL

ISL also has a weekly meeting, on Tuesdays starting at 11:00 am. This meeting has no catchy name
at the moment.

1983 EDITION

THE BRIEFING BLURB 23

Some Code Phrases

You may occasionally hear the following incomprehensible phrases used in discussions, sometimes
accompanied by laughter. To keep you from feeling left out. we offer the following translations:

“Committing error 33

(1) Predicating one research effort upon the success of another. (2) Allowing your own research
effort to be placed on the critical path of some other project (be it a research effort or not). Known
elsewhere as Forgie’s principle.

“You can tell the pioneers by the arrows in their backs.”

Essentially self-explanatory. Usually applied to the bold souls who attempt to use brand-new
software systems, or to use older software systems in clever, novel, and therefore unanticipated ways ...
with predictable consequences. Also heard with “asses” replacing “backs”.

“We're having a printing discussion.”

Refers to a protracted, low-level, time-consuming, generally pointless discussion of something
peripherally interesting to all. Historically, printing discussions were of far greater importance than they are now. You
can see why when you consider that printing was once done by carrying magnetic tapes from Maxc to a Nova that ran an XGP.

Fontology

The body of knowledge dealing with the construction and use of new fonts. It has been said that fontology
recapitulates file-ogeny.

“What you see is what you get.”

Used specifically in reference to the treatment of visual images by various systems, e.g., a Bravo
screen display should be as close as possible to the hardcopy version of the same text. Also known is
some circles by the acronym “WYSIWYG™, pronuonced “whiz-ee-wig”.

” <

“Moving right along”, “Pop!”, or “Hey guys, up-level!”

Each of these phrases means that the conversation has degenerated in some respect, often by
becoming enmeshed in nitty-gritty details. Feel free to shout out one or more of these phrases if you
feel that a printing discussion has been going on long enough. If two participants in a large meeting
begin discussing details that are of interest to them but not of interest to the group as a whole, shout
“Off-line!”’ instead.

“Life is hard”

Two possible interpretations: (1) “While your suggestion may have some merit, I will behave as
though [hadn’t heard it.” (2) “While your suggestion has obvious merit, equally obvious circumstances
prevent it from being seriously considered.” The charm of this phrase lies precisely in this subtle but
important ambiguity.

“What’s a splz‘r}e?”

“You have just used a term that ['ve heard for a year and a half, and [feel I should know, but
don’t. My curiosity has finally overcome my guilt.” Moral: don’t hesitate to ask questions, even if they
seem obvious.

1983 EDITION

|
THE BRIEFING BLURB 24

Hints for Gracious Living

There are a couple of areas where life at PARC can be made more pleasant if everyone is polite
and thoughtful enough to go to some effort to help out. Here are a few words to the wise:

Coffee

Both ISL and CSL have coffee alcoves where tea, cocoa. and several kinds of coffee are available.
All coffee drinkers (not just the secretaries or some other such barbarism) help out by making coffee. If
you are about to consume enough coffee that you would leave less than a full cup in the pot, it is your
responsibility to make a fresh pot. following the posted instructions. There are lots of coffee fanatics
around, and they get irritated beyond all reason if the coffee situation isn’t working out smoothly. For
those coffees for which beans are freshly ground, the local custom is to pipeline grinding and brewing.
That is, you are expected to grind a cup of beans while brewing a pot of coffee from the previous load
of ground beans. This speeds up the brewing process for everyone, since a load of ground beans is—at
least, had better be—always ready when the coffee pot runs out.

Sharing Office Space

Be warned as well that some lab members are unbelievably picky about the state of their offices.
The convention is that any Alto in an empty office is fair game to be borrowed. Private Dolphins and
Dorados may be borrowed only by prior arrangement with their owners, because of the problems of
sharing disk space. If you use someone’s office for any reason, take care to put everything back exactly
the way it was. Don't spill crumbs around, or leave your half-empty cocoa cup on the desk, or forget
to put the machine back in the state that you found it, or whatever. Of course, lots of people wouldn’t
mind even if you were less than fanatically careful. But some people do mind, and there is no point in
irritating people unnecessarily.

Sharing printers

When you pick up your output from a printer, it is considered antisocial merely to lift your pages
off the top of the output hopper, and leave the rest there. Take a moment to sort the output into the
labelled bins. Sorting output is the responsibility of everyone who prints, just as making coffee is the
responsibility of everyone who drinks (coffee). Check carefully to make sure that you catch every break
page: short outputs have a way of going unnoticed, and hence being missorted, especially when they
come out right next to a long output in the stack. The rule for determining which bin is to use the first
letter that appears in the name on the break page. Thus, “Ramshaw, Lyle” should be sorted under “R”,
while “Lyle Ramshaw” should be sorted under “L”. A trickier question is what to do with output for “Noname",
or the like. Following the rule would suggest filing such output under "N, but that doesn't seem very helpful. since the originator
probably won't find it. Check the contents and file it in the right box if you happen to recognize whose output it is; otherwise,
either leave it on top of the printer or stick it back in the output hopper.

1983 EDITION

THE BRIEFING BLURB 25

The phone system

When the Voice Project has had its way, our phone system will be a marvelous assemblage of
computers talking to computers, and this section of the Briefing Blurb will have to be expanded to tell
you all about it. At the moment, however, we are simply customers of Pacific Telephone, so there isn’t
too much to say. First, a little preaching.

If you make a significant number of personal long-distance phone calls from Xerox phones, it is
your responsibility to arrange to reimburse Xerox for them. This may not be that easy, either, since
phone bills take quite a while (six weeks or so) to percolate through the bureaucracy upstairs, and the said
bureaucracy also has a lot of trouble figuring out where to send the phone bills of new people, and
people who move around a lot. Just because it is easy to steal phone service from Xerox doesn't make
it morally right; if you think you aren’t being paid enough, you should start agitating for a raise. If
enough suspicious calls are made without restitution, PARC (being a bureaucracy) will impose some bureaucratic “solution™ on all
of us.

So as not to end on a sour note, let's discuss how the phone system works, anyway. The offices
within PARC have four-digit extensions within the 494 exchange, a system known as Centrex; to dial
another office, those four digits suffice. Dialing a single 9 as the first digit gives you an outside line,
and you are now a normal customer of Ma Bell: see a phone book for more details (Oh, come now,
surely you know about phone books!). Dialing a single 8 gives you different sounding dial tone, and
puts you onto the IntelNet (not to be confused with the InterNet). The IntelNet is a Xerox-wide
company phone system, complete with its own phone book, and its own phone numbers. [f you are
calling someone in some remote part of Xerox, you can save Mother Xerox some bread by using the
IntelNet instead of going straight out over Ma Bell’s lines. On the other hand. you may not get as good a circuit
to talk over—aithough this situation is frequently said to be improving. Furthermore, through the wonders of modern
electronics, you can dial any long-distance number over the IntelNet. Just use the normal area code and
Ma Bell number: the circuitry is smart enough to take you as far as possible towards your destination
along IntelNet wires, and then switch you over to Ma Bell lines for the rest of the trip. Using the InteiNet
doesn’t start to save money untl the call is going a fair distance; therefore, the IntelNet doesn't let you call outside numbers in
area codes 408, 415, and 916—better to just dial 9.

One more thing: after you have dialed a number on the IntelNet, you will hear a funny little
beeping. At that point, you are being asked to key in a four-digit number to which the call should be
billed. You should use the four-digit extension number for your normal office phone under most
circumstances. Calls made by dialing 9 instead of 8 are always charged to the phone from which they are placed.

The first three rings (roughly speaking) of an incoming call occur only in your office. The next
roughly three rings happen both at your office phone and at a receptionist’s phone, centrally located in
the laboratory. During normal business hours, the receptionist’s phones are staffed; thus, someone will
at least take a message for you, and leave it on a little slip of paper in your physical message box. If
the second three rings go by without either of those two phones answering, the call is then forwarded to
the guards desk downstairs (I believe).

If you are expecting a call but won't be near your normal phone, a call forwarding facility exists:
dial 106 and then the number to which you want your calls to be forwarded. Later on (¢ry not to forget),
you dial 107 on your normal phone to cancel the forwarding. When [forward my phone. [turn the
phone around physically, so that the touch-pad faces the wall. This helps me to remember to cancel the
forwarding again later, at which point [turn the phone back the normal way. There is also a way to
transfer incoming calls to a different Xerox number: Depress the switch hook once, and dial the
destination number; when the destination answers, you will be talking to the destination but the original
caller won't be able to hear your conversation: depressing the switch hook again puts all three of you
on the line; then you can hang up when you please. If the destination doesn't answer, depressing the switch hook
once again will flush the annoying ringing or busy signal.

1983 EDITION

THE BRIEFING BLURB 26

References

Reference numbers in [square brackets] are for conventional hardcopy documents. Many of them
are Xerox reports published in blue and white covers; the CSL blue-and-whites are available on
bookshelves in the CSL Alcove. Reference numbers in <angle brackets> are for on-line documents. The
path name for such files is given herein in the form

[FileServer[KDirectory>SubDirectory>FileName.Extension

for backward compatibility with earlier systems. Recently, the simpler alternative form

/FileServer/Directory/SubDirectory/FileName.Extension

has begun to come into local currency, but some systems still demand brackets rather than slashes.

<m:
[n]:
[1}:

2}
(3}

[4]:
[5}:

<6>:

(71
(8]
[91:
[10]:

<1D:

[12}:

<13>:

[14]:

The generic form for a reference to an on-line document.

The generic form for a reference to a hardcopy document.

Sunset New Western Garden Book. Lane Publishing Company, Menlo Park, CA, 1979. The
definitive document on Western gardening for non-botanists; 1200 plant identification
drawings; comprehensive Western plant encyclopedia; zoned for all Western climates; plant
selection guide in color.

John E. Warnock. The Display of Characters Using Gray Level Sample Arrays. blue-and-white
report CSL-80-6.

Richard F. Lyon. The Optical Mouse, and an Architectural Methodology for Smart Digital
Sensors. blue-and-white report VLSI-81-1.

The Ethernet Local Network: Three Reports. blue-and-white report CSL-80-2.

John F. Shoch, Yogen K. Dalal, Ronald C. Crane, and David D. Redell. Evolution of the
Ethernet Local Computer Network. blue-and-white report OPD-T8102.
[MaxcKAltoDocs>NetTopology.press. Contains a picture of the entire internetwork
configuration in seven pages. It is out of date. All such documents are always out of date.
A copy is posted on the wall opposite the Alcove in CSL.

David R. Boggs, John F. Shoch, Edward A. Taft, and Robert M. Metcalfe. Pup: An
Internetwork Architecture. blue-and-white report CSL-79-10.

Internet Transport Protocols. Xerox System Integration Standard report XSIS 028112,
December 1981.

Courier: The Remote Procedure Call Protocol. Xerox System Integration Standard report
XSIS 038112, December 1981.

C..P. Thacker, E. M. McCreight, B. W. Lampson. R. F. Sproull, and D. R. Boggs. Alto: A
personal computer. blue-and-white report CSL-79-11.
[MaxcKAltoDocs>AltoHardware.press. Everything that you need to know to write your own
Alto microcode.

The Dorado: A High-Performance Personal Computer; Three Papers. blue-and-white report
CSL-81-1.

[Indigo]<DoradoDocs>DoradoBooting.press. Describes how to boot a Dorado, and how to
configure it to boot in various ways.

Myer, T. H. and Barnaby, J. R. TENEX Executive Language Manual for Users. Available
from Arpa Network Information Center as NIC 16874, but in the relatwely unhkely event
that you need one, borrow one from a Tenex wizard.

<15>: {MaxcKAltoDocs>BCPL.press. The reference manual for the BCPL programming language.

<16>:

[MaxcKAltoDocs>OS.press. The programmer's reference manual for the Alto Operating
System, including detailed information on the services provided and the interface
requirements.

1983 EDITION

<17

[18]:

<19>:

[20]:

[21]:
[22]:
[23]:
[24]:
<25
[26]:

27>

[28]:
<29>:

<30>:
3D
<32
[33]):

<34>:

[35]:
[36]:

3D
<38>:

<3%:

THE BRIEFING BLURB 27

[MaxcKAltoDocs>Packages.press. A catalogue giving documentation for the various BCPL
packages that other hacker’s have made available.

James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language Manual, Version
5.0. blue-and-white report CSL-79-3. A cross between a tutorial and a reference manual,
though much closer to the latter than the former.

[IvylKMesa>Doc>Compiler60.press. Describes the changes in the Mesa language and the
compiler that occurred in. moving from Mesa 5.0 to Mesa 6.0.

Morris, J. H. The Elements of Mesa Style. Xerox PARC Internal Report, June 1976.
Somewhat out of date (since Mesa has changed under it), but a readable introduction to some
useful program structuring techniques in Mesa.

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
book published by Addison-Wesley, 1983.

Warren Teitelman. Interlisp Reference Manual. Published in a blue and white cover,
although not officially a blue-and-white. October, 1978.

The Interlisp-D Group. Papers on Interlisp-D. blue-and-white report CIS-5 (also given the
number SSL-80-4), Revised version, July 1981.

L. Peter Deutsch and Edward A. Taft, editors. Requirements for an Experimental Programming
Environment. blue-and-white report CSL-80-10.

[Indigo]<Cedar>Documentation>Manual.df. Hardcopies are entitled The Cedar Manual.
Alto User’s Handbook. Internal report, published in a black cover. The version of September,
1979 is identical to the version of November, 1978 except for the date on the cover and title
page. Includes sections on Bravo, Laurel, FTP, Draw, Markup, and Neptune
[MaxcKAltoDocs>SubSystems.press. Documentation on individual Alto subsystems, collected
in a single file. Individual systems are documented on [Maxc|KAltoDocs>systemname. TTY,
and these files are sometimes more recent than SubSystems.press.

Jerome, Suzan. Bravo Course Qutline. Internal report, published in a red cover. Oriented
t0 non-programmers.

[IndigoKTioga>Documentation>TiogaDoc.tioga, or TiogaDoc.press. How to use the Tioga
editor.

[Maxc[<PrintingDocs>PressFormat.press. Describes the Press print file format.
[MaxcKPrintingDocs>PressOps.press. Describes the Press printing program.
[MaxcKPrintingDocs>PDPrintOps.press. Describes the PDPrint printing program.

Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder. Grapevine:
an Exercise in Distributed Computing. blue-and-white report CSL-82-4.
[IvyKLaurel>Maintain.press. Documentation for the teletype version of Maintain, the version
that is used from within Laurel or Tajo.

Douglas K. Brotz. The Laurel Manual. blue-and-white report CSL-81-6.

Eric Emerson Schmidt. Controlling Large Software Development in a Distributed Environment.
blue-and-white report CSL-82-7.

[IndigoKCedar>Documentation>DFFilesRefMan.press. The reference manual for the use of
DF files.

[IndigoKCedar>Documentation>ReleaseProcedures.press. Describes the policies and
procedures that individuals who contribute to Cedar releases need to understand and observe.
[Indigo]KCSL-Notebook>Docs>HowToUseCSLNotebook.press.

1983 EDITION

A Glossary of Terms, Subsystems, Directories, and Files
(and acronyms, protocols, and other trivia)

Try reading me in Tioga, using the “Def” command to get around!

abstract machine: A set of low-level functions and capabilities. provided by some combination of
hardware and software, that forms the underpinnings of a system sitting above. For example,
the Interlisp-D system, which runs on various machines, consists of a lot of
machine-independent stuff sitting on top of a small amount of machine-dependent code. The
goals of the machine-dependent part were specified by describing an abstract machine that it
must implement. As another example, part of the Cedar project has been the specification
of a “Cedar computer” as an abstract machine.

Alpine: A transactional file server being built within CSL for use by database systems
and other distributed computing applications. Alpine is being built on top of Cedar, and will
help support the FS file system.

Alto: (On its way to being archaic.) A small personal computer with a bitmap display and mouse,
designed at PARC; the precursor to D-machines. See the blue-and-white report titled “Alto:
A personal Computer”, number CSL-79-11.

Alto world: An environment created by running an Alto emulator on a D-machine.

AltoFontGuide.Press: A file, available on [Indigo]<Fonts>, that tells all about the existing
families of display-screen raster fonts, and describes how they are organized on different
subdirectories of [Indigoj<AltoFonts>. Note that the name “AltoFonts” is an anachronism,
and should really be changed to “DisplayScreenFonts” or the like; the same rasters that were
drawn for use on Altos work just fine on today's D-machines.

AM: Acronym for the Cedar abstract machine.

ARPA: Acronym for the Advanced Research Projects Agency of the United States
Department of Defense. They support, among other things, a network linking research
computers: our ARPANET address is PARC-MAXC.

atom: (or ATOM:) Unique identifiers implemented over a global naming space. Two
occurrences of the same atom will evaluate to the identical value, rather than just to equivalent
values. Atoms have always been part of Interlisp; they were added to Mesa on the way to
Cedar. In Cedar, an atom literal is written with a prefixed dollar sign, as in “$foo™. Each
atom has a list of <name, value> pairs associated with it, called its property list.

bank: A unit of measurement of primary storage in an Alto world, equal to 64K 16-bits words, that
is, 128K bytes. An Alto II has four banks. while Dorados have at least eight.

bar: A generally thin, generally rectangular, generally invisible region of the screen in which certain
generally display-related actions occur, e.g., the scroll bar, the line-select bar.

baseboard: A microcomputer that lives on the lowest printed-circuit board of a Dorado. The
baseboard listens to the terminal’s boot button, and to various thermometers. Its job is to
supervise the rather complex booting sequence necessary for bringing a Dorado up from a
cold start. The baseboard announces its state to the outside world by flashing a number
(encoded in unary) on a little green light on the Dorado chassis. Signs near each bank of
Dorados explain what various numbers of flashes mean.

Bayhill: Another name for Building 96, occupied by part of SDD. The Bayhill building
is located on Hillview just before it runs into Arastradero. ‘

BCD: A compiled object program module in Mesa or Cedar; an acronym for Binary Configuration

Description.

BCPL: A free-wheeling and typeless system programming language used as the
environment for much early Alto programming. Also, the compiler for that language.

BFS: An acronym for Basic File System: the contents of a disk or partition used by an Alto world.
Also a standard software package for low-level management of an Alto file system.

Binder: BCD’s export services to their clients, and, in turn, import various services from
other BCD’s. The process of resolving these inter-module references is called binding, and
the Binder is the program that does it. Actually, the loader can handle many of the easy
cases of binding on the fly, as part of the loading process; but for complex stuff, you need
the Binder. The Binder accepts compiled modules (with extension “.bcd”) and binding
instrutions in the form of a configuration description (with extension *“.config”); it produces
another ““.bcd” as output.

BITBLT: (pronounced “bit-blit”). A complex instruction used for moving and possibly
modifying a rectangular bitmap. The “BLT" part is an acronym for BLock Transfer.
bitmap: Generally refers to a representation of a graphical entity as a sequence of bits

directly representing image intensity at the points of a raster. The display hardware and
microcode on an Alto or D-machine process what is essentially a bitmap of the image to be
displayed. At PARC, bitmaps are normally stored word-aligned, and in row-major order.

blue-and-white: A report that has been cleared for distribution outside Xerox, and published in
a blue and white cover. Such reports have identifying numbers formed by concatenating the
laboratory acronym, the year, and a small integer. One of my favorites is the Laurel Manual,
by Douglas K. Brotz, number CSL-81-6; [especially recommend Chapter 6. CSL
blue-and-whites are stored on bookshelves in the CSL Alcove. A list giving the titles and
numbers of all of the blue-and-whites is available from the PARC Library.

boot: Short for “bootstrap”, which is in turn short for “‘bootstrap load”. Refers to the process of
loading and starting a program on a machine whose main memory has undefined contents.

boot button: The small button behind the keyboard used (sometimes in conjunction with the
keyboard) to boot some program into execution. On Dolphin’s or Dorado’s, there are other
more potent boot buttons on the chassis, in addition to the boot button behind the keyboard.

boot file: A file that contains a bootable program. Used to start Cedar, as well as various
games and other useful programs available from the NetExec in the Alto world.

boot server: A computer on the network that provides a retrieval service for certain stand-alone
programs (which are encapsulated as boot files). See NetExec.

bootlights: (archaic) A screen pattern resembling a city skyline. Occurs occasionally in the
Alto world when some erroneous unanticipated condition arises, e.g., getting a parity error in
a BCPL program on a disk that doesn't have Swat.

Bravo: (archaic) An integrated text editor and document formatting program that runs
on the Alto; a vital program that nevertheless is no longer maintained or supported.

BravoBug: (archaic) A program used when Bravo crashes to replay the editing actions up
to the point of the crash.

BravoX: A successor to Bravo written in Butte with somewhat greater functionality and a
somewhat richer interface. Warning!: BravoX source files are stored in a weird and wonderful format that
almost NO programs other than BravoX can handle. Also, BravoX runs, at the moment, only on Alto [I's and
(perhaps?) Dolphins.

break page: A header page that divides one printed file from another in the output of a
Spruce printer. If Spruce encountered any difficulties during the printing run, it will inform
you of them on the break page.

Bringover: A program that retrieves files from remote file servers to one’s local disk;
Bringover reads “.df” files in order to figure out what versions of what files should be

retrieved, and where in the great wide electronic world they might be found. Use of Bringover
(confusing as it may be at the outset) is to be recommended over use of either FTP (in the
Alto world) or the FileTool (in Cedar), since the version control and system-description
features of *“.df” files are very valuable.

bug: A computing term for a non-feature, something that is not as intended. Sometimes used in
a different sense to refer to the act of pointing at something with the mouse, and then clicking
a mouse button; but this usage is frowned upon by 100% of our Usage Panel (namely me:
I recommend using the verb “click” instead in this context, since I think that “bug” is already
an overloaded word).

bug award: Refers to a occasional custom within CSL and ISL wherein those brave souls
responsible for ferreting out the cruelest and most intricate bugs in critically important systems
are rewarded for their efforts by being presented with a cute little bug-shaped sticker that
they can then display on their office nameplate or elsewhere. A bug award is the moral
equivalent of a gold star. If the sticker consists of a background from which a bug has been
excised, then the award is an “inverse bug award”, and serves to praise its recipient for
producing code that is notably free of insect infestations.

BugBane: A package that implements the basic primitives necessary for high-level debugging
in the Cedar world; the UserExec is a client of BugBane, and, in turn, provides debugging
services to users of Cedar.

Building 32: A part of OSD, located on Hanover Street. north of Page Mill. Once called
PARC-place, when it was occupied by parts of PARC.

Building 34: A part of PARC, located on Hillview, just across Coyote Hill from the Building
35, the home of the ICL.

Building 35: The main building of PARC, located at the intersection of Coyote Hill and
Hillview. The site of the cafeteria.

Building 37: A part of PARC, located on Hanover Street, north of Page Mill, and just south
of Building 32. The site of the CSL Electronic Model Shop.

Building 96: A part of OSD, located where Hillview runs into Arastradero; also called Lhe
Bayhill building. Current home of some parts of SDD.

Butte: A compiler for BCPL that outputs Mesa-style byte codes instead of Nova
assembly code; also, the byte codes themselves, and the microcode that implements them.

button: A small area on the screen that reacts when clicked with the mouse. In Viewers,
buttons are rectangular areas labelled with a word or phrase; they are organised into menus.

byte code: Lisp, Mesa, Cedar, Smalltalk, and Butte at PARC compile into directly executable

languages that are stack oriented. and whose op codes are usually one byte long. Such an
instruction is called a byte code. These byte codes are in turn interpreted by special microcode
on each of our various machines.

Cabernet: A particular mail server that is part of the Grapevine distributed transport
mechanism, located in the CSL machine room.

caret: A blinking pointer, indicating where keyboard characters will appear when typed.

catch phrase: A chunk of Mesa or Cedar code that is prepared to handle a certain type of
exceptional condition. The best of way to think of a catch phrase is as the body of a
procedure variable that is dynamically bound. Such procedures variables are called signals.
If you suspect that an exceptional condition might arise, and you think that you knows what
to do if it does, you specify this response as a catch phrase; that is. you bind a procedure
value to the signal, which is a procedure variable. [f any procedure that you call notices that
the condition has in fact arisen, it will notify the world by “raising the signal”, which should
be thought of as a procedure call to the catch phrase that you specified. (This method of
explaining signals is a minor facet of the religion esposed in the CLRM.)

Cedar: A large project in CSL to build a programming environment for CSL’s future
applications. Also the name of that environment. Also the name of the programming
language upon which it is built. The Cedar language is a variant of Mesa augmented by
garbage collection, atoms, and run-time types. The design of the Cedar environment was
strongly influenced by the programming environment and services available in Interlisp and
Smalltalk. For a discussion of the goals of Cedar, see the blue-and-white report titled
“Requirements for an Experimental Programming Environment”, number CSL-80-10.

CedarGraphics: A subroutine package of graphic primitives, built within ISL, that forms an
important part of Cedar. [ts design was heavily influenced by the results of experimental
systems written in JaM.

Chardonnay: A Grapevine server.

Chat: A program that provides teletype-like “‘interactive” access to a remote computer on the
network. Most programming environments include this capability in some form; both Alto
and Cedar include programs actually named “Chat”. Chat is mainly used to communicate
with Maxc and IFS servers.

Checkpoint: A method used in Cedar to preserve the state of your computing world. Taking
a Checkpoint involves preserving a shapshot of the current state of the virtual memory, but
not of the file system. If, after taking a Checkpoint, something bad happens and your Cedar
system gets wedged, the command RoliBack will return you to the earlier clean state of your
virtual memory; but changes to the file system made between the Checkpoint and the
subsequent RollBack, such as storing edited versions of files, will not be undone.

Cheshire: A subsidiary of Xerox. They make a machine that binds stacks of paper into
booklets by melting glue and letting it be absorbed by the edges of the paper. There are
Cheshire binders in CSL and in the PARC TIC.

Chromalin: The trade name of a fancy color printing process used with the PlateMaker for
creating high-resolution color prints from Press files or PD files.
Chipmunk: A D-machine Mesa program for interactively creating and editing integrated

circuit designs. Chipmunk makes use of a color display in addition to the normal
black-and-white one. It is a successor to [carus.

Cholla: A Laurel-based IC fabrication line control program, which is used in ICL.

CIFS: An acronym for Cedar Interim File System. CIFS is currently used within Cedar
to manage a portion of the local disk as a cache containing readonly copies of remote files.
This function and others will someday be provided by FS. CIFS was the first CSL system
to allow the components of a hierarchical file name to be separated with simple slashes instead
of with square brackets and angle brackets; the clumsier brackets are being used in this
document (sigh) for compatibility with the past.

CIS: An acronym for Cognitive and Instructional Sciences Group. A part of PARC, and the home
of many of the builders of Interlisp-D.

Clearinghouse: The analog of the Grapevine registration database in the NS world. That is, a
machine running Star talks to the local Clearinghouse in order to find out how to talk to a
particular file server or print server.

click: A manipulation of a mouse button. Pushing and releasing a mouse button several times in
quick succession is sometimes called a “double-click”, “triple-click”, etc. as appropriate. The
phrases “click-hold” and “double-click-hold™ are also sometimes heard.

client: A program (as opposed to a person) that avails itself of the services of another
program or system. Laurel is a client of Grapevine. See user.
Clover: A Dover located in CSL.

CloverFonts.Press: A file, available on [Indigo]<Fonts>, that lists by family name, face, size, and
rotation all of the fonts in Clover's font dictionary. That is, this file lists the fonts that you

can print with; for the fonts that you can see on your screen, see AltoFontGuide.Press
instead. To see the characters of the fonts in all their glory, check out the book located on
top of Clover called CloverCharacters.Press.

CLRM: Acronym for the Cedar Language Reference Manual. This document isn’t exactly
easy bedtime reading, but it is the most authoritative description currently available of the
behavior of Cedar programs in interesting and subtle cases. The CLRM also attempts to
convert you to a particular religion regarding the proper design of a polymorphic language
within the Algol tradition. To get the good dope about current Cedar without spending the
time necessary to undergo religious conversion, skip immediately to Chapters 3 and 4 of the
CLRM.

CoCedar: A world-swap debugger for Cedar.

color display: A CRT display with red, green, and blue phosphors. Griffin and Chipmunk both
use the color display, and the color display is also available to users of Cedar with a minimum
of hassle through the good auspices of the Cedar ColorDevice. The public Dorados with color
displays are listed at the sign-up sheets.

ColorDevice: A component of Cedar that provides low-level support for a color display.

Com.cm: A file used by the Alto Executive to store the current command being executed.
See Rem.cm.

Commander: A “light-weight” command interpreter. providing the minimum of functionality

needed by Cedar implementers while they are developing a new release of the system. Most
users of Cedar can instead enjoy the more plentiful features of the UserExec.

component: Among many other things, a chunk of software that is distributed as part of a
Cedar release.

config: A source file that tells the Binder how to assemble modules into a complete
system.

CoPilot: A world-swap debugger for Pilot.

CopyDisk: A stand-alone program used to transfer an Alto BFS, that is, the entire contents

of an Alto disk or partition. May be used between computers or on a single computer with
multiple disk drives.

create date: When said of a file, the date and time that the information contained in this
particular version of this particular file was created. Create dates are generally stored accurate
to the nearest second. This makes them sufficiently unique that the pair <file name, file
version's create date> can serve as a unique identifier for a particular pile of bits.

credentials: Proof that you are who you say you are; usually your Grapevine R-name and
the corresponding password.

CSL: Acronym for Computer Science Laboratory, a part of PARC, located on the second floor of
Building 35.

CSL Notebook: A mechanism for distributing, indexing, and generally sharing the documentary
output of folk in CSL.

cursor: A small picture on the display that tracks the motions of the mouse.

Cypress: A database package based upon an entity-value-relationship model of data, and
written in Cedar. Walnut, Hickory, and Squirrel are clients of Cypress.

D-machine: A generic name, referring to any of the current machines within Xerox that

implement the PrincOps architecture: Dandelions. Dicentras, Dolphins, and Dorados are the
primary D-machines.

DO0: (“D-zero”, not “DO”) An obsolete name for the Dolphin, a D-machine.

Daffodil: An inexpensive D-machine using custom VLSI, being designed by local folk.
Since the Daffodil may become the hardware base of future OSD products, certain details
concerning the Daffodil project are rather sensitive.

Daisy: A Dover located in the Bayhill building.

Dandelion: The name of the processor that is in the Star products; an example of a
D-machine.

dead: Either not currently operational (said of a piece of hardware), or operational but not currently
undergoing continued development and support (said of bodies of software).

Dealer: The name of CSL's weekly meeting, occurring on Wednesday afternoons from
1:15 until 2:45 (or so); also used to refer to the person speaking at that meeting. Giving such
a presentation is referred to as “‘giving a Dealer™ or sometimes “Dealing”. See also weekly meeting.

DDS: (archaic) Acronym for Descriptive Directory System. An Alto subsystem providing
sophisticated manipulation of the Alto file directory system. See also Neptune.

DF files: - A collection of programs for describing the files needed to build a complicated
system, for automatically retrieving these files from remote file servers to the local disk
(Bringover), and for storing them back later (SModel). Unlike the more grand and glorious
system models to come, DF files primarily addresses the problems engendered by our current
feudal collection of file systems. The letters "DF™ are an acronym for Description Files, which
suggests that the phrase “DF files” is redundant. ‘

Dicentra: A recent and inexpensive D-machine. The Dicentra essentially consists of the
Dandelion’s CPU squeezed onto one Multibus card. and communicating with memory and
with [70 device controllers over the Multibus.

dirthball: A small, perhaps struggling outsider; not in the major or even the minor leagues.
For example, “Xerox is not a dirthall company™.

distribution list: A list of R-names to which mail can be addressed. In some cases, Maintain can
be used to add oneself to interesting DL'’s, such as “MesaFolkloret.pa”. If Maintain responds
that you aren’t allowed to do that. the correct recourse is to send a polite message to
“Owners-MesaFolkloret.pa”, asking that they please add you to their list. For more details
about distribution lists, try either the Laurel manual or the document
[IvyKLaurel>Maintain.Press, which describes the Alto and Tajo versions of Maintain.

DiskDescriptor: A file that contains the disk allocation information used by an Alto file system.

DL: Acronym for Distribution List.

DLS: Acronym for Data Line Scanner: an Alto equipped with lots of modems plus other hardware
and microcode to allow dialing into and out of the Internet.

DMT.boot: Acronym for Display Memory Tester. A memory diagnostic for the Alto world.
DMT is automatically booted from the network by the Alto Executive after the Alto has
been idle for about 20 minutes. DMT accepts various commands; try pushing the "S" key, and also try
typing shift-swat. Designing cursors for DMT 1s a popular sport: send vour suggestion as a list of 16 octal numbers
to David Boggs (Boggs.PA), along with a suggested utle line and an indication of whether you want to be credited

by name.

Dolphin: A D-machine; once called the D0. More flexible than a Dandelion, but also
slower and more expensive.

Dorado: A high-performance D-machine, designed by CSL and coveted by all and sundry.

See the blue-and-white report titled “The Dorado: A High-Performance Personal Computer”,
number CSL-81-1.

Dover: Generic name for a type of 384 bpi laser-scan printer built on the Xerox 7000
xerographic engine and connected to an Alto by means of a Orbit interface. Successor to
EARS. Dovers are normally driven by the program Spruce.

Dragon: Generic name of a new, custom-chip processor being designed by a team in
CSL; it is hoped that the Dragon will satisfy our ambitions to have “a Dorado in a shoe
box™.

Draw: (archaic) An Alto subsystem that permits interactive construction of pictures

composed of lines, curves, and text. Draw users may be interested to note that a program
ReDraw exists that converts Draw source files into Press files that will print without the
jaggies on a Dover. Users of Alto emulators on D-machines must use DDraw and ReDDraw
instead.

Dumper.boot: (archaic) A file used for desperation debugging in an Alto world. Dumps (most
of) the current core image to Swatee for subsequent inspection by a debugger.

DWIM: Acronym for Do What I Mean: a facility intended to help the programmer by
making LISP do what you mean, rather than what you say.

EARS: (archaic) Acronym for Ether Alto Research SLOT. An obsolete prototype
laser-scan printer built on the Xerox 7000 xerographic engine and equipped with a hardware
character generator. (Interesting to some as an example of a third level acronym: the S in EARS stands for
SLOT, and the L in SLOT stands for LASER. and LASER itself is an acronym!)

EditTool: A menu-oriented command interface to the Tioga editor, providing complete
access to Tioga’'s functionality, including the commands that you can’t type (either because
they can't be typed, or because you have forgotten how to type them).

EFTP: A venerable PUP-based protocol now mostly used to transfer print files to print
servers. ‘

Electronic Model Shop: An arm of CSL located on Hanover street in Building 37; this
group of folks do small-scale production runs of computer equipment for CSL. Frequently
called the Garage.

EmPress: An Alto subsystem used to convert text files to Press format and ship them to a
Press print server.
emulator: A technique in which one computer is programmed to imitate another. Fast

imitations are called emulators, while sufficiently slow ones are called simulators.

EOS: Acronym for Electro-Optical Systems; an organization located in Pasadena that was formerly
a part of Xerox. The defense contracting portion of EOS was recently sold by Xerox for 40
megabucks. The portion of EOS that built Scientific Information Systems is now SIS; they
are the ones who are marketing D-machines running Interlisp and Smalltalk to the outside

world.
Ernestine: A particular Lily server located in Building 3S.
Ethernet: The communication line connecting many computers (with compatible interfaces)

together. Strictly speaking, an Ethernet is a single, continuous piece of co-axial cable, but
the term is sometimes applied to the entire network accessible through the cooperation of
Gateways (which is more correctly called an InterNet). Ethernets come in two flavors: the
original Ethernet. now called the Experimental Ethernet, was built within PARC and runs at
J MBits/sec. The Ethernet that has been proposed as a communication standard is a
re-engineering that runs at 10 MBits/sec. PARC currently has Ethernets of both these flavors
running around, as well as a special 1.5MBits/sec Ethernet used by the EtherPhones. See
the blue-and-white report titled “The Ethernet Local Network: Three Reports”, number
CSL-80-2.

EtherPhone: A box of magic widgets that can replace your office telephone, giving you much
greater functionality by taking advantage of the power of computing in general, and-of your
personal multi-function workstation in particular. An EtherPhone has a microphone, a
speaker, digital-to-analog and analog-to-digital converters, a connection to Ma Bell, an Ethernet
interface, and several microprocessors to tie them all together. The EtherPhone is a recent
product of the Voice Project within CSL. The existence of the EtherPhone should make it
easy to write lots of exciting experimental systems (any volunteers to write a CedarVoice
interface?).

Executive: A distinguished Alto subsystem that provides simple commands to inspect and
manipulate the file system directory, and to initiate other subsystems.

export: A Mesa or Cedar program that provides (either some or all of) the services
described in an interface is said to export that interface.
file extension: The portion of a file name that appears following a period (possibly nuil). By

convention, a number of extensions are reserved to indicate the type of data in the file, though
not all subsystems are consistent in their use of extensions. Some commonly encountered
extensions are:

~ an Alto Executive command (not really an extension)

.al: screen font rasters in the original format

.bcd: Mesa object program module

.bepl: BCPL source program module

.bfs: an entire Alto file system gathered into a file

.boot: program invokable by booting ;

.br: BCPL object program module

.bravo: text file containing Bravo formatting information
.cm: Executive command file
.config: Mesa source that describes how to combine modules

.df: description of a system for use with DF files software
dl: distribution list (in a file as opposed to in Grapevine's database)
.dm: (archaic) dump file, i.e.. several logical files stored as one

.eITors: Swat error message file
.icons: file containing displayable Icon images
.image: executable Alto/Mesa program

Jjam: JaM interpretable code

ks: screen font rasters in a fancy format

Jaurel: special flavor of .bcd that can be run within Laurel
Jog: history of certain program actions

.mail: Laurel mail file

.mail-dmsTOC: Laurel table-of-contents file

.mesa: Mesa source program module

.pd: file in PD (=printer dependent) print file format, usually produced from an Interpress
master

.press: print file in Press format

.profile: records a user's preferred values of various user interface parameters in
Cedar

.run: executable Alto program, that is, a subsystem
sil: SIL source file for a drawing
st: Smalltalk source program text

strike: screen font rasters in a compact and efficient but limited format
style: Tioga document style rules for formatting

.symbols: Mesa symbol table (for debugging)

.syms: BCPL symbol table (for debugging)

.tex: TEX source text

.tfm: font metric information

tip: TIP interaction description
.tioga: Tioga text document

10

file name: See file extension and path name for information about the local conventions for
file names.

file server: A computer on the network that provides a file storage and retrieval service.
MAXC, IFS, and Alpine are three different types of file servers.

FileTool: A program in Cedar that allows the user to store and retrieve files from and to

remote file servers. Use of the FileTool to retrieve portions of large systems to one’s local
file system is fraught with peril, since it is quite important that one retrieve consistent versions
of things if the large system is to work. and the FileTool doesn't include any scheme of
version control. Cautious programmers use Bringover and “.df” files from the beginning;
everyone uses Bringover and “.df” files eventually.

FLG: (pronounced "flug”) In LISP programs, a switch that customizes a program'’s behavior to an
individual user’s working habits.

fog index: A measure of prose obscurity. Units are years of education required in order to
understand the measured prose.

font: An assortment of characters all of one size and style; more precisely, a mapping from a set
of character code numbers to a consistent collection of graphic images.

Fonts.widths: A file containing character-width information for a large number of fonts. Used
by some programs that do text formatting while producing Press files. The standard source
is [Indigo]<Fonts>Fonts.Widths. Other programs appeal to separate “.tfm” files, one for each
font, as their source of information about character metrics.

foo: The first meta-syntactic variable. The second is “bar”. There is a tie for third between “fum”
and “baz”. The words “foo” and “bar” are cognates, both derived from ‘“‘fubar”, an acronym
popular in the U.S. Navy and used by early computer programmers employed by the Navy,
possibly as a technical term describing the state of a system.

Football: A two-person game in Cedar.

format: An attribute of a node in a Tioga document. Examples might be “long quotation”,
or “item in a bulletted list”. The effect of the various formats is defined by the style.

FS: A file directory system that will emerge in Cedar along with the Nucleus; FS will replace
CIFS and the Common Software Directory (a part of Pilot).

FTP: Acronym for File Transfer Protocol (or Program). An Alto world program that provides a
convenient user interface to the file transfer protocol, enabling the transfer of files between
co-operating computers on the Internet.

Garage: A nickname for the Electronic Model Shop, a part of CSL.

Gateway: A computer serving as a forwarding link between separate Ethernets. Gateways
may also perform certain server functions. such as name lookup.

germ: A small part of Pilot that runs first: the germ handles bootstrap loading, inloading and
outloading memory images during worldswaps, teledebugging, and the like.

Grapevine: . The distributed electronic message transport system: it has a set of protocols all
its own, and provides various server functions such as authentication. See the blue-and-white
report titled “Grapevine: an Exercise in Distributed Computing”, number CSL-82-4.

Griffin: A Mesa illustration program, a successor to Draw. Excellent on filled areas, and
handles color. Griffin was the source of many of the pretty pictures hanging near Lilac.
group: (when referring to Grapevine) A set of R-names. The standard interpretation

of a group is a distribution list. For example, CSLt.PA is the group of all people in CSL,
in case they all should. get copies of a message. Groups can also be used for other purposes,
such as access control. The R-names that constitute a group are called its members. In
addition, a group has friends and owners: a friend is someone who may add or delete herself
from the group. while an owner may add or delete anyone from the group.

Hardy: A Tool that provides the functionality of Laurel, that is, mail sending and

11

receiving, within Tajo; a client of Grapevine.

Hickory: A reminder and calendar system based on the Cypress database in Cedar.

Hornet: Generic name for a family of 300 bpi laser-scanned printers, built on top of 2600
copiers.

Ibis: An IFS server in SDD/Palo Alto.

Icarus: (archiac) An Alto-based program for creating and editing integrated circuit

designs graphically and interactively.

icon: A small image representing some concept. Used extensively in Star and Cedar.

Idun: An [FS server in SDD/Palo Alto: the home file server of the Pilot group.

ICL: Acronym for Integrated Circuit Laboratory, a part of PARC, located in Building 34.

IDL: Acronym for Integrated Design Laboratory, an incipient part of PARC. Once formed, IDL
(to be pronounced “‘ideal” rather than “idle”) will be located somewhere in Building 35.

[FS: Acronym for [nterim File System. An Alto-based file server. Many IFS servers exist on
various Ethernets, including Ivy, Indigo, Ibis, Iris, Idun, Igor, Phylum, and Erie.

[FU: Acronym for Instruction Fetch Unit: many computers have them.

[gor: An [FS server in SDD/Palo Alto: the home file server of the Mesa group. This name
should be pronounced “Eye-gore”, as in the movie Young Frankenstein.

Imager: A new implementation of the CedarGraphics package that is under development.

implementation module: A Mesa or Cedar module that actually provides a set of services, as
opposed to an interface module, which simply specifies exactly what those services are to be.

Indigo: - An IFS server in PARC, used by CSL and ISL to store project software files.

[Indigo]<AltoDocs>: A directory on which documentation for various Alto subsystems
are stored (generally with extension .press).

[Indigo]j<AltoFonts>: A directory on which screen fonts for the Alto are stored (extensions
.al, .strike, or .ks). Subdirectories are used on this directory to distinguish various families
of display screen fonts that have accumulated over the years.

[Indigo]<BasicDisks>: A directory on which the standard starting configurations for Alto
disks are stored, as files with extension “.bfs”. The normal way to initialize a new Alto world
is to use CopyDisk to retrieve one of these disk images.

[Indigo]<Cedar>: A directory containing the Cedar source code and documentation.

[Indigo]<Cedar>Documentation>: A directory containing the on-line documentation for
the latest version of Cedar.
[Indigo]<Cedar>Top>: A directory containing top level .df files for components of the

current Cedar release.

[IndigolKFonts>: A directory containing various documents of printing interest. including
Fonts.widths. You might be interested in CloverFonts.Press, or AltoFontGuide.Press.
[IndigoKISL>: A directory of packages released by ISL for use within Cedar. Contains mainly

interactive graphics software and document formatting tools.

[Indigo]<PreCedar>: A development directory for [Indigo]KCedar>: that is, this is where
components of a new release of Cedar are stored while they are being developed. One of the
jobs of the release process is to move things from <{PreCedar> to <Cedar>.

[Indigo]<PreISL>: The analogous development directory for [Indigo]<ISL>.

input focus: Suppose that the user types a key, while operating in an environment that
supports multiprogramming—lots of things going on at once. each in their own window.
Which program was the keystroke intended for? Different systems have different conventions
on this important point. In Tajo. the window in which the cursor is currently located gets
the keystroke. But in several other systems, including Cedar, there is a concept called the
“input focus™ that is passed around among the running programs; whatever program has the

12

input focus gets the keystrokes. Left-clicking a mouse button inside of a window often has
the side effect of giving that window the input focus. .

Inscript: A mechanism for keeping track of user input to a program in a general way (key
strokes, mouse clicks, and the like), used within Cedar.
install: A term applied to the Alto Operating System and a number of subsystems

(notably Bravo), referring to a procedure whereby certain configuration options are established.
- Frequently, what is really going on is that the program being installed is salting away somewhere the current hard

disk addresses of the pages of important files, so that later access to those files can avoid the tedious operations of

looking up the file in a directory and chaining through disk headers to get to the right place within the file.

Intelnet: The Xerox corporate phone system, accessible by starting your dialing with the
digit 8. Not to be confused with the Internet. .
interface: A formal contract between pieces of a system describing a collection of services

to be provided. A provider of these services is said to “implement the interface™; a consumer
of them is called a “client of the interface”.

interface module: In Mesa and Cedar, interfaces are written down as a special kind of source file,
starting with the word “DEFINITIONS” instead of “PROGRAM?”. This explicit encoding
of an interface is called an interface module.

Interlisp: A dialect of Lisp with a large library of facilities, as witnessed by Interlisp’s
famous 15-pound reference manual (would that Cedar were so well documented!).
Interlisp-D: An implementation of Interlisp on D-machines, done by a group within PARC.

It provides network facilities and high-level graphics primitives. See the blue-and-white report
entitled “Papers on I[nterlisp-D”, number CIS-5 (SSL-80-4) Revised.

Internet: Many Ethernets connected by Gateways form an Internet.

InterPress: A print file format standard that is currently under development: a second cut
at the same issues addressed by Press format.

InterScript: A standard format for the interchange of editable documents that is currently

under development.

Iris: An IFS server in SDD/Palo Alto, which serves as the official source of released Pilots.

ISL Acronym for Imaging Sciences Laboratory, a part of PARC located on the second floor of
Building 35.

Ivy: An IFS server in PARC, used by CSL and ISL mainly to store personal files.

jaggies: The annoying sharp corners visible when smooth curves are imaged on a raster
device without sufficient resolution.

JaM: Acronym for John (Warnock) and Martin (Newell). An interactive language, similar to the
language Forth, with a simple, stack-oriented execution model; equipped with lots for graphic
operations as primitives; implemented in Mesa. ,

JaMGraphics: A component of an ISL release which provides JaM commands for all the
CedarGraphics features. Creating JaM pictures with JaMGraphics can be very addictive.

Jedi: A Homnet at PARC.

Juniper: (archaic) An Alto-based distributed file system, built within CSL.

Juno: A constraint-based system for interactive graphics in Cedar.

junta: A technique for eliminating layers of the Alto Operating System that are not required by a
particular subsystem.

Kaniji: A Dover in Building 34.
Klamath: A forthcoming version of Pilot and other Mesa system software.
Lampson: A unit of speech rate. 1 Lampson is defined to be Butler's maximum sustained

speed. For practical applications. the milliLampson is a more appropriate unit.
Larch: A family of specification languages.

13

Laurel: An Alto-based, display-oriented program that provides access to the facilities of
Grapevine for sending and receiving mail. Succeeded by Walnut in the Cedar enviroment.

Leaf: A page-level file access protocol supported by some IFS’s.

level: There is a tree structure imposed upon the nodes that make up a Tioga document, and the
Tioga editor can be informed to suppress the display of all nodes deeper than a certain level.
In combination with scrolling, the levels commands in Tioga provide a convenient way to
navigate in a well-structured document.

level i system: (for i € [1.3]). A terminology for classifying (software) systems according to
their intended user community:

1 implementers only
2 implementers and friendly users
3 naive users
Librarian: A Tajo program for check-in/check-out of the modules of a large Mesa system,

used in SDD; also, a server for this program.

Lilac: A Puffin located in CSL, right next to Clover.

Lily: A program that provides teletype-style access to the mail sitting in one’'s Grapevine mailbox.
Lily is designed to help out those folks who, because of travel or whatever, are unable to use
their personal computers and either Laurel, Hardy, or Walnut. Also, a server that runs this
program.

logical volume: A portion of a physical volume that is being used to support a Pilot environment:
the Pilot equivalent of a partition.

look: An attribute of a character or string of characters in various editors, including Bravo and
Tioga. “Bold” and “italic” are examples of Bravo’s typographic looks, while “emphasis” and
“quotation” are examples of the functional looks espoused by Tioga. The meaning of looks
in Tioga, like the meaning of formats, is defined by the style.

Loops: A layer of software on top of Interlisp that turns it into an object-oriented
environment tailored for building rule-based expert systems.

Lotus: Internal development name for the 1075 Xerox copier.

Lupine: The translator used to generate RPC stubs so that Cedar modules can call
procedures located on remote machines.

Maggie: A tape server; that is, a machine on the Internet with tape drives that it will let
a requesting machine use.

Magic: | Acronym for Multiple Analyses of the Geometry of Integrated Circuits. A

system for dealing with VLSI designs: printing them, converting them among formats,
examining them with various programs.

Maintain: A, program for updating Grapevine registration information. There are two
versions of Maintain. One, with a widely reviled teletype-style user inteface, is available
within Laurel, or as a Tool in Tajo. [t is documented in the file [Ivy]<Laurel>Maintain.Press.
The other, with a nifty buttons-style interface, is available in Cedar. It is not yet documented.

MakeConfig: A program that reads Mesa configs and bcds and produces a collection of
commands that will compile and bind the many modules of a system in the correct manner
to build a consistent system.

Marion: A Librarian server in SDD/Palo Alto.
Markup: A dead Alto subsystem for editing Press files.
MAXC: Acronym for Multi-Access Xerox Computer (pronounced “Max™). A locally

produced computer that is functionally similar to the DEC PDP-10. At one time, there were
two MAXC's, named Maxcl and Maxc2, but Maxcl has gone away forever. From now on,

14

“Maxcl”, “Maxc2”, and “Maxc” are all names for the same machine, which used to be called
Maxc2.

[Maxc]<Alto>: A directory on which standard Alto (BCPL) programs and subsystems are stored.
Only object code files (extension .br) and runnable files (extension .run) are stored here;
source files and documentation are stored on [Maxc]<AltoSource> and [Maxc]<AltoDocs>,

respectively.

[Maxc]<AltoDocs>: A directory on which documentation for Alto programs is stored.
Common extensions are .press (for files directly printable by Press or Spruce), and .tty (plain
text).

\[MachAltoSource): A directory on which source versions of standard Alto programs are
stored.

[Maxc[KForms>: (archaic) A directory containing files that are usable as templates (in Bravo)

for various kinds of documents (e.g., memos, letters, reports).
[Maxc]<Printing>: A directory containing Alto printing and graphics programs.
[Maxc]<PrintingDocs>: A directory containing documentation related to printing and
graphics facilities such as Press files and font file formats.
[Maxc]<SubSys>: A directory containing standard TENEX subsystems.
Menlo: A Dover located in ISL.

menu: A collection of text strings, buttons, or icons on a display screen generally used to represent
a set of possible actions.

Mesa: A PASCAL-like, strongly typed, system programming language developed by
CSL and SDD.
Mesa Development Environment: The package of software used by SDD to develop other

software in Mesa; combines the Tajo user interface with the compiler, binder, packager, and
other system software running on top of Pilot. The name “Mesa Development Environment”
is often used when the plans to market this body of software running on Dandelions are being

discussed.

MesaNetExec: A Mesa implementation of the NetExec; valuable because it knows how to load
Othello.

MetaFont: A font-designing language built by Don Knuth at Stanford, and used to generate
fonts for use with TEX. Metafont is available as MF.Sav on Maxc.

Microswitch keyboard: Microswitch is a company that makes keyboards. The standard

Alto keyboard, also in use at PARC on D-machines, is made by Microswitch.

MIG: An acronym for Master Image Generator: a high-resolution laser-scanning printer, based on
a photographic process. The MIG-1 can run up to 2000 bpi, while the slightly different
MIG-3 runs at about 800 bpi. Also called the Platemaker.

Mockingbird: A music system that runs on a Dorado with an attached audio synthesizer and
its keyboard. The goal of Mockingbird is to relieve the serious composer of some of the
clerical burden of writing out scores for music as it being composed. For more details, see
the blue-and-white report “Mockingbird: A Composer's Amanuensis”, number CSL-83-2.

mode: A special state through which certain user interfaces must pass in order to perform certain
functions. For example, in order to insert characters into a document in Bravo, one must
type the “I” key, which invokes the “Insert” command. The effect of this command is to
put Bravo into “insert mode”, in which typing the “I”" key has a quite different effect (to
whit, it inserts an "I into the document). One must then hit another special key, “ESC”, in
order to leave “insert mode”. Modes are locally viewed as generally evil.

modeless: Describes a user interface that is free of modes. In such an interface, pressing a
particular key always has essentially the same effect. Laurel was the first local system with
an approximately modeless editor interface; the Tioga editing interface is very similar.

15

mouse: A type of pointing device with which many personal computers come equipped.
The switches on the mouse are called “buttons” to distinguish them from the “‘keys” on the
keyboard.

mouse-ahead: Analogous to typeahead, except refers to mouse clicks rather than to key strokes.

Can become very confusing to non-wizards, as there is no analog of the backspace key for
mouse clicks, that is, no way to cancel unwanted mouse clicks.

Multibus: An Intel standard specifying the physical and electrical characteristics of a bus
by which various boards in small computers can communicate. Many useful boards that plug
into a Multibus are available, such as Ethernet cards and disk controller cards. The Dicentra
is a D-machine that uses the Multibus.

name lookup: In the context of network communications, the process of mapping a string of
characters to a network address. Also, the protocol that defines the mechanism for performing
such a mapping.

name lookup server: A computer that implements the name lookup protocol.

Nebula: A time server on the Internet that is equipped with an antenna to listen to time
broadcasts made by a synchronous satellite, and hence has excellent long-term reliability.
There is a display showing Nebula's opinion of the time in the same room as Clover: just
the thing for setting your digital watch. .

Neptune: An Alto subsystem providing more sophisticated manipulation of the file directory
system than is available with the Executive. See also DDS.
NetExec.boot: A mini-Executive usable on an Alto without a spinning disk and obtainable

directly over the Ethernet (from a boot server). The NetExec makes available a number of
useful stand-alone programs, including CopyDisk, Scavenger, FTP, a number of diagnostics,
and lots of neat games.

network address: A pair of numbers <network number, host number> that uniquely identifies any
computer in an Internet.

node: A chunk of text in a Tioga document: each heading and paragraph in a document froms a
node, and the nodes are hierarchically structured. Node-structured documents are easier to
browse, using the levels commands in Tioga. Note: you can’t have two nodes on the same
line.

NS: An acronym for Network Services: the protocols for using the Ethernet in the Star world.
NS packets are analogous to PUP’s, and the NS protocols include analogs to such higher-level
protocols as FTP.

Nucleus: A new virtual memory and file system base that is being built for Cedar, to
replace portions of Pilot; it will emerge in Cedar 5.0.
Nursery: A large room in CSL, across from the Commons; so named because it was to

be where new printers would be nursed to life, and also where fresh blood (summer interns
and the like) would be housed. Does this mean that Bob Taylor thinks of graduate students as infants? I
don't think so; course, [could be wrong... The funny windows were intended to make it convenient
to hold demonstrations in the Nursery with some of the audience on the outside, looking in.

object-oriented: Describes a philosophy about how programs should be structured that finds its
purest expression in the Smalltalk system. An object is a little pile of private data together
with a collection of procedures by which other folks are allowed to ask the object to do
something. Other folks must not play with the data directly, but instead are required to
interact with the object only by calling its procedures (or, in Smalltalk parlance, sending it
messages.) Think about complex numbers as a trivial example: A non-object-oriented
programmer would probably represent a complex number as a record containing two real
numbers. An object-oriented programmer would be tempted to represent a complex number
as a record containing public fields and private fields. The values of the public fields would

16

be procedures, with field names such as: AddToMe, MyXCoord, MyYCoord. NegateMe,
MyMagnitude, and the like. The private fields in the standard implementation of complex
number would be simply two reals, named X and Y. The advantage of the object-oriented
approach is that someone else can come along later and implement a new flavor of complex
number that uses polar coordinates in the private fields, and previous programs that dealt
with complex numbers will not have to be changed.

OIS: An acronym for Office Information Systems: a name for a concept, a type of product, and
(perhaps) a market, not a particular organization.

OPD: An acronym for Office Products Division, located mostly in Dallas. They make and sell 820’s
and the like; see products.

Orbit: A high performance Alto-based image generator designed to merge source rasters
into a raster output stream for a SLOT printer (e.g., Dover). So named because it ORs bits
into buffers.

OS: Acronym for Operating System. Generally used to refer to the Alto Operating System, which
is stored in the file Sys.hoot. Rarely used locally to refer to the operating system of the same
name that runs on [BM 360/370 computers.

OSD: An acronym for Office Systems Division, of which SDD is a part; they deal with the higher
end of the office market, in contrast to OPD.

Othello: A network-bootable Pilot utility, good for initializing logical volumes and the
like.

page (on a disk): A unit of length: an Alto or Pilot page is 512 bytes, while an [FS page is 2048
bytes.

PARC: Acronym for Palo Alto Research Center.

partition: A chunk of a large local disk that is beéing used to emulate the largest system

disk that the Alto OS allows. A Dorado has five partitions, while a Dolphin has two.
Partitions are numbered starting at 1; the phrase “partition 0" refers to the current default
partition. The current partition in use is determined by the contents of some registers that
belong to the disk microcode. You can change these registers with the “partition.~" command
available in the Executive and in the NetExec. A (l4-sector) partition has 22,736 Alto pages
(11.6 MBtyes). It took a little adroit shoehorning to fit two full partitions onto a Dolphin’s disk: it turns out
that a Shugart 4000 has just one too few cylinders to squeeze in two full partitions. So we have to ask the heads to
seek off the end of the advertised disk (on the inside, 1t happens), and put one more cylinder in there! Ah. the joys
of hardware hacking... ’

PasMesa: A program that more or less compiles Pascal source into Mesa source, and hence
assists in importing Pascal programs into our environment; developed in CSL.
path name: The complete name of a file, including the File server and directory or subdirectory

on which it is stored—everything you need to know to get the file. In the old style of writing
(Alto and IFS), a path name consists of a machine name in square brackets followed by a
directory name in angle brackets, optionally followed by one or more subdirectory names
separated with right angle brackets, followed by the file name itself, as in
[IndigoKCedar>Documentation>BriefingBlurb.press.
Starting with CIFS in Cedar, a simple slash may be used instead of the various flavors of
brackets, as in
/Indigo/Cedar/Documentation/Briefing Blurb.press.

PD files: A Printer Dependent print file format. The format and semantics of PD files
are simpler than those of Press files. Software exists to turn InterPress masters into PD files,
and also to print PD files on various marking engines, including Lilac, Stinger, and the
Platemaker.

Peanut: A mail program in Cedar that fetches your messages into a structured Tioga
document, rather than storing them in the Cypress database as does Walinut.

17

Penguin: Generic name for a type of 384 bpi laser-scan printer built on the Xerox 5400
xerographic engine, and connected to an Alto by means of an Orbit interface. Penguins have
better solid-area development than Dovers, and can also print two-sided. They are normally
driven with Spruce.

Phylum: An IFS in PARC.

physical volume: The name for a disk pack in Pilot.

PIE: Acronym for Personal Information Environment. Implemented in Smalltalk, PIE uses a
description language to support the interactive development of programs, and to support the
office-related tasks of document preparation, electronic mail, and database management. For
more information, browse {Ivy[<PIE>.

Pilot: An operating system that runs on D-machines, and was produced in SDD for use by Star
and future products. Using Pilot instead of the Alto OS gives you the advantages of
multiprocessing and virtual memory. Pilot is the current base for Cedar, although parts of
Pilot will soon be replaced by the Nucleus.

pixel: A contraction of the phrase “picture element”, referred to the tiny, usually square cells out
of which a raster image is built up.

plaid screen: Occurs when certain kinds of memory smashes overwrite the display bitmap area
or control blocks. The term "salt & pepper” refers to a different pattern of similar origin.

Platemaker: Another name for the MIG.

PolyCedar: A name for the polymorphic language in the Algolic tradition that is the subject

of the religious material in the CLRM. A possible future project in CSL to design and
implement such a language.

Poplar: An interactive programming language system implemented in Mesa, an
experimental system in the direction of programming by relatively inexperienced users. Useful
for text manipulation applications.

Poseidon: A Tool that provides the functionality of Neptune in the Tajo environment.

Press: A file format used to encode documents to be transmitted to a printer. Files in
this format are conventionally given the file extension .press. Also. a printing server program,
written in BCPL, that can print curves and raster images as well as characters and rules.

PressEdit: A subsystem that recombines Press files on a page-by-page basis; it can also
merge illustrations into documents, although requesting this is a somewhat arcane and delicate
operation.

primary selection: A chunk of text that has been distinguished. usually by mouse clicks. as an
argument to a future editing operation. The current primary selection is indicated in Tioga
by a solid underline, or by video reversal.

PrincOps: The Xerox Mesa Processor Principles of Operation, essentially a description of
a particular abstract machine. D-machines implement the PrincOps architecture by means of
hardware and microcode, and Pilot was constructed to run on PrincOps machines.

print server: A computer that provides printing services, usually for files formatted in a
particular way. The term also refers to the software that converts such files into a
representation that can be processed by a specific printer hardware interface. Spruce and
Press are examples of print server programs that accept the .press print file format.

proc: (or PROC:) An abbreviated form of the common and important word “procedure”.

products: The following is a list of the most commonly encountered Xerox product numbers
and their distinguishing characteristics:

800 typewriter-based, word-processing terminal
820 personal computer product
860 display-based, word-processing terminal

18

1000 new series of copiers being advertised with Marathon theme
1100 a Dolphin, sold outside to run Smalltalk and Interlisp
1108 a Dandelion, sold outside to run Interlisp -

1132 a Dorado, sold outside to run Smalltalk and Interlisp
2600 desktop copier

3100 3 sec/page copier, good solid black-area development
4500 1 sec/page copier, 2-sided copying

5400 1 sec/page copier, good resolution

5700 1 sec/page laser-scan printer

6500 20 sec/page copier, color copying

7000 1 sec/page copier

8000s the parts of Star have numbers in this range

9200 offset-quality, .5 sec/page copier

9700 offset-quality, .5 sec/page, laser-scan printer

PSD: Acronym for Printing Systems Division, a part of Xerox.

public interface: An interface that offers to provide services to all comers. Private interfaces, in
contrast, specify the services that various modules in a single program will supply to each
other.

Puffin: Generic name for a type of 384 bpi laser-scan color printer built on the Xerox
6500 xerographic engine, and normally driven by Press.

PUP: Acronym for PARC Universal Packet. The structure used to transmit blocks of information
(packets) on the Ethernet. Also, one such unit of information: a datagram. Bob Metcalfe once
remarked that this name was chosen since all pnor PARC communication protocols were “real dogs”. See the
blue-and-white report entitled “Pup: An Internetwork Architecture”, number CSL-79-10.

Quake: A Dover on the first floor of Building 35.

Quantum: Brand name of certain disk drives.

Quoth: A Raven in ISL (as in *Quoth the raven .. .”).

R-name: A complete name from Grapevine's point of view: R-names have two parts, a

prefix and a registry, separated by a dot as in “Anderson.PA”. R-names that designate
distribution lists have prefixes that end in an up-arrow, as in “CSLt.PA”.

Raven: A 300 bpi laser-scan printer based on the 8044, with good solid-area development.
Upgraded in ISL to 384 bpi and used as a Press printer.

registry: A concept used by Grapevine to partmon the space of names. “PA” and “WBST”
are examples of registries.

release: A consistent set of versions of all of the files in a large soﬁware system. Cedar
releases occur whenever major enhancements in functionality become available or when
sufficently numerous or important errors (see show-stopper) have been corrected.

release master: The person in charge of coordinating a Cedar release, with the help of special
software (the ReleaseTool) based on DF files.

religious: Used locally to refer to a debate about which people have strong feelings, but
for which there is no easy technical resolution; when discussing religious issues, positions are
advanced based on belief rather than on understanding. For example, the question of whether
or not windows in a user interface should be allowed to overlap and partially obscure each

19

other, as pieces of paper do in the real world, is often the subject of religious debate. More
experience in user interface design, or sufficient advances in the cognitive psychology of user
interfaces, may someday make this question less religious.

Rem.cm: A file used by the Alto Executive to store commands to be interpreted after the
current one has completed. See Com.cm.

replay: Refers to a Bravo facility that permits recovery after a crash. See BravoBug.

Reticle Generator: A version of the MIG that prints directly on masks for integrated circuits.

reverse engineering: Designing something by taking measurements from an existing
sample that someone else designed. ‘

Rigging: A component of Cedar that implements the various flavors of strings, including
Ropes.

RockAndRoll: Another Raven printer in ISL.

Rockhopper: A Penguin in the Bayhill building.

RollBack: The way to return to a clean Cedar world saved by a checkpoint.

Rope: An immutable string of characters (a rope is a “thick™ string). Ropes are the standard way
to pass strings around within Cedar; other types of strings, including REF TEXT and REF
READONLY TEXT, are available for places where performance is a big issue.

RPC: Acronym for Remote Procedure Call, a technique for calling a procedure from one machine
to be executed in another machine over a network. Also, a package of software supporting
Remote Procedure Calls within Cedar. RPC is the standard way for Cedar programs to
communicate over the network: Tank, Football, Alpine, and Etherphones all communicate
by means of RPC. For more details about the concept of RPC, as well as fascinating
references to life in the South Pacific, read Bruce Nelson's thesis, which is available as the
blue-and-white number CSL-81-9.

Rubicon: The release of Pilot upon which Cedar is currently based.

rule: A printing term describing a rectangle whose sides are parallel to the coordinate axes; usually
thin enough in one dimension or the other to be thought of as a (horizontal or vertical) line.

Scavenger.boot: An Alto program available through the NetExec that checks for damaged file
structures in a BFS and tries to repair them.

SCG: Acronym for Software Concepts Group, a part of PARC. The builders of Smalltalk.

scroll: Refers to a method of repositioning text on a display as though as though one
were moving a window over a long, continuous sheet of paper.
scroll bar: A bar, usually located along the left edge of a window, with the property that

clicking in this bar causes scrolling (or perhaps thumbing) to happen.

SDD: Acronym for System Development Division: the technical (as opposed to marketing) portion
of OSD.

secondary selections: A chunk of text distinguished, usually by mouse clicks, as the second
argument to a future editing operation. The current secondary selection is indicated in Tioga
by a gray underline, or by a gray background.

Semillon: A Grapevine server in Building 35.

server: A computer dedicated to performing some collection of service functions for the
communal good (e.g., a print server).

seven-wire interface: Yes, Virginia, hardware people use the concept of interface as well
as software folk. The seven-wire interface describes how the microprocessor located in the
terminal of a D-machine (in the base of the CRT, to be specific}) communicates with the
parent computer.

show-stopper: A bug serious enough to prevent further progress.

Shugart: A manufacturer of disk drives.

20

Sierra: A recent release of the Mesa Development Environment, based upon Trinity
Pilot.

signal: A mechanism for handling exceptional conditions that arise in Mesa or Cedar
programs. See catch phrase.

SIL: Acronym for Simple [Llustrator. An illustrator program used for logic design and drawing
in general. A weird but efficient user interface: solid performance.

SIS: Acronym for Scientific Information Systems; the name of that part of EOS that is still a part

of Xerox.

SLOT: Acronym for Scanning Laser Output Transducer.

Smalltalk: An integrated programming system based on object-oriented style and message
passing, invented and developed by SCG. Described in great detail in a recently issued
book(!).

SModel: A program that stores files back to remote file servers from one's local disk;

SModel reads “.df” files in order to figure out what files have been changed, and which of
these should be stored, and where in the great wide electronic world to store them. Use of
SModel (confusing as it may be at the outset) is to be recommended over use of either FTP
(in the Alto world) or the FileTool (in Cedar), since the version control and system-description
features of “*.df” files are very valuable.

solid-area development: The ability of a printer to produce large areas of black. Requests
for large black areas on printers like Dovers, which don’t have this ability, will result in a
fringe of dark gray around a sea of light gray.

SophtSpheroid: A small, round, white object usually found on diamonds. Consider joining a
Xerox softball team for more information on this indelicate topic.

Spruce: A program that takes Press files consisting of text and rules, converts them to a
form acceptable by an Orbit interface. and prints them. A print server.

Spy: A program to investigate another program’s performance when running in Cedar.

Squirrel: A personal database program based on the Cypress database in Cedar.

Star: An OIS product of Xerox, developed within SDD. Also referred to by various product
numbers in the 8000’s. The primary professional workstation of Star is the 8010. The 8000
architecture was created in CSL.

Stinger: A Hornet located in ISL, running Press.

STP: The Pilot interface to the FTP file transfer protocol.

style: A collection of little programs in a language very like JaM that define the meanings of the
various looks and formats of the text in a formatted Tioga document. Different style rules
exist for how things should look on the screen and for how they should look when printed
on paper (implemented by the TSetter).

subdirectory: File directories on an IFS can be divided into a hierarchical collection of
subdirectories. The subdirectory names are listed from the root of the tree down to the
leaves, and are separated by the single character *>” (see path

subsystem: A program running under a specific operating system. Normally used to refer
to Alto programs that run under the Alto OS, but also used to refer to PDP-10 programs
that run under TENEX.

Swat: A debugger used primarily for BCPL programs. Also, the key used in conjunction with the
“control” or “shift” keys to invoke this debugger, as well as various other debuggers. The
Swat key is the lowest of the three unmarked keys at the right edge of the keyboard. Used
as a verb to refer to the act of striking these keys or entering the debugger.

Swatee: A file used by debugging programs (both Swat and the Alto/Mesa debugger) to
hold the core image of the program being debugged. Also used as a scratch file by many
Alto subsystems. Not to be deleted under any circumstances.

21

Sys.boot: An Alto disk file containing the executable representation of the Alto Operating
System.

SysDir: The Alto file directory. Roughly speaking, this file contains the mapping from
file names to starting disk locations.

SysFont.al: An Alto screen font used by the Executive and (generally) as a default by other

programs. The safest way to change your SysFont is with the Delete.~ and Copy.~ commands of the Alto
Executive. Simply FTP’ing a new font on top of SysFont will cause exotic behavior during the CounterJunta when
FTP is finished.

system models: A part of the Cedar project, aiming at giving programmers help is describing the
structure of large systems: getting consistent versions of files, replacing single modules within
a running system, and recompiling and rebinding just what has been changed, all in the right
order.

Tajo: The user interface portion of the Mesa Development Environment. Each facility in the Tajo
environment is called a Tool, and Tajo itself is sometimes called the Tools Environment.

Tank: An n-player video arcade game in Cedar. Get a tank game going and then close the tank
viewer and check out the wonderful icon that results.

teledebug: Debugging one machine from another other the Internet. The prefix “tele-" is
used in general for doing things remotely.
Telnet: A PUP-based protocol used to establish full-duplex, teletype-like communication

with a remote computer. (The term is borrowed from a similar protocol used on the Arpa
network.) Chat speaks this protocol.
Tenex: An operating system for the DEC PDP-10 computer, which also runs on MAXC.
TEX: A document compiler written by Don Knuth at Stanford; there are one and a half
implementations of TEX at PARC: one in Sail that runs on Maxc, the half in Cedar (waiting
on progress on the Imager). TEX can handle mathematical formulas, but doesn’t let you see
anything like what you get.

Thyme: An electrical-level dircuit simulator, used for evaluating the correctness and
performance of small pieces of the designs of integrated circuits.
thumbing: A technique of positioning a file (usually text) to an arbitrary position for viewing

on a display. The name is intended to suggest the “thumb-index” with which some dictionaries
are equipped, which performs somewhat the same function: gets you to roughly the right
place quickly.

TIC: Acronym for Technical Information Center; the fancy name for what is more generally
known as the PARC library.

Tioga: The document editor in Cedar, which was built by folk in ISL. Tioga formatting
uses the concepts of level, node. look, format, and style; for more details, read TiogaDoc.tioga.
Documents formatted with Tioga can be printed with the TSetter.

TiogaDoc.tioga: Documentation for the Tioga editor. At one point, the official home of this file
was the directory [IndigoKTioga>Documentation>.

TIP: A system for interpreting keyboard and mouse actions and turning them into sequences of
commands. You may customize your Tioga user interface by layering your own TIP table
on top of the standard Tioga TIP table.

Tool: A facility available in the Tajo environment, or the program that makes that facility available.
For example, one speaks of the “File Tool”, which can perform file transfers for you.

Tools Environment: Former name for Tajo.

transaction: A collection of reads and writes of shared data that is guaranteed to be atomic:
either all of the writes happen (the transaction commits) or none of them do (it aborts).
Furthermore. the reads will see consistent data in that either all of the writes made by some
other transaction will be visible. or none of them will.

22

Trident: The brand name of a type of disk drive that is quite common around here.
There are T-80's (that is, 80MByte Trident drives) and T-300’s. Tridents are manufactured
by Century Data Systems, a subsidiary of Xerox.

Trinity: The version of Pilot and other Mesa system software between Rubicon (the
current base of Cedar) and Klamath.

TSetter: The typesetting program for Tiega documents; converts foo.tioga into foo.press,
and optionally sends the latter to your favorite print server.

typeahead: An ability to type characters to a program before that program has asked for
them. Useful for wizards: essential when using slow machines. See also mouse-ahead.

typescript: A file used to back-up information (usually text) appearing in a region of the
display. :

Twinkle: A Gateway in Building 35 of PARC.

uncaught signal: An exceptional condition (perhaps an error indication) that no current program
other than the Mesa or Cedar debugger has expressed a willingness to deal with. The
debugger is willing to deal with anything, of course: it deals with these exceptional events
by halting the offending process and then informing the user. In the language of the CLRM,
an uncaught signal should be thought of as an invocation of a dynamically bound procedure
that turns out not to have been bound at all; see catch phrase.

user: A person (rather than a program) who avails herself of the services of some program or
system. At the moment, the author is a user of Tioga. See client.

user.cm: A file in the Alto world containing a number of logically distinct sections that
each define certain configuration parameters (e.g., the location of a preferred print server for
a particular file format). Programs that interpret such parameters are often organized to read
user.cm only at installation time (e.g:, Bravo).

UserExec: The command interpreter for Cedar.
viewer: The name for a window in the Viewers window package.

ViewerDoc.tioga: Documentation for the Viewers window package. You might try looking for this
file on the directory [Indigo]<Cedar>Documentation>.

Viewers: A screen management and window package for Cedar providing buttons, menus,
and windows.

ViewRec: A software package in Cedar that produces convenient user interfaces to fairly
arbitrary programs automatically.

Viking: A Dover on the first floor of Building 35.

VLSI: Acronym for Very Large Scale Integration of electronic circuits on chips.

VM: Acronym for Virtual Memory.

Voice: A small but mighty project in CSL to tame the telephone and otherwise make

full use of voice communications in our personal information systems. The Voice Project
recently produced the EtherPhone.

Walnut: A mail system for Cedar. Walnut uses the Cypress database to store and organize
messages, and it calls upon Grapevine to transport them.

Watch: A Cedar performance monitoring tool displaying computing activity.

WaterLily: A Mesa program that does source compares: compares two text files and reports
the differences. Available in Alto/Mesa, Tajo, and Cedar.

wedged: Describes the state of a program when there is no response to input from either
the keyboard or the mouse. May affect the whole system (my system is wedged) or just some
part thereof.

weekly meeting: The (boring) name of ISL’s weekly meeting, held on Tuesdays starting at 11:00
am. See also Dealer.

23

whiteboards: A package in Cedar for arranging and accessing information graphically.

Winchester: Originally, this was the name of a project within [BM. But the name leaked
out, and it is now used industry-wide to refer to a particular rigid disk technology. In a
Winchester disk drive, the heads and platters come all hermetically sealed: that is, Winchester
drives do not use removable disk packs.

window: A display region, usually rectangular used to view (a pomon of) an image that
generally exceeds the bounds of the region.

wizard: One who knows a programming system inside and out.

Wonder: A Dover on the third floor of Building 35.

world-swap: The process of writing out the complete state of a machine’s processer and

memory onto a disk file, and of swapping in a different state. Some debuggers work by
means of world-swaps, which swap between the debugger and the program being debugged.
Note that, the more memory you have. the slower a world-swap will be.

XGP: (archaic) Acronym for Xerox Graphics Printer. An obsolete, CRT scanned, 200 bpi, continuous
paper, xerographic printer.

XM: Acronym for Extended Memory: an option on Alto [I's that allows the memory size to be
increased from one to four banks.

Yoda: A Dover in Building 35.

Zinfandel: An Alto mail server that is part of the Grapevine distributed transport mechanism.

The Tioga Editor

Release as [Indigo]<Cedar>Documentation>TiogaDoc.Tioga and TiogaDoc.Press
Last edited by Bill Paxton on March 14, 1983
by Rick Beach on June 7, 1983 1:37 pm

Abstract: This is an overview of Tioga as available for Cedar 4.2 in June, 1983. Tioga is a
system to help you prepare documents. Its two main components are an editor and a typesetter.
The editor lets you create the text of a document. The typesetter composes the text into pages
for printing. Tioga is already capable of dealing with simple technical papers and is also well
suited to more mundane tasks such as writing programs and memaos. In future versions, it will
be suitable for complex technical documents and books and will support tables, math formulas,
and figures containing synthetic graphics or scanned images.

If you are looking at this document on-line, you might want to use the level-clipping function to
see the overall structure rather than simply plowing straight through. Hit the "Levels"” button
in the top menu, then hit "FirstLevelOnly" in the new menu that appears. That will show you
the major section headings. Hit "MorelLevels" to see the subsections, or hit “AllLevels"” to read

the details.

XERDX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304
DRAFT - For Internal Xerox Use Only - DRAFT

Ti0GA EDITOR 2

Overview

Some editors represent a document as a list of paragraphs. [n Tioga, a document is a tree
structure rather than a list so that you can explicitly represent its hierarchical structure. In discussing
the document tree we use Computer Science terminology in which a branch is recursively defined
to be a node having zero or more children branches. The root node of the document tree is not
displayed — although it can be modified by a few special commands — so the document basically
appears to be a list of top-level branches.

Each node in the tree contains text. The characters of the text can have /ooks which control
various aspects of their appearance such as font and size. Appearance is also influenced by the
format of the node which determines things such as vertical and horizontal spacing. The document
contains names of looks and formats, but not the specific interpretation of them. The interpretations
are instead collected in a style which can be shared by many documents. For example, in the
style for this document there are definitions of formats for titles, headings, and standard paragraphs,
and there are definitions of looks for emphasis and for small caps. Rather than copying the
specific details for the formats and looks, the document refers to them by name so it is easy to
change the definitions in the style and modify the appearance uniformly throughout the document.
The details of the style language will be described in a forthcoming memo.

User Categories

The Tioga user-interface is "layered” so that beginning users can protect themselves from the
confusion that results from mistakenly giving a command. In ways described below, you can tell
the system that you are either a beginner, an intermediate, or an advanced user. If you do
nothing, the default is beginner.

As far as the Tioga user-interface is concerned. the user category determines which keyboard
commands are currently enabled. As a beginner, you get the commands that use the special keys
at the left and right of the keyboard, plus CTRL-A and CTRL-W for backspace character and word,
respectively. As an intermediate user, you add a large number of commands that use print keys
in combination with the various shift keys. As an advanced user, you add the keyboard commands
for manipulating the document tree structure. Any category of user can get at any of the
commands by using the Edit Tool. The user category mechanism is meant to let you protect
yourself, not to limit you. You are free to change your own category at any time you feel like it.
For example, to declare yourself to be an intermediate user, edit your user profile to say
"UserCategory: intermediate”.

Input Devices
Mouse

The mouse has three buttons named LEFT, MIDDLE, and RIGHT corresponding to their
physical layout.

Keyboard
Used for commands as well as text input. Here are the names for the special keys.
LOOK (looks shift).) top right blank key.
NEXT. middle right blank key.
REPEAT. key labelled ESC.

CEDAR 4.2

TioGaA EDITOR 3

DELETE. key labelled DEL.
LOAD FILE. key labelled LF.

The bottom right blank key is an alternative CTRL key. You can use either CTRL key and either
SHIFT key interchangeably.

Scrolling and Thumbing

To move a viewer to look at a different part of the document, move the cursor into the left
margin until it becomes a double arrow pointing both up and down. The part of the margin that
becomes gray is called the "scroll bar”. The dark gray part shows the relative size and location
of the currently visible portion of the document. Left-click to move the text adjacent to the arrow
to the top of the viewer. Right-click to move the text from the top of the viewer down to the
arrow. These operations are called "scrolling™ the document.

[f you hold down MIDDLE in the scroll bar, the cursor becomes a right-pointing arrow. If
you move the cursor to x% down from the top of the viewer and let up, the viewer will change
to start about x% of the way through the document. This operation is called “thumbing".

Changing levels when you scroll

In a document such as this one that uses levels to reflect its logical structure, it is often
useful to start with a view of the first level only and then progressively scroll the document up
and show more levels as you zoom in on a particular topic. This process is slowed when you
have to move the mouse from the scroll bar up to the levels menu and back, so we have made
it possible to scroll and change levels in a single operation. This works by using the (left) SHIFT
and CTRL keys as modifiers of the left-click that causes scrolling up.

Scroll up and show more levels — shift-left-click (hold the léft SHIFT down when left-clicking
to scroll)

Scroll up and show all levels — control-left-click (hold CTRL down when left-clicking to scroll)

Scroll up and show minimum levels — shift-control-left-click ('hold both the left SHIFT and
CTRL down when left-clicking to scroll).

Selections
The details of making selections will be covered later on. For now, you simply need to know
that there is a single primary selection on the screen. The viewer containing the selection is

referred to as the "selected viewer”. Many of the following commands deal with the selection or
the selected viewer.

CEDAR 4.2

TioGA EDITOR 4

Menus
Top level menu
Save — writes a new version of the file

Old version of the file is renamed to have a "$" at the end of the extension so that you
can retrieve it if necessary. '

[f the version of the file on the disk has a more recent create date than the document you
are about to save, the system will tell you. This is to warn you about situations in which you
load a file and while it is in a viewer transfer a more recent version to your disk.

Get — loads the file named by the selection into"a viewer

If the click is done with the left button, the file is loaded into the "clicked” viewer and
replaces the previous contents. If it is done with the middle button, a new viewer is created
below the clicked one. Finally, if it is done with the right button, the clicked viewer is closed
and a new viewer appears in its place.

If you use a remote file name, such as /Cedar/Documentation/TiogaDoc.Tioga, the system
will fetch the file and make the viewer "ReadOnly”. This lets you browse remote files and
copy information from them. [n future releases, Tioga will support editing of remote files.

File Extensions

[f the selected name does not include an explicit extension (i.e., there is no period in the
selected text), Tioga will search for the file using a set of standard extensions. The default
extensions are mesa, tioga, df, cm, config, and style. You can specify your own list of
extensions with a user profile entry for "SourceFileExtensions"”.

If the selected name is of the form <alpha>.<beta> and such a file exists. it is opened.
Otherwise, if <beta> is one of the standard set of extensions, you will be informed that the
file doesn't exist. However, if <beta> is not a standard extension, the system tries to open
the file as if you had simply selected <alpha>. If this succeeds, it searches in the file for a
definition of <beta>. This convention is intended for use with programs that have many
instances of <Intertace><Item> in which <Interface>.mesa is a file containing a definition for
<Item>.

GetImpl — like Get but loads the file that implements the selected interface name

If the selected name does not include an explicit extension (i.e., there is no period in the
selected text), Tioga will use a set of standard implementation extensions. Currently, mesa is
the only default implementation extension. You can specify your own list of implementation
extensions with a user profile entry for "ImplFileExtensions”.

If the selected name is of the form <Interface>.<Item> and an implementation for the item

is currently loaded, the system will find the name of the file holding the implementation (our

- thanks to the Cedar runtime model for providing this information). Otherwise, the system tries

to open the file as if you had simply selected <Interfaced, and, if this succeeds, searches in the
file for a definition of <Item>.

PrevFile — like Get but reloads the file that was previously in this viewer

CEDAR 4.2

Ti0GA EDITOR 5

Reset — discards edits by reloading the filed version of the document
Store — like Save but writes to the file named by the current selection

Clear — creates an empty viewer

If the click is done with the left button, the "clicked” viewer is cleared. If it is done with
the middle button, a new empty viewer is created below the clicked one. Finally, if it is done
with the right button, the clicked viewer is closed and a new empty viewer appears in its place.

The empty viewer will say "No Name" at the top in the place that would normally hold
the file name. Naturally the most common thing to do with a "No Name" viewer is to load a
file. If you type a file name into a "No Name" viewer and then hit LF, it is as if you selected
the name and hit Get but no confirmation is required. CTRL-LF provides a similar function for
Getlmpl.

A Comment Regarding "Unsaved” Documents

[t is not uncommon to forget to save the contents of a viewer before destroying it or loading
something else into it. However this is not a disaster since Tioga holds onto "unsaved”
documents so you can reload them with edits preserved. The number of such documents that
Tioga will remember is set by a profile entry (UnsavedDocumentsCacheSize); the default is
four. Whenever there are unsaved documents, Tioga creates a special viewer listing their names.

Unsaved documents are put into the cache by Destroy, Clear, Get, Getlmpl, and PrevFile.
They are not put in by Reset. If the cache is already full when a new entry arrives, the oldest
entry is discarded. Whenever a file is needed for Get, Getimpl, or PrevFile, the cache is
checked to see if an unsaved version is available. "No Name" documents are not put into the
cache.

Time — inserts the current time at the caret
Split — creates a new viewer looking at the same document

The selection is highlighted in one viewer only, however edits will be reflected in all viewers
for the document. Note that the split viewers can be independently closed. opened, or moved
on the screen.

Places, Levels — show/remove submenus

Places

The Places menu contains commands that cause the viewer to begin displaying at a new place
in the document. The first three of the commands search for instances of the current selection.
For these commands. the button used in clicking the menu item determines how the search is
carried out — left-click to search towards the end of the document, right-click to search towards
the start of the document, or middle-click to search first towards the end and, if that fails, then
from the start of the document. If the selection is visible in the viewer, the search starts there.
Otherwise, it starts from the top of the viewer.

Find

Find another instance of the selected text.

CEDAR 4.2

TIOGA EDITOR 6

[n this command and the following two, capitalization matters in the search (e.g., hitting
Find with "the" selected will not select "The").

Word

Find an instance of the selected text that is a "word" — i.e., doesn’t have adjacent letters
or digits.

Def

Find a "definition” of the selected text — i.e., an instance of the selected text that is
immediately followed by a colon and doesn’t have an immediately prior alphanumeric.

Position

This is useful with compiler error messages that give locations as character counts. The
command scrolls to the selected character number and then selects it — e.g., if "183" is selected,
scroll to and select character number 183 in the document. :

Normalize

If the document in this viewer does not contain the selection, scrolls to the start of the
document. Otherwise scrolls to make the selection visible — left-click to scroll to the start of
the selection, right-click to scroll to the end, or middle-click to scroll to the caret.

PrevPlace

Go back to the place that was previously visible in this viewer discounting manual scrolling
that may have taken place since.

Reselect

Restore the most recent selection in this viewer and scroll to it.

Levels

These commands let you control how deep the display goes in the document tree structure.
FirstLevelOnly — show only the top level nodes
MoreLevels — show one more level than currently
FewerLevels — show one fewer level than currently

AllLevels — show all levels of the tree

CEDAR 4.2

TioGA EDITOR 7

Selections

Primary selections

The primary selection is the one that’s around most of the time and is the usual site for edits.
It is displayed with a solid underline or with video reverse. Make a primary selection with the
mouse in ways described below. During certain editing operations such as Copy or Move there
is a "secondary” selection which is displayed as a gray underline or background.

Insertion point

The insertion point goes with primary selection. [t is shown by a blinking "caret” at one
end or the other of the selection — the end closer to the cursor when the selection was made
or the one most recently extended.

Making selections
The selection hierarchy

The selection hierarchy consists of the following levels at which a selection can exist: point,
character, word, node, branch, and document.

Point selection

The primary selection has a blinking caret at one end. Some operations. such as delete
and type-in, reduce the selection to just the caret. This is called a point selection.

Character selection

Left-click with the cursor over the desired character. You can hold the left button down
and move to the correct place before letting the button up.

You can cancel the new selection by hitting DEL while the mouse button is still down. The
system will restore the previous selection.

Word selection
A "word" is defined as a sequence of letters and digits or a sequence of identical characters

that are not letters or digits. Use the MIDDLE mouse button to make word selections. As with
character selection, you can hold MIDDLE down and move to the correct word before letting

up.
Node selection

Left-double-click to select a node.
Branch selection

A branch is a node and any children branches it might have. Middle-double-click to select
a branch.

Document selection

CEDAR 42

TioGA EDITOR 8

CTRL-D extends the selection to include the entire document. "D" stands for for
"Document”. :

Selection extension

Extend an existing selection by pointing at a new endpoint and right-clicking. The system
will extend the end of the selection closer to the cursor when RIGHT goes down. You can hold
RIGHT down and move the endpoint to a new position.

[f you just right-click, the selection is extended at the same level in the selection hierarchy.
For example, a selection at the word level will be extended a word at a time. Double-right-click
to extend at a lower level in selection hierarchy. Triple-right-click to extend at a higher level
in selection hierarchy. Thus, if you have a node-level selection and wish to extend it to a word
position within a node, double-right-click to reduce the level to words and then do the extension.
If necessary, you can then double-right-click again to reduce to character level.

Editing by making selections
Delete selections

A delete selection is deleted as soon as the selection is completed. It is shown as video
reverse. Hold down CTRL to make a delete selection. The selection is complete when you let
up on both the mouse button and the CTRL key.

Pending-delete selections

"Pending-delete” selections are automatically deleted by subsequent insertions. They are
shown with video reverse rather than solid underline. Whenever you extend a selection it is
automatically made pending-delete. Notice that you don’t have to actually change the selection
when you "extend" it. For example, you can middle-click to select a word and then immediately
right-click to make it pending-delete. Or you can combine these actions by "rolling” from the
LEFT or MIDDLE mouse button to the RIGHT button to make a char or word selection
pending-delete. For example, the sequence MIDDLE-down, RIGHT-down, MIDDLE-up, RIGHT-up
will produce a pending-delete word selection.

Copy and Move

Source selections are made with the SHIFT key held down and are shown with a gray
underline.

Copy source to primary

[f you hold down the SHIFT key and select, the source selection will be copied. If the
primary selection is currently pending-delete, it will be replaced by the copy of the source.
Otherwise, the copy will be inserted at the caret.

Move source to primary

If you hold down the SHIFT key and the CTRL key, the source selection will be moved.
As before, if the primary selection is pending-delete, it will be replaced by the source.
Otherwise, the source will be moved to the caret.

Destination selections for Copy and Move

CEDAR 4.2

TI0GA EDITOR 9

The operations described above work by copying or moving a source selection to the
primary selection. However, often the primary selection is itself the thing you want to copy or
move. The following two commands take care of these situations.

Copy primary
To copy the primary selection, hit CTRL-S, and with the control key still held down, select

a destination. The copy takes place as soon as you let the keys up. The primary selection is
made not-pending-delete as soon as you hit CTRL-S to indicate that it will be copied rather

than moved.

Move primary

To move the primary selection, hit CTRL-Z, and with the control key still held down,
select a destination. The move takes place as soon as you let the keys up. The primary
selection is made pending-delete as soon as you hit CTRL-Z to indicate that it will be moved

rather than copied.
Transpose selections

We now have covered commands to copy or move either the primary or the source
selections. A final option is to transpose the primary and the source. To do this, hit CTRL-X,
and with the control key still held down, select a source. The transpose takes place as soon as
you let the keys and mouse buttons up.

Miscellaneous

Cancelling a selection

Hit DEL before finishing the selection and the previous selection will be restored. This
works during either primary, source, destination, or transpose selections.

Placeholders

A "placeholder” is all the text between a matching pair of placeholder brackets, » 4. Hit
NEXT to find and select the next placeholder beyond the current selection. Hit SHIFT-NEXT to
find the previous one. Recall that NEXT is the blank key to the right of RETURN.

If there isn’t another placeholder, NEXT will move the selection to the end of the document.
[f the selection is already at the end, NEXT will try to find the next nested text viewer. Similarly,
SHIFT-NEXT will move the selection to the start of the document if it doesn’t find a previous
placeholder and will try to find the previous nested fext viewer if it is already at the start. This
allows you to use NEXT both when filling in placeholders within a document and when filling
in text viewers in tools.

Select visible — expand selection to blanks

CTRL-V expands the selection to include the "visible" characters on the left and right ends.

This is useful for selecting things like full file names. For example, in the following you
could make a character selection anywhere in the name and then extend the selection with

CTRL-V.
Filed on: [IndigoK Tioga>Documentation>TiogaDoc.Tioga

CEDAR 42

Ti0GA EDITOR 10

Select matching brackets

CTRL-] extends the selection to the left and right to find a matching pair of [..]'s. Similarly
for CTRL-}, CTRL-), and CTRL->. Note that you hit CTRL with the right bracket to extend the
selection. In addition, you can hit CTRL with the left bracket to insert matching brackets around

the selection.

Fine point: Unfortunately, our keyboards don't have both left and right quote keys.
However most of the fonts, including TimesRoman and Helvetica, do provide a left and right
single quote. The keyboard key inserts a right single quote (code 047); the left single quate
(code 140) can be inserted using the MakeOctalCharacter command in the Edit Tool or with
the Insert Matching Single Quotes command (CTRL-'). The Edit Tool also has a command
which extends the selection to find a matching pair of left and right single quotes. The situation
for double quotes is even less uniform. Some fonts, such as Classic, have a left double quote
(code 264) in addition to a right double quote (code 042). However, most fonts have only the
042 double quote, so the Tioga commands for inserting and matching double quotes use that
code exclusively.

CEDAR 42

Ti0GA EDITOR 1

Editing
Text input

Typed-in characters are inserted at the caret.
To insert the current time use CTRL-T — "T" for Time.

When you insert a carriage return by hitting RETURN, the system will automatically copy the
blank characters (tabs and spaces) from the start of the previous line. To suppress this, type
SHIFT-RETURN and only the carriage return will be inserted.

To insert control characters or characters with a specific octal code, use CTRL-K or CTRL-O.. -
The former will change the character before the caret to a control character, while the latter will
convert the three digits before the caret to the corresponding octal character. The inverse
operations are also available as CTRL-SHIFT-K and CTRL-SHIFT-O.

Abbreviation Expansion

CTRL-E — "E" for Expand abbreviation

When you hit CTRL-E, the caret is moved to the right of the selection if necessary and the
keyname to the left of the caret is then replaced by the expansion text (according to the definition
which is linked to the style in a manner described below). If the keyname had looks, they are
added to the expansion. If the keyname was all caps, the expansion is made all caps too. If the
keyname had an initial cap, the first character of the expansion is made uppercase (useful at the
start of sentences, for example). If the definition node has a non-null format, the format of the
caret node is changed to be the same as the definition node. If the expansion contains a
placeholder, the first placeholder is selected. Otherwise the entire expansion is selected.

Definitions for abbreviations come from Tioga documents which are automatically read by
the system when needed. The name of the appropriate abbreviations file is determined by the
style that is in effect at the caret when the expansion takes place. For example, if the style is
"Report”, the abbreviations will come from the file "Report.Abbreviations”. You can override
this by explicitly naming the abbreviations file along with the keyname. For example, "Mesa.proc”
will expand the abbreviation for "proc” from the file "Mesa.Abbreviations” independent of the
style in effect at the caret. (Fine point: Since the system interprets a period before the keyname
to mean that you're specifying a particular abbreviations file, you cannot type a vanilla abbreviation
after a period.)

Each definition in an abbreviations file consists of a separate branch. The top node of the
branch holds the keyname followed by an equals sign and then the text expansion. The rest of
the branch, if any, is copied after the caret node as part of expanding the abbreviation. Any text
following the keyname is moved to the end of the last child node in the branch. The definition
may also include a list of operations to be performed after the expansion has been inserted. These
operations have the same format as those in EditTool and are placed in parentheses after the
keyname and before the equals sign.

Delete Character or Word

BackSpace: CTRL-A, CTRL-H, or BS. Deletes the character to the left of the caret.

Fine point: If the caret is at the start of a node, this does a Join command (q.v.).

BackWord: CTRL-W, or CTRL-BS. Deletes the word to the left of the caret.

CEDAR 42

Ti0GA EDITOR 12

DeleteNextChar: CTRL-SHIFT-A, CTRL-SHIFT-H, or SHIFT-BS. Deletes the character to the right
of the caret.

‘DeleteNextWord: CTRL-SHIFT-W, or CTRL-SHIFT-B8S. Deletes the word to the right of the
caret.

Delete

As mentioned above, you can delete something by selecting it with CTRL held down. In
addition, you can delete the current selection by hitting DEL.

Paste

Paste: CTRL-P. The most recently deleted text is copied to the caret. You can also use the
Edit Tool to save the current selection to be pasted later.

Copy, Move, Replace, and Transpose

These operations are all carried out by making selections. They are described in detail in the
previous section.

Insert matching brackets
CTRL-[adds a matching pair of [..]'s to the ends of the selection. Similar CTRL commands
exist for {, (, <, -, ’, and ". CTRL-B inserts matching placeholder brackets b 4.
Note: CTRL-’ inserts a left single quote (code 140) and a right single quote (code 047); CTRL-"
inserts the same character (code 042) at each end of the selection.

Case

All lower: CTRL-C. Makes the selection all lower case.

All caps: CTRL-SHIFT-C. Makes the selection all upper case.

[nitial caps: CTRL-double C. Capitalizes each word in the selection.

First cap: CTRL-SHIFT-double C. Capitalizes the first word of the selection

Repeat

Hitting ESC will repeat the most recent non-empty edit sequence starting with the current
selection. Edit sequences are separated by user-made selections. For example, if you select a
word, delete it, type a new one, and then select something else, the edit sequence is delete followed
by text entry. If you hit Repeat. the system will do a delete and retype the new word.

Auto-repeat is done by ESC-select: if you hold down the ESC key while making a selection, a
Repeat will automatically be done as soon as the selection is completed. This is useful when
you're doing a large number of repeats.

Undo

Hitting SHIFT-ESC undoes the most recent edit sequence and restores the selection to its prior
state. [f you want to undo more than just the most recent sequence, use the Edit History tool
which is described later.

CEDAR 4.2

\

TIOGA EDITOR 13

Tree structure editing
As explained in the introduction, Tioga documents consist of a tree of nodes. The following
commands let you break, join, and nest nodes in the tree.
Break: CTRL-RETURN — break node at insertion point to create a new node.
Join: CTRL-J — join node at insertion point with previous node.
Nest: CTRL-N — move selected nodes to deeper nesting level in tree.
UnNest: CTRL-SHIFT-N — move selected nodes to shallower nesting level in tree.
Break & Nest: CTRL-I — simultaneously insert a new node and nest it.

Break & UnNest: CTRL-SHIFT-I — simultaneously insert and unnest.

CEDAR 4.2

TioGA EDITOR 14

Looks

", " _n

Characters have looks which are named by the lower case letters "a" to "z". Looks are

interpreted by the style to change the appearance of the text. For example, look "e" might stand

for "emphasis” and might result in italic face in one style and bold face in another. Each character
has a set of looks — thus it may have several looks simultaneously, but each look occurs only once.
You can use the Edit Tool to read or change the set of looks for selected characters. The following
keyboard commands are also available for dealing with looks.

Selection Looks
You cdn change the selection looks with the following comfnands. (Recall that the LOOK
shift is the top blank key to the right of BS.)
LOOK-char to add to selection looks.
LOOK-SHIFT-char to remove from selection looks.

LOOK-space to remove all selection looks.

Caret Looks

Caret looks determine the looks of typed-in text. The caret picks up the looks of the adjacent
selected text whenever a selection is made. Changing the selection looks also changes the caret
looks. However, if you wish to change the looks of the caret without changing the selection looks,
left-click the character key twice in quick succession.

LOOK-char-char to add to caret looks.
LOOK-SHIFT-char-char to remove from caret looks.

LOOK-space-space to remove all caret looks.
Using Selections To Copy Looks

To copy the looks of some existing text to the primary selection, hit CTRL-Q, and then with
the CTRL key still held down, select the text with the looks you want to copy. The source looks
replace any looks the selection previously had.

Automatic Mesa formatting

The CTRL-M command scans the selection for Mesa keywords, comments, and procedure
names and gives them looks k, ¢, and n respectively. (As a convenience during typein, the entire
caret node is reformatted if the selection is a single character or less.) With the standard Cedar
style, the keywords will then be displayed in small caps, the comments will be italic, and the
procedure names will be boldface. We expect to provide more extensive reformatting capabilities
in the future.

CEDAR 4.2

TioGA EDITOR 15

Formats

Just as characters have looks, nodes have formats. The "format” is the name of a rule in the
style that tells how to modify various parameters when displaying the node. For example, a style
for documents might contain formats for titles, headings, quotations, standard paragraphs, etc. The
Edit Tool has facilities for reading and changing the format of a node, or you can use the commands
described below. (By convention, the null format name is equivalent to "default”.)

Setting and inserting caret node format

CTRL-« will delete the word to the left of the caret and make it the format of the caret node.

Fine point: In most cases you will give this command immediately after typing the format
name, so the caret will naturally be in the correct place. However, to handle cases in which
you select the name before hitting CTRL-«, the caret will automatically be forced to the right of
the selection at the start of this command.

CTRL-SHIFT-« inserts the format name.
This gives you a simple way to find out the format of a selected node.

Using selections to copy formats

To copy the format of some exisiting node to the selection nodes, hit CTRL-F, and then with
the CTRL key still held down, select the node with the format you want to copy.

CEDAR 42

TioGA EDITOR 16

The Edit Tool

The Edit Tool provides a variety of operations on Tioga documents.

The text fields in the Edit Tool follow the convention that clicking the field name with LEFT
causes the contents of the field to be selected pending-delete while clicking with RIGHT causes the
field to be cleared and selected.

Search and Substitute
' Search

To do a search, enter the text you're looking for in the "Target” field, select where you
want the search to start, and left-click "Search” to search forward, right-click to search backwards,
or middle-click to search first forward then backwards. The system searches from the current
selection and updates the selected viewer if the search succeeds. (Fine point: in both searches
and substitutes, the match is limited to a single node — we do not yet have mechanisms for
doing matches across node boundaries.)

The multiple choices below the "Replacement” field control what is matched in searches
and replaced in substitutes. You can select or deselect an item by clicking it with the mouse.
White text on black background means that the item is selected; black text on white means it
is not selected.

Text — if this option is selected, match characters of target text when searching.
Looks — if selected, match looks of target text when searching.

Format — match format of target node.

Style — match style of target node.

Comment — match comment property of target node.

For example, if you pick the Looks option and deselect the Text option, you can search
for any text that has a particular set of looks. If you pick only Text, the matching will ignore
the looks of the target. If you pick Text and Looks, the matching text must match both the
characters and the looks of the target text.

The other options deal with node properties. If you pick Format, the matching will be
limited to nodes with the same format as the target node. Similarly, if you pick Style, the
matching will only look at nodes whose style is the same as the target node’s. Finally, if you
pick Comment, the match will consider only nodes with the same value of the Comment
property (TRUE or FALSE) as the target.

The first two rows of boxes below the multiple choices give you control over how matching
is performed. Left-click with the cursor over a box to change the choice next to it. The various
choices are as follows:

1. Case of matching text

Match Case — matching text must have same case as target text.

[gnore Case — matching text does not have to have same case as target text.
2. Interpretation of target text

Match Literally — don't treat target text as a pattern.

Match as Pattern — do treat target as pattern. (Patterns are described below.)
3. Context of target text

Match Anywhere — ignore context of matching text.

Match Words Only — matching text must not have adjacent letters or digits.

CEDAR 4.2

Ti0oGA EDITOR 17

Match Entire Nodes Only — matching text must span entire node.

4. Matching target looks
Subset as Looks Test — looks of matching text must include target looks.
Equal as Looks Test — looks of matching text must be identical to target looks.

Substitute

To do a substitution, enter the new text in the "Replacement” field, enter the text to be
replaced in the "Target” field, and hit "Substitute” in the menu at the top of the Edit Tool.
The Text/Looks/Format/... options guide the search in the usual manner and also control what
is replaced.

If you pick Text and Looks, the matching text will be replaced just as if you had selected
it with pending delete and made a source secondary selection of the replacement text.

[f you pick only the Looks option, the matching text will have the target looks removed
and the replacement looks added.

[f you pick only Text, the replacement text will have the looks of the replaced text added
to it. (Fine point: if the looks of the replaced text are not uniform, the looks of the first
character will be used throughout.)

If you pick Format, the matching node will get the format of the replacement node.
Similarly, picking Style causes the matching node to get the style of the replacement node,
and picking Comment causes the matching node to get the same value of the Comment
property as the replacement node.

The final three boxes in the Search&Substitute section give you further control over this
operation.
1. First character capitalization of the replacement text
First cap like replaced — if the replaced text starts with a capital letter, force the
first letter of the replacement to be a capital too.
Don’t change caps — leave the replacement capitalization alone.
2. What is done to the matching text
Do Replace — do the usual substitute or replace.
Do Operations — instead of doing a replace, select the matching text and then do
the operations currently in the "Operations” field of the Edit Tool.
3. Where the substitutions will take place
Within Selection Only — substitute is limited to current selection.
After Selection Only — substitute after selection to end of document.
In Entire Document — substitute in the entire selected document.

Case-by-Case Substitutes

In-addition to doing global substitutes, you can decide on a case-by-case basis whether
or not to replace the matching text by the new text. Use the search commands to find the
first matching text. Then if you hit "Yes"”, the system will do a "Replace” followed by a
search forward. If you hit "No", it will skip the "Replace” and simply do another search.
Thus to selectively substitute, start with a search, then do "Yes" for the cases you want to
change and "No" for the others. The "Replace” command simply does for the current
selection what a substitute would do for a match. Finally, the "Count” command is available
to tell you how many substitutions would take place without actually changing the document.

CEDAR 4.2

TI0GA EDITOR 18

In order to do a search or substitute, you will typically need to fill in the Target or Replacement
fields in the Edit Tool. Naturally, this changes the selection, and before you can do the operation,
you must restore the selection to the place where you actually want it to take place. The system
helps you with this by saving the primary selection if it is not in the Edit Tool when you left-click
either the Target or the Replacement button. The commands along the top of the Edit Tool —
Search, Substitute, Yes, No, Replace, and Count — restore the saved selection if the primary
selection is in the Edit Tool when they are clicked. The net effect is that if you start out with
the selection in the right place, you can left-click the Target or Replacement buttons. fill in the
needed information, and then directly click one of the commands without needing to reselect since
the system will do it for you.

Patterns for Search and Substitute

When you specify that the target be matched as a pattern rather than literally, the following
symbols in the target text are interpreted specially. A short summary of these symbols appears
at the bottom of the Search&Substitute section of the Edit Tool.

Characters
Match any single character.
* Match shortest possible sequence of characters.
o Match longest possible sequence of characters.
’ Match the next character in the pattern exactly.
~ Match any character except the next one in the pattern.

Alphanumeric characters
@ Match any single alphanumeric character (letter or digit).
& Match shortest possible sequence of alphanumeric characters.

&& Match longest possible sequence of alphanumeric characters.

Non-alphanumeric characters
~@ Match any single non-alphanumeric character.
~& Match shortest possible sequence of non-alphanumeric characters.

~&~& Match longest possible sequence of non-alphanumeric characters.

Blank characters

% Match any single blank character.
$ Match shortest possible sequence of blank characters.
$$ Match longest possible sequence of blank characters.

Non-blank characters
~% Match any single non-blank character.
~$ Match shortest possible sequence of non-blank characters.

~$~% March longest possible sequence of non-blank characters. -

CEDAR 42

Miscellaneous

A - o —

>

TIOGA EDITOR

Match start or end of node.

Mark start of resulting selection.
Mark end of resulting selection.
Mark start of named subpattern.
Mark end of named subpattern.

19

The named subpatterns are of use in substitutes that reorder or duplicate parts of the
matching text. The full syntax for a named subpattern is <name:subpattern>. The special case
of "match any sequence of characters” is provided as a default — i.e., <name> is equivalent to
<name:*>. As far as the matching is concerned, the occurrence of <name:subpattern> is the
same as if the subpattern had appeared without a name, but it has the side-effect of remembering
the subsection it matched. The "Replacement” field can contain <name>’s corresponding to
named subpatterns in the target. The replacement text is constructed by replacing the <name>’s
with the section of replaced text that matched the subpattern. The replacement is automatically
considered to be a pattern whenever the target is — you don’t need to do anything special to

get the <name>’s in the replacement interpreted as subpatterns.

For example, if the target is

Target: WHILE <pred>{<arg>] DO

and the replacement is
Replacement: WHILE <arg> IS <pred> DO

then "WHILE bluefmoon] DO" will be converted to "WHILE moon IS blue DO".

Looks, Formats, Styles, and Properties

Looks

The Looks commands let you read and modify the looks of the caret or the selection. The
looks are shown as a series of letters in the "[.ooks characters” field. The box lets you pick

whether you want the looks for the selection or the looks for the caret.
Get — fills the "Looks characters” field with the letters for the caret/selection looks.
Set — reads the "Looks characters” field and sets the looks of the caret/selection.
Clear — removes all looks from the caret/selection.
Add — adds the specified looks to the caret/selection.
Sub — removes the specified looks from the caret/selection.

Formats

The Format commands let you read and modify the format for the root node or the selected

nodes. The box at the right lets you pick the case you want.

Get — fills the "Format name" field.

Set — reads the "Format name" field and sets the node’s format.

Clear — removes the node's format name. This is the same as specifying “default” format.

Styles

CEDAR 4.2

TioGA EDITOR 20

A style is a collection of interpretations for looks and formats. The Style commands let
you read and modify the name of the style for the root node or the selected nodes. The new
style applies to the specified node and all the nodes within its sub-branches that do not
themselves have explicit styles.

Get — fills the "Style name” field.

Set — reads the "Style name" field and sets the node’s style.

Clear — removes any style specification from the node.

LoadStyleDefinition — reads the "Style name” field and reloads the style definition from
that file with extension "Style”. (Don’t put the extension in the field — just put
the style name and let the system add the extension.) Do this operation after you
have edited (and saved) the style definition and want to load the new version.

LoadAbbreviations — reads the "Style name” field and reloads the abbreviation definitions
from that file with extension "Abbreviations”. Do this after you have edited the
abbreviations and want to load the new version.

Properties

A node can have an arbitrary set of "properties”. Each property consists of a name and a
value. Certain properties are used by the system, but you (and your programs) are free to add
others.

The "Property name" field specifies the name of a property. (Incidentally, case distinctions
do matter in property names — "foo" is a different property than "Foo".) The "Property
value” field specifies a value. The box lets you pick whether you are talking about properties
of the root node or the selected nodes.

Get — fills the "Property value” field with the current value of the named property.

Set — reads the "Property value” field and sets the property value.

Remove — removes the named property from the node.

List — fills the "Property name” field with the names of the node’s properties.

In addition to setting and reading properties, there is a mechanism that lets you find nodes
with a certain property value. For example, if you have annotated a document with comments
under the property name "MyOpinion”, and you want to find nodes in which your comment
included the word "good”, enter the name in the "Property name” field and the text in the
"Value pattern” field. Then use the "Find" command to search forward or backwards from
the caret node for a node with a value of the property that matches the pattern. (Left-click to
search forward, right-click to search backwards.) Value patterns can use the standard set of
special characters for searches. If a match is found, the node is selected and the property value
is displayed.

Comment Property

All nodes have a "Comment"” property which is either "TRUE" or "FALSE". If its value is
TRUE, the text of the node is not seen by programs such as the compiler that are only interested
in the basic text contents. This makes it possible to intermix documentation and program text
without requiring special escape characters to mark the start and end of comments. You can
set the Comment property by using the Edit Tool or with the following commands.

CTRL-\ — set comment property of all selected nodes to TRUE

CTRL-SHIFT-\ — set comment property of all selected nodes to FALSE

If you are worried about not knowing at a glance what is a comment node and what is not, find a StyleRule in the
style that applies to all the formats vou are interested in (e.g.. “standard” in Cedar.style), and insert the line

CEDAR 4.2

TioGA EDITOR 21

isComment {visible underlining} {none underlining} .ifelse cvx .exec

This will cause the contents of all comment nodes to be underlined. (You might want to say “strikeout” instead of
"underlining” if the style already uses underlining to mean something else. and legibility is not your main concern.)

Miscellaneous

Sort and Reverse

These commands let you sort or reverse lists of things. The "Sort" command sorts things
in alphabetical order, ignoring case. "Sort-and-remove-duplicates” is useful when you are
merging sets of things. The box below the Sort button lets you pick whether you want increasing
or decreasing order in the result. The right box lets you pick what will be sorted: text delimited
by blanks, lines delimited by carriage returns, or branches of the document tree. Leading blanks
are ignored when sorting lines or branches.

Operations

These commands let you construct simple edit macros. The "Operations” field holds a text
description of a command sequence. The "GetLast” command fills in the Operations with the
description of the most recent sequence, i.e.. the one a Cancel would cancel or a Repeat would
repeat. "Do" executes the description in the operations field. "Begin" marks the start of a
command sequence. "End" fills the Operations with the description of the commands since the
most recent "Begin”. "SetCom" stores the operations under the CTRL-number key for the
number in the "Command [0..9]" field. Conversely, "GetCom" fills the "Operations” field with
the current CTRL-number definition.

To see how this works, select the following word: “hello”. Hit DEL and type in "howdy".
Now hit the "GetLast” button. The Operations field should now contain: Delete "howdy".
Edit the Operations field contents to replace "howdy” by "goodbye"”, then hit the "SetCom"
button (first put 1 in the Command field if it'’s not already there). Now select the "howdy"
you typed earlier and hit CTRL-1. If all went well, the "howdy" will have been deleted and
"goodbye" inserted in its place. More examples of edit macros will be given later.

Searches and Operations on Files

You can use the EditTool to look through a list of files for one in which the current search
specifications are satisfied. This can be accomplished by clicking the "SearchEachFile” button
after filling in the "Files” field with the file names (or "@" followed by the name of a file that
holds the list of file names). When you left-click SearchEachFile, a new viewer is created, and
one-by-one the files will be loaded and searched until a match is found. The list of files will
be updated when a match is found, so that when you are finished with one file you can left-click
SearchEachFile again to look for the next one. You can hit the "Stop” button at the top of
the EditTool to interrupt the search, but you should not try doing other operations while the
search is in progress since it resets the selection each time it loads a file.

Occasionally you will want to apply certain operations to an entire set of files. You can
do this by filling in the "Operations” field and the "Files" field, and then clicking
"DoForEachFile”. A new viewer will be created, and one-by-one the files will be loaded,
selected. edited, and saved. No confirmation is required for the saves, so the entire process can
go on without you. In fact, you should not try to do anything else while this is going on since
the operations use the primary selection. The one exeception is the "Stop"” button which you
can hit to terminate the process.

CEDAR 4.2

TioGA EDITOR 22

Operations via the User Exec

You can invoke a set of operations from the User Exec as well as directly from the Edit
Tool. When you run TiogaExecCommands, one of the commands it registers is DoTiogaOps
which expects a command line containing operations in the same format as in the operations
field. One possible application of this is to create a command file that initializes various Edit
Tool switches to your favorite settings. For example, you could use the following to set up
some of the search parameters: DoTiogaOps IgnoreCase MatchWords MatchPattern.

Edit Commands

This section of the Edit Tool contains buttons for all the basic edit commands. These are
useful if you can’t remember what keys to hit for an infrequent command or if you've set your
user category to beginner or intermediate to filter out certain commands. Many of the buttons
correspond to commands that have been documented above. However, a few of them are
primarily of use in constructing edit macros and have not been mentioned before. For
completeness, all the buttons will be given a brief description.

Modifying selections
CaretBefore — move caret to front of selection
CaretAfter — move caret to end of selection
CaretOnly — reduce selection to a caret
Grow — selection grows in hierarchy of point, character, word, node, branch
Document — select entire document
PendingDelete — make primary selection pending delete
NotPendingDelete — make primary selection not pending delete
MakeSecondary — make the primary selection become the secondary selection
MakePrimary — make the secondary selection become the primary selection
CancelSecondary — remove the secondary selection
CancelPrimary — remove the primary selection

Copy, Move, and Translate
ToPrimary — copy/move secondary to primary
ToSecondary — copy/move primary to secondary
Transpose — transpose the primary and the secondary

Moving the caret

GoToNextChar — make primary caret only and move one character toward end of
document or one toward start if you right-click instead of left-clicking

GoToNextWord — like GoToNextChar, but move toward end by "words" or one toward
start if you right-click instead of left-clicking

GoToNextNode — move caret one node toward end or one toward start if you right-click
instead of left-clicking

Saving and Restoring the selection
SaveSel-A — save primary selection to restore later
RestoreSel-A — restore the selection previously saved by SaveSel-A
SaveSel-B — save primary selection to restore later

CEDAR 4.2

Ti0GA EDITOR 23

RestoreSel-B — restore the selection previously saved by SaveSel-B

Extend the selection to matching brackets
(...) — extend primary selection to matching parens
<...> — extend to matching angle brackets
{..} — extend to matching curly brackets
[...] — extend to matching square brackets
"..." — extend to matching double quotes
.. — extend to matching single quotes
-...~ — extend to matching dashes
b..4 — extend to matching placeholder brackets

.

Find placeholders
Nexth...4 — move primary selection to next placeholder
Prevp...4 — move to previous placeholder

Delete and Paste
Delete — delete the primary selection
Paste — insert saved text at caret
SaveForPaste — save text for later pasting; overwrites text saved by Delete

Repeat and Undo
Repeat — repeat the last command sequence
Undo — undo the last command sequence

Deleting character/word next to caret
BackSpace — delete the character to the left of the caret
BackWord — delete the word to the left of the caret
DeleteNextChar — delete the character to the right of the caret
DeleteNextWord — delete the word to the right of the caret

Inserting matching brackets around the selection
Add() — insert parens around the selection
Add< > — insert angle brackets
Add{ } — insert curly brackets
Add[] — insert square brackets

Add" " - insert double quotes
Add’’ — insert single quotes
Add- - — insert dashes

Add» 4 — insert placeholder brackets

Capitalization
AllCaps — make the selection upper case
AllLower — make the selection lower case
[nitialCaps — make the words in the selection start with caps
FirstCap — make the selection start with a cap

CEDAR 4.2

TiOoGA EDITOR 24

Special characters
MakeOctalCharacter — convert the 3 digits before the caret to the corresponding character
MakeControlCharacter — convert the character before the caret to a control character
UnMakeOctalCharacter — convert the character before the caret to 3 digit representing
its character code
UnMakeControlCharacter — convert the control character before the caret to a normal
character

Tree structure commands
Break — break node at caret
Join — join caret node to one before it
Nest — move selection deeper in tree
UnNest — move selection higher in tree

Miscellaneous commands
CommentNode — set Comment property of all selected nodes to TRUE
NotCommentNode — set Comment property of all selected nodes to FALSE
ExpandAbbreviation — expand the abbreviation to the left of the caret
MesaFormatting — add Mesa looks, formats, and style to selection
Command 0123456789 — do saved command macro

Writing Edit Macros

A few examples should get you started writing your own edit macros. First, assume you
find yourself doing a lot of edits of the form <stuff> becomes <pred>[<stuff>] for various values
of <stuff> and <pred>. You might like a single command to insert the brackets and move the
caret to the place where you will insert the <pred>. To construct such a command, first select
a particular <stuff>, hit the Add[] button in the Edit Tool, the CaretBefore button, and the
GoToNextChar button using the right mouse button. Then hit GetLast to fill the Operations
field, enter 1" in the "Command [0..9]" field. and hit SetCom to save the macro definition.
Now you can select <stuff>, hit CTRL-1, and be ready to insert before the left bracket.

A macro to delete matching parentheses will show the use of the SaveSel and RestoreSel
commands. Make a selection anywhere inside a pair of matching parens. Give the following
sequence of commands: (...) to extend the selection, CaretAfter to position the caret at the right,
SaveSel-A so we can restore the selection later, BackSpace to delete the right paren, RestoreSel-A
to get the selection back, CaretBefore to move the caret to the front, and finally DeleteNextChar
to delete the left paren. Now you can hit GetLast and SetCom to save this macro.

Other operations on the Edit Tool can also be programmed using edit macros. For example,
assume you want a macro to substitute "which" for "that". The following set of commands
will load the target and replacement fields and do the substitute: right-click to select and clear
the target field, type "that" as the target text, right-click to select and clear the replacement
field, type "which" as the replacement text, and finally hit the Substitute button. This macro
will only change the target and replacement fields. The other parameters of the substitute are
not changed and thus behave like "free variables” of the macro. If you want to bind more of
the choices, such as Maich Case or Ignore Case. you simply include those commands as part of
the macro. For example, you could select Ignore Case just before restoring the selection, and
the macro would always set the ignore case flag when it was executed. Note that you must hit
the "Target” and "Replacement” buttons to enter the target and replacement text. Directly
selecting in those fields would not produce a correct macro because it would terminate the edit

CEDAR 42

Ti0GA EDITOR 25

sequence and would also fail to identify which field was being filled in.

When you save an edit macro under a CTRL-number key, it only stays around for the rest
of the session. [f you want to save one for tomorrow, you can of course copy the operations
to a file and redefine it another time. But if you really want to make a macro a permanent
part of your user interface, you can add it to your "TIP table” which describes the translation
from keyboard and mouse actions into executable tokens such as those in edit macros. The
details of how to do this are given in a later section.

CEDAR 4.2

TIOGA EDITOR 26

The Edit History Tool

The Edit History tool lets you undo edits in the same way that Undo does, but it lets you go
back farther in history than just the most recent sequence. To create an Edit History tool, type
"EditHistory" to the Exec. At the top of the tool are two fields and four commands. The bottom
part of the tool is a text field to hold descriptions of previous edit events.

The system keeps a history of a certain number of the most recent edit events. You can find
out how large this history is by the "Get” command which will enter a number in the "history size"
field. The "Set” command will change the history size to whatever value you've entered in the size
field. The default size is 20; you can change this by making an entry in your User.Profile of the
form "EditHistory: <history-size>".

The "Show" command will display the events starting with the number in the "since event
number” field. If that field is empty it will show as many as are still remembered. The format of
the entries is <event-number>, TAB, and then a list of operations. The "Undo" command undoes
the edits since the specified event number.

CEDAR 4.2

Ti0GA EDITOR 27

Printing and the TypeSetter Tool

In the glorious future, Tioga will have an interactive typesetter that will let you make incremental
revisions to a typeset document to adjust pagination, page layout, and other details before actually
printing it. Michael Plass and [have started work on this, but until it's available, the current
typesetter will do a more than adequate job of letting you print your files. Documentation for the
TSetter tool may be found in [Indigo]<Cedar> Documentation>TSetterDoc.Tioga.

CEDAR 4.2

TIOGA EDITOR 28

TIP Tables for Tioga

The acronym "TIP" stands for "terminal interface package”. TIP tables describe the translation
from keyboard and mouse actions into executable tokens. The standard TIP table for Tioga is found
in the file "Tioga. TIP" and contains all the gory details about things such as multi-clicks of mouse
buttons with various combinations of shift keys. It’s unlikely that you want to try changing anything
in Tioga.TIP, but you can consider adding commands to your own TIP table for things such as your
favorite set of edit macros. Your TIP table can be "layered” on top of the Tioga table so that the
system will try to interpret actions according to your table before looking at the standard one. The
User.Profile contains an entry named "TiogaTIP" in which you can enter the file name of your TIP
table to be layered over the standard Tioga table. The entry should look like something like this

TiogaTIP: MyOwn.tip Default

where "MyOwn.tip” is the file name for your table. Notice that your table goes first in the
list; definitions in tables occurring early in the list take precedence over those that appear later. The
special name "Default” refers to Tioga's default TIP table and will typically be the last entry in the
list.

The file "MyOwn.tip" contains a sample table that you can edit to produce your own. It also
contains documentation about the syntax of TIP tables and the macro package which is used with
them.

Use the Exec command ReadTiogaTipTables to reload a TIP table after you've changed it, or,
if your user category is advanced, hit CTRL-! to reload the Tioga profile information.

CEDAR 4.2

TI0GA EDITOR 29

Styles

A style is a collection of interpretations for looks and formats. The interpretations are represented
as procedures written in a simple language that uses the JaM interpreter. The procedures set various
formatting parameters such as font size and line spacing.

Note: If a document doesn't specify a style, the system will use a default. You can say what the default will be by
adding user profile entries for DefaultStyle or ExtensionStyles (described below).

To determine the formatting parameters for a particular node, the system first gets the parameters
for its parent and then executes the appropriate formatting procedure from the style. [f the node
doesn’t have an explicit format, or if the format it has is not defined in the style, the system will
execute the default formatting procedure instead. For root nodes, the default is the rule named
"root”; for other nodes, it is the rule named "default”.

Formatting parameters for the text within a node are determined in a similar manner. The
system first gets the parameters for the node and then executes the formatting procedures for the
looks of the text. For look "a", it executes the rule named "look.a", for look "b", the rule named
"look.b", etc.

Properties related to styles

Prefix and Postfix properties

The values of these properties are command sequences that might be part of a formatting
procedure. The Prefix commands are executed just before the standard formatting procedure
for the node, and the Postfix commands are executed just after it. This makes it possible to
modify the values of the formatting parameters that are the input and output of the format.
You may want to use this to make local formatting changes, such as modifying tab stops for a
particular table. However, don’t abuse this facility. If you find you are making many local
changes, you should probably modify the style instead.

StyleDef property

In typical use, a style lives in its own file and is referred to by the various documents that
use it. However, in some cases you may have a style that is only used in one document, and
you’d like to include it as part of the document to avoid the trouble of maintaining the style as
a separate file. You can do this by using the StyleDef property. The value of this property is
a style definition. The style is automatically saved and loaded as part of the file and applies to
the node and its children just as if you had set the node style in the usual manner with the
EditTool.

[Note: If you use a StyleDef and it doesn't seem to do anything, do a Clear of the style name using the EditTool.]
Style definitions
A style definition begins with the command "BeginStyle" and ends with "EndStyle”. Between
these come any number of commands and definitions. The style is parsed and interpreted using
JaM, so you will want to read the JaM documentation if you're going to spend much time writing
styles.
Attached styles

You may want to define a new style that is only slightly different than an existing one.

CEDAR 4.2

Ti0GA EDITOR 30

One approach would be to copy the existing style and edit it to make the changes. However,
it may be preferable to track whatever modifications to the other style that may happen in the
future. This can be done by "attaching” the old style to the new one. For example, if your
new style includes a command of the form

(Cedar) AttachStyle

then the new style will automatically include everything from the current version of Cedar
style. Thus, if a format is not defined in the new style, it will be taken from Cedar style instead.

ScreenRules, PrintRules, and StyleRules

The basic form for a rule definition in a style is
(name) "comment string” { commands } StyleRule

In many cases it will be desirable for a rule definition to be different depending on whether
the output is for printing or for display. To simplify this, you may define a format both as a
ScreenRule and as a PrintRule. The ScreenRule definition will be used for display, while the
PrintRule will be used for printing. If there is only a StyleRule definition, it will be used for
both printing and display.

Formatting Parameters

This section lists some of the formatting parameters currently supported. Typically, the
name of the parameter is a command defined in JaM that pops an item from the stack and
makes it the new parameter value. However if the item on the top of the stack is the word
"the", the commands push the current parameter value so procedures can read parameters as
well as write them. For numeric parameters, the following mechanisms are provided to simplify
making incremental changes to the current parameter value:

<amount> bigger adds the amount to the current parameter value
<{amount> smaller substracts the amount from the parameter value
<amount> percent multiplies the parameter value by the specified
percentage
i.e., value « (amount/100)*value
<amount> percent bigger increases value by specified percentage
<amount> percent smaller decreases value by specified percentage

Font Parameters

family the name of current font family, such as
"TimesRoman"

size value is the font size in points

face one of regular, bold, italic, or bold +italic

You can also add or remove italic or bold by means of the following commands:
+ bold face, -bold face, +italic face, or -italic face
underlining one of all, visible, letters+ digits, or none

strikeout one of all, visible, letters + digits, or none

CEDAR 42

[ndent Parameters
leftIndent
rightindent
firstindent
restIndent
topIndent

Leading Parameters

Ti0GA EDITOR 31

left indent for start of lines

right indent for end of lines

added to leftIndent for first line of paragraph
added to leftindent for remaining lines of paragraph

distance from top of viewer/column to first baseline

Leading parameters are stored as triples of <size, stretch, and shrink> which, following
Knuth, we refer to as "glue”. You can set the separate components individually, or you can
push three values on the stack and use one of the leading glue commands to set them all at

once.

There are three kinds of leading corresponding to the spaces between lines in a node,
the space above a node, and the space below it. The actual space between a node is the
maximum of the "below" leading of the first node and the "above” leading of the second.

leading
leadingStretch
leadingShrink
leadingGlue
topLeading
topLeadingStretch
topLeadingShrink
topLeadingGlue
bottomLeading
bottomLeadingStretch
bottomLeadingShrink
bottomLeadingGlue

Layout Parameters
lineFormatting

minLineGap
(can be negative)

leftindent
rightIndent
firstindent
restindent

topIndent
viewer/page

distance between baselines within a node
how much leading can increase

how much leading can decrease

size, stretch, and shrink for leading
distance between baselines above a node
how much top leading can increase

how much top leading can decrease

size, stretch, and shrink for top leading
distance between baselines below a node
how much bottom leading can increase
how much bottom leading can decrease

size, stretch, and shrink for bottom leading

FlushLeft, FlushRight, Justified, Centered
min distance between line top and previous bottom

all lines indent this much on left

all lines indent this much on right

first line indent this much more on left
other lines indent this much more on left

top line at least this much down from top of

CEDAR 42

bottomIndent

Page Layout Parameters

pageWidth
pageLength
leftMargin
rightMargin
topMargin
bottomMargin
headerMargin
footerMargin
bindingMargin
lineLength

Dimensions

pt
pc
in
cm
mm
fil
fill

Miscellaneous

style

isComment

of node

isPrint

nestinglevel

TioGA EDITOR 32

bottom baseline at least this up from bottom of page

width of the paper

height of the paper

whitespace at left of the page

whitespace at right of the page

whitespace at top of the page

whitespace at bottom of the page

height of area below topMargin for headers
height of area above boitomMargin for footers
not used at present

width of lines of text

point

pica

inches
centimeters
millimeters
1014 points
1018 points

the name of the current style

pushes .true or .false according to comment property

pushes .true if executing print rules, else .false

pushes integer; 0 for root, 1 for top level, etc.

CEDAR 42

TioGA EDITOR 33

Tioga User Exec Commands

Note: If the following commands are not known to the UserExecutive, type "Run TiogaExecCommands".

ReadTiogaTipTables

Causes Tioga to read its TIP tables again. [f your user category is advanced, you can also
invoke this operation by selecting in any Tioga document and hitting CTRL-!.

WritePlain

Make Tioga files unformatted by eliminating everything except the plain text. Inserts leading
tabs before each node according to its nesting in the tree and terminates each node with a carriage

return.
WriteMesaPlain

Same as WritePlain, except inserts double dashes at start of comment nodes.

ReadIndent

Build Tioga files with one node per line of source with indenting based on white space at
the start of lines.

TiogaMesa

Convert Mesa files to Tioga format by combining a ReadIndent with a CTRL-M over the
entire file.

DoTiogaOps

Expects a command line containing operations in the same format as in the EditTool operations
field. Among other things, you can use this to initialize various EditTool choices such as
IgnoreCase or MatchWords.

CEDAR 4.2

Ti0GA EDITOR 34

Tioga User Profile Entries
Default file extensions
This determines what extensions Tioga should look for in opening files. The entry is of the
form

SourceFileExtensions: mesa tioga df cm config style

You may also have an entry for implementation extensions to be used with the "load impl"”
commands.

ImplFileExtensions: cedar mesa

Open First Level Only

If set to true, documents will be opened with only their first level showing. Default is false.
OpenFirstLevelOnly: TRUE

Default Styles Determined by File Extensions

This entry specifies the default style to be used with documents that do not explicitly name
a style. The style is determined by the extension in the file name. The entry is of the form

ExtensionStyles: <extensionl> <stylenamel> <extension2> <stylename2> ...

To specify a default style for files with no extension in their name, use the fake extension name "null” in this list.

Default Style

This entry specifies the default style to be used with documents that do not explicitly name
a style and do not have an extension given in the ExtensionStyles list. The entry is of the form

DefaultStyle: Cedar
Default submenus

This entry specifies which menus, if any, should automatically be displayed when you create
a new Tioga viewer by clicking one of the buttons in the upper right corner or by giving an Exec
command. The entry is of the form

DefaultTiogaMenus: places levels
or
DefaultTiogaMenus: none
You may delete or reorder the menu names to suit your tastes.

Scroll bottom offset

When you are typing and the caret goes to a new line just off the bottom of the viewer,
Tioga will automatically scroll the viewer up a little to make the caret visible again. This parameter
controls how far up to scroll; a big number causes larger but less frequent glitches.

ScrollBottomOffset: 3

CEDAR 4.2

TioGA EDITOR 35

Scroll top offset

When you do a Find command you may want to see a few lines in front of the match to
give you more context. This parameter tells Tioga how many extra lines to want in such situations.
The entry is of the form

ScrollTopOffset: 1
Selection Caret

The default behaviour for Tioga is to place the caret at the end nearer the cursor when the
selection is made. Some people have requested to have the caret always placed at one end or the
other, hence this profile entry. The choices are before, after, and balance. The entry is of the
form

SelectionCaret: before
Selection Displacement

This lets you specify a vertical displacement for making selections. Tioga behaves as if you
had pointed this number of points higher up the screen so that you can point at things from
slightly below them. The entry is of the form

YSelectFudge: 2
TIP Table

This entry specifies the TIP tables to use with Tioga documents. The entry is of the form
TiogaTIP: MyOwnTip.tip Default
See the section on TIP tables for more information.

Unsaved Documents Cache Size

This controls the number of unsaved documents the system will remember. The entry is of
the form

UnsavedDocumentsCacheSize: 4
Show Unsaved Documents List

If this is true, a viewer will be created holding an up-to-date list of the unsaved documents
that can still be reloaded. The entry is of the form

ShowUnsavedDocumentsList: TRUE

User category

As described above, this entry lets you control your user category. The alternatives are
Beginner, Intermediate, and Advanced. The entry is of the form

UserCategory: Intermediate

CEDAR 4.2

TIOGA EDITOR 36

Command Summary

This is a short summary of the Tioga commands available using the keyboard and mouse. Other
commands are available through the Edit Tool, the Edit History Tool, and various User Exec
operations.

The extra keys on the keyboard are used for common editing actions. Recall that the bottom
right blank key can be used as another CTRL key, and you can use either CTRL key and either SHIFT
key interchangeably. '

ESC Repeat last action

SHIFT-ESC Undo last action

ESC-select Automatic repeat of last action when finish selection
DEL Delete

LF Load file in "No Name" viewer

CTRL-LF Load Impl file in "No Name" viewer

BS Backspace character

SHIFT-BS Delete next character

CTRL-BS Backspace word

CTRL-SHIFT-BS Delete next word

NEXT Find next placeholder (middle blank key)
SHIFT-NEXT Find previous placeholder

RETURN Insert carriage return with leading spaces copied from previous line
SHIFT-RETURN Insert carriage return

CTRL-RETURN Break node

Mouse button clicks are used for making selections.

CLICKS LEFT MIDDLE RIGHT

SINGLE Select letter Select word Extend selection at current level
DOUBLE Select node Select branch Reduce selection level and extend
TRIPLE Increase selection level and
extend

Selections are used for delete, copy, and move.

CTRL-select Delete when finish selection
SHIFT-select Copy to primary
CTRL-SHIFT-select Move to primary

LOOK commands are used for editing looks. (The LOOK shift is the top blank key.)

LOOK-char Add look to selection
LOOK-SHIFT-char Remove from selection
LOOK-space Remove all from selection

Except for CTRL-A. CTRL-H. and CTRL-W, the following commands are not enabled for beginning
users. We provide both CTRL-A and CTRL-H as a convenience to users with strong habits from
previous systems. A "** indicates a command enabled for advanced users only.

CTRL-A Backspace character

CTRL-SHIFT-A Delete next character

CTRL-B [nsert matching placeholder brackets
CTRL-C Lower case

CTRL-SHIFT-C Upper case

CTRL-CLICK-C [nitial caps

CTRL-SHIFT-CLICK-C First cap

CEDAR 4.2

CTRL-D
CTRL-E
CTRL-F-select
CTRL-H
CTRL-SHIFT-H
CTRL-I
CTRL-SHIFT-1
CTRL-J
CTRL-K
CTRL-SHIFT-K
CTRL-M
CTRL-N
CTRL-SHIFT-N
CTRL-O
CTRL-SHIFT-O
CTRL-P
CTRL-Q-select
"CTRL-S-select
CTRL-T
CTRL-V
CTRL-W
CTRL-SHIFT-W
CTRL-X-select
CTRL-Z-select
CTRL-]

CTRL-{

CTRL-!
CTRL-«
CTRL-SHIFT-«
CTRL-\
CTRL-SHIFT-\

TioGA EDITOR

Select document

Expand abbreviation

Copy format to primary *

Backspace character

Delete next character

[ndent (does Break and Nest) *
Unindent (does Break and UnNest) *
Join nodes * '
Make control character

Unmake control character

Automatic MESA formatting

Nest *

UnNest *

Make octal character

Unmake octal character

Paste

Copy looks to primary

Copy primary to selected destination
Time

Select visible (expand to selection to blanks)
Backspace word

Delete next word

Select for transpose with primary
Move primary to selected destination
Select matching [..]'s (same for },), and >)
Add matching [..]'s (same for ", ", -, {, (, and)
Have Tioga read its TIP tables again *
Set format to word before caret *
[nsert format name *

Set comment property TRUE *

Set comment property FALSE *

CEDAR 4.2

37

How To Use Walnut
Version 4.2

Release as [Indigo]<Cedar>Documentation>WalnutDoc.tioga, -.press
came from [Indigo]<CedarDocs>Manual>WalnutDoc.tioga, .press
By Willie-Sue Haugeland
Last edited By Willie-Sue Haugeland on June 8, 1983 4:03 pm
Jim Donahue on June 2, 1983 1:17 pm

Abstract Walnut is a computer mail system interface that runs in Cedar. It provides facilities
to send and retrieve mail (using the Grapevine mail transport system), and to display and classify
previously retrieved messages.

Walnut is under active development. This document describes how to obtain and use Walnut
4.2, the latest version of Walnut released with Cedar 4.2.

How to Use Walnut: Contents
0. Introduction
1. Database structure

2. User interface

w

. The log
4. Becoming a user
S. Coping with releases and crashes
6. User profile options
7. Shortfalls and wishes
[If you are reading this document on-line, try using the Tioga Levels and Lines menus

(if you can) to initially browse the top few levels of its structure before reading it
straight through.]

XEROX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

DRAFT - For Internal Xerox Use Only - DRAFT

How TO USE WALNUT 2

0. Introduction

Walnut is a mail system that runs in Cedar. Walnut provides facilities to send and retrieve mail
(using the Grapevine mail transport system), and to display and classify stored (i.e. previously retrieved)
messages. Walnut uses the Cypress database system to maintain information about stored messages; we
hope that this will allow Walnut to integrate smoothly with new applications, such as a calendar system
or an online "white pages”.

Walnut is under active development. It is not unusual for new versions of Walnut to be distributed
to willing users between formal Cedar releases. Though the underlying database structures used by
Walnut change from time to time, these changes never require any hand-editing on the part of users;
Walnut performs the conversions automatically.

WALNUT 42

How TO USE WALNUT 3

1. Database Structure

We shall describe a user's model of Walnut's database. This model suppresses many details whose
understanding would be required in writing a new application on Walnut’s database, but are irrelevant
for accessing the database through Walnut's user interface.

Walnut’s database contains two entity types: message and message set.

A message entity corresponds to a message retrieved from the Grapevine mail transport system.
Like all database entities it has a name, consisting of the sender's RName concatenated with
a unique message ID provided by Grapevine. A message also has several immutable
properties: its sender, its subject, and so on. Its unread property is a BOOL whose value is
TRUE when the message is first stored in the database, and is set to FALSE when the message
is first displayed.

A message entity is also a member of one or more message sets. A message set entity is named by
a text string containing no embedded blanks. There are two distinguished message sets:
Active and Deleted. A newly-retrieved message is made a member of Active. A message that
is removed from all other message sets is added to Deleted. Using the Active and Deleted
message sets in this way ensures that each message belongs to at least one message set.

WALNUT 42

How TO USE WALNUT 4

2. User Interface

Walnut implements four viewer types: the Walnut control viewer, the message set display viewer,
the message display viewer, and the message composition viewer. When Walnut is running there is one
Walnut control viewer, and any number of instances of the other viewer types. The iconic form of the
Walnut control viewer is a mailbox. Anything that can be done with Walnut can be done by starting
from the control viewer (sometimes by creating other viewers).

Walnut's user interface attempts to be consistent with conventions used elsewhere in Cedar. Clicking
LEFT on a button representing a Walnut entity (a message or a message set) "selects” the entity (makes
it an implied parameter to other operations); clicking MIDDLE on such a button opens the entity (displays
more information somehow). This is analogous to the behavior of icons in Cedar.

Unless otherwise specified, hereafter "click” means "click with the LEFT mouse button”.

2.1 Message sets

The message sets in a Walnut database are represented by buttons in the Walnut control viewer.
The Active and Deleted message set buttons always appear first; other message set buttons appear in
alphabetical order. There may be several rows of these buttons.

To create a new message set (containing no messages) type its name into the MsgSet: field of the
control viewer, then click Create. A message set button with this name will appear. Similarly, to delete
an existing message set, type its name and click Delete. Walnut requests confirmation if the message
set contains any messages. If you delete a message set containing messages, the messages are deleted
from the set (as if clicking each message with CTRL-LEFT as described below) before the set is destroyed.
To find out how many messages are currently in a message set, type the name of the set and click
SizeOf.

To create a message set display viewer, click MIDDLE on the corresponding message set button of the
control viewer. The iconic form of a message set displayer is a stack of envelopes.

The message set displayer contains a one-line button for each message in the set. Each message
button looks much like a line in the top window of Laurel: it shows the date of the message, the name
of the sender (or To: field if the sender is the current user), and the message subject. At most one of
the message buttons in a set is selected (shown with a grey background). To select a message, click LEFT
on it; to select and display a message, click MIDDLE on it. To delete a message from the message set,
click CTRL-LEFT on it; its button will disappear. (Note that if this message belonged to no other message
set, it is added to the Deleted set, and hence is still accessible.)

A message set displayer also contains several command buttons that operate on the selected message.

Categories lists (in the Walnut control window) the message sets in which the selected message
appears (a message can simultaneously be in several message sets).

MoveTo adds the message from the message set to all of the message sets selected in the control
window, after first deleting it from the message set.

Display displays the selected message.

Delete deletes the message from the message set; if it thus becomes a member of no other message
sets, then it is moved to the Deleted message set.

AddTo adds the messages to the selected sets without first doing the deletion.

Finally, the Active message set includes a NewMail button that reads new mail and adds the messages
read to this message set.

For the MoveTo, Delete, and AddTo buttons, LEFT-clicking simply performs the operation described
above, while RIGHT- or MIDDLE- clicking performs the operation and displays the next message in the set.

WALNLUT 4.2

v
|
How 1O USE WALNUT 5

2.2 Messages

As described above, a message can be displayed by clicking MIDDLE on a message button of a message
set displayer. This creates a message display viewer, whose iconic form is an envelope (clicking
SHIFT-MIDDLE on a message button causes the created viewer to fill the entire column). The message
within such a viewer is not editable. This viewer is associated with the message set that created it, so
clicking MIDDLE on another message of the same message set shows this new message in the same message
displayer. This is designed to avoid a proliferation of message displayers. Of course, there are times
when you really want to create viewers on several different messages in one set. Clicking a message
displayer’s Freeze button (which then disappears) permanently binds the message to the message
displayer. If all message displayers for a given message set are frozen, then MIDDLE clicking in the
message set creates a new displayer. A frozen message displayer cannot be unfrozen, but can be
destroyed.

A message displayer has several other buttons. The Categories button is the same as that on
message set displayers. Answer and Forward create a Walnut Send viewer initialized either with a
proper heading for an answer to the message or a copy of the message for forwarding. The Print button
uses the TSetter to print the message -- it will complain (in the Walnut control window) if the TSetter
is not loaded. And the remaining Split, Places and Levels buttons are from Tioga.

2.3 Sending mail

To create a message composition viewer click the NewForm menu item in the Walnut control viewer,
or use the Answer or Forward buttons on a message display viewer. [n iconic form this viewer is the
back of an envelope, with the title "WalnutSend ...6/02/83". The message composition viewer is a Tioga
viewer for typing in the message header fields and message body. NewForm, PrevMsg, and GetForm
menu items are guarded while the Sender is dirty. When a command requires confirmation, appropriate
buttons appear in the viewer menu area; the control window is used for messages.

Clicking the Clear button of a message composition viewer causes its message text to be replaced
by a standard message form. PrevMsg restores the contents of the last successfully sent message.
GetForm loads into the viewer the file whose name is currently selected (if no file extension is given
and no file is found with the selected name, the extension ".form" is used); it also sets the input focus
at the first placeholder. Confirm and Deny buttons appear for confirmation if the existing message text
has been edited. StoreMsg stores the contents of the viewer in the selected file: this gives a way to save
partially composed messages.

The Split, Places and Levels menu items are the usual Tioga operations; if a message composition
viewer is split, then NewForm, PrevMsg and GetForm operations on a split viewer will cause all but
the one bugged to be destroyed (the message composition viewer becomes "unsplit”). This will also
happen if Answer or Forward reuse a split message composition viewer.

Clicking the Send button initiates the sending process. If the message is addressed to a public
distribution list or to more than twenty individuals, it probably should contain a Reply-To: field. If it
does not, a message is printed in the control window and buttons labeled Self, All, and Cancel appear.
These buttons mean "Reply-To: sender”, "no Reply-To: field”, and "Reply-To: sender but don't send”,
respectively. If errors occur in sending, a message is printed in the control window. If the transmission
is successful, the message is saved and a new form appears; RIGHT-clicking Send causes the message
composition viewer to become iconic after syntax checking has been done. While a Send is in progress,
the viewer is not editable. An AbortSend button is visible during part of the sending process, should
you decide not to send the message. The last successfully sent message can to restored by clicking
PrevMsg.

Clicking the Destroy button asks for confirmation if there is an unsent message in the viewer. It is

WALNLUT 4.2

How TO USE WALNUT 6

a bad idea to destroy a message composition viewer while message transmission is in progress.

2.4 Retrieving mail

Walnut polls the mail servers at regular intervals. If there is new mail for the logged-in user, the
Walnut control viewer displays a message like

You have new mail at 27-Sep-82 14:28:45 PDT

Clicking the NewMail button in either the control viewer or the Active message set viewer retrieves
all the new mail. You can "button ahead” during message retrieval. The new messages appear as
buttons at the bottom of the Active message set viewer, with a "?" in the leftmost column of each new
message button to show that the message is unread. If the control window is iconic and there is new
mail, the flag on the icon is raised; for convenience, there is a NewMail button in the Active MsgSet
displayer, which will retrieve the waiting mail.

2.5 Global operations

The Walnut control viewer has a few more buttons that will now be described. Clicking Commit
commits all changes that you have made to Walnut's database. The only other operations that
automatically commit database changes are Destroy and CloseAll. If you perform a Walnut operation
that updates the database and then boot or rollback without doing a Commit, the effects of that operation
are in the log and will be performed on the database and then committed when you next run Walnut.

The CloseAll button furnishes a quick way of ending a session with Walnut. CloseAll destroys all
message displayers, and closes all message set displayers. Then it executes a Commit and closes the
Walnut control viewer.

The Archive operation provides a way to copy a set of messages into a file that can later be read by
either Walnut or Laurel. Type a filename into the OnFile: field and click Archive. All messages in the
currently selected message sets are copied to the named file (if the file name has no extension,
" .ArchiveLog" is assumed).

Clicking the (guarded) Expunge button expunges the Walnut database: all messages in the Deleted
set disappear without a trace. (Laurel purges deleted messages every time you Quit or change mail files.)
Without the Expunge operation, Walnut's database would grow without bound. The Expunge operation
may fail if your disk is nearly full; this is a motivation for regular Expunges. Section 4 contains more
information on this topic.

Finally, clicking the Destroy button causes Walnut to commit and then close the Walnut database.
This is a good thing to do before booting or rolling back; it reduces the possibility of mangling the
database.

Walnut registers several infrequently-used commands with the Cedar Executive. All of the command
names contain the prefix "Walnut"”, so typing Walnut*? to the Executive enumerates them. The Walnut
command creates a Walnut control viewer if you should happen to Destroy yours. The WalnutExpunge
command has the same effect as clicking Expunge, but can be used when the control viewer does not
exist. The WalnutOldMailReader command is described in Section 3, and the WalnutScavenge
command is described in Section 4. WalnutNewMail simulates clicking the NewMail button.

WALNLUT 42

How To USE WALNUT 7

3. The log

Walnut keeps a record of all retrieved messages and all database updates for a single user in a
Walnut log file. This is a text file with a very simple format (an extension of the .mail format used by
Laurel and Hardy); load your Walnut log into a Tioga viewer to see this. (Since your Walnut log be a
large file, you may wish to use the OpenHuge command to load it into a Tioga viewer.)

The important point is that the truth about your Walnut mail resides in a Walnut log file; the
Cypress database that Walnut uses for query processing can always be reconstructed by replaying a
Walnut log file. The Walnut log mechanism is very robust, which makes Walnut's mail storage quite
reliable even if Walnut (or some other part of Cedar) crashes.

Walnut locates the log file for a particular user by consulting the Walnut.WalnutlogFile entry of
the user profile. If there is no such entry, the name Walnut.DBLog is assumed. At present, the log file
must reside on the Cedar workstation’s local disk. This means that to use Walnut on a public Dorado,
you must copy the log to the Dorado from a file server, then start Walnut (Walnut command to the
Executive). At the end of a public Dorado session you must stop Walnut (Destroy button), then copy
the log to a file server. Soon, Walnut will be capable of accessing a Walnut log stored on an Alpine file
server, just as it can access Cypress databases today.

A Walnut log grows with each retrieved message and database update until an Expunge command
is given to the Executive. This command writes a new Walnut log that only contains information about
the messages that have not been deleted, and updates the database to be consistent with this. (Note that
this requires disk space for two copies of the log.) Because the cost of a full Expunge is proportional to
the size of your Walnut log (which can grow to be quite large, if you are a "pack rat™), there is a "short
cut” Expunge that only deletes messages from the point in the log of the previous Expunge; it is enabled
by setting the Walnut.EnableTailRewrite user profile option. When enabled, LEFT-clicking Expunge
causes the short-cut expunge to be performed, while RIGHT-clicking performs the full expunge. Note
that with the tail-rewrite expunge any quite old messages that you delete (which appear before the
expunge cut-off point) will not be removed from the log or database; thus, once in a while you will still
need to do a full expunge.

Jim Morris’s advice concerning files on the local disk is to "keep your bags packed”. A prudent
individual will apply this philosophy to his Walnut log. Include this file in a personal .df file (such as
the one that contains your user profile), and make it a habit to SModel it every few days.

WALNLT 4.2

How 1o USE WALNUT 8

4. Becoming a User
4.1 Standard usage

First, bring over the latest Walnut by typing
Bringover /a /p <Cedar>Top>Walnut

to the Executive; this will also retrieve WalnutSend, Cypress, and AlpineUsefImpls. These latter files
will be loaded by Walnut (AlpineUserlmpls only if needed).

Edit your personal profile to contain all of the entries specified in WalnutDefault.profile (public in
Walnut.df). The only profile entry that most users will want to experiment with is "InitialActiveRight:
TRUE"; making it FALSE causes the Active message set displayer to create itself in the left viewer column,
like all other message set displayers.

To start Walnut, type
Walnut
to the Executive. This will spend a long time loading, but finally a Walnut control viewer will appear.

You can include Walnut in a checkpoint. Be sure not to click checkpoint until the message "Walnut
4.2" appears in the Walnut control viewer typescript. Message and Message set displayers get updated
after each rollback; if a displayed message or message set has since been deleted, the viewer will be
destroyed.

To read a Laurel or Hardy mail file, or a file created by Walnut’s Archive operation, first run
Walnut as just described. Then type

WalinutOldMailReader <complete mail file name> {optional message set name}

to the Executive. If you fail to specify a message set name, the messages will be placed in Active. If
the specified message set does not exist, it will be created.

4.2 Using Alpine for Walnut database storage

The Alpine server "Luther.alpine” can be used to store Walnut databases. Using Alpine improves
Walnut performance somewhat, especially for operations that write to the Walnut database. It frees up
space on the local disk that is otherwise occupied by the Walnut database. It also reduces the cost of
using Walnut on a public machine (you move only the log to the new machine, not the log and database.)
The drawback of using Alpine is that on occasion it may abort Walnut's transaction; Walnut will recover
from this gracefully, but it may take some time to replay your uncommitted actions stored in the log.
Transaction aborts are infrequent, so on balance the Alpine server is an improvement over the local disk.
Contact Karen Kolling to obtain an Alpine account.

Using Alpine changes the procedure for Walnut installation only slightly.
Edit your personal profile to contain the entries:

Walnut.WalnutSegmentFile: "[Luther.alpine]<YourName.pa>Walnut.segment"
Walnut.WalinutLogFile: "YourName.WalnutDBLog"

With your profile in this state, you must run AlpineUserImpls before mvokmg the Walnut command.
One way of ensuring this is to include the items

Run AlpineUserimpls; RunAndCall Walnut

in your CommandsFrom: profile entry. It is ok to take a checkpoint after running AlpineUserlmpls
and Walnut.

WALNUT 4.2

How To USE WALNUT 9

There are two ways to create a Walnut database on Alpine. The first is to follow the procedure
above, in which case Walnut will notice the absence of a database and create one by scavenging from
the log. The second is to copy the database from the local disk to the Alpine server, using the procedure
call

- AlpineCmds.Copy[to: "[Luther.alpine[KYourName.pa>Walnut.segment”, from:
"Walnut.segment"]

You must run AlpineUserlmpls before attempting to call this procedure. For more'information on
Alpine operations consult [Indigo]<Cedar>Documentation>AlpineDoc.*.

WALNUT 4.2

How 1O USE WALNUT 10

5. Coping with Releases and Crashes

Walnut sometimes crashes because its database has gotten into a bad state. Also, a new release of
Walnut or the Cedar database system will occasionally change the database format that Walnut
understands. From Walnut's point of view these circumstances are very similar.

A Walnut database can always be reconstructed by replaying a Walnut log file. If Walnut is not
loaded, you can reconstruct the Walnut database by executing the command file WScav.cm, which is
included in Walnut.df; when the command file completes, you will be running Walnut just as if you had
used Walnut.cm. [f Walnut is already loaded, you can scavenge by typing WalnutScavenge to the
Executive. Walnut will also scavenge automatically if the database cannot be found.

WALNLUT 4.2

How TO USE WALNUT 1

6. User profile options

Below is a complete list of all of the current Walnut user profile options (copied from

UserProfile.doc):
Walnut.ReplyToSelf: BOOL « FALSE;
if TRUE, causes walnut to automatically supply a Reply-To: field, if appropriate.

Walnut.DestroyAfterSend: BOOL « FALSE;
if TRUE, causes sender to be destroyed after a successful delivery, if Send was clicked with RIGHT

Walnut.InitialActiveRight: BOOL + TRUE;
true says to bring up the active message set on the right column, false on left.

Walnut.InitialActiveOpen: BOOL « FALSE;
true says open a message set viewer on Active.

-Walnut.InitialActivelconic: BOOL « FALSE;
if true and Initial ActiveOpen = TRUE, then the Active message set viewer is opened as an icon.

Walnut.MsgSetButtonBorders: BOOL « FALSE;
if TRUE, puts borders around the MsgSet buttons in the control window.

Walnut.EnableTailRewrite: BOOL « FALSE:
if TRUE, performs "tail rewrite” on Expunge.

Walnut.WalnutSegmentFile: TOKEN « "Walnut.Segment";
value is the name of the file to be used for the walnut data base.

Walnut.WalnutLogFile: TOKEN « "Walnut.DBLog";
Name of log file.

WALNUT 4.2

How TO USE WALNUT 12

7. Shortfalls and Wishes

What follows is a listing of known deficiencies and contemplated extensions to Walnut. Nobody
guarantees that everything listed below will be implemented. But the list does indicate some directions
for future work, and may provide context for your own Walnut wishes. Send both bug reports and
wishes to WalnutSupportt.

7.1 Message sets

It would be nice to allow selection of more than one message in a message set (perhaps even
spanning message sets).

When a message set displayer is created, it should display the newest messages first (perhaps by
painting from the bottom of the viewer towards the top), since these are most likely to be accessed.

7.2 Retrieving mail

[t seems desirable to make mail retrieval a continuous background activity. This would tend to
insulate users from the response time of Grapevine.

Once mail retrieval is implemented in the background. a natural next step is to provide some means
for a user procedure to classify incoming mail according to its significance, file it in sets other than
Active, let the user know the status of his new mail ("You have important new mail”).

The procedure that stores new mail in the database should understand the In-Reply-To relationship.
Eventually, users should be able to write queries or other commands that exploit this relationship.

7.3 Sending mail

[t should be possible to forward or answer multiple messages. This seems to require the ability to
select multiple messages.

Feedback from mail parse errors can be improved. When displaying a message containing a parse
error or bad a recipient, the point of error in the message header should be highlighted.

When sending a sequence of messages with the message composition viewer, you tend to click Send,
wait for the feedback "sending ...", then make the viewer iconic (to reclaim the screen area) and finally
click NewForm to create a new viewer. [t would be smoother to reuse the same message composition
viewer, but without waiting for the message to be sent (since this can take quite awhile). Since it is
quite unusual to have two messages in transit (as contrasted with two messages being composed) at the
same time, this can be achieved by passing responsibility for the message from the message composition
viewer to the Walnut control viewer when message parsing is complete, and clearing the composition
viewer for reuse. Any errors in transmission would be reported in the control viewer rather than the
. composition viewer.

7.4 Global operations

Walnut needs a way to make queries. (This is what databases are all about!) For starters, we'd like
to have something analogous to Laurel’s SearchMail program for performing text pattern matching in
the messages of a message set.

The Walnut Expunge operation currently requires more resources (such as disk space) than Walnut
requires to perform other operations on the same database. This is unfortunate, since it means that a
user can get stuck in a situation where he must hand-edit his Walnut.DBLog in order to recover.

WALNLUT 4.2

Cedar Language Overview
Version 4.2

Release as [Indigo]KCedar>Documentation>Overview.tioga, .press
Came from [Indigo]<CedarDocs>Manual>Overview.tioga, .press
Last edited by Horning on June 1, 1983 6:48 pm

Abstract: This Overview is intended to introduce you to the basic vocabulary and concepts that
you need before plunging into sources of more detailed information about the Cedar Language.
It assumes that you have already read the Briefing Blurb and the introduction to Cedar.
If you haven'’t, read them first and return. It starts with a brief review of the common concepts
that Cedar shares with other members of the Pascai family, then gives a somewhat less hasty
tour of the more novel features of Mesa, followed by a discussion of the additional changes that
produced Cedar. Finally, there is a guide to sources of further information.

Version 4.2 of the Cedar language documentation corresponds to Release 4.2 of the Cedar
system. It is intended to supersede all descriptions prior to June 1983. Previous documents may
be read for historical interest, but are believed only at the reader’s peril.

[If you are reading this document on-line, | suggest that you use the Tioga Levels and
Lines menus to initially browse the top few levels of its structure before reading it
straight through.]

XEROX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

DRAFT - For Internal Xerox Use Only - DRAFT

CEDAR LANGUAGE OVERVIEW

Cedar Language Overview: Contents
Introduction
Review of the Pascal-like features
Data and types
‘Statements
From Pascal to Mesa
Modules
Exceptions
Processes, monitors, and condition variables
Control constructs
Miscellaneous
From Mesa to Cedar
Garbage collection, collectible storage, and REFs
Safety
Delayed binding
Miscellaneous
Converting Mesa Programs to Cedar
Simple Programs
New language features
Restrictions of the safe language

For More Information . . .

CEDAR 42

CEDAR LANGUAGE OVERVIEW 3

Introduction

The programming language of the Cedar Programming Environment (hereafter, Cedar Language, or
just Cedar) has resulted from an evolutionary process in PARC and SDD that spanned more than a
decade. Understanding what the language is, and why it is that way, may be somewhat easier with a little
historical background:

Mesa is a system implementation language in the "Pascal family,” with extensive facilities for
modularization and separate compilation, processes and monitors, exceptional-condition handling,
and control of low-level hardware functions. [t was initially designed and implemented in the PARC
Computer Science Laboratory, primarily by Butler Lampson, Chuck Geschke, Jim Mitchell, Ed
Satterthwaite, and Dick Sweet. Subsequently, the OSD System Development Department assumed
responsibility for development and maintenance. It has gone through a series of releases.

When CSL launched the Cedar Project in 1979, it chose to use the Mesa language and system as a
starting point. (Mesa 6, 7, and 8 are its closest relatives.) However, Mesa did not have a few of the
features that seemed to be important for an experimental programming environment, so some
extensions and changes were designed. The major changes resulted from adding automatic storage
deallocation (garbage collection) and facilities for delaying the binding of type information, without
sacrificing complete type-checking in either case.

This Overview is intended to introduce a competent programmer to the basic vocabulary and
concepts that are needed before plunging into sources of more detailed information about the Cedar
Language. It assumes that you know some other language in the Pascal family. It also assumes that you
have already read the Briefing Blurb and the Introduction to Cedar. If you haven't, read them first and
return.

This Overview starts with a brief review of the common concepts that Cedar shares with other
members of the Pascal family, then gives a somewhat less hasty tour of the more novel features of Mesa,
followed by a discussion of the additional changes that produced Cedar. It ends with a survey of sources
for further information.

This Overview does not provide the detail you need to actually write Cedar programs. (In particular,
the reference grammar is included but not discussed.) But when you finish reading it, you should have
a fair acquaintance with Cedar terminology and concepts, and you should have a good idea of what you
need to learn. Different things are discussed in varying depth; generally the long discussions cover things
that you should plan to study carefuily.

Cedar documentation is still evolving. Comments and suggestions on how it can be made more
useful are welcome at any time. Although we plan a systematic attempt to assess the effectiveness of the
various kinds and pieces of documentation, you should not wait until asked to let us know what you
think about it.

Various proposals and descriptions of interim implementations from September 1979 onward have
been given labels such as 5C1, 5C2, 6C2, 6CS, 7T1l, and Version 3. Version 4.2 of the Cedar language
documentation corresponds to Release 4.2 of the Cedar system. It is intended to supersede all descriptions
prior to June 1983. Previous documents may be read for historical interest, but are believed only at the
reader’s peril. This Overview has been compiled by Jim Horning; errors and sources of confusion should
be reported to him. Most of the contents have been abstracted from previous documents, with a small
amount of editing and validity checking.

CEDAR 42

CEDAR LANGUAGE OVERVIEW 4

Review of the Pascal-like features

The following summarizes aspects of Cedar (and Mesa) that are basically similar to those of other
members of the "Pascal family” of languages (e.g., Euclid, Modula, Ada). If there are any concepts in
this section that are not already familiar to you, you should probably find a Pascal textbook and study
it before proceeding to further material on Cedar. (You will find that the names for these concepts vary
somewhat from language to language.)

An algorithm or computer program consists of two essential parts, a description of actions that are
to be performed, and a description of the data that are manipulated by these actions. Actions are
described by statements, and data are described by type definitions.

Data and types

Data are represented by values. Values are immutable: they are not changed by computation. A
constant always denotes.the same value within a scope. A variable is a value that may contain another
value; assignment changes the value contained by a variable, but not the value that is the variable.

A value used in a program may be represented by a literal constant, the name of a constant or
variable, or by an expression, which will itself contain other values. Every name occurring in the program
must be introduced by a declaration. A declaration associates with a name both a data type and a constant
value (which may itself be a variable, and contain different values at different times).

A data type defines both a set of values and the actions that may be performed on elements of that
set. [t may either be directly described in a declaration that uses it, or it may be referenced by a type
name,. introduced in a type declaration. The type of every constant, variable, and expression can be
deduced from static analysis. This analysis is performed by the compiler to ensure that all programs are
type-correct; thus the language is said to be strongly typed.

An enumerated type definition indicates an ordered set of values, i.e., introduces names standing for
each value in the set. The simple types are the enumerated types, the subrange types, and the built-in
types, including BOOL. INT, REAL, and CHAR. There are standard denotations for literal constants of the
built-in types: TRUE and FALSE for BOOL, numbers for INT and its subranges and for REAL, quotations
for CHAR. Numbers and quotations are syntactically distinct from names—as are the "reserved words"
of the language. The set of values of type CHAR is an 8-bit variant of the ASCII character codes.

A type may be defined as a subrange of a simple type by indicating the smallest and largest value
of the subrange.

Structured types are defined by describing the types of their components, and indicating a structuring
method: ARRAY or RECORD. These differ in the mechanism for selecting a component of a value.

In an array structure, all components are of the same type. A component is selected by a computable
selector, or index. The index type, which must be simple, is indicated in the array type definition. It is
usually a programmer-defined enumerated type. or a subrange of INT. Given a value of the index type,
an array selector yields a value of the component type. Every array structure value can therefore be
regarded as a mapping of the index type into the component type.

In a record structure, the components (called fields) are not necessarily of the same type. In order
that the type of a selected component be evident from the program text (without executing the program),
a record selector is not a computable value, but must instead be a name uniquely denoting the component
to be selected.

A record type may be specified as consisting of several variants. This allows different record values
of the same type to have structures that differ in the number of components, their types, or their names.
The variant describing a particular value is indicated by a special field, called its tag. Variants of a type

CEDAR 42

CEDAR LANGUAGE OVERVIEW 5

may also share fields in addition to the tag.

An explicit variable declaration associates a name and a static variable; the name is used to denote
the variable in expressions. Dynamic variables are generated by a special procedure (NEW) that yields a
pointer or reference value that subsequently serves in place of a name to refer to the variable. Finite
graphs in their full generality may be represented using pointers or references.

Statements

N

The simplest statement is the assignment statement. It specifies that a newly computed value be
assigned to a variable (or a component of a variable). The value is obtained by evaluating an expression.
Expressions consist of variables, constants, operators, and procedure values operating on arguments to
produce new values. Constants are literal or declared: variables and procedures are built-in or declared;
the set of operators is defined within the language, and includes operators for arithmetic, comparison,
and logical operations.

The procedure statement causes the application (invocation, call) of a designated procedure value to
the values of its arguments (actual pararheters).

Basic statements are the components of structured statements, which specify sequential, selective, or
repeated execution of their components. Sequential execution of a sequence of statements is specified by
separating them by semicolons; conditional or selective execution by the if statement and the select
statement; and repeated execution by loop statements.

A block can be used to associate declarations with statements. The names so declared have significance
only within the block. Hence, the block is the scope of these names, and they are said to be /ocal to the
block. Since a block may appear as a statement, scopes may be nested.

A block can be the body of a procedure value. A procedure has a fixed number of parameters, each
of which is denoted within the procedure by a name called the formal parameter. Actual argument values
are supplied for parameters at each application.

Procedures may also have results: applications of such procedures may appear within expressions.

CEDAR 4.2

CEDAR LANGUAGE OVERVIEW 6

From Pascal to Mesa

Mesa extended Pascal in a number of directions intended to make it more effective for the
development of large systems. Students of programming languages will discern influences from Algol 68,
BCPL, and several other system implementation languages. [t is a larger language, and is rather more
difficult to master in its entirety, than Pascal. It is intended for professional programmers, not for
beginning students.

Mesa modules are separately compiled program units, with type-checking preserved across module
boundaries. Mesa provides mechanisms for systematic handling of exceptions, processes and monitors,
procedures as first-class values that can be assigned to variables, and a fair number of syntactic and
semantic amenities intended to make programming more convenient.

The following sections introduce each of the major conceptual extensions, but do not explain them
in great depth. See [Geschke, er al] for a more extensive rationale, and CSL-79-3 for full details.

Modules

Mesa modules are a "programming in the large” mechanism for partitioning a system into manageable
units. They can be used to encapsulate abstractions, to provide a degree of protection, and to enforce
"information hiding.” They are also the units of separate compilation.

There are two kinds of modules: DEFINITIONS modules, which define interfaces, and PROGRAM
modules, which contain the executable code to implement these interfaces.

Definitions (or defs) modules define interfaces to abstractions. They typically declare some shared
types, useful constants, and the domains and ranges of a set of procedure names. They compile into
symbol tables, which are shared by both clients and implementations. Checks are performed when modules
are bound into a configuration to ensure that separately compiled pieces have used consistent versions of
the shared definitions. /nterfaces produce no executable code: they manifest themselves at runtime
primarily as symbol tables that are accessible for debugging and similar purposes.

Program modules provide implementations of abstractions. They typically declare collections of
variables that define their state and provide bodies for the procedures of their interfaces. Viewed as
source text, they are similar to Pascal procedures and Simula class definitions. They can be loaded and
interconnected to form complete systems.

At runtime, one or more instances of an implementation may be created. A separate global frame
(activation record) is allocated for each, containing storage for its global variables (those which are
declared outside its procedures), which persist between applications of its procedures. The lifetimes of
implementation instances (unlike those of procedure applications) are not restricted to follow any
particular discipline. Communication paths among implementations are established dynamically and are
not constrained by any (static or dynamic) nesting relationships; lifetimes and access paths are completely
decoupled. The module body itself generally contains the code to initialize the global variables and
establish any necessary invariants. [t will be executed when the module is started, or upon application of
one of the module’s procuedures, whichever comes first.

A module that accesses (relies on declarations from) other modules must include DIRECTORY
statements, so the necessary symbol tables can be acquired. If it uses only a subset of the declarations, it
is good practice to indicate which ones with a USING list. Declarations in an interface are public unless
declared to be PRIVATE. Normally the importing module accesses only the public names; private
declarations may be accessed by implementing modules that indicate they SHARE the interface. A directory
statement may list the name of a file containing the svmbol table to be used, but if the file name is the
same as the module name (except for the extension .bcd) it is omitted.

A module that uses non-constant declarations (e.g., exported types and procedures) from another

CEDAR 4.2

CEDAR LANGUAGE OVERVIEW 7

module must explicitly import it. [f a module implements any part of an interface (e.g., by supplying the
value of a procedure or type that it declares), it must explicitly export it. The compiler will check that
its PUBLIC declarations are type-consistent with the corresponding declarations in the exported interface(s).

Each module is effectively parameterized by a set of interface records, one for each interface it
imports, and supplies a set of export records, one for each interface it exports. Note that interfaces and
implementations need not be in one-to-one correspondence. Binding a group of modules together into a
configuration involves assigning values from the export records to the corresponding fields in the interface
records. There is a special sublanguage, C/Mesa, to control this process.

Accessing other modules introduces compilation order dependencies. Each module must be compiled
after the modules it accesses (and recompiled if they change), since the compiler needs their symbol
tables. But information does not flow in the other direction. Modules that are not accessed by others
(virtually all implementations) may be freely recompiled without invalidating previous compilation and
checking of any other modules.

Types, as well as procedures, can be declared opaquely in interfaces and subsequently bound to
concrete values supplied by implementations. This makes the internal structure of the type invisible to
clients of the interface, and ensures that there can be no compilation dependencies between the definition
of the concrete type and the interface module. The definition of the type can be changed at any time
without requiring recompilation of the interface or any clients of the interface.

Effective use of Mesa requires a thorough understanding of modules and their use. They have
significantly influenced our program design and construction techniques.

Programs are almost never self-contained modules; the importation and re-use of existing code has
all the advantages of theft over honest toil—without the moral stigma. Considerable emphasis is laid on
the careful design of interfaces, and on their documentation. Since it is only interface changes that force
recompilation (or perhaps even rewriting) of client programs, it is important that interfaces remain stable
for substantial periods, even while their implementations are undergoing change.

A recommended approach is to define, comment, and circulate for review, all of the interfaces in a
(sub)system before writing any of the implementations. Interfaces play much the same role as “program
design languages” in other environments. with the additional advantages of being precisely defined and
mechanically enforced.

The Mesa language definition omits many of the features commonly expected in programming
languages, such as input/output and string-manipulation operations. Of course, these facilities are available
to Mesa programmers, but they are provided by packages written in the language itself. The descriptions
of standard packages in the Mesa Programmer's Manual, Version 8.0, run to more than 300 pages.

When managing large collections of modules (and in systems like the Mesa Development
Environment and Cedar they run into the thousands), module names become very important. The use
of cryptic or acronymic names is discouraged. By convention, source file names have the extension .mesa,
and object file names have the extension .bcd (for Binary Configuration Description). The definitions
module for an interface X is customarily named X; if it is implemented by a single program module,
that is customarily named XImpl.

Exceptions

Mesa provides a way to indicate when exceptional conditions arise in the course of execution and
an orderly means for dealing with them that is inexpensive if they do not arise. Exceptions cause a
transfer of control from the statement that raises them to a dynamically-selected part of the program
intended to handle the situation. They may be raised in response to the detection of "impossible”
situations, invalid inputs, the inability of an abstraction to supply its specified service, or simply unusual
events.

CEDAR 42

CEDAR LANGUAGE OVERVIEW 8

Mesa exceptions are conceptually similar to procedures, except that the binding to the handler is
determined by searching the catch phrases in the call stack of the process in which the exception is
raised; the dynamically innermost handler that accepts the condition is applied. Like normal procedures,
handlers can take parameters and return values. They are written in a distinctive syntax that clearly
identifies them as code for the exceptional case.

Catch phrases are syntactically and semantically similar to SELECT statements, with test items
indicating the exceptions for which the associated handler should be applied. There are special test items
to catch arbitrary exceptions and to catch an attempt to unwind the application stack in response to an
exception. A series of catch phrases may be associated with a procedure application, or enabled throughout
a block.

A handler is like a procedure body, but when it completes, there are a number of additional control
options: GOTO, EXIT, LOOP, RETRY, CONTINUE, REJECT, and RESUME. Resumption is analogous to
returning from a procedure, possibly with a result. Exceptions are divided into SIGNALs, which may be
resumed, and ERRORs, which may not; in common parlance they are generally all called signals.

Since handlers may take parameters and return results, each exception name must be declared in a
scope that includes all the points where it is raised as well as all the caich phrases that accept it.

The cost of raising an exception is significantly higher than the cost of procedure application, but it
shouldn’t happen very often. The system guarantees that all exceptions are handled at some level; those
that the program fails to catch are accepted by the debugger, keeping intact the state of the program
that raised it.

Exceptions can be used in very intricate ways to achieve subtle effects (e.g.. by raising another
exception within a handler). Experience has shown that this is almost always a mistake. Some call it
elegance, others call it incomprehensible:

"For the programmer, the main import of nested signals is that one needs to consider, when writing
a routine, not only what signals can be generated, directly or indirectly, by the called procedures,
but also those which can be generated by catch phrases in that procedure or even the catch phrases
of any calling procedures, also both directly and indirectly.” [Mesa Language Manual]

Although his language proposals have not been implemented. Roy Levin’s discussion in the working
paper [Indigo[<CedarDocs>Style>SignallingGuidelines.press is the best source of guidance on tasteful and
appropriate uses of exceptions. The most important point is that the exceptions a procedure may raise
must be considered part of its interface, and documented as such. Unfortunately, the compiler currently
doesn’t enforce this, and many otherwise excellent interfaces do not comply.

Processes, monitors, and condition variables

Mesa provides efficient mechanisms for concurrent execution of multiple processes within a single
system. This makes it natural to structure programs to reflect their inherent concurrency. Mesa also
provides facilities for mutually exclusive access to resources and process synchronization by means of
entry to monitors and waiting on condition variables.

FORK makes it possible to start the execution of another procedure concurrently with the program
that applies it. It returns a process, which may either be detached to proceed independently, or saved for
a future JOIN. There is no rule against multiple coexisting instances of a procedure, either forked or
applied, although care must be taken to ensure mutual exclusion on accesses to shared global data.

JOIN takes a single process argument. When the forked procedure has executed a RETURN and the
JOIN has been executed (in either order), the returning process is deleted. and the joining process receives
its results and continues execution. A process type is declared similarly to a procedure type, except that
only the type of the result is specified.

CEDAR 42

CEDAR LANGUAGE OVERVIEW 9

All processes execute in the same address space. This means that they are not protected from each
other, which is presumably acceptable in a single-user system. [t also means that process creation and
switching between processes is cheap (not much more time-consuming than a procedure call).

Generally, two or more cooperating processes need to interact in more complicated ways than simply
forking and joining. The interprocess synchronization mechanism provided in Mesa is a variant of
"monitors” adapted from the work of Hoare, Brinch Hansen, and Dijkstra. The underlying view is that
interaction among processes is always based on access to shared resources (e.g., data) and that a proper
vehicle for this interaction must unify the synchronization, the shared data, and the procedures that
perform the accesses.

A monitor is typically a module instance, with shared data in its global frame, and its own procedures
for accessing them. Some of the procedures are public, allowing applications of monitor procedures from
outside. Obviously, conflicts could arise if two processes were executing in the same monitor at the same
time. To prevent this, a monitor lock is used for mutual exclusion. Application of one of a monitor's
ENTRY procedures automatically acquires its lock (waiting if necessary), and a return releases it. An
integrity constraint that the programmer imposes on the monitor’s data is called a monitor invariant. The
lock makes it possible for the programmer to ensure that this invariant will be true whenever an entry
procedure begins execution—regardless of what is happening in various processes—simply by making
sure that it is true initially and that every entry procedure restores it before returning.

Of course, a process may enter the monitor and find that the monitor data is in a good state but
indicates that the process may not proceed until some other process enters the monitor and changes the
situation. The WAIT operation allows a process to release the monitor lock temporarily (and suspend
execution) without returning, The wait is performed on a condition variable, which is associated by
agreement with the actual condition needed. After making a change that may have changed the condition,
some other process must perform a BROADCAST or NOTIFY on the condition variable; this allows a waiting
process to reacquire the lock, retest the condition, and resume execution if it is true. Note that since a
wait releases the lock, the monitor invariants must be restored before waiting.

The procedures of a monitor are classified as entry, internal, and external. Internal procedures may
only be applied by entry or internal procedures of the same monitor, since they are intended to be
executed within the monitor’s mutual exclusion, but do not acquire the monitor lock. External procedures
are logically outside the monitor, but are declared within the same module for reasons of logical packaging.
Being outside, they must not reference any monitor data nor apply any internal procedures; they are
often used to provide a convenient interface that “hides" one or more applications of entry procedures.

The attributes ENTRY and INTERNAL are associated with a procedure’s body, not with its type; thus
they do not appear in interfaces. From the client side of an interface, a monitor appears like any other
module.

In simple cases, a monitor’s data comprises its global variables, protected by an implicit lock that is
automatically allocated in its global frame. However, many applications deal with mulitiple objects,
represented. say, as records accessed through pointers. It may be necessary to ensure that operations on
these objects are atomic, i.e., once the operation has begun, the object will not be otherwise referenced
until the operation is finished. It is possible to associate a lock with the object, rather than with the
module’s global frame, by declaring the data as a MONITORED RECORD. A single module instance can
then implement each operation as an entry procedure, taking the object as a parameter. Locking is
specified in the module heading by a LOCKS clause.

A somewhat subtle source of deadlocks occurs if control leaves an entry procedure by means of an
uncaught exception. Unless it is certain that all exceptions (including those raised by invoked procedures)
are handled, each entry procedure should include an UNWIND catch phrase, which will implicitly release
the monitor lock.

Control constructs

CEDAR 42

CEDAR LANGUAGE OVERVIEW 10

Mesa’s facilities for ordinary sequential "programming in the small” are extensive, but fairly
conventional. The syntax is not exactly like that of any other language, but for the most part it can be
picked up easily with a few minutes study of the grammar. (In fact, since most program text is produced
either by editing existing programs or by the use of the Tioga editor to expand syntactic templates, you
may be able to just "fake it.") This section mentions a number of areas where Mesa provides “convenience”
extensions or conceptually small changes.

SELECT statements generalize Pascal’s "case” construct by allowing several ways to specify how one
statement is to be chosen for execution from an ordered list. The most common form is based on the
relation between the value of a given expression and those of expressions associated with each selectable
statement. The relation may be equality (the default), any relational operator appropriate to the types of
the values involved, or containment in a subrange. A single selection may be prefixed by several selectors,
and an optional ENDCASE statement is selected only if none of the others are. Discriminating selection is
used to branch on the type of a variant record value (and in Cedar, on the current type referred to by
a REF ANY). SELECT expressions are analogous, but choose from an ordered list of expressions.

[teration is provided by loop statements in which several different kinds of control can be freely
intermixed. A loop has a contro! clause and a body. The control clause may specify a logical condition
for normal termination, possibly combined with a range or a sequence of assignments for a controlled
variable. In addition to ordinary statements, the body may contain EXIT or GOTO statements to explicitly
terminate its execution, and may be followed by a REPEAT clause that acts like a selection on the GOTO
used to terminate the loop. (GOTO cannot be used to synthesize arbitrary control structures. It is much
more like a "local” exception.)

In Pascal, procedure execution must proceed somehow to the end of the body before terminating;
in Mesa, it can be terminated anywhere by executing a RETURN statement. If the procedure’s type
includes results, the return statement may supply the values to be returned—otherwise they are taken
from the result variables named in the type. Each procedure body is followed by an implicit return.

Pascal procedures are not values that may be assigned to variables; Mesa procedures are. In most
cases. the programmer still thinks of a constant association between a procedure name and its body, but
to truly understand what is going on when interface records are bound, it helps to realize that procedure
values from the export records are being assigned to appropriate fields of the interface records. This
same power is available to the Mesa programmer; one popular form of "object-oriented programming”
is based on the creation of an explicit record of procedures for each kind of object, and passing around
together a pair of pointers, one to the procedure record, and another to the object instance data.

INLINE procedure constants may be declared in interfaces or locally. This is an instruction to the
compiler to expand the procedure hody inline for each application, rather than compiling a call to
out-of-line code. It is intended to improve the speed without changing the semantics of the
procedure—inlines are not macros. INLINE should be considered a form of tight binding best reserved
for late stages of system tuning; among other things, it can cause the compiler to run out of resources,
even when compiling what appear to be small modules.

In addition to procedures and exceptions, Mesa has a third mechanism for transfer of control, called
a PORT. When used in pairs, ports can provide a very general form of coroutine implementation. In some
circumstances, coroutines have advantages similar to processes, at slightly lower cost, but they are not
used much in Mesa or Cedar.

Miscellaneous
Every expression in a Mesa program has a syntactic type that can be deduced from its structure by
static analysis of the program text, a process called type determination. The language imposes constraints

on the type of each expression according to the context in which it is used, even in separately compiled
modules.

CEDAR 42

CEDAR LANGUAGE OVERVIEW 11

The syntactic type of a name is established by declaration.
The form of a literal implies its type.
Each operator produces a result with a type that is a function of the types of the operands.

The type rules in Mesa take two general forms:

The type required by the context is known exactly, and a given expression must have it. The required
type is called the target type. Examples occur in assignment, initialization, record construction,
array construction, argument list construction, and array subscripting. Several coercions (e.g.,
pointer dereferencing, base/subrange conversion, single-component record to field) will be
applied if needed to convert a value whose syntactic type is not its target type to one that is.

The exact type is not implied by context, but a relation that must be satisfied by a set of types is
known. The process of finding types to satisfy that relation is called balancing. Examples
include generic operators (such as relationals) that require two operands of the same type,
conditional expressions, and select expressions. The common type selected will be the one
requiring the fewest coercions.

A sequence in Mesa is an indexable collection of items, all of which have the same type. In this
respect, a sequence resembles an array; however, the length of the sequence is not part of its type. The
(maximum) length of a sequence is specified when the object containing that sequence is created, and it
cannot subsequently be changed. It is the responsibility of the programmer to keep track of the number
of items in the sequence at any time.

Mesa allows a default initial value to be associated with a type. If a type is constructed from other
types using one of Mesa's structures, such as RECORD, an implicit default value for the constructed type
is derived from the default values of the component types, but it can be overridden with an explicit
default value. Default values for arguments can simplify procedure applications; default fields of records
make the corresponding constructors more concise and more convenient; initial values are useful to
ensure that the corresponding storage is always well-formed, even before the variable has been used by
the program.

Dynamic variables in Mesa are allocated in zones. These are not necessarily associated with fixed
areas of storage; rather, they are objects characterized by procedures for allocation and deallocation.
There is a standard system zone, but programs that allocate substantial numbers of similar dynamic
variables can often improve performance by segregating each kind into its own zone. The operator NEW
is used to create a dynamic variable in a zone, and FREE to release it.

The MACHINE DEPENDENT attribute allows precise control of the representation of values at the bit
level.

CEDAR 4.2

CEDAR LANGUAGE OVERVIEW 12

From Mesa to Cedar

The Cedar Language is very closely related to Mesa. The most radical change is the provision of
automatic deallocation of dynamic storage, or garbage collection. Several other changes extend the range
of binding times available for such important attributes as the types of variables.

It is intended that most Cedar programs will be written in the safe subset, which imposes a number
of restrictions not present in Mesa to ensure the safe operation of the garbage collector, and introduces
some new (safe) features to make these restrictions tolerable. The full (unsafe) language is generally
"upward compatible” with Mesa.

Garbage collection, collectible storage, and REFs

Although Mesa pointers are typed, they provide a rich source of opportunities for creation of safety
problems, including the classical dangling pointer problem, where a pointer is used after the storage it
refers to has been deallocated, and the opposite storage leak problem, where storage becomes inaccessible
without being deallocated for reuse. Freeing the programmer from responsibility for deallocating storage
at just the right time was a major goal of Cedar. It adds a new class of REF types that are just like the
corresponding pointer types except that the system is responsible for freeing the dynamic variables they
refer to afier they have become inaccessible.

Cedar provides three types of storage:

Frame: This is storage that is implicitly allocated by a procedure application or an implementation
instantiation to hold variables declared in the corresponding scope. It is also implicitly
deallocated, upon exit from the scope (e.g., return from the procedure).

Collectible: This is storage that is explicitly allocated by NEW, and implicitly deallocated after there
are no more accessible REFs to it. FREE applied to a REF variable will cause it (and REF fields
in the dynamic variable it refers to) to be "NiLed out,” but the dynamic variable will only be
freed when no other REFs to it remain.

Heap: This is storage that is explicitly allocated by NEW, and deallocated by (unsafe) FREE statements,
as in Mesa. Heap storage is referenced by pointers, which may not be dereferenced in checked
regions, and should not refer to dynamic variables containing REFS.

The introduction of collectible storage has substantially revised programming style and interface
design in Cedar. When the project was being contemplated, some Mesa programmers indicated that as
much as 40% of their time went into designing and checking the code to avoid dangling pointers and
storage leaks, to tracking errors in this code, and to wasting time in tracking other errors by suspecting
storage deallocation problems. With REFs and a reliable garbage collector that all goes away.

Frame (static) variables are still less expensive than dynamic variables, since entire frames are
allocated and freed on procedure entry and exit (and the mechanism for doing it has been rather carefully
tuned). However, it is entirely reasonable to use dynamic variables for data whose lifetime is not closely
connected to a particular procedure application or module instance. Objects of large or varying size are
almost always passed across interfaces by reference. Definitive measurements on the cost of garbage
collection have not yet been made, but preliminary data indicates that it is generally less than 20%. Only
in very special circumstances is heap storage worth the added program complexity and potential for
erTOors.

Safety
A desirable property of a high-level language system is implementation independence. This means

that the effects of (even erroneous) programs can be understood in terms of the language—rather than
requiring an understanding of the particular implementation. Mesa comes rather close to meeting this

CEDAR 4.2

CEDAR LANGUAGE OVERVIEW 13

goal (as evidenced by the fact that most Mesa debugging can be done "at the Mesa level,” without ever
worrying about the format of frames or the details of storage management), but it does contain some
unsafe features whose use can lead to messy implementation dependencies.

It was desirable on general grounds to reduce implementation-dependence in Cedar. However, the
decision to include facilities for garbage collection made it imperative. A collector can cause storage to
be deallocated (permitting its subsequent reallocation and re-use) at times that are completely
unpredictable from examination of the source program. A single programming error that smashes a REF
used by the collector can destroy data structures in ways that make it difficult to reconstruct any evidence
of the original cause of the crash.

A major goal for the Cedar Language was that it contain a useful subset for which garbage collection
would be safe. The safe subset of Cedar is basically that part of the language where even incorrect
programs cannot interfere with the reliable operation of the collector. The vast majority of Cedar programs
should be written primarily (or entirely) in the safe subset. Safe Cedar does not provide acceptably
efficient substitutes for every use of Mesa's unsafe features, so Cedar provides a means for indicating
that some regions of a program are trusted. This inhibits compiler enforcement of the safety restrictions
and indicates that the programmer has assumed the additional responsibility of ensuring that these regions
of the program do not violate the integrity of the system.

Invulnerability, safety, and checking

It is an obviously desirable property of a programming system that no user programming error can
"break" its abstract machine and reduce its world to a rubble of bits. We call this property invulnerability.
In general, it can be ensured only by maintaining the integrity of certain data structures known to the
runtime system. Collectively, the properties that must be maintained to ensure invulnerability are called
the safety invariants; each part of the system is responsible for ensuring that they are not destroyed, and
must assume that the rest of the system does likewise.

Unfortunately, invulnerability is not a local property. If any part of the system fails to maintain the
invariants, the entire system (including programs that are themselves correct) is potentially vulnerable.
We use the term safety for the property that the invariants cannot be invalidated locally, even by incorrect
programs. Cedar operations, both built-in and programmer-defined, are classified as safe or unsafe. Most
of the Cedar Language is safe.

Unsafe constructs include LOOPHOLE, dereferencing POINTERs (but REFs are safe), JOIN, @ (address of), computed variant
records, and non-copying variant discrimination.

A region of program text, bracketted to form a block, may be prefixed with CHECKED, TRUSTED, or
UNCHECKED. ’

In checked program regions, language-enforced restrictions guarantee safety. If a block is checked,
then within that block only safe operations may be used, the block itself implements a safe
operation, and procedures declared in the block are treated as safe.

Even unchecked regions are supposed to maintain the safety invariants, but the guarantee must be
by the programmer, rather than the system. [f a block is unchecked, unsafe operations may
be used internally, the block itself is considered to implement an unsafe operation, and
procedures declared in the block are treated as unsafe. Generally even unchecked regions can
be composed primarily of safe operations: unsafe operations should be used only for good
reasons and with due caution.

A trusted block may also invoke unsafe operations, but it is assumed to implement an operation
that is safe by programmer guarantee. TRUSTED is a programmer assertion that cannot be
checked by the compiler, and therefore represents a special kind of loophole.

For easy upward compatibility from Mesa, the following defaults have been adopted: If a module
is prefixed with CEDAR, then the outermost block is CHECKED and all interfaces are assumed to be safe;

CEDAR 42

CEDAR LANGUAGE OVERVIEW 14

otherwise,. the outermost block is UNCHECKED and all interfaces are assumed to be unsafe. The checking
attribute is inherited; unless a nested block is explicitly prefixed, it is checked or unchecked like the
textually enclosing block.

If a system consists entirely of safe regions (and the invariants hold initially), then by induction the
system is invulnerable. However, an error in an unchecked region can make even the checked regions
vulnerable. Thus the CHECKED/UNCHECKED boundary limits responsibility, but not vulnerability.
Confidence that errors in checked regions will not cause system crashes is based on the the automatic
enforcement of safety restrictions. Confidence that unchecked regions will not cause system crashes is
based on trust that they are free from errors that violate the safety invariants.

Caveszt: The conversion of the Cedar system to safe interfaces is presently underway. The unsafe
interfaces are beginning to disappear. You should program as safely as you can, but do not be surprised
by the initial density of safety complaints from the compiler. A good rule is to prefix each module with
CEDAR, and then to put TRUSTED on each block about which the compiler complains, after convincing
yourself that the complaint is not your fault, because it results from a necessary use of an unsafe system
interface. The reason for each TRUSTED should be documented in an accompanying comment.

Type confusion

Mesa.is a strongly typed language, which means that the types of names are declared, and that the
language imposes restrictions to keep values of one type from being accidentally interpreted as values of
another. Because knowledge of the type structure of values in memory is so essential to the garbage
collector (it must locate and follow REFs in order to determine current storage usage), it is particularly
vulnerable to any operations that cause data in memory to be interpreted as having other than their true
types. Thus, much of the effort in designing the safe subset went into identifying all the features in Mesa
that allow 'type-checking to be circumvented (accidentally or deliberately) and designing safe replacements
for the important uses of those features.

LOOPHOLE is a "type converter” in Mesa that allows any value to be treated as having any specified
type; it is the most obvious breach of type security. [t causes a safety problem only if it allows mistyped
data to be stored into memory (i.e., if the target type contains an address, such as a pointer or procedure
value); other uses will introduce implementation dependencies, but not threaten safety. Within checked
regions, LOOPHOLE is not allowed to produce a value of a reference-containing (RC) type.

Narrowing and type discrimination

Cedar introduces a number of new type distinctions, frequently leading to a number of separate,
but closely related types. It is often desirable to coerce a value of one of these types into a value of a
related type. Where the types are such that it can be statically guaranteed that no information will ever
be lost by the coercion, it is called a widening, and is performed automatically whenever demanded by
context (e.g., assigning a bound variant value to a variant record variable). In general, conversion in the
other direction requires a runtime check to ensure that information is not being lost. To make the
possibility of such failure explicit in the program text, the NARROW type converter may be applied (and
may include a catch phrase to handle the NarrowFault exception).

The built-in test ISTYPE can be applied to a value t0 determine whether it can be narrowed to a
specified type without error. If so, it is said to satisfy the type’s predicate.

If the target type of a narrowing is uniquely determined by context. it need not be an explicit
argument to NARROW.

Delayed binding

CEDAR 4.2

CEDAR LANGUAGE OVERVIEW 15

A desirable property of a high-level programming language is that is allow a wide range of binding
times: that is, it should allow the programmer maximal control over when the attributes of a particular
variable are determined, with different choices not requiring changes in all expressions containing the
variable. Examples of such attributes are its type, storage allocation method, implementation (for abstract
objects), and actual value; examples of binding times include program-writing time, compilation,
configuration binding, program initialization, block entry, and statement execution. Generally speaking,
deferring the binding of an attribute leads to greater generality in the program at the cost of decreased
static checkability and (often) lower runtime efficiency.

Experience with languages like LISP and Smalltalk, in which most binding is done dynamically,
shows that it is much easier to write certain kinds of programs, if type and/or implementation binding
can be deferred. Programming tools (debuggers, performance monitors) and knowledge representation
systems are typical examples. But few programs take full advantage of this flexibility very often. Cedar
was designed to take advantage of early binding, as Mesa does, but to allow certain bindings to be
explicitly deferred.

Dynamic typing, REF ANY, and dynamically typed procedure variables

Mesa provides very limited variability in the binding time of an object’s type. Variant records allow
a deferred choice between specific enumerated alternatives, and sequences allow deferring the specification
of an object’s length until it is allocated. Otherwise, all types must be static. This makes it virtually
impossible to avoid LOOPHOLES and ad hoc type tagging schemes when writing schedulers, sorters, output
formatters, etc. that must operate on objects of unpredictable type.

Cedar’s solution to this problem requires two new mechanisms: a runtime representation for types,
and a way to associate a type with an object at runtime that is guaranteed consistent with the type system
and static checking. (Note that Cedar adopts the view that an object’s type is inherent in the object itself,
rather than in the way the object is referred to.)

TYPE is a type in the Cedar Language. The "structuring methods” (e.g., ARRAY, RECORD, and REF)
are viewed as operators that take type arguments and return type values as results. In the current
language, the arguments to such operators must be static (compile-time) constants.

ANY is not a type in Cedar, but can stand in place of a type in the arguments to two operators: REF
and PROC.

A REF ANY value may refer to a dynamic variable of any type whatsoever. Thus a REF T value, for
any 7, can be widened to a REF ANY value. But a REF ANY value cannot be directly dereferenced, because
the type of the result is not static. The discriminating selection statement has been generalized to allow
discrimination on the referent type of a REF ANY: within each selectable statement, the type is (statically)
known to be the type specified in its test item. NARROW can also be used to safely convert a REF ANY
value back to a REF T value; ISTYPE can be used to check whether NARROW will succeed.

A PROC type may also have ANY in place of the type of its formal parameter record type and/or
result record type. PROC values with specific domains and ranges may be widened to these dynamic
types, and later tested and narrowed analogously to REF ANYs. They must be narrowed before being
applied.

In principle, each value in Cedar carries its syntactic type with it at all times. In practice, almost all
analysis and checking of types is done by the compiler, and both space and time efficiency are gained
by not storing constant types with values. However, the symbol tables produced by the compiler contain
enough information to recover any type on demand. made available through a standard package.
RuntimeTypes provides type-conversion routines in both directions between (typed values (with type
RTTypesBasic.TV) and ordinary Cedar values. and numerous operations on typed values to examine the
type and structure of a typed value, to change its attributes, etc. Thus it is possible to write a program

CEDAR 42

CEDAR LANGUAGE OVERVIEW ' 16

that deals with any given Cedar value or type without anticipating the specific type when the program
is written. Programs such as BugBane (the Cedar debugger) absolutely require such flexibility.

The current implementation is too slow to be used effectively by client programs as a substitute for
true polymorphism in the language, but is suitable for examining and changing variables interactively
with the Cedar debugger.

Miscellaneous

Although Cedar was not intended as a research project in programming languages, its developers
were not immune to the temptation to make Mesa better in ways that were not strictly required to enable
the new programming environment. This section discusses a few of these new features.

Types as clusters of operations

Each type has an associated cluster of operations. The main purpose of this association is to support
a style of "object oriented” notation. Using a record-like notation, a procedure "field” will be looked up
in the cluster of the object’s type, and then applied to the object and the other arguments.

[t is preferred style in Cedar to use this object notation in invoking operations of interfaces designed
to support it. Consult the relevant package documentation if in doubt.

Each built-in type and type constructor in Cedar implicitly supplies a standard cluster. The cluster
extension mechanism is that each opaque or record type defined in a interface acquires all procedures
declared in the same module as parts of its cluster.

ROPEs and 10

Mesa STRINGs are rather awkward objects, having been tuned for efficiency in a small-machine
(Alto) world, rather than for flexibility and convenience. They are POINTERs to fixed-length sequences
of characters. Considerable care is required to avoid surprising results, even for rather straightforward
string-processing applications. Cedar ROPEs, on the other hand, are somewhat heavier-weight, more
convenient to use, and less prone to surprises. Several different implementations of ropes, efficient for
different purposes, provide the same interface.

Rope is a Cedar package that supports the creation and manipulation of immutable reference-counted
sequences of characters. Procedures are provided for concatenation, taking substrings, scanning, and other
operations. A client can provide specialized implementations for rope objects. The standard
implementation attempts to avoid copying when performing Substr, Concat and Replace operations. The
Rope package is the standard support for sequences of characters in Cedar..

Most of the common operations on input/output streams, plus string conversions that are commonly
used in dealing with input or formatting output, have been collected in the [0 interface. Implementations
are available for stream interfaces to all common devices, and to allow ropes and streams to be readily
interconverted.

LISTs and ATOMs

Cedar includes LIST OF as a new type constructor for singly-linked (by REFs) lists, and a constructor
for list values that mimics that of LiSP, avoiding the need for a lot of NEWs or CONSs. The analog of
LISP’'s CAR and CDR are provided by the standard fields first and rest. Unlike LiSP, Cedar lists are
statically typed (although the element type may be REF ANY).

Cedar also has a built-in type ATOM. which can be used for values that are uniquely determined by
their print names. Any rope can be converted to an atom and conversely: the advantage of atoms is that,

CEDAR 4.2

CEDAR LANGUAGE OVERVIEW 17

unlike ropes, it is very cheap to compare them for equality; atoms may also have property lists. Atom
literals are just names prefixed by $.

CEDAR 42

CEDAR LANGUAGE OVERVIEW 18

Converting Mesa Programs to Cedar — Jim Morris

This section assumes you already know how to program in Mesa (or that you have a Mesa program
to be converted), and is intended to explain the differences for programming in Cedar.

Simple programs

Let's suppose you want to run a simple program in Cedar. [f an existing Mesa 5 or 6 program uses
fairly vanilla stuff, it’s easy to convert:

The names of most interfaces and some procedures have changed, but the functionality is basically
the same.

The most obvious differences will be with strings and [/O. You should only need to know about
two interfaces for these: Rope and I0, respectively.

In general, the Cedar/Pilot community has dropped the use of "Defs” as a suffix for definition ﬁle
names, and introduced the suffix "Impl" for implementation files; e.g. "InlineDefs" became
"Inline".

Here’s what you need to do to your Mesa 5 or 6 program:

Change all STRINGs to ROPEs (actually Rope.ROPE). Remove all allocations and deallocations of
strings. Change all references to StringDefs routines to use Rope or 10 routines. Rope provides
procedures to parse and manipulate ropes. [0 provides procedures to convert ROPEs to numbers
and back as noted below. One can now put special characters in rope literals by using the
escape character "\". "...\n..." inserts a carriage return (newline), ". .. \t..." atab, ".

.\\ . .." abackslash, and "...\123 . . ." the character whose octal code is 123. Note a
ROPE is 1mmutable, unlike a smng. Appending a character creates a new ROPE.

You should use specific subranges for numeric variables whenever possible. If you don’t know the
range, use INT (32-bit integer), unless you know you don't need that big a number and know
you need efficiency. In those cases use INTEGER or NAT = [0..77777B]. Avoid using CARDINALS
or LONG CARDINALS: their main use is in dealing with STRINGs. The compiler recognizes the
abbreviation INT for LONG INTEGER, BOOL for BOOLEAN, CHAR for CHARACTER, and PROC for
PROCEDURE.

Change all references to [/O packages of all kinds (streams, files, TTY) to use equivalent IO routines.
[0 is the only interface you should need to know about for [/0 of almost any type of variable
or constant (ROPE, INT, etc.) to almost any type of device (keyboard, display, files, temporary
buffer etc.). I0 contains:

A set of CreateX routines for each kind of stream X—file, display, etc.

A set of GetX routines for each type X (integers, ropes, etc.)

A PutF routine that can be used with any type (integers, ropes, etc.) via a set of inline procedures
(int, rope, etc.) which are used to tag the type of the arguments. It also provides a format
argument which may be used to get FORTRAN-style formatting of output. For example,
the format "%g" prints almost anything in default free-format:

stream.PutF["The sum of %g and %g is %g.\n", intx], int(y], int[x+y]]

A PutFR routine that is identical to PutF except it produces a rope as output instead of putting
its result on a stream, and a RS routine that makes a rope look like a stream so that the
GetX procedures can be used. Thus one can convert various types to and from ropes,
e.g. the following code which converts an integer to a rope and back:

r: ROPE« PutFR|, inti]];
jo INT« GetInt[RS[r]];

Make use of LISTs and SEQUENCEs instead of ARRAYs and DESCRIPTORs for ARRAYs. The interface

List contains some useful routines.

CEDAR 42

CEDAR LANGUAGE OVERVIEW 19

New language features

The changes in the Cedar /language from Mesa 6 are fairly easy to understand for simple programs:

(a) REFs provide automatic deallocation and easier allocation:
Node: TYPE = REF Rec;
Rec: TYPE = RECORD(first: INTEGER, rest: Node];

x: Node « NEW[Rec « [5, NIL]|;
(b) Runtime types via REF ANY give looser binding:
TNode: REF BlRec:
Node: REF B2Rec;
x: Node « ... ;
t: TNode « .. .;
q: REF ANY:

q‘- t: q « x: -- both of these are legal
t « NARROW[Q]; -- raises NarrowRefFault if q is not a TNode
-- qt « E is always illegal. You cannot update through a REF ANY.

-- type can also be checked explicitly:
WITH q SELECT FROM
m: TNode => {t « m; q « m.lson};
n: Node => {x « n; q « n.rest};
ELSE ERROR;
- or
IF ISTYPE[q, TNode] THEN {t « NARROW[q]; q « tlson}
ELSE [F ISTYPE[q, Node] THEN {x « NARROWI[q]; q « x.rest}
ELSE ERROR.
REF ANY is preferred to the use of variant records.

(c) Lists are built into the language:
Node: TYPE = LIST OF INT:
x: Node « CONS[S, NILJ;
y: Node « LIST[S, 6]; -- same as CONS[S, CONS[6, NIL]]
i: INT« y.first; --iis 5
z:Node+« y.rest; -- z is CONS[6, NIL]
FOR 1: Node + vy, Lrest UNTIL I=NIL DO ..

(d) ROPEs, ATOMS, SEQUENCES, and INTs are also built-in.

(e) To protect yourself and the garbage collector from obscure errors you should program in the
safe subset of the language. To get a program into the safe subset prefix each module
(PROGRAM, MONITOR, or DEFINITIONS) with the word CEDAR. The compiler will then tell you
when you are straying outside the safe subset. You can wave the compiler off any block by
placing the word TRUSTED before it. If you call a procedure declared in an unsafe interface
(i.e., one that doesn't start with CEDAR DEFINITIONS), the compiler will complain unless the
call is in a TRUSTED block. Most of the high-level interfaces in the Cedar system are now
safe.

Restrictions of the safe language
The @ operator is not permitted. There are three general ways to cope with this restriction: specializing,

copying, and indirecting. For example, suppose you have a program that says
W: ARRAY [0..100) OF z;

CEDAR 42

CEDAR LANGUAGE OVERVIEW 20

P[@W];
FOR i IN [0..100) DO . . . Q[@WIi]] . . . ENDLOOP:
To eliminate the first @ by specializing we would make a copy of the procedure P that dealt with the
W directly—not very satisfactory. To eliminate the first @ by copying we would pass the array W in by
value and back by result—also not very satisfactory. It is best to deal with the first @ by indirecting;
just allocate W from: collectable storage, writing
W: REF ARRAY [0..100) OF Z = NEW[ARRAY [0..100) OF Z];

Eliminating the second @ by specialization is plausible if Q knows it is always dealing with array
elements: pass a reference to W along with an index. Otherwise, deciding between copying and indirecting
depends upon the size of a Z. If it is small copy it, writing "W[i] « Q[WI[iJ]". If it is big create references
to it and pass those, writing
W: REF ARRAY [0..100) OF REF Z;
P[W];
FOR i IN [0..100) DO . . . Q[WIi]] . . . ENDLOOP:

The form of variant record discrimination that does not copy the value to a new location cannot be
used, Suppose you have a variant-record data structure like
T: TYPE = REF TR;
TR: TYPE = RECORD(SELECT t:* FROM
name, string => [x: ROPE];
link => [i: INT. r: T];
ENDCASE];
and are accustomed to performing discriminations like
e: T,
WITH x: et SELECT FROM
name, string => "Statements using x";
link => {S1[x.i]; S2[@x]};
ENDCASE:
You should declare a set of REFs to bound variant types like
Name: TYPE = REF name TR;
String: TYPE = REF string TR;
Link: TYPE = REF link TR;
and rewrite the discrimination to be
WITH e SELECT FROM
x: Name => "Statements using x";
x: String => "Statements using x";
x: Link => {S1[x.i]; S2[x]};
ENDCASE;
The type of x is now a REF type, not a TR. so various other types need to be adjusted and the @ in S2
is no longer needed. If "Statements using x" is a large block, you will probably want to introduce a
procedure to avoid copying it.

Variant records cannot be overwritten. Similiar techniques can be used for sanitizing a program that
overwrites variant records. Assuming the declarations of T and TR from above, suppose you wanted to
write

x: T « NEW[TR « [name["END"]];
xt « [link[5, x]];
The specialization/copying technique is to simply update the thing that points at the record, writing "x
« NEW[TR « [link[5, x]}]". However, if you don't know all the places that point at the record. you must
introduce another level of indirection. writing
T: TYPE = REF REF TR:
x: T « NEW[REF TR + NEW[TR « [rope{"END"]]}:

CEDAR 42

CEDAR LANGUAGE OVERVIEW 21

xt « NEW[TR « [link[5, x]]J;

Unsafe procedures cannot be passed as arguments to safe ones. The symptom of a violation of this
rule is generally a message complaining about an incorrect type when there is no obvious type mismatch.
All procedure types in an interface prefixed by CEDAR are implicitly prefixed with SAFE. The simplest
thing to do is to put SAFE in front of PROC in the argument procedure declaration, and put TRUSTED in
front of its body. As with all uses of TRUSTED, you should verify that the safety invariants are actually
maintained, and document the reason for the TRUSTED in a comment.

CEDAR 42

CEDAR LANGUAGE OVERVIEW 22

For More Information . . .
Cedar Language Syntax

This is a one-page reference grammar describing the complete syntax of the Cedar Language, in a
compact variation on BNF developed by Butler Lampson. Keep it handy as you write programs. It
provides a relatively compact source of information on the exact form of constructs accepted by the
compiler. It will also alert you to much of the available variety in the language—but of course, not every
syntactically valid program makes semantic sense.

The parsing grammar used by the compiler is somewhat larger and more complex than the Reference
Grammar. Some of this is for technical reasons associated with LALR(1) parsing, and some of it to
enable the compiler to make certain semantic distinctions while parsing. The differences should be
invisible when dealing with correct programs, but may affect the error messages given for incorrect ones.

Annotated Cedar Examples

This document contains four complete, runnable Cedar programs chosen to illustrate the use of most
of the major features of the language, and to provide an introduction to the style of programming that
is preferred in Cedar. You should certainly invest time in studying them before attempting to write
Cedar programs. If you are one of those who learns best from examples, you may find them virtually
the only tutorial information you need to learn the language.

These examples have been chosen so that they are also useful prototypes of kinds of programs you
may want to write in Cedar. If you are like most Cedar programmers, you will probably find it easier to
start from such a prototype, and change it to do what you want, than to enter a whole program "from
scratch.”

Stylizing Cedar Programs

Because Cedar programmers so frequently read each other’s code, it is considered good citizenship
to adhere to certain stylistic conventions. Stylizing Cedar Programs discusses the generally agreed
conventions.

You can save yourself a lot of typing, and produce nicely formatted code at the same time, by using
Tioga's abbreviation expansion mechanism to generate all the high-level structure of your program (at
least, all the bits that aren't simply copied). The file Cedar.abbreviations lists the available macros and
their expansions; you can add your own favorites.

Cedar Program Stylé Sheet

This is an annotated prototype that you will probably want to keep close to hand, because it
compactly illustrates the most important principles from the previous document.

Cedar Language Reference Manual
Eventually, this is intended to be a precise definition of the complete syntax and semantics of the

Cedar Language. It is still incompliete.

The formal definition of the language is given in terms of a kernel language, into which all Cedar
constructs can be desugared to determine their precise semantics. The Reference Manual contains both
the definition of the kernel, and an explanation of the desugarings. It also contains several tables that
collect important information about the primitive types and type constructors of Cedar.

CEDAR 4.2

CEDAR LANGUAGE OVERVIEW 23

Cedar Language Reference Summary Sheets

This is intended to be the essence of the entire Cedar Language carefully condensed into two pages
for ready reference. It covers both syntax and semantics, with examples and notes. It is definitely not for
those with weak eyes, and should probably not even be read until you have studied the Reference
Manual proper. But it should be very helpful in checking details that you may have forgotten. Keep it
handy.

Cedar Catalog

Since so much Cedar programming is done "at the component level,” you need to know what
packages and tools are available and what they do. In general, full documentation (or at least the best
available approximation thereto) for each component is stored on [Indigo]<Cedar>Documentation>, or is
referenced in the component’s DF file, stored on [IndigoKCedar>Top>.

The problem is finding out which components you should be interested in. That’'s where the Cedar
Catalog comes in handy. It contains a somewhat structured list of all the components in Cedar considered
"interesting” by their maintainers. A component may be interesting

because of what it provides (your program may become a client),

because of what it does (you personally may become a user), or

because of how it does it (you may study it or copy some part of it in your program).

For each entry, the Catalog indicates why it is considered interesting, and how to acquire
documentation and the component itself. It also identifies the maintainer, who is the ultimate source of
advice and help.

Mesa 5.0 Manual

The Mesa Language Manual, Version 5.0, PARC Technical Report CSL-79-3, is the most recent
self-contained manual on the Mesa Language. It falls somewhere between a tutorial and a reference
manual, and many users have complained that it isn't entirely satisfactory for either purpose. But if you
need more information about the Mesa-like parts of Cedar, it may be your best source.

Chapter 4 gives the details of Mesa's basic control constructs.

Chapter 5 tells all about procedures.

Chapter 7 goes into more detail than you probably want about the fine points of modules, programs,

and configurations. You may be better off extrapolating from the Annotated Cedar Examples.

Chapter 8 gives some of the gory details of exceptions and exception handling. It is easy to get in

trouble unless you use them in straightforward ways.

Chapter 10 provides a pretty reasonable discussion of how to make effective use of processes,

monitors, condition variables, etc.

Who to see

[f you haven’t managed to find information that you want after you have looked in what you
consider to be the obvious places (or if you don’t understand what you have found), don't hesitate to
ask. Almost anyone in CSL is a fount of wisdom, willing to be asked almost any question on almost any
subject. (Of course, the answers aren’t equally reliable, but you can’t have everything.) If the first person
you ask doesn't know the answer, chances are good that you'll get a pointer to either a person or
document that will have the answer. More specifically here are some good people to ask:

John Maxwell assistant of first resort for general problems with Cedar

Russ Atkinson BugBane

CEDAR 4.2

CEDAR LANGUAGE OVERVIEW

Roy Levin runtime system
Scott McGregor Viewers and Tioga
Bill Paxton Tioga

Paul Rovner runtime-type system

Ed Satterthwaite compiler
Warren Teitelman user interaction, UserExecutive, [0

CEDAR 42

24

Cedar Safe Language Syntax
3.3 1module ::=DIRECTORY (ng 2(: TYPE n,) AUSING [n,, ...])). 36type:: = typeName | builtinType | typeCons

(interface | implementation) 4 37typeName ::= n | typeName . n | typeNamefe] --1n 19.25,36.40.1
2interface ::= n,, !.. : CEDAR DEFINITIONS ?locks 4.2 3sbuiltInType ::= INT | REAL | TYPE | ATOM |
2IMPORTS ((n;,: |) n;), ...) ~ { ?open’ (d | b): .. }. CONDITION | MONITORLOCK

See Table 42. TYPE only in a b or an interface's d.
39 typeCons :: = subrange?s | painted TC#0.1 | transferTC4! |
array TC#4 | seqTC45 | refTC# | listTC47 |

3jimplementation :: = n,, : CEDAR
(PROGRAM ?drType#2 | MONITOR ?drType#2 locks)

9 ~
o Rt =) H(CXFPORTS fi =) = blocc record TC50 | unionTC52 | enumTC3+ | defaultTCSs
il 4.3 40varTC ::= (| READONLY | VAR) t| ANY
3.4 6block ::= ACHECKED | UNCHECKED | TRUSTED) In 11, 46, 47. ANY only in refTC. VAR only in interface decl.
{ %open ?enable ?body 2 EXITS (n, !..=>s); ...) } ~in3 13, 14. 401paintedTC ::= typeName3’ PAINTED t
70pen:i= OPEN(n ~~eje),'.; =-In2 5 4.4 s transferTC :: =2(SAFE | UNSAFE) xfer ?drType
s enable :: ENABLE { enChoice; ... }; 411xfer :: =PROC | PORT | PROCESS | SIGNAL | ERROR | PROGRAM
9 enChonce w=(e, L.|ANY) =D>s ~-In7 271 42drType :: = ?fields; RETURNS fields, | fields; --in 3, 41.
obody ;= (d|b); . ;s; . Isi e InS 17, 43fields ::= [di, L]t ... 1| ANY -=In42 50, 52. aNY only in drType.

35 Ildeclaratwn ::= n, I.: APUBLIC | PRIVATE) varTC® ~n2, 10,43 ‘43rmayTC = ARRAY 1, OF f
13 bunding "(PUBLIC | PRIVATE) t ~ (—In2 10 45seqTC ::= SEQUENCE n : t; OF t; -- Only as last type in 50 or 52.

e | t -- t=Type-- | CODE | 2INLINE XENTRY|INTERNAL) blocké4.5 46 refTC :: = REF ?varTC%
- m I I X I) Y 47 listTC ::= LIST OF varTC40

3.6 14statement ::= e e, | e | blocké | escape | loop | NULL 4.6 sorecordTC ::= MONITORED RECORD fields#3
16 escape :: =GOTO n | EXIT | CONTINUE | (RETURN|RESUME) ?¢ s unionTC ::= SELECT n : (t| *) FROM (n => fields#3), ... 2,
17 loop :: = ?iterator 2(WHILE e | UNTIL ¢) ENDCASE - Only as last type in fields of 50 or 52.
DO ?bodyl0 AREPEAT FINISHED=>s) ENDLOOP 47 ssenumTC ::= {n, ...} | MACHINE DEPENDENT {(’n (¢) | n),
18 iterator :: = THROUGH ¢ | 4.11 ssdefaultTC:=t«|t«e
FOR n: t(7DECREASING INe| « ¢1, €)) Only as t in a decl in body® or field®3 (n: t + e),in a TYPE bindingl3or in NEW.

e is a subrange. n is readonly.

3.7 19expression ::= n | literals? | () | application26 |
(e | typeName37) .(9)n |
prefixOp e e; infixOp e, e; AND(2) €3] €; OR (1) €, |
e 1(9) | ERROR | [argBinding?’] |
builtln [e, ... 7applEn271] |
funnyAppl e 2([?argBinding?” ?applEn?7-1]) |
s | subrange?s | if28 | select?? | safeSelect32
Precedence is in bold in rules 19-21. All operators associate to the left except

«, which associates to the right. Application has highest precedence. Subrange
only after IN or THROUGH. s only in if28 and select choice:

0prefixOp ::= @ @®) | (0] (~ | NOT) (3

ainfixOp ::= *|/|MOD6) | + | (5| relOp@)] « ()

2relOp ::= WOT (2~ (= [<|D) K= |>=| # | IN) -In 21, 30.

23 builtIn :: = -- These are enumerated in Table 45.

24 funnyAppl :: = FORK | JOIN | WAIT | NOTIFY | BROADCAST |
SIGNAL | ERROR | RETURN WITH ERROR

25 subrange ::= ?typeName37 ([|()e;..e;(]])) ~in 19 39

26 application ::= e ["argBinding ?applEn |

7 argBinding ::= (n ~ %), .. | (%e), !.. --In 19, 2.

27.1applEn :: = ! enChoice?; ... -- In 19, 26.

3.8 if::= IF e; THEN e, NELSE €3)

29select ::= SELECT e FROM choice; ... endChoice
The ™;" is "," in an expression, here and in 32.

30 choice :: = ("1'e10p22 e1)l.=>e

31 endChoice :: = ENDCASE A(=> e3) --In 29, 32 34.

32safeSelect :: =WITH e SELECT FROM safeChoice; ... endChoice3l
33safeChoice::=n:t=>e

3.2 s6name:: = letter (letter | digit)...
s7literal ::= num 2(D | B) | digit (digit |A|BICIDIEIE) ... H|
?num . num ?exponent | num exponent |
" extendedChar | " extendedChar..." | $n
ssexponent ::= E 2(+ |) num
sonum ::= digit .
60 extendedChar :: = space | \ extension | anyCharNot'"Or\
sl extension :: = digit; digit, digit; [N|R|T|BIEJLI'|"]\

tation: item | item= choose one; ?item = zero or one item; terminals: SMALL CAPS, underlined or punctuation other than bold (7 (parens are terminals only in rules 19, 25, 54).
item s ... =zero or more items. separated by s; itlem s !.. =one or more liems, separated by s; withs=";", atrailing "," is optional; s is one of: empty "." ";" .
reviated non-terminals: b=binding+; d=deciaration-:: e =expression~; n=rname>*: s =statement--; t=ty pe"' 16 Feb 8.

nments: n** means 1 1s defired i rute 56; 0, =n (the suoscript s only for the desugarng). CLRMSafeGram.pres:

Cedar Full Language Syntax

3.3 1imodule ::= DIRECTORY (ng ?(: TYPE ?n,) 38
NUSING [ny, oo))y v’
(interface | implementation)
2interface ::= n,, !.. : 2CEDAR DEFINITIONS ?locks
2MPORTS ((n;,: |) n;). ...)
NSHARES ng, ...) ~ ?accessi2 { 2open? (d | b): .. } .
3 implementation :: = n,, : 7CEDAR ?safety
(PROGRAM ?2drType42 | MONITOR ?drType42 Mocks)
2IMPORTS ((n;, : |) n;), ...) MEXPORTS n,, ...)
NSHARES ng, ...) ~ ?access!2 block .
4safety ::= SAFE | UNSAFE --In3, 4l 4
s locks ::= LOCKS e 2(USING n,: t)

3.4 ¢block ::= 2CHECKED | UNCHECKED | TRUSTED)
{ "open ?%enable ?body N EXITS (n, 1.=8);) }-In 303,14, 4.2
70pen ::= OPEN(n~~eje) ..
In 2,5, 17. The ~~ may be written as ..
senable ::= ENABLE (enChoice | {enChoice; ...}); —In 5. 17.
genChoice ::=(e¢, .. | ANY) = > S -In7 27.1
1body ::= (d | b); !..:s: st IS 17,

3.5 11deciaration::= n, !.. : 2access varTC4
In 2, 10, 43. VAR, READONLY only for interface var. 43
12access :: = PUBLIC | PRIVATE --/n 2 3, 1. 13, 50. 51. 53. -
13 binding ::= n, .. : 2access t ~ (
e | ty - ift=Type-- | CODE | 4.4
?PTRUSTED MACHINE CODE { (e, ...); ... } |
PINLINE 2(ENTRY | INTERNAL) block$)
In 2, 10. The ~ may be written as =. ENTRY or INTERNAL may be written
before t. Block or MACHINE CODE only for proc types.

3.6 14smrement ::= e +e; | e | blocks | escape | loop | NULL
~1n6, 10,17, I9.
16 escape ::= GOTO n | GO TO n | EXIT | CONTINUE | LOOP |
RETRY | REJECT | (RETURN | RESUME) ?¢ | € « STATE
17 loop ::= ?iterator (WHILE € | UNTIL ¢)
DO ?open’ ?enabled ?bodyl0 45
AREPEAT (n, !.. =>5s);...) ENDLOOP
18 iterator ::= THROUGH ¢ |
FOR (n:t|n) (?7DECREASING INe| « ¢, €))
e is a subrange. In FOR n: t..., n is readonly.

3.7 19expression ::= n | literals? | () | application26 | 46
(e | typeName3?) .(9)n | .
prefixOp e | e; infixOp e;] e; AND(2) €5] €1 OR (1) €3]

e (9)| sToP | ERROR | [argBinding?7 | |

builtln [e, ... P7applEn271] |

funnyAppl e X [?argBinding?” ?applEn27.1])

s | subrange?s | if28 | select?9 | safeSelect32 | withSelect34
Precedence is in bold in rules 19-21. All operators associate to the left except

«, which associates to the right. Application has highest precedence. Subrange
only after IN or THROUGH. s only in if®8 and select choices?033 35.

20prefixOp ::= @ @8) | (D[(~ | NOT)(3) 4.7
ninfixOp ::= *|/|MOD©®) | + | (5] relOp 4 |+ (0) 4.11
nrelOp ii= WNOT(?~ (= |[<|D) K= |>=| # | IN) -In 21, s0.

23 builtIn :: = -- These are enumerated in Table 45.

24 funnyAppl :: = FORK | JOIN | WAIT | NOTIFY | BROADCAST | 3.2
SIGNAL | ERROR | RETURN WITH ERROR | NEW | START |
RESTART | TRANSFER WITH | RETURN WITH

25 subrange :: = ?typeName37
([er.ex]lller-exd|(ey..es]ll(er..er)) ~In19. 39 48.

26 application :: = e [7argBinding "applEn]

27 argBinding :: = (n ~ (¢ | | TRASH)), !.. | (¢ | | TRASH), !..

In 19, 26. The ~ may be written as :. NULL may be written for TRASH.

271applEn :: = ! enChoice?; ... - In 19, 26.

28 if ::= IF e; THEN e, 2(ELSE e3)

29 select :‘ = SELECT e FROM choice; ... endChoice
The ":" is ".” in an expression, here and in 32 and 34.

30 choice :: = (?relOp22 e), 1..=> e,

31 endChoice :: = ENDCASE N =D> e3) ~In29 32 34..

32 safeSelect :: = WITH e SELECT FROM safeChoice; ... endChoice3l

3safeChoice ::=n:t =>e,

34 withSelect ::= WITH (n; ~~ e, | e;) SELECT ?e;; FROM
withChoice; ... endChoice3l --The ~~ may be written as ..

3s withChoice ::= ny => ey |ny, my, L. =D e

36 type ;2 = typeName | builtInType | typeCons
37 typeName :: = n; | typeName . n, | typeNamef{e] |
ny typeName --1In 19, 25, 36. 40.1, 49.
38 builtInType ::= INT | REAL | TYPE | ATOM | CONDITION |
MONITORLOCK | LONG CARDINAL | 2LONG UNSPECIFIED |

MDSZone | 7UNCOUNTED ZONE
See Table 42. TYPE only in a b or an interface’s d

39 typeCons :: = subrange?s | paintedTC40.1| transferTC4! |
arrayTC# | seqTC# | descriptorTC45.1 | refTC46 | listTC47 |
pointerTC48 | relativeTC# | recordTC50 | unionTC52 |
enumTC54 | defaultTCss

40varTC ::= (] READONLY | VAR) t | ANY
In 11, 4548. ANY only in refTC. VAR only in interface decl.

40.1paintedTC :: = typeName37 PAINTED t
41 transferTC :: = ?safety+ xfer ?drType
s1.1xfer ::= PROCEDURE | PROC | PORT | PROGRAM |
PROCESS | SIGNAL | ERROR
42drType :: = ?fields; RETURNS fields, | fields; --in 3 41
43fields :: = [dll. e][t e 11 ANY --In 42, 50, 52. ANY only in 42.
suarrayTC :: = ?PACKED ARRAY ?t; OF i,
45seqTC :: = ?PACKED SEQUENCE tags3 OF t
Legal only as last type in the fields of a recordTC or unionTC.
4s.1descriptorTC :: = ?LONG DESCRIPTOR FOR varTC4#0
varTC must be an array type.

46 refTC :: = REF ?varTC4%

47listTC ::= LIST OF varTC40

48 pointerTC ::= 7LONG T0RDERED ?BASE POINTER
2subrange2s 2(TO varTC40) | POINTER TO FRAME [n]
Subrange only in a relativeTC;: no typeName37 on it.

sorelativeTC :: = typeName3? RELATIVE t

sorecordTC :: = ?access!2 (?MONITORED RECORD fields#3 |
MACHINE DEPENDENT RECORD (mdFields | fields#3))

simdFields :: = [((n pos). ... : ?accessi2 t), ...] -- In 50, 52

stipos:i= (_e; N:ey..e3)) --InS5l, 53

s2unionTC ::= SELECT tag FROM
(n, ... =>(fields*3 | mdFieldss! | NULL)), ... ?, ENDCASE
Legal only as last type in the fields of a recordTC or unionTC.

s3tag ;2= (n ?posSll : Paccess2 | (COMPUTED|OVERLAID))

(t]|*) --in44.52.* only in unionTC.

ssenumTC ::= {n, ...} | MACHINE DEPENDENT {(’n (¢} | n), ...}

ssdefault TC ::=t «|t+«e|t+~ e | _TRASH|t + TRASH
default TC Ie§a1 only as the type in a decl in a bods9 or field3 (n: t « ¢), ina
TYPE bindingl3, or in NEW. Note the terminal |. TRASH may be written NULL.

s6 name :: = letter (letter | digit)...
s7literal ::= num N (D|d | Blb) 2num) -- it lirerat |
digit (digit JA|BIC|DIEIE) ... (Hlh) ?num - Hex it literal |
num . num ?exponent | num exponent -- ReaL lireral. |
* extendedChar | digit !.. C_] " extendedChar..." ?I_[$n
s3 exponent :: = (E]g) A+ |) num
soynum :: = digit !..
60 extendedChar :: = space | \ extension | anyCharNot™"Or\
61 extension :: = digit; digit, digit; |

alN IR [T IbIBIAE[ULI" "1\

‘ation: item | item = choose one; ?item = zero or one item; terminals: SM.-\LL CAPS, underlined or punctuauon other than bold 0 (parens are terminals only in rules 19, 25, s1. 1, 54 | only m 55).

item s ... =zero or more items, separated by s; item s !.. =one or more items, separated by's; with s=":", a trailing ";" is optional; s is one of: empty
it= L»pe* 16 Feb

>reviated non-termnals: b= binding+}; d = declaration-: e= ev(premonJ n=name=*; s=statement-*

"o

nments: =obsoiete: =erficiency nack: =unsafe: =machine dependent: n ° means 1 1s defined in mue 36, n. =1 (the sudbscnpt s oniy for the desuganng). CLRMFullGram.pre

Sgntax Meaning : Examples Notes
odule ::= DIRECTORY (ng(: TYPE (n/|)|) A[(ng:((TYPEn;| TYPE ng) | TYPEng), ... | IN DIRECTORY
AUSING [ny, ...])), ... LET(ng~RESTRICT(ng, [$ny, ... |]). ... Rope: TYPE USING [ROPE, Compare], -- There should always be a USING ¢
(interface | implementauon) IN (interface | implementation) CI. : TYPE USING [OpenFile.Error,Open.read], -- unless most of the interface is use
terface ::= fpy ".. : "CEDAR DEFINITIONS A [}(n(vl) MKINSTANCETYPE(n,(]), ...| => [BoffT Y_PT'?Y[PO§WM - orti red
Nocks AIMPORTS ((ny : |) nie), ...) (Mm: TYPE nim] IN uffer: TYPE: oritis exported.
NSHARES ng, ...) -- Access to PRIVATE names in ng is allowed.
~ %access? { Topen’(d | b); ! }. LET REC nm~open [?(lock ~locks.)(d | b). ...] IN nm
aplementation :: = n,, . 7CEDAR A [((ny | 0y):MKINSTANCETYPE[n,]). ...]=> BufferImpl: MONITOR [f: CIFS.OpenFile] -- Implementations can have argume
safety (PROGRAM ?drType* | [(ne: ne) nm: TYPE nm, CONTROL: PROGRAM] JIN LOCKS Buffer.GetLock[h]t -- LOCKS only tn MONITOR, o specii
MONITOR ?drType (|locks)) (] (LET LOCK:MONITORLOCK IN LET I'~(A INLOCK)IN|)) USING h: Buffer.Handle - anon-standard lock.
IMPORTS ((ny : |) 0y),) LET b'~NEWPROGINSTANCE(block] UNCONS IN [MPORTS Files: CIFS. IO. Rope 7 Note the absence of semucolons.
NEXPORTS 1, ...) [(ne~BINDDFROM[ng, b]), ..., Am~b’, CONTROL~b".npm | ~%"f°£§§ul:b§§y -} - gg:g&gsé: amoosum or Mi
NSHARES ng, ...) where the body of the block is desugared thus: :
~ %access? block . [(1(1V'~locks.))(d | b). nm: PROGRAM drType~{s;
.}]
fety ::= SAFE | UNSAFE -In 3, 41.
cks ::= LOCKS e ?(USING ny: t) AN[nu:tj)ne
ock ;= CHECKED -- Unnamed OPEN OK for exported
ACHECKED | UNCHECKED | TRUSTED) OPEN Buffer, Rope: -~ interface or one with a USING cla
{ ?open ?enable ?body n LET 0", ... | EXCEPTION~NEWLABEL(], ... ENABLE Buffer.Overflow =>GOTO HandleOvfl: -- A single choice needn’t bein {}.
NEXITS (n,!..=>s):..) } IN (body enable)BUT { (0", ... =>s); ... stream: [O.Stream~10.CreateFileStream(["X"]; -- Use a binding if a name's value is f
~In3 13 15. -- But n" ts not vistble tn s. x:{[NT~7{) GeBufferf l -- Better to initialize bcéeclared gzgrwk
)en:i= OPEN(n~~efe)t.; . (LET n~\open IN e.DEREF | --The IN before !.. s a separator. OPEN b~ ~GetBuffer{stream|; == A statement may be a nested bloc
In2.5, 17. The ~~ may be wrsten as . LET BINDP([V(e.0EREF)P, ENABLE - Multiple enable choices must be n
OPENPROCS[V(e.DEREF).P, A IN e.DEREF] |) IN!.. IN Files.Error--ferror. file]-- =>{ -- ERRORS can have parameters.
1able:: = ENABLE(enChoice| BuUT({ ice } | stream.Pu IO.rope[egror]}. .y . .
enChoice; ...}); { ice. ... ERROR Buffer.Error{"Help”] }, -- Choices are separated by semicolot
;,, 517, ANY=>{ x~12; GOTO AfterQuit } }; -- ANY must be last. ENABLE ends wi
1Choice ::=(e,!..|ANY) =>s (ellANY). ... => { s; REJECT; EXITS y:INT*9; ... }; -- Other bindings, decls and statemer.
700 etry’ =>GOTO Retry#; Cont’=>GOTO Cont "¢ i E;Is_;._:s'eam.GeL[m: - (\)ﬁﬁ sltatg(xllgnﬁ in the ouler‘ plo{c;
ody :=(d|b);l. ;s s L. LET NEWFRAME([REC [(d | b), ...] JUNCONS IN { s; - e choices are notin
Iny5, 17. @l ! { @rop.-11 { AfterQuit=>{...}; -- AfterQuit, HandleOvfl declared hei
HandleOvfl=>{..} }; -- legal only in a GOTO in the block.
sclaration :: = 1, L. : ?access2 varTC® (n:varTC), ... HistValue: TYPE[ANY]; -- Interface: An exported type.
In2, 10, 43. VAR, READONLY only for wnterface var. Histogram: TYPE~REF HistValue; - A type binding.
::= PUBLIC | PRIVATE baseHist: READONLY Histogram; - An exported variable .
. 11,13, 50. 51 53. , AddHists: PROC[x, y: Histogram] - An exported proc.
nding ;2= n, .. : 2accessi t ~ (LET X' : t ~ (-~ The desugaring for n isat the end. RETURNS [Histogram;
el el) LabelValue: PRIVATE TYPE~RECORD| - PRIVATE only for_seci
L ~ift=TYPE | t; -- Sameas e except for conflicting syntax. | first.last:INT,s:ROPE,X:REAL,f,g:INT,[:REF ANY]; - stuff in an interface.
CODE| NEWEXCEPTIONCODE(] --r=>SIGNAL or ERROR | Label: TYPE~REF LabelValue;
?INLINE 2(ENTRY | INTERNAL) blocké | A [d': t.DOMAIN] IN LET ' ~NEWFRAME([t.RANGE.UNCONS Next: PROCl: Label] RETURNS/[Label]~ - An inline proc binding
IN (LET{‘;I IN {LDOMAIP;{'d': block; RETURN} INLINE { RETURN [NARROW(L.1]] };
8uUT {Returm”' =>r . ~ i L Qirer ~10- - inme R
"TRUSTED MACHINE CODE {(e..-): -} MACHINECODE[(8YTESTONSTRUCTION.], . LA st e e e e
Tn2, 10, The ~ may be wruten as = YIND. ... ~ X = e15 evaluated only once. baseHist: PUBLIC H+NEW[HistValue~ALL{17]); - An exported variable
Block or MACHINE CODE only for proc tvpes. X, y: HistValue«{ 20, 18, 16, 14,12, 10, 8, 6, 4, 2, 0}; -- with initialization.
ENTRY and INTERNAL can aiso be before £ FatalError: ERROR(reason: ROPE]~CODE; - Binds an error.
Setup: PROC [bh: Handle3, a: INT|~ENTRY {..}; -- Binds an entry proc.
iJ,k: INT«0; p,q: BOOL; lb: Label; main: Handle;
atement ;2= SS { SIMPLELOOP {sS; GOTO Cont"; EXITS Retry"=>NULL}; x+~AddHists[baseHist, baseHist}t; -- A statement can be an assignment,
Iné6, 10,17, 19. EXITS Cont”=>NULL } Setup[bh~main, a~3]; -- or an application without results,
3 =g ~e; | e] blocks | escape | loop | NULL [e,+e,].TOVOID | € ~must yield VOID-- | -all yreid VOID-- {ENABLE FatalError = >RETURN{0]; []-f[3!; .}; --orablock,
icape ::= GOTOn|[GOTOn| EXORVAL[exception[code~ n”, args~NIL]] | IF i>3 THEN RETURN(25] ELSE GOTO No| nt; -- or an IF or an escape statement,
EXIT | CONTINUE | LOOP | RETRY | GOTO (Exit'V rCom” | Loop’| Retry®)
RETURN | RESUME) ?e | { Ar'B~e;) GOTO ‘Relum'” | Resume) } |
REJECT | e « STATE THISEXCEPTION[] | DUMPSTATE[e]
op ::= (iterator|) { iiteragr : | done'~FALSE; Next': PROC~{}:) FOR U:INT DECREASING IN [0..5) UNTIL f[t}>3 DO -- or a loop. Try to declare ¢ in the FC
(WHILEe | UNTIL e |) est'~A IN (NOT e | e | FALSE); u: INT*0; ... ; u~t+4; .. -- as shown. Avoid OPEN or ENABLE
DO ?open’ ?enablet ?body® { open SIMPLELOOP { REPEAT Qut =>{...}; FINISHED =>{...} ENDLOOP; -- after DO (use a block). FINISHED
TF Test'[] OR done’ THEN GOTO FINISHED: -- must be last.
enable body EXITS Loop'=>NULL }; Next({] }
AREPEAT (n, !.. =)s); ...) ENDLOOP EXITS Exit'=>NULL: (n, !..=s); ...; FINISHED=>NULL}}}
erator :: = THROUGH e | FORx:eINe| THROUGH [1..5) DO i ~1*{ ENDLOOP: -- Raises i to the 6th power.
FOR(n :t|n) n:t: FOR i: INT+1,i+2 WHILE <8 DO }*j+i ... -- Accumulates odd numbers in [1..8).
((| DECREASING) IN e | Range': TYPE~e; done’: BOOL ~ Range'.ISEMPTY; FOR 1: Label ~1b, |.Next WHILE | # NIL DO ...; -- Sequences through a list of Labess.
Next': PROC~{ [Fn(2Range'.LAST% <Range .FIRST)
THEN done ~TRUE ELSE n+n(SUCC [PRED) };
n+-Range (FIRST | LAST): |
-e.e) done’: BOOL~FALSE: Next: PROC~{n«e,}; nve,);
e wsa subrange. In FOR n: ¢ ..., n s readonly except for the assignment (r the ierator’s desuganng.
«presson :: = n | literals ! (e) | application? | lv: LabelValuei«{ i, 3, "Heilo", 31.4E1 (i+1), -- A constructor with some sampie
e | typeName®) . (9) n f[x]-&v b.f+j.PRED |; -- expressions.
prefixOp e | e, infixOp e, | e . prefixOp | e, . infixOpfe,] | pl: PROCESS RETURNS [INT]*~FORK f[i, J|; -- FunnyAppis take one unbracketted
2, relOp(d) e | (A [x: Ve, y :Ve] INrelop)[e,, e | N ERROR NoSpace; WAIT bufferFilled: - arg, many return no result, so .
el AND()e; |e, OR (D) e | IF & THEN e, ELSE FALSE | IF e, THEN TRUE ELSE & | : B‘?Sw-T,Y.P.e’CQDE[LabeiVal“e“}? - must bestalements.
2(9) | STOP | ERROR | ¢ . DEREFERENCE | STOP(] | ERROR NAMELESSERROR | 13 NOT(DY. 1% iv3, INOT > pOR @, [burr; - An applicauon with samiple express:
builtin [e, (. e, ..) 2appiEn] | e, . builtin 2([ez s)| lV""{ﬁ}S[“ , last~ }0. x~3.14,g~2, f~5}; -- Short for Iv*-LabeIVa]ueﬁ[...].
\ . ey ... ¢ e -
Funngg\ppl e ’} ?argBinding? 7applEn?’])| e. funnyAppl X [argBinding ?appiEn)|) (first~i, last=j] ~lv-: . A(?;%rnacm[g?; 10 VAR binding
[argBinding? || --Binding must coerce to a record, array, or local string-- | .
3 | subrange® | if*# | select® | safeSelect? | withSelect*
Precedence ts inbold tn rules 19-21. All operators assocate (0 the left except ~, which assocuates
to the nght. Appli has highest preced Subrange only after IN or THROUGH. s only tn i*® and select choices’® 335,
efixOp::= @@®) | (M|(~|NOT)(3) VARTOPOINTER | UMINUS | NOT
fixOp == *| /J MOD (@) | + | | - TIMES | DIVIDE | REM | PLUS | MINUS | ASSIGN)
10p::= ™NOT(7~ (= |<|))]| #]| INOT (?NOT x'(EQUAL | LESS | GREATER)y || x'~=¥'|
K=1|>=)|IN) x =y ORX (K|>)y | x>D=y .FIRSTAND (x<=y".LAST
-In 19, 30. 8UT {BoundsFault =>FALSE}))
iiltIn :: = -- These are enumerated in Table 45.
anyAppl ::= FORK | JOIN | WAIT | NOTIFY | BROADCAST | SIGNAL | ERROR | RETURN WITH ERROR |
NEW | START | RESTART [TRANSFER WITH | RETURN WITH
brange :: = (typeName' |) LET t'~(typeName | INT) . first'~(e.| e.SUCC) IN b: BOOL*~i IN[1..10]; FOR x: INTIN (0..11) DO ...; -- Subrange only n types or with IN.
(Oe e (11)) t.MKSUBRANGE(first , (e, | &,.PRED)] BUT be(cIN Color*{red..green] OR x ININT{0..10)); -- The INT is redundant.
-{n 19, 39, 48. {BoundsFault = >’ MKEMPTYSUBRANGE(e |}
weation: item | item = choose one; ?item=zero or one item: terminals: SMALL CAPS, underlined or punctuation other than bold ()?] (parens are terminals only in rules 19, 25, 51.1, 54, | only in 55).
item s ... =zero or more items, separated by s: item s !.. =one or more items. separated by s; withs=";", atrailing ";" is optional: s is one of: empty ",” "." IN ELSE OR.
breviated non-terminals: b= bindirg-*; d = declaration--; e=expression; n=rname»: s =statement: t =type=. 4Feb 8

mments: =obsolete; =efficiency nack: =unsafe. =machine genendent: 2= means > Jefined .1 nue 36, 2,= 1 (the subscript s onlv for the desuganng). CLRMSumm.pres

Syntax
pplication :: = e (?argBinding ?applEn]
rgBinding ::= (n ~ (e | | TRASH)). !.. |
e|] TRASH), ...
In 19, 26. TRASH mav be wruten as NULL, ~ us .
«pplEn :: = ! enChoice’; ...~ /n 19, 26.

Meaning

LET m'~e, a ~[argBinding] IN ((m.APPLY »a’) 2appiEn)
?l ~ (e | OMTTED | TRASH)). L. |
e | OMITTED | TRASH), ...

8uT { enChoice: ... }

Examples
th«Files.Open[name~1b.s, mode~Files.read
! AccessDenied = {...}; FatalError=">{...}};
(GetProcs[j].ReadProc k};
file.Read[buffer~b, count~k];
i~3,)~ . k~TRASH]: fli~3, k~TRASH];
3,. TRASHI|;

Notes
-- Keywords are best for multiple ¢
-- Semicolons separate choices.
-- The proc can be computed.
File.Readlfile, b, k] (object not:
-- jand k may be trash (see default
-- Likewise, if i. /. and k are in that

:i= [Fe, THEN €, (ELSE &;])
::= SELECT ¢ FROM
e; ... endChoice
The ",” ts “,” 1n an expresston; also in 32 and 34.
hoice ::= ((| relOp2)e,), .. =16,
ndChoice ::= ENDCASE(| => &)
In29 32. 34.
afeSelect :: = WITH e SELECT FROM
safeChoice; ... endChoice
ifeChoice ::=n:t=>e,
ithSelect ::= WITH (n, ~~ e, | e,)
SELECT (| e) FROM
withChoice; ... endChoiceit
The ~~ may be wruten as :.
ithChoice ::= 0, =>e¢,|
Nl =>e

IF e, THEN e, ELSE (e, | NULL)
LET selector ~e IN
choice ELSE ... endChoice
-- ELSE isa separator for repetitions of the choice.
IF ((selector’ (= | reiOp) ;) OR ...) THEN e,
ELSE(NULL | ;)

LET v'~e IN
safeChoice ELSE ... endChoice
{F ISTYPENOTNIL[v', t] THEN LET n : t~NARROW[v', t] IN &
OPEN v ~~¢ INLET n'~($m | NIL), type ~v",
selector ~(e..TAG | e,;) IN withChoice ELSE ... endChoice
-~ &y must be defaulted except for a COMPUTED varuant.

IF selector’ = n, THEN OPEN
(BINDP{n’, LOOPHOLE[v ,type [m;]]] | BINDP(n’, v']) IN €,

i=(IF j<3 THEN 6 ELSE 8):
IF k NOT IN Range THEN RETURN(7];
SELECT f[j] FROM
(71‘-7)51.. . "
IN[7.8]=>{...}:
NOT<=8= >£'..};
ENDCASE=>ERROR:

WITH r SELECT FROM
rint: REF INT = >RETURN[Gcd[rIntr, 17
rReal: REF REAL = >RETURN(Floor{Sin(r

ENDCASE = >RETURN(IF r=NIL THEN 0 ELSE

nr: REF Nodes?~...; WITH dn~~nr SELECT FROM

binary =>{nr~dn.b};
unary = >{nr-dn.a};
ENDCASE=>{nr«NIL};

Realt

-- An IF with results must have an |

-- SELECT expressions are also pos:
- =LINT~AJ]; IF K7 THEN {‘i El
-~7,8=>0r =7, =8=>{...} isthe
-- ENDCASE= >{...} is the same hei
-- Redundant: choices are exhaust

-- Assume 7: REF ANY in this exam
-- rint is declared in this choice onl

-- Only the REF ANY ris known he

-- See rule 52 for the variant record
-- dnis a Node.binary in this choice
-- dnis a Node.u in this choice
-- dn s just a Node here.

spe :: = typeName | builtinType | typeCons
mpeName ::= n,| typeName . n,
typeName (e] | n, typeName

In 19, 25, 36, 40.1. 49.

typeName.SPECIALIZE(e] | typeName . n,
==y names a varwant.

niltinType ::= INT | REAL | TYPE | ATOM | MONITORLOCK | CONDITION |

PUNCOUNTED ZONE | MDSZone N%%%%lg&ﬁ

TYPE onlyas ¢t ina b oran wnterface'sd.

?LONG UNSPECIFIED - See Table 42.
NAT. TEXT. STRING, BOOL. CHAR are predefined.

ons :: = subrange"lpaintedTC“”lensferTC“_l_ma TC* | seqTC* | descriptorTC*?

t] ANY

peC
refTC* | listTC* | pointerTC* E‘relar.iveTC" | record

aTC .= (LREADONLY VAR
In 11, 4548, ANY only in refTC. VA
,aintedTC :: = typeName PAINTED t

C® [unionTC* | enumTCs* | default TCss
(VAR | READONLY | VAR) t| ANY

only n interface decl.

RECE’LACEPAINT[in: t, from: typeName]

typeName must be an opaque type, ¢ recordTC or enumTC.

-ansferTC :: =7?safety* xfer ?drType

:fer ::= PROCEDURE | PROC | PORT |

PROCESS | SIGNAL | ERROR | PROGRAM

rType :: = ?fields, RETURNS fields, | fields,

No domain for PROCESS. In 3, 41.

elds ;o= [d,]I, ...] %NY

ANY only in drType. [n 42. 50, 52.

rrayTC ::= ?PACKED ARRAY 7, OF t,

:ETC ::="PACKED SEQUENCE tag> OF t

egal only as last type in a recordTC or unionTC.

lescriptorTC ::=

7LONG DESCRIPTOR FOR varTC®

varTC must be an array type.

fTC ::= REF (varTC®})

stTC ::= LIST OF varTC®

2sinter TC:: = ?LONG ?ORDERED ?BASE
POINTER ?subrange 2(TO varTC®) |

POINTER TO FRAME [n

Subrange only in a relauveTC; no typeName™ on ut.

JdativeTC ::= typeNames’ RELATIVE t

MKXFERTYPE(drType, flavor~xfer]

domain~fields,, range~fields,

MKARRAY([domain~t,, range~t,]
MKSEQUENCE([domain~tag, range~t|

MKARRAYDESCR(arrayType~varTC]

MKREF(target~{ varTC | ANY)]
MKLIST{range~varTC]

MKPOINTER([target~varTC] |
MKINSTANCETYPE(n]
MKRELATIVE(range~t, baseType~typeName]

2 must be a pownter or descriptor type. typeName a base ponter type.

1cordTC :: =?access!? (
MONITORED RECORD fields® |
MACHINE DEPENDENT RECORD
(mdFields | fields*))
dFields :: = [((n pos), ... : --/n 50, 52.
?accessi t), ...,
wsi=(_e N e..e)) ~InSl 53
4ionTC ::= SELECT tag FROM
n. ...= Xfields® | mdFields’! | NULL)), ...
?, ENDCASE
Legal only as last type tn a recordTC or untonTC.
g = (n(pos*tt|) : ?access=
COMPUTED | OVERLAID) (t|*)
In 44, 52. * only tn untonTC%,

wmTC:={n,..}|
MACHINE DEPENDENT {((n) (¢} | n). ..

MKRECOROD(fields] |

MKMDRECORD(mdFields | fields|
MKMOFIELDS(LIST((LIST{ ([$n. pos|), ...], t), ..]]
MKPOSITION[firstWord~e,, firstBit~e,, lastBit~e,]

MKUNION(selector~tag, variants~usg
([labels~LIST{ $n, ...}, value~fields |), ...]

{ ([$n. (pos | NIL)] | SCOMPUTED' | SOVERLAID),
(t] TYPEFROMLABELS) |

MKENUMERATION(LIST($n, ..é)l
MKMOENUMERATION(LIST{([(3n| NIL), e | [$n, 1]), ...]]

P: PROC{ b: Buffert. Handle,
i: INT=TEXT[20].SIZE |;

Typelndex: TYPE~[0..256);
BinaryNode: TYPE~Nodes.binary;

HV: TYPE~Interface.HistValue PAINTED
RECORD(...]

Enumerate: PROC[
I:RL,

p: PR

RETURNS [stopped: BOOL];

F2:PROCESS RETURNS[i:INT]~FORK stream.Get;

ailed: ERROR [reason: ROPE|~CODE;

x: REF ANY| RETURNS (stop: BOOL]]

-- A type from an interface.
-- A bound sequence; only in SIZE,

-- A subrange .
-~ A boundgvaéya%et type.

-- See 13 for use.

Vec: TYPE=ARRAY [0..maxVecLen) OF REF TEXT;
Chars: TYPE~RECORD [text: PACKED SEQUENCE -- A record with just a sequence in i

len: [0..LAST[INTEGER]] OF CHARJ; ch: Chars:

v: Vec~ALL|NIL];

dV: DESCRIPTOR FOR ARRAY OF REF TEXT~
DESCRIPTOR[v];

ROText: TYPE~REF READONLY TEXT:

RL: TYPE~LIST OF REF READONLY ANY; rl:RL;

UnsafeHandle: TYPE~LONG POINTER TO Vec*;

Cell: TYPE~RECORD(next: REF Cell, val: ATOMJ;

Status: TYPE~MACHINE DEPENDENT RECORD
channel (0: 8..10): [0..nChannels),
device (0: 0..32: DeviceNumber,
stopCode (0: 11..15): Color, fill (0: 4..7): BOOL,
command (1: 0..31): ChannelCommand |;

Node: TYPE~MACHINE DEPENDENT RECORD |

type (0: 0..15): Typelndex, rator (1: 0..13): Op*,

rands (1: 14..79): SELECT n (1: 14..15): * FROM
nonary = >{]

unary =>{a (1: 16..47): REF Node|,

|
binary = X{a (1:16..47), b(1:48..79): REF Node]
ENDCASE J;

Op: TYPE~{plus, minus, times. divide };
Color: TYPE~MACHINE DEPENDENT
red(0), green. blue(4), (15)}; ¢c: Color:

-= ch.tex{i] or ch]] refers to an elem

-- NARROW(rl first. ROText}s is a
-- READONLY TEXT (or error).

-- Don’t omit the field positions.

-- nChannels < 8.

-- DeviceNumber held in < 4 bits.

- No gaps allowed, but any orderin
-- Bit numbers >16 OK; fields can «
-- word boundaries only if word-al:

-~ rands is a union or variant part.

-- This is the common part.

-- Both union and tag have pos.

-- Type of n is {nonary, unary, binar
-- Can use same name in several var
-- At least one variant must fill 1: 14

-- A Color value takes 4 bits; green=

faultTC :: = CHANGEDEFAULT{type~t. (-- Except as noted, a constructor or application must mention each name and give it a va
te proc~NIL, trashOK ~FALSE] | Q: TYPE~RECORD{ -- Qtherwise there's a compile-time «
i~-el proc~INLINE A IN e, trashQ ~FALSE‘| 12 INT, == Qfl, Qli~] trash i (not in argBindi
tee | _TRASH| proc~INLINE A IN e. trashOK~ TRUE] LINT, -= No defaulting or trash for J.

t =~ TRASH T\Qprocﬂ.l‘rash. trashOK ~ TRUE]) LINT*3, = Qf], Ok~] leave k=13.

JefaultTC legal onlya:tlu‘sy n adecl in a body’ or field® (n: t * ¢). tna E binding=. or in NEW. Note the terminal |. l: INT#3 | TRASH, -- As k, but Q[/~TRASH] trashes .
TRASH may be wntten as } 611. m: INT+TRASH |; - Qfl, O{m~trash m.

wme ;= leuer (letter | digil)... -~ But not one of the reserved words in Table 31. m, x1, x59y, longNameWithSeveralWords: INT;

eral ;= num 2((Djd|Blb) ?num)n| - INT literal, decimal if radix omitted or D. octal if B. | n: INT~1+12D +2B3+2000B - = 1+12+1024+1024

digit (digit IAL ..(Hh)?num| -- INT literal in hex: must start with digit. | +1H+0FFH; - +1+

num . num Zexponent -- REAL as ascaled decimal fraction: note no tralling dot.| rl: REAL~0.1 +.1+ 1.0E1 - =01+01+01

um expon -- With an exponent, the decimal point may be omitted. | 5 - +01

ent |
extendedChar | digit!..C_|
" extendedChar ... " ?L_|

$n
ponent ::= (Ele) 2(+ |) aum
um ;= digit 1.

- CHAR literal: the C form specifies the code in octal. |
[CextendedChar), ...] -- Rope.ROPE, TEXT, or STRING. |
-~ ATOM literal.

-- Opuonally signed decimai exponent

tendedChar :: = space | \ extension | anyCharNot'"Or\

tension :: = digit, digit, digit
(N dR) | (D | (2B
@Biap - n

-- The character with code digit, digit, digit, B. |
== CR, '\015 | TAB. "\011 | BACKSPACE. "\010|
-- FORMFEED, "\014 | LINEFEED, \012{'| " |\

+ s
al: ARRAY [0..3] OF CHAR~['x, \N, "\", \141];
r2: ROPE~"Hello.\N...\NGoodbye\F";
a2: ATOM~$NamelnAnAtomLiteral;

‘tation: item | item= choose one; ?item = zero or one item; terminals: SMALL CAPS. underlined or punctuation other than bold ()] (parens are terminals only in rules 19, 25, 51.1, 54, | oniy in 55).
item s ... = zero or more ttems. separated by s: ttem s .. =one or more 1iems. separated by s; with s=";", a trailing ";" is optional: s is one of: empty "," *;" IN ELSE OR.

breviated non-terminals: b=binding=: d = Jeclarauon-: e =expression; n=name>; s =stalement-; t=1type=.

mments: =obsolete: =erficlency hack. =unmsaie: =macaire depencent; 1 means n s cerired in rute 56, 1, =1 (the suoscnpt is oniy for the desugaring).

4 Feb
CLRMSumm.pr

FileIO.mesa

This interface contains procs to create file streams. [t also specifies a model for the behavior of file
streams.

Last edited by:
MBrown on January 6, 1983 8:21 pm

DIRECTORY
CIFS USING [OpenFile],
Environment USING [bytesPerPage],
File USING [Capability],
10 USING [STREAM],
Juniper USING [LFH, Transaction],
Rope USING [ROPE],
Transaction USING [Handle, nullHandle];

FileIO: CEDAR DEFINITIONS
IMPORTS
Transaction =
BEGIN
ROPE: TYPE = Rope.ROPE;
STREAM: TYPE = [O.STREAM;
bytesPerPage: CARDINAL = Environment.bytesPerPage;

File streams

Basic usage

Most programs that create file streams can do so with a very simple call to FileIO0.Open. Suppose that
r is a Rope.ROPE containing a file name, and your program needs to read characters from the file named
by r (local file name or a full path name) using an [0.STREAM s. The call

s + FilelO.Open(r];

in your program will accomplish this. If your program will completely rewrite the file named by r
(ignoring the old contents and creating a file of that name if none exists), the call is

s « FilelO.Open(r, overwrite];
If your program is simply logging output to the file named by r (it does not read the file, but simply
adds new characters to the end, and creates a new file of that name if none exists), it calls

s « FilelO.Open|r, append];
Finally, if your program will both read and write the file named by r (treats the file as an extendible,
random-access sequence of bytes that it updates "in place”), it uses

s « FilelO.Open[r, write];

(The last three forms only work for local files unless you have the Pine package loaded and started, in
which case they also work for files on the Juniper server. Note that it is an unusual program that
requires write mode. while overwrite mode is used frequently.) If you do not wish to land in the
debugger if the file name r is misspelled or otherwise garbled, your program should catch
File[O.OpenFailed with why = fileNotFound or why = illegalFileName.

The moral of this tale: doing simple things is simple. You don't need to understand the multitude of
parameters to the stream creation procs. since they default correctly for most purposes. You don’t need
to use any proc from this interface except Open unless you are doing something special. There is only

one signal to catch.
At the same time, it is possible to do more ambitious things. If you want to know more, read on.

File stream model
A file is a sequence [0..fileLen) of mutable bytes; the length (fileLen) of a file can be changed.

The state of a file stream is a file file (perhaps opened under a transaction) with length fileLen, an index
streamindex IN [0..fileLen], plus a number of readonly flags (accessOptions, closeOptions) and a boolean
variable closed which jointly determine the effect of stream procs. In a section below, "What STREAM
operations do when applied to a file STREAM", we describe each stream proc defined in the IO interface
(GetChar, PutChar, etc.) in terms of these quantities.

Concurrency

File streams provide no interlocks to control concurrent access to files. Instead, they rely on the
underlying file system for concurrency control. Juniper uses locking to provide concurrency control.
The Pilot file system used on the local disk provides no concurrency control, though if all of its clients
used CIFS and played strictly by the rules there would be no problems. Until that happy day, clients of
file streams for local files should take care that if a file stream is open for writing a file, no other readers
or writers of that file exist. [t is particularly dangerous to have two file streams open for writing the
same file.

Individual file streams are independent objects, so there is never any need to synchronize calls to their
procedures. [f two processes are to share a single file stream, they must synchronize their accesses to
that stream at a level above the file stream calls; individual file stream calls (PutChar, PutBlock, etc.) are
not guaranteed to be atomic.

Pragmatics

A Pilot file is represented as a sequence of disk pages containing bytesPerPage bytes. There is a single
leader page (overhead) that is used to hold file properties such as the length and create date. There is
no functional relationship between the length of a file (in bytes) and the size of that file (in pages).

Allocating disk pages to a file is an expensive operation. especially when done incrementally (one page
at a time). If a client is creating a file whose eventual length it can estimate. it should use the createLength
parameter to Open to allocate enough pages to hold the entire length all at once: if the file already exists
the client should create a stream and then extend the file using SetLength. If the file stream
implementation must extend a file it will always extend it.by several pages; if asked to shorten a file it
will simply adjust the length field in the leader page without freeing any pages. To free extra pages
when a stream is closed, use the truncatePagesOnClose CloseOption in the call that creates the stream.

Creating a file STREAM

FileSystem: TYPE = { pilot, juniper };

Trans: TYPE = RECORD [
body: SELECT type: FileSystem FROM
pilot => [trans: Transaction.Handle],
juniper => [trans: Juniper.Transaction « NIL],
ENDCASE];
Used to unify the two types of transaction, for Open only.

OpenFailed: SIGNAL [why: OpenFailure, fileName: ROPE] RETURNS [retryFileName: ROPE];

OpenFailure: TYPE = { fileNotFound. illegalFileName, fileAlreadyExists, cantUpdateTiogaFile,
wrongTransactionType, unknownFileCapability, notImplementedYet };

This signal is raised by the various file stream creation procedures.

CreateOptions: TYPE = {none, newOnly, 0ldOnly};
See description of Open below.

AccessOptions: TYPE = {read. append, write, overwrite};
Used at the time a stream is created to specify the set of operations allowed on a stream. Disallowed
operations raise [0.ErrorfNotImplementedForThisStream] when called. The characteristics of each
option:
read: PutChar, PutBlock, SetLength are disallowed, and the initial streamindex is 0.
overwrite: all operations are allowed, the file is truncated to-zero length at stream creation time,
and the initial streamIndex is 0.

append: GetChar, GetBlock, Setlength, Setlndex are disallowed, and the initial streamIndex is
fileLen.

write: all operations are allowed, and the initial streamIndex is 0.

CloseOptions: TYPE = CARDINAL;
CloseOptions determine optional processing . during Flush and Close calls. If
commitAndReopenTransOnFlush, then Flush "checkpoints” the transaction being used by the stream.
If truncatePagesOnClose, then Close causes extra pages of the file to be freed. If finishTransOnClose,
then Close causes the transaction to be committed or aborted, according to the abort flag to Close.

noCloseOptions: CloseOptions = 0;

commitAndReopenTransOnFlush: CloseOptions = 1;

truncatePagesOnClose: CloseOptions = 2;

finishTransOnClose: CloseOptions = 4;

defaultCloseOptions: CloseOptions = truncatePagesOnClose + finishTransOnClose;

RawOption: TYPE = BOOL;

This parameter determines the mode of access to Tioga format files. [f raw = FALSE and file is in
Tioga format, then if accessOptions = read, read only the plain text portion of the file (ignore "looks"
and nodes with the comment property); if accessOptions # read or overwrite, raise OpenFailure
[cantUpdateTiogaFile]. If raw = TRUE or file is not in Tioga format, then operate on the entire file.

StreamBufferParms: TYPE = RECORD [
bufferSize: INT [2 .. 127],
Specifies the number of pages of VM used by the stream for buffering. Juniper streams
always use 1 page of buffering.
bufferSwapUnitSize: INT [1 .. 32]};
Specifies the number of pages in each uniform swap unit of the stream buffer.
defaultStreamBufferParms: StreamBufferParms = [bufferSize: 25, bufferSwapUnitSize: 5];
Good for most purposes.
minimumStreamBufferParms: StreamBufferParms = [bufferSize: 2, bufferSwapUnitSize: 1];
Good when opening a stream just to create a file or set its length.

Open: PROC [
fileName: ROPE,
accessOptions: AccessOptions « read,
createOptions: CreateOptions « none,
closeOptions: CloseOptions « defaultCloseOptions,
transaction: Trans « [juniper{]],
raw: RawOption « FALSE,
createLength: INT « 5 * bytesPerPage,
streamBufferParms: StreamBufferParms « defaultStreamBufferParmsj]
RETURNS [STREAM];
! OpenFailed with why =
fileNotFound: createOptions = 0ldOnly and file does not exist (including server not found

when fileName is a full path name).
illegalFileName: syntax or other error caused directory lookup to fail.
fileAlreadyExists: createOptions = newOnly and file already exists.
cantUpdateTiogaFile: raw = FALSE, accessOptions # read, and file is in Tioga format.
wrongTransactionType: transaction is a non-n-ll Pilot transaction but fileName is a Juniper
file, or vice-versa.
notImplementedYet: CIFS access is implied but accessOptions # read.
! Juniper.Error with why = transactionReset, notDone: don’t know how to handle these.
! CIFS.Error with code # illegalFileName, noSuchFile, noSuchHost: don't know how to handle
these.
! Volume. InsufficientSpace: couldn’t create file on local volume as requested.

Create a new stream on the file specified by fileName (a full path name).
If accessOptions = read then createOptions = oldOnly are assumed.

If createOptions = none or newOnly and the file specified by fileName does not exist, then create
it, with initial size (in pages excluding leader page) of createLength/bytesPerPage (rounded up),
and initial length (in bytes) zero.

[f fileName specifies the server "Juniper” and transaction either has pilot variant and contains
Transaction.nullHandle or has juniper variant but contains NIL ([juniper{]] produces this), then
call Juniper.Userlnitf], and create a new transaction by calling Juniper.BeginTransaction.

StreamFromOpenFile: PROC |
openFile: CIFs.OpenFile,
accessOptions: AccessOptions « read,
closeOptions: CloseOptions « defaultCloseOptions,
transaction: Transaction.Handle « Transaction.nullHandle,
raw: RawOption « FALSE,
streamBufferParms: StreamBufferParms « defaultStreamBufferParms]
RETURNS [STREAM];
! OpenkFailed with why =
notImplementedYet: accessOptions # read.

Create a new file stream on the open file.

StreamFromCapability: PROC [

capability: File.Capability,

accessOptions: AccessOptions « read,

closeOptions: CloseOptions « defaultCloseOptions,

fileName: ROPE « NIL, .

transaction: Transaction.Handle « Transaction.nullHandle,

raw: RawOption « FALSE,

streamBufferParms: StreamBufferParms « defauitStreamBufferParms]

RETURNS [STREAM];

! OpenFailed with why =
cantUpdateTiogaFile: raw = FALSE, accessOptions # read, and file is in Tioga format.
unknownFileCapability: no file identified by capability is present on the local disk volume.

Create a new stream on the file identified by capability (note that StreamFromCapability adds
permissions to capability as required to perform the accesses as specified in accessOptions).
fileName is stored in the stream, for diagnostic purposes when a stream error occurs.

CapabilityFromStream: PROC |
self: STREAM]
RETURNS [File.Capability];
! 10.ErrorfNotImplementedForThisStream]: self is not a stream on a Pilot file

Return the file capability for the file underlying self. This capability has the permissions that are
necessary to perform stream operations.

StreamFromLFH: PROC |

1fh: Juniper.LFH,

accessOptions: AccessOptions « read,

closeOptions: CloseOptions « defaultCloseOptions,

fileName: ROPE ¢ NIL,

transaction: Juniper.Transaction,

raw: RawOption « FALSE]

RETURNS [STREAM];

! OpenFailed with why =
cantUpdateTiogaFile: raw = FALSE, accessOptions # read, and file is in Tioga format.
unknownFileCapability: no file with the given LFH is present on Juniper.

Create a new stream on the Juniper file identified by Ifh. fileName is a debugging aid, for
diagnostic purposes when a stream error occurs.

END.

What STREAM operations do when applied to a file STREAM

Basic STREAM procs

10.GetChar: PROC [self: STREAM] RETURNS [CHAR]
If streamIndex = fileLen then ERROR [0.EndOfStream. Else return file[streamIndex], and set
streamIndex « streamindex + 1.

10.PutChar: PROC [self: STREAM, char: CHAR]
If streamIndex = fileLen then fileLen « fileLen + 1. Then set file[streamIndex] « char,
streamIndex + streamindex + 1.

10.GetBlock: PROC [self: STREAM, block: REF TEXT, startindex: NAT « 0, stopIndexPlusOne: NAT «
LAST{NAT]] RETURNS [nBytesRead: NAT]
Equivalent to (but faster than)
stopIndexPlusOne « MIN [block.maxLength, stopIndexPlusOne];
nBytesRead: NAT « MiIN[fileLen-streamIndex, stoplndexPlusOne-startindex];
FOR i: NAT IN [0..nBytesRead) DO block{startindex+i] « GetChar{self] ENDLOOP;
IF nBytesRead # 0 THEN block.length « startIndex + nBytesRead;
RETURN[nBytesRead]

10.PutBlock: PROC [self: STREAM, block: REF READONLY TEXT, startindex: NAT « 0,
stopIndexPlusOne: NAT « LAST[NAT]]
Equivalent to (but faster than)
IF stopIndexPlusOne > block.maxLength THEN stopIndexPlusOne « block.length;
FOR i: NAT IN [startIndex..stopIndexPlusOne) DO PutChar{self, block(i]] ENDLOOP;

10.UnsafeGetBlock: UNSAFE PROC [self: STREAM. block: 10.UnsafeBlock] RETURNS [nBytesRead:
INT]
Equivalent to (but faster than)
IF block.startindex < 0 OR block.stopIndexPlusOne < 0 THEN
ERROR 10.Error{BadIndex];
nBytesRead: INT « MiN[fileLen-streamIndex. block.stopIlndexPlusOne-block.startIndex];
FOR i: INT IN [0..nBytesRead) DO
block.baset[block.startindex +i] « GetChar{self] ENDLOOP;
RETURN[nBytesRead]

10.UnsafePutBlock: PROC [self: STREAM, block: 10.UnsafeBlock]

Equivalent to (but faster than)

IF block.startindex < 0 OR block.stopIndexPlusOne < 0 THEN
ERROR [0.Error{BadIndex]:

FOR i: INT IN [block.startIndex..block.stopIndexPlusOne) DO
PutCha-{self, block.baset{i]] ENDLOOP;

10.CharsAvail: PROC [self: STREAM] RETURNS [BOOL]
Return TRUE.

10.EndOf: PROC [self: STREAM] RETURNS [BOOL]
Return streamIndex = fileLen.

10.Flush: PROC [self: STREAM]
Force all stream writes since the time of stream creation or the preceding Flush to be written to
disk. If commitAndReopenTransOnFlush then first commit trans, then begin a new
transaction as trans.

10.Reset: PROC [self: STREAM]
[f accessOptions # append then set streamindex « 0.

10.Close: PROC [self: STREAM, abort: BOOL « FALSE]

[f NOT abort, then force all stream actions since stream creation or the preceding Flush to be
written to disk; otherwise discard them. If truncatePagesOnClose, then discard unused pages
from end of file. If finishTransOnClose, then commit or abort trans depending on the state of
abort. Invalidate self (all operations on self other than Flush, Reset, and Close will raise
ERROR 10.Error{StreamClosed]; these three do nothing). ‘

Less basic STREAM procs

10.PutBack: PROC [self: STREAM, char: CHAR]
If streamIndex = 0 then ERROR I0.Error{IllegalPutBack]. Otherwise, set streamIndex «
streamIndex - 1, and if filefstreamindex] # char then ERROR [0.Error{IllegalPutBack].

10.PeekChar: PROC [self: STREAM] RETURNS [char: CHAR];
Equivalent to:
C: CHAR « self.GetChar{]; self.PutBack{c]; RETURN [c];

File-specific STREAM procs
10.GetIndex: PROC [self: STREAM] RETURNS [INT]
Return streamIndex.

10.Setlndex: PROC [self: STREAM, index: IST]
ERROR [0.EndOfStream if index > fileLen. Set streamindex « index.

10.GetLength: PROC [self: STREAM] RETURNS [INT]
Return fileLen.

10.SetLength: PROC [self: STREAM, length: INT]
Set fileLen « I, then set streamindex « MIN[streamindex, fileLen]. The contents of
file[oldFileLen .. fileLen) are undefined.

Change Log

Created by MBrown on 7-Dec-81 10:33:20
By editing FileByteStream.

Changed by MBrown on March 26, 1982 4:41 pm
Added "raw” parm to stream create operations.

Changed by MBrown on August 23, 1982 10:25 pm
Handle -> STREAM (-> Stream in proc names), introduce FilelO.OpenFailed, CIFS access in readonly
mode. initial file size in Open, buffer pages and swap units. Format this file using Tioga nodes.

Changed by MBrown on October 23, 1982 9:59 pm .
Default transaction to Open is now [juniperf]], since this does not require the average user tc. import
Transaction (to use nullHandle). Format to use current Cedar style.

Changed by MBrown on January 6, 1983 8:15 pm
Attempted lo reduce the confusion over what is comment and what is not comment in the interface,
and to improve the explanation of AccessOptions.

IO.mesa

Top-level stream and [/0O interface for Cedar
Last edited by: Teitelman on January 12, 1983 3:01 pm

Note: this interface is heavily structured using Tioga Nodes. Thus, you can use the level clipping to
obtain a table of contents, and to successively refined levels of detail in the areas you are especially
interested.

DIRECTORY
Ascii USING [CR, SP, TAB, LF, BS, ControlA, ControlX FF, NUL, ESC, DEL, BEL],
Atom USING [PropList],

Rop