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ABSTRACT: In connection with a program directed at potent and balanced dual
NK1/NK3 receptor ligands, a focused exploration of an original class of
peptidomimetic derivatives was performed. The rational design and molecular
hybridization of a novel phenylalanine core series was achieved to maximize the in
vitro affinity and antagonism at both human NK1 and NK3 receptors. This study led
to the identification of a new potent dual NK1/NK3 antagonist with pKi values of
8.6 and 8.1, respectively.
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Both neurokinin 1 (NK1) and neurokinin 3 (NK3)
receptors are localized in the corticolimbic structures of

the brain.1 They modulate dopaminergic transmission, play a
role in the control of mood, and are involved in the response to
stress, exposure to psychostimulants, and risk factors for the
induction of psychoses. Behavioral studies of neurokinin 3
antagonists in rodents suggest potential utility in the treatment
of schizophrenia.2−5 In a recent report, we described a novel
series of small molecules derived from a phenylglycine core and
intended as dual human NK1/NK3 receptor antagonists for the
potential treatment of schizophrenia.6 These compounds
exhibited in vitro preferential NK1 antagonist activity for the
NK1 receptor (Ki = 7.8) for the most active analogue, but
insufficient NK3 receptor antagonism (pKi = 6.0 or less). In an
effort to identify modifications that enhance NK3 receptor
antagonism yet preserve or augment already established NK1

receptor affinity, we explored structure−activity relationships
(SAR) focusing on modifications of the N- and C-terminal
regions of the original motif.
In line with these objectives, we first examined the

aminoethyl appendage in order to modulate the C-terminal
side-chain in which the original phenylglycine central core was
replaced by a D- or L-phenylalanine residue. Given the superior
NK1 receptor potency observed for the conformationally
restricted N-methylated ligand, we started with a first
generation series containing a central N-methyl phenylalanine
core.7

Molecular hybridization is a well-recognized strategy of
rational design of new ligands based on the recognition of
pharmacophoric subunits in the molecular structure of two or
more known bioactive derivatives.8−10 The appropriate fusion
of these subunits can lead to the design of new hybrid
architectures with the prospects of combining preselected
characteristics of the original template.
In this context, we turned our attention to the known α-aryl

acetamide derivatives 3 and 4 as potent and selective NK1
receptor antagonists.11−17 Both series are structurally related
with a common 3,4-dichlorophenyl acetic acid unit, either
mono- or disubstituted at the benzylic position, linked via an
alkyl spacer to a piperidinyl or spiropiperidinyl motif. We
hypothesized that the combination of this moiety with our
previously identified6 N-(2-aminoethyl)phenylalanine pharma-
cophore, tethered by a 3,4-dichlorophenyl acetyl unit, could
produce a new hybrid compound 2 with potentially improved
and balanced affinity for the NK1 and NK3 receptors (Figure 1).
Although difficult to predict, it was hoped that reduced
backbone flexibility18 would lead to favorable pharmacokinetics,
ultimately resulting in enhanced potency and selectivity.
The synthetic strategy developed for the preparation of the

N-methyl compounds 11−14 is outlined in Scheme 1. It started
from chiral acid (R)-5, or its enantiomer (S)-6, efficiently
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obtained by monoallylation of commercially available 3,4-
dichlorophenylacetic acid followed by resolution as diastereo-
meric salts with (+)- and (−)-α-methylbenzylamine, respec-
tively,19−23 with high enantioselectivity (≥96% ee).24−29

Phenylglycine and phenylalanine building blocks (S)-7a,b
were concisely obtained by acylation of monoprotected α,ω-
alkanediamines7,30,31 with N-methylated aminoacids.7,32,33

With the C2 stereochemistry set, conversion to amides (R,S)-
8a,b was done via standard solution-phase peptide synthesis
with N-Boc or N-Cbz protected N-methyl amines (S)-7 using
DEPBT34 or BOP35 and Hünig’s base. We explored a variety of
coupling protocols to form the N-methyl amide linkage. Not
unexpectedly, partial epimerization of the allylic α-center was
observed {9:1 dr for (R,S)-8a and 4:1 dr for (R,S)-8b}.
However, simple separation of diastereomers by silica gel flash
chromatography easily afforded enantiopure (R,S)-8a,b in good
yields. The one-pot, two-step oxidation of the allyl side chain
with osmium tetroxide and N-methylmorpholine N-oxide
(NMO) followed by sodium periodate cleavage afforded
aldehydes (R,S)-9a,b in good yields. Alternatively, amides
(R,S)-8a,b were converted to the corresponding primary
alcohols via a regioselective hydroboration with catecholborane
in the presence of Wilkinson’s catalyst and subsequent oxidative
workup using aqueous H2O2 under neutral conditions.36,37

Oxidation of these alcohols with Dess−Martin periodinane
(DMP)38,39 in CH2Cl2 afforded aldehyde (R,S)-9c and (R,S)-
9d in 95% overall yield. Reductive amination with 4-substituted
piperidine 10a,13,40,41 spirocyclic oxindole 10b,42−46 spiropiper-
idine 10c,14,47,48 and spiroazetidine 10d49,50) with aldehydes 9a
to 9d using sodium triacetoxyborohydride in 1,2-dichloro-
ethane51,52 (DCE) afforded the corresponding tertiary amines
in moderate to excellent yields. The synthesis was completed by
deprotection of the N-Cbz- or N-Boc carbamate groups by
hydrogenation or acidolysis, respectively, followed by final
purification using preparative RP-HPLC to afford compounds
(R,S)-11 to 14. The corresponding diastereoisomers (S,S)-11,
(S,S)-12, and (S,S)-13a,b were prepared using similar strategies
starting from (S)-6.7,32,33

We next investigated the effect of a methyl substituent on the
benzylic carbon adjacent to the 3,4-dichlorophenyl ring rather
than linked to the nitrogen as exemplified by the second
generation analogues (R,S)-23 to 27 as shown in Scheme 2.
Optically pure acid (R)-15 with the all-carbon quaternary
stereogenic center was obtained by an efficient resolution
(≥96% ee) by fractional crystallization of diastereomeric
salts.20,53−55 TMSE ester (R)-16 was subjected to dihydrox-
ylation and subsequent one-pot oxidative cleavage using NaIO4
to give aldehyde (R)-18.
Alternatively, direct OsO4-catalyzed oxidative cleavage of acid

(R)-15 afforded hemiacetal (R)-17 as a diastereomeric mixture.
Piperidine 10a or spiropiperidine 10b,c motifs were efficiently
introduced by reductive amination using sodium triacetoxybor-
ohydride in DCE51,52 or sodium cyanoborohydride in
methanol,56 respectively. Acids (R)-19b to (R)-19c or TMSE
esters (R)-20a−c, pretreated with TBAF in THF, were coupled
with primary amines7,57 (S)-21b, (R)-21a,c−e, and (S)-22
using standard peptide coupling conditions (HBTU58 or
PyBOP59). Finally, the amino protecting groups were removed
by acidolysis or hydrogenolysis to yield the desired products
(R,S)-23 and (R,S)-24a−c that were further purified by RP-
HPLC affording the corresponding dihydrochloride salts after
lyophilization. Compounds (S,S)-23, (S,S)-24a−c, and (S,R)-
24b were prepared from enantioenriched acid (S)-22 using a
similar route.7

In order to explore the effect of linker length between the
3,4-dichlorophenyl acetamide core and the piperidine pharma-
cophore, compounds 32−35 bearing a C-methyl substituent on
the benzylic carbon and a three-carbon spacer were prepared as
described in Scheme 3. Since the synthetic routes previously
described could not be applied to access these compounds, we

Figure 1. Rational design of dual NK1/NK3 receptor antagonists
(generic structure 2) by applying the molecular hybridization approach
to our hit structure 16 and potent NK3R antagonists 3 and 4
(Hoffmann−La Roche).11,14

Scheme 1. Synthesis of the N-Methylated Analogues 11−14a

aReagents and conditions: (1) BOP, Hünig’s base, THF, r.t., 12 h,
99% 9:1 dr; (2) DEPBT, Hünig’s base, THF, 0 °C to r.t., 8 h, 94%, 4:1
dr; (3) (i) NMO (50 wt % in H2O), OsO4 (4 wt % in H2O), H2O−
THF (1:3, v/v), r.t.; (ii) NaIO4, r.t., 87%; (4) (i) catecholborane,
RhCl(PPh3)3 (3 mol %), THF, 0 °C to r.t. then H2O2 (30% w/w),
EtOH, phosphate buffer pH 7.0, 0 °C to r.t.; (ii) DMP, CH2Cl2, r.t., 8
h, 55 to 95% (2-steps); (5) 10a−d, DCE or CH2Cl2, 3 Å MS, r.t. then
NaBH(OAc)3, r.t., 42 to 90%; (6) R = Cbz, (i) H2 (1 atm), Pd/C (10
wt %), EtOH, 4 M HCl in dioxane, r.t.; (ii) RP-HPLC-prep, 32 to
60%; (7) R = Boc, (i) HCl(g), EtOAc, 0 °C to r.t.; (ii) RP-HPLC-prep,
40 to 57%.
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decided to introduce the spiropiperidine moiety prior to the
peptide coupling. Accordingly, methyl ester (R)-28 was treated
with hydrogen bromide in toluene under free-radical conditions
to provide bromide (R)-29 in 80% yield. Nucleophilic
displacement with spiropiperidine 10c, followed by saponifica-
tion of the methyl ester gave the key spiropiperidine acid (R)-
31 in 62% yield over two steps.7 HBTU-Mediated amide

formation with the appropriate aromatic residue followed by
acidolysis, if applicable, completed the synthesis of these
second-generation analogues.
Finally, we focused on the synthesis of third-generation N,C-

bismethylated α,α-disubstituted backbone peptidomimetic
analogues.60−62 The challenging synthesis of these sterically
congested derivatives could not be achieved using the peptide
coupling conditions we previously developed. However,
acylation with amines (R)-7b,c with enantioenriched acid
chloride of (R)-15 in the presence of pyridine, afforded the
desired amides (R,R)-36a,b (Scheme 4). Subjection of the allyl

side-chain to Lemieux−Johnson conditions provided aldehydes
(R,R)-37a,b, which were then reacted with spiropiperidine 10b
using sodium cyanoborohydride in methanol.56 Finally, upon
exposure to TFA in dichloromethane, N-Boc deprotection
yielded the desired peptidomimetics (R,R)-38a,b as their TFA
salts in good overall yield.
The binding affinity of these hybrid compounds for human

NK1 and NK3 receptors was determined using radioligand
binding assays on membranes prepared from U-373MG cells
endogenously expressing NK1 receptors and recombinant CHO
cells stably expressing NK3 receptors.

7 The results for selected
compounds are presented in Table 1. Well balanced
antagonism was observed especially with compounds bearing
a benzylic quaternary C-methyl group (Table 1, entries 6, 9, 13,
14, 16). Whereas the N-methylated analogues (entries 1−5)
showed good NK1 receptor activity, only moderate NK3
receptor antagonism was exhibited. Furthermore, the (R,R)
configuration seems to be optimal for activity against NK1/NK3
receptor ligands. Extension of the methylene spacer arm
(connecting the 3,4-dichlorophenyl acetamide and the
spiropiperidine pharmacophore) had only a moderate effect
on NK1R affinity but induced a 20−50-fold reduction in NK3
receptor antagonism (Table 1, entries 3, 4, 12). Interestingly,
the replacement of the (R)-phenylalanine central core by a (R)-
phenylglycine residue (entries 1 vs 5, 6 vs 11, and 10 vs 12) did
not significantly affect the dual antagonism, although the values
remained modest. Concerning the influence of the C-terminal
polar arm, the successive methylation of the primary amine
group had a minor effect, but its replacement by an alcohol led

Scheme 2. Synthesis of the C-Methylated α,α-Disubstituted
Analogues 23−27a

aReagents and conditions: (1) HO(CH2)2Si(CH3)3, EDC, Pyr, THF,
r.t., 12 h, 61%; (2) NaIO4, OsO4 (4 wt % in H2O/THF (1:3, v/v), r.t.;
(3) (i) NMO (50 wt % in H2O), OsO4 (4 wt % in H2O), H2O−THF
(1:3, v/v), r.t.; (ii) NaIO4, r.t.; (4) 10a−c, DCE or CH2Cl2, 3 Å MS,
r.t. then NaBH(OAc)3, r.t., 43 to 73% (2-steps); (5) TBAF, THF, r.t.,
1 h; (6) HBTU, Hünig’s base, THF, r.t., 12 h, 65 to 85% (2-steps); (7)
PyBOP, DMAP, Hünig’s base, THF, CH2Cl2, r.t.; (8) R

4 = NHBoc, (i)
HCl(g), EtOAc, 0 °C to r.t.; (ii) RP-HPLC-prep, 40−63%; (9) R4 =
NHCbz, (i) H2 (1 atm), Pd/C (10 wt %), EtOH, 4 M HCl in dioxane,
r.t.; (ii) RP-HPLC-prep, 35 to 59%; (10) R4 = NMeBoc, (i) TFA,
CH2Cl2, r.t., 2 h 76%; (ii) lyophilization.

Scheme 3. Synthesis of the C-Methylated α,α-Disubstituted
Analogues 32−35 with a 3-Carbon Spacera

aReagents and conditions: (1) SOCl2, MeOH, 0 °C to r.t., 12 h, 99%;
(2) HBr(g), cat. mCPBA, PhMe, 0 °C, 2 h; (3) 10c, Cs2CO3, DMF, r.t.,
4 h; (4) aq. LiOH, THF, reflux, 12 h, 52% (3-steps); (5) HBTU,
Hünig’s base, THF, r.t., 65 to 85%; (6) TFA, CH2Cl2 (1:1, v/v), 0 °C
to r.t., 65 to 75%.

Scheme 4. Synthesis of the N,C-Bismethylated α,α-
Disubstituted Analogues 38a−ba

aReagents and conditions (1) (i) SOCl2, PhH, reflux, 12 h; (ii) Pyr,
THF, r.t., 35−70% (2-steps); (2) (i) NMO (50 wt % in H2O), OsO4
(4 wt % in H2O), H2O−THF (1:3, v/v), r.t.; (ii) NaIO4, r.t.; (3) 10b,
NaBH3CN, MeOH, r.t., 50−65% (2-steps); (4) TFA, CH2Cl2 (1:1, v/
v), 75%.
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to 12−20-fold improvement of the NK3 receptor affinity (Table
1, entry 16).
Although promising NK1R and NK3R antagonist activity was

seen with some third generation analogues, we were curious to
see the effect of modifying the backbone conformation in N,C-
bismethylated analogues. To our delight, the (R,R)-N,C-
bismethylated analogue, 38a emerged as the most potent and
well balanced dual antagonist (Table 1, entry18).
In conclusion, we have prepared a series of hybrid analogues

inspired from our previously reported lead compounds (generic
structure 1) and the Hoffmann−La Roche NK3 receptor
antagonists 3 and 4 using phenylalanine as a central motif. In
the course of this study, three generations of peptidomimetic
hybrids were concisely synthesized from three sets of versatile
building blocks. As a result of our lead optimization, we have
found compounds with very promising in vitro antagonist
activity against hNK1 and hNK3 receptors. Among these,
analogue (R,R)-38a has particularly high and balanced affinities
displaying pKi values that compare favorably to the known

compounds 3 and 4 (Figure 1). Further optimizations in this
series are in progress and will be reported in due course.
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