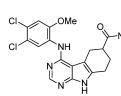
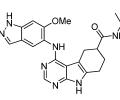
ACS Medicinal Chemistry Letters

Pyrrolopyrimidine Analogues as MKNK Inhibitors

Jean-Francois Brazeau⁺ and Gerard Rosse^{*,†,†}

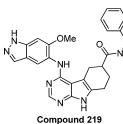

⁺Structure Guided Chemistry, Dart Neuroscience LLC, 7473 Lusk Boulevard, San Diego, California 92121, United States

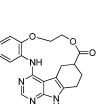
[‡]Adjunct Associate Professor, Department of Pharmacology and Physiology, College of Medicine, Drexel University, New College Building, 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States


Title:	Pyrrolopyrimidine Analogues as MKNK Inhibitors		
Patent/Patent Application Number:	WO 2013/174743 A1	Publication Date:	Nov 28, 2013
Priority Application:	WO 2013-EP60232	Priority Date:	May 17, 2013
Inventors:	Klar, U.; Kettschau, G.; Suelzle, D.; Puehler, F.; Kosemund, D.; Lienau, P.; Boemer, U.		
Assignee Company:	Bayer Pharma, Germany		
Disease Area:	Cancer	Biological Target:	MKNK1
Summary:	The present application claims a series of pyrrolopyrimidine analogues, which inhibit MKNK1 and MKNK2 kinases known to		
	phosphorylate elF4E at Ser209. This phosphorylation step through MKNK protein activity can promote cellular		
	proliferation and survival for malignant transformation. Compounds claimed in this patent could potentially be selective		
	MKNK inhibitor and be useful for the development of new cancer therapies.		
Important Compound Classes:			

Important Compound Classes:

Key Structures:






Compound 126

Compound 229

Recent Review Articles: Biological Assay:

Hou, J.; Lam, F.; Proud, C.; Wang, S. Oncotarget 2012, 2, 118-131. Compound inhibitory activity was evaluated using TR-FRET-based MKNK1 high ATP assay

Special Issue: New Frontiers in Kinases

Received: July 25, 2014 Published: August 01, 2014

Pharmacological Data:

	MKNK1 TR-FRET	
	binding	
	(IC ₅₀ , nM)	
Compound 20	6	
Compound 126	5	
Compound 218	6	
Compound 219	1	
Compound 229	3540	
Compound 230	1	

Synthesis:

238 compounds were synthesized

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: grosse@dartneuroscience.com.

Notes

The authors declare no competing financial interest.