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ABSTRACT: By means of changing the reaction parameters, different products could be generated selectively starting from the
same combination of substrates involving 1,3-dicarbonyl compounds and formaldehyde. This strategy enabled us to access
diverse molecules without changing both starting material and reactor, maximizing thus the multifunctionality of the synthetic
system. For example, starting from a 1,3-dicarbonyl compound, formaldehyde and 1,1-diphenylethylene, two kinds of products
could be selectively formed including (i) a densely substituted dihydropyran and (ii) a C2-cinnamyl substituted 1,3-dicarbonyl
compound. A one-pot three-component reaction of phenacylpyridinium salt, 1,3-dicarbonyl compound, and formaldehyde was
also investigated, which produced either 2,4-diacyl-2,3-dihydrofuran or 2,4-diacyl-2-hydroxylmethyl-2,3-dihydrofuran in good to
excellent yield.
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■ INTRODUCTION

Multicomponent reactions (MCRs) are convergent reactions
of three or more starting materials, which have emerged as an
efficient method for rapidly generating complex molecules with
diverse functional substituents.1 MCRs have often been used to
establish expedient and ecofriendly chemical methods for the
discovery of new chemical entities required by pharmaceutical
and agrochemical industries.2 Most MCRs were established by
a reaction sequence involving (i) generation of an active inter-
mediate through a reaction of the first two or three components
and (ii) trapping of the intermediate with the same or another
component. The generated intermediates generally have a very
high reactivity, which enabled us to construct new molecular
scaffolds sometimes. Therefore, most of the research interests
focus on either the exploration of a suitable trapping reagent
or derivatization of the intermediate with the hope of estab-
lishing a new reaction sequence.3 However, there is a perceived
challenge in the face of the ever increasing demand for novel
medicinally active compounds. This forced us to think how to

maximize the efficiency of establishing molecule libraries for
biological screening.
Control of the reaction selectivity, for example, chemo-,

stereo-, and regioselectivity, is one of the most important ob-
jectives of organic chemistry.4 Many different reaction param-
eters such as temperature, pressure, solvent, and catalyst type,
and other factors can be utilized to modulate the selectivity
of organic reactions. Because three or more substrates are in-
volved in a MCR, it is conceivable that by carefully mani-
pulating the reaction parameters, it might be possible to
establish two or more MCRs with the same combination of
substrates. This strategy can increase the number of MCRs
without increasing the number of substrates. Previously, a few
reports have disclosed some individual examples of the
synthesis of different products from the same substrates.5 It
offered an effective means to us for enriching the diversity of
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the MCR product libraries, which in turn facilitates biological
screening.
We were attracted by the unique advantages of this strategy

and started a research program on this topic some time ago. To
utilize this strategy, we have to find a suitable intermediate,
which not only has a high reactivity but also is amenable to
diversified reaction modes, allowing us to trap it in different
reaction pathways. Recently, the Knoevenagel reaction of
1,3-dicarbonyl compounds and formaldehyde has been used to
create MCRs.6 The generated 2-methylene-1,3-dicarbonyl
intermediate not only acts as an oxo-diene in Diels−Alder
reaction but also serves as a Michael acceptor in conjunction
with some Michael donors, favoring thus construction of many
MCRs.7 We were attracted by the multifunctionality of this
intermediate and started our MCR investigation with a com-
bination of 1,3-dicarbonyl compounds and formaldehyde.

■ RESULTS AND DISCUSSION
Initially, a three-component reaction of 1,1-diphenylethylene
1a, acetoacetone 2a, and formaldehyde was investigated. As
shown in Scheme 1, when formalin was used as HCHO source,

a dihydropyran 3a was obtained in 75% yield after 5 h of
reaction at 80 °C in acetonitrile. The reaction is very clean,
and the unreacted 1,1-diphenylethylene can be fully recovered.
Interestingly, when paraformaldehyde was used as the HCHO

source, a different compound, 4a was obtained in 80% yield
in the presence of toluenesulfonic acid (PTSA) at 60 °C.
These results imply that the source of HCHO and the reac-
tion conditions played key roles in controlling the reaction
selectivity.
These results also gave us impetus to investigate the reac-

tion mechanism. It is well-known that 3a was formed through
a tandem Knoevenagel/oxo-Diels−Alder reaction pathway,
in which 1a acted as a dienophile to trap the generated
3-methylene-2,4-pantadione (intermediate I, Figure 1).8 In
order to shed light on the mechanism for the formation of 4a,
several control experiments were then carried out. First,
although the Prins cyclization product of 1a and paraformalde-
hyde, 5a, could be formed with the aid of PTSA catalyst, it
cannot be converted into 4a under the reaction conditions
(Scheme 2). Because 3a could be also detected during the

Scheme 1. Three-Component Reaction of 1a, 2a, and
Formaldehyde

Figure 1. Proposed mechanism for the formations of 3a and 4a.

Scheme 2. Control Experiments for Understanding the
Mechanism of 4a Formation
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reaction forming 4a (Figure 2), we therefore treated 3a with
PTSA in acetonitrile. After 5 h of reaction at 80 °C, 4a was
formed in 80% of yield. However, this result is insufficient to
lead us to draw a conclusion for the formation of 4a because
kinetic investigation of the reaction between 1a, 2a, and
paraformaldehyde revealed that no significant accumulation of
3a was observed during the reaction (Figure S2, Supporting
Information). In addition, monitoring of the reaction progress
by means of 1H NMR demonstrated that (i) intermediate I was
generated quickly in the first 30 min of the reaction and then its
concentration gradually decreased and (ii) the formation of 4a
occurred in the beginning of the reaction and lasted all 12 h as
the concentration of 4a increased gradually during the reaction.
All these results led us to deduce that 4a might be formed
through a direct Michael reaction of the intermediate I and 1a.
Because the isolation of pure intermediate I is not possible,
methyl vinyl ketone 6a was therefore used as a Michael
acceptor, which has a relatively lower reactivity than the inter-
mediate I. As shown in Scheme 2, the expected product 7a was
obtained in 80% of yield. This result implies that 4a might be
formed through a tandem Knoevenagel/Michael reaction
pathway. Incidentally, because Knoevenagel/oxo-Diels−Alder
reaction is a noncatalytic reaction sequence, formation of 3a
is inevitable during the synthesis of 4a. A Knoevenagel/
oxo-Diels−Alder/ring-opening reaction sequence may be also
operative for the formation of 4a (Figure 1). The ring-opening
reaction pathway is able to convert 3a into 4a, ensuring thus a
good selectivity of 4a.
The PTSA/acetonitrile system was successfully used to

establish the three-component reactions of a wide range of 1,3-
dicarbonyl compounds, (HCHO)n, and 1,1-diarylethylenes, and
the results are shown in Figure 3. Many linear β-ketoesters or
1,3-diketones reacted readily with 1a and paraformaldehyde,
affording the corresponding products in generally excellent
yields. Cyclopropyl and methoxy groups are tolerable in this
system (4g). A secondary β-ketoamide can also be used
uneventfully (4i). Some other 1,1-diphenylethylene derivatives

could also be used. Particularly, a diarylethylene with thienyl
group participated readily in this reaction as well (4l). It is
significant to note that 1a could be replaced by 1,1-
diphenylethanol, which is less-expensive compared with 1a, in
this reaction. This offered a cost-effective alternative route to
access 4a-type products (Scheme 3). It should be noted also
that the same products in Figure 3 could be synthesized by
many reported methods, most of which involve the use of harsh
conditions and expensive reagents and suffer from the lack of
simplicity and also the yields and selectivities reported are
sometimes far from satisfactory.9 Therefore, the present three-
component reaction opened a simple and effective route to
access these compounds. However, attempts to use normal
1-arylethylenes, such as 4-methylstyrene and α-methylstyrene,
as substrates in the PTSA/acetonitrile system were in vain. The
reactions suffered from a lack of selectivity as messy mixtures
were formed in these cases. By the same token, formaldehyde
cannot be replaced by other aliphatic or aromatic aldehydes in
this reaction.
The above-mentioned results demonstrated that the develop-

ment of condition-determined MCRs based on a combina-
tion of a 1,3-dicarbonyl compound and formaldehyde is indeed
possible. Encouraged by these results, we then investigated
the condensation reaction of N-phenacylpyridinium bromide
7a, 1,3-cyclohexanedione 2b, and formaldehyde, which can
hopefully produce a 2,4-diacyl-2,3-dihydrofuran derivative, 8a
through a cascade Knoevenagel/[4 + 1] annulation reaction
under appropriate conditions.10 The reaction was also triggered
by a Knoevenagel condensation of 2b with formaldehyde,
which generated a 2-methylene-1,3-cyclohexanedione inter-
mediate (II) that can be trapped by phenacylpyridinium salt
through [4 + 1] annulation reaction (Figure 4). As shown in
Table 1, a product was indeed formed in the presence of an
inorganic base, K2HPO4·3H2O, in DMSO; however, it was the
hydroxymethylation product of the expected one, 8a′. Because
compound 8a was also detected at the end of the reaction, we
therefore deduced that 8a′ might be formed through a cascade

Figure 2. Progress of a PTSA-catalyzed reaction of 1a, 2a, and paraformaldehyde monitored by 1H NMR.
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Knoevenagel/[4 + 1] annulation/hydroxymethylation reaction
(Figure 4). Indeed, treatment of 8a in DMSO in the presence
of paraformaldehyde resulted in an evident formation of 8a′
(Scheme 4). To our great delight, the quasi-four-component
reaction was found to be very efficient, and the yield of 8a′
reached 83% after 4 h of reaction at 80 °C (entry 1). This
observation encouraged us to scrutinize the effects of reac-
tion parameters including base, solvent, and reaction temper-
ature. No or only trace amount of product was obtained with
inorganic bases, such as K3PO4·3H2O and K2CO3 (entries 2
and 3). Organic bases like NEt3 and DBU were also ineffective

for this reaction (entries 4 and 5). Among different solvents
tested in the reaction, DMSO clearly stood out, producing 8a′
with the highest yield, with DMF and acetonitrile in a distant
second place (ca. 40% yields). PEG400, ionic liquid [BMIm]-
BF4, and water resulted in significantly lower efficiency of the
reaction (entries 8 to 10). Ratio of 7a/2b/HCHO can also
significantly affect the yield of 8a′, and the best is 7a/2b/
HCHO = 1.0/2.0/2.5. Poor yields were obtained with much
excess of 2b or HCHO, which might result from an extensive
formation of a byproduct through Knoevenagel/Michael
reaction of 2b and HCHO (entries 11 and 12). Interestingly,
when ratio of the 7a/2b/HCHO was changed to 1.0/1.5/2.0,
8a was produced as a major product, and 8a′ was formed only
in tiny amounts (entry 13). These results imply that substrate
ratio has a subtle influence on the reaction selectivity, and
amounts of 2b and formaldehyde are both important to
determine the reaction selectivity. It offered us a possible means
to control the reaction selectivity by tuning the reaction param-
eters. It should be noted that, in all the previous reports on
Knoevenagel/[4 + 1] annulation sequential reaction of

Scheme 3. PTSA-Catalyzed Three-Component Reaction of
1,1-Diphenylethanol, 2a, and Paraformaldehyde

Figure 4. Proposed mechanism for the formation of 8a and 8a′.

Figure 3. PTSA-catalyzed three-component reaction of 1,1-diarylethylene, 1,3-dicarbonyl compounds, and (HCHO)n.
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phenacylpyridinium salt, the use of aromatic aldehyde is
mandatory in order to facilitate control of the reaction selec-
tivity.11 The present synthesis of 8a-like 2,3-dihydrofurans
represents the first example of using nonaromatic aldehyde
as substrate. Additionally, the reaction was also affected by
temperature and reaction time, and the maximum yield of 8a′
was obtained at 80 °C after 4 h of reaction (entries 14 to 16). It
is worthwhile to note that, under the optimal conditions, efforts
to replace paraformaldehyde with either formalin (37 wt %) or
trioxymethylene were in vain (entries 17 and 18).
We also probed the scope of the reaction with respect to

both the pyridinium bromide and the 1,3-dicarbonyl compounds.
As evidenced by the results in Table 2, N-phenacylpyridinium
bromides with both electron-donating and moderately electron-
withdrawing groups smoothly reacted with 2b, producing
2-hydroxymethylated 2,3-dihydrofuran derivatives in generally

good yields (entries 1−5). By decreasing the ratio of 7/2/
HCHO, we are able to suppress the hydroxymethylation.
Particularly, when N-(4-methoxyphenacyl)pyridinium bromide
was used, yield of the tandem Knoevenagel/[4 + 1] annulation
product, 8e, reached 95% with the ratio of 7/2/HCHO = 1.0/
1.5/2.0. However, increasing the ratio to 1.0/2.0/2.5 was in vain
to obtain its hydroxymethylated counterpart, 8e′. In this case,
high excess of paraformaldehyde has to be used in order to get a
good yield of 8e′ (entry 4). Acetoacetone 2a reacted readily with
7a and formaldehyde; however, extra effort has to be paid to
control the reaction selectivity because change of the substrate
ratio cannot alter significantly the product distribution. Addition
of solvent amount of xylene, which constructed a biphasic system
along with DMSO, proved to be an effective way to suppress the
hydroxymethylation reaction of 8g (entry 6). In order to get 8g′,
the reaction has to be performed at 30 °C. Fortunately, when the
other N-phenacylpyridinium bromide derivatives were used to
react with 2a, it was quite easy to control the reaction
selectivity. In the presence of a large excess of paraformalde-
hyde, the hydroxymethylated product will be preferentially
formed as usual, whereas the major products are the non-
hydroxymethylated 2,3-dihydrofurans when the ratio of 7/2b/
HCHO is 1.0/2.0/2.5 (entries 7−14). This strategy is particularly
effective for tuning the selectivity of condensation between N-(4-
phenylphenacyl)pyridinium bromide, 2a, and formaldehyde. Both
hydroxymethylated and nonhydroxymethylated products could be
obtained in more than 90% yields in this case (entry 10). 1-(2-
Naphthoylmethyl)pyridinium bromide also proved to be an
eligible substrate that reacted smoothly with either 2b or 2a,
providing both hydroxymethylated and nonhydroxymethylated
products in good yields (entries 5 and 11). It should be noted that
the OH group in the phenacylpyridinium salt can be delivered
uneventfully (entry 12). This facilitates further conversions of
the obtained 2,3-dihydrofurans. A heterocyclic group, such as
thienyl, is also tolerable in the present reaction (entry 13).
Reactions with β-ketoesters also proceeded very well, and the
products succeeded the ester moieties without any damage
(entries 14−17). The ether fragment in 2-methoxyethyl
acetoacetate is also tolerable. Due to an insusceptibility of the
reaction toward the change of the substrate ratio, the DMSO/
xylene biphasic system was employed when methyl isobutyr-
ylacetate and 2-methoxyethyl acetoacetate were used to react
with 7a (entries 16 and 17). It should be noted that when an
aqueous solution of acetaldehyde was used instead of
paraformaldehyde, no expected substituted dihydrofuran
derivative was formed.
Because the hydroxymethylated products contain some

reactive groups, we suspected that these molecules might be
susceptible under acidic conditions. As we expected, treatment
of 8g′ in ethanol in the presence of Sc(OTf)3 resulted in
selective formation of diphenyl derivative 9a (Scheme 5). The
existence of the hydroxyl group in 8g′ proved to be crucial for
rendering this reaction possible because no reaction was ob-
served when 8g was used as substrate under the identical con-
ditions. The initial step of the reaction might be an intra-
molecular ring-opening and ring-closing reaction of 8g′ with
the aid of acid catalyst, which generated an epoxide inter-
mediate (IV). The following ring-opening of IV with ethanol
produced an intermediate V that underwent an intramolecular
aldol reaction12 and subsequent retro-Claisen condensation13

to form the final product 9a. This reaction not only displayed
an interesting reaction sequence but also offered us the first

Table 1. Three-Component Reaction of
N-Phenacylpyridinium Bromide, Acetylacetone, and
Formaldehyde under Different Conditionsa

yield (%)

entry base solvent
ratio of 7a/
2b/HCHO

temp
(°C) 8a 8a′

1 K2HPO4·3H2O DMSO 1.0/2.0/2.5 80 <5 83
2 K3PO4·3H2O DMSO 1.0/2.0/2.5 80 <5 <5
3 K2CO3 DMSO 1.0/2.0/2.5 80 0 0
4 Et3N DMSO 1.0/2.0/2.5 80 8 5
5 DBU DMSO 1.0/2.0/2.5 80 0 0
6 K2HPO4·3H2O DMF 1.0/2.0/2.5 80 <5 36
7 K2HPO4·3H2O CH3CN 1.0/2.0/2.5 80 <5 39
8 K2HPO4·3H2O PEG400 1.0/2.0/2.5 80 <5 <5
9 K2HPO4·3H2O [BMIm]BF4 1.0/2.0/2.5 80 9 <5
10 K2HPO4·3H2O H2O 1.0/2.0/2.5 80 8 <5
11 K2HPO4·3H2O DMSO 1.0/1.0/2.0 80 <5 67
12 K2HPO4·3H2O DMSO 1.0/2.5/3.0 80 9 22
13 K2HPO4·3H2O DMSO 1.0/1.5/2.0 80 80 <5
14 K2HPO4·3H2O DMSO 1.0/2.0/2.5 50 0 5
15 K2HPO4·3H2O DMSO 1.0/2.0/2.5 100 5 10
16b K2HPO4·3H2O DMSO 1.0/2.0/2.5 80 24 51
17c K2HPO4·3H2O DMSO 1.0/2.0/2.5 80 <5 11
18d K2HPO4·3H2O DMSO 1.0/2.0/2.5 80 0 0

aConditions: 1a, 1.0 mmol; paraformaldehdye was used as HCHO
source; solvent 1.0 mL; reaction time 4 h. bReaction time 2 h.
cAqueous solution of formaldehyde was used as HCHO source.
dTrioxymethylene was used as HCHO source.

Scheme 4. Hydroxymethylation of 8a to 8a′
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Table 2. Substrate Scope of Three-Component Reaction of N-Phenacylpyridinium Bromides, 1,3-Dicarbonyl Compounds, and
Paraformaldehydea
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example that can produce aromatic ether from five-member
ring heterocycles without oxidation.14

■ CONCLUSION
Some condition-determined MCRs of 1,3-dicarbonyl com-
pounds and formaldehyde were reported. Reaction of a 1,3-
dicarbonyl compound, formaldehyde, and 1,1-diphenylethylene
produced either a densely substituted 3,4-dihydropyran or a
C2-cinnamyl substituted 1,3-dicarbonyl compound. A pseudo-
four-component reaction of N-phenacylpyridinium bromide,
1,3-dicarbonyl compound, and formaldehyde was also developed,
which involved a hitherto unreported Knoevenagel/[4 + 1]
annulation/hydroxymethylation reaction sequence. All these
examples demonstrated that the concept of condition-
determined MCR is indeed useful for divergence-oriented
organic synthesis.

■ EXPERIMENTAL SECTION

General. Melting points were determined by microscopic
melting point meter and were uncorrected. IR spectra were
recorded on a FT-IR, Bruker (EQUINOX 55), using KBr
pellets or neat liquid technology. 1H and 13C NMR spectra
were recorded on a Bruker AV-400. Chemical shifts are ex-
pressed in ppm relative to Me4Si in solvent. All chemicals used
were of reagent grade and were used as received without further
purification. All reactions were conducted in a 10 mL V-type
flask equipped with triangle magnetic stirring.

Reaction of 1,1-Diarylethylene, 1,3-Dicarbonyl Com-
pounds, and (HCHO)n. In a typical reaction, the 1,3-
dicarbonyl compound (0.2 mmol) was mixed with paraformal-
dehyde (0.2 mmol), 1,1-diarylethylene (0.25 mmol), and PTSA
(0.02 mmol, 3.8 mg, 10% mol) in acetonitrile (1.0 mL), The
mixture was then stirred at 60 °C for 12 h. After reaction, the
mixture was cooled to room temperature, and the product was
obtained by isolation with preparative TLC (eluting solution,
petroleum ether/ethyl acetate = 5/1 (v/v)). Tests for substrate
scope were all performed with an analogous procedure.

Three-Component Reaction of N-Phenacylpyridinium
Bromides, 1,3-Dicarbonyl Compounds, and (HCHO)n.
N-Phenacylpyridinium bromide (0.25 mmol) was mixed with
the 1,3-dicarbonyl compound (0.375 mmol), and paraformal-
dehyde (0.5 mmol). The mixture was then stirred at 80 °C for
4 h. After reaction, the mixture was cooled to room tempera-
ture, and the product 2,4-diacyl-2,3-dihydrofuran derivative was
obtained by isolation with preparative TLC (eluting solution,
petroleum ether/ethyl acetate = 10/1 (v/v)). Tests for sub-
strate scope were all performed with an analogous procedure.
The hydroxymethylation product was obtained by only changing
the ratio of N-phenacylpyridinium bromide, 1,3-dicarbonyl com-
pound, and paraformaldehyde to 1.0/2.0/2.5.

Synthesis of 9a from 8g′. Compound 8g′ (52 mg,
0.2 mmol) and Sc(OTf)3 (10 mg, 10% mol) was added to ethanol

Table 2. continued

aConditions: N-Phenacylpyridinium bromide 0.5 mmol; DMSO 1.0 mL; K2HPO4·3H2O 1.0 mmol; 80 °C, 4 h. bValue in parentheses is the yield of
the minor product. cXylene was added. dReaction performed at 30 °C.

Scheme 5. Conversion of 8g′ to 9a
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(1 mL), and the mixture was then stirred at 80 °C for 4 h. After
reaction, the product 9a was obtained by isolation with pre-
parative TLC (eluting solution, petroleum ether/ethyl acetate =
20/1 (v/v)) with yield of 61%.
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