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CONS P EC TU S

A computational study of a catalytic cycle generates state energies (the E-representation), whereas experiments lead to rate
constants (the k-representation). Based on transition state theory (TST), these are equivalent representations. Nevertheless,

until recently, there has been no simple way to calculate the efficiency of a catalytic cycle, that is, its turnover frequency (TOF), from a
theoretically obtained energy profile. In this Account, we introduce the energetic span model that enables one to evaluate TOFs in a
straightforward manner and in affinity with the Curtin-Hammett principle. As shown herein, the model implies a change in our
kinetic concepts.

Analogous to Ohm's law, the catalytic chemical current (the TOF) can be defined by a chemical potential (independent of the
mechanism) divided by a chemical resistance (dependent on the mechanism and the nature of the catalyst). This formulation is
based on Eyring's TST and corresponds to a steady-state regime.

In many catalytic cycles, only one transition state and one intermediate determine the TOF. We call them the
TOF-determining transition state (TDTS) and the TOF-determining intermediate (TDI). These key states can be located,
from among the many states available to a catalytic cycle, by assessing the degree of TOF control (XTOF); this last term
resembles the structure-reactivity coefficient in classical physical organic chemistry. The TDTS-TDI energy difference
and the reaction driving force define the energetic span (δE) of the cycle. Whenever the TDTS appears after the TDI, δE is
the energy difference between these two states; when the opposite is true, we must also add the driving force to this
difference. Having δE, the TOF is expressed simply in the Arrhenius-Eyring fashion, wherein δE serves as the apparent
activation energy of the cycle.

An important lesson from this model is that neither one transition state nor one reaction step possess all the
kinetic information that determines the efficiency of a catalyst. Additionally, the TDI and TDTS are not necessarily
the highest and lowest states, nor do they have to be adjoined as a single step. As such, we can conclude that a change in
the conceptualization of catalytic cycles is in order: in catalysis, there are no rate-determining steps, but rather
rate-determining states.

We also include a study on the effect of reactant and product concentrations. In the energetic span approximation, only the
reactants or products that are located between the TDI and TDTS accelerate or inhibit the reaction. In this manner, the energetic
span model creates a direct link between experimental quantities and theoretical results. The versatility of the energetic span
model is demonstrated with several catalytic cycles of organometallic reactions.
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1. Introduction: Creating a “Language” for
Catalytic Cycles
Acatalytic cycle is awheelwithmany individual chemical steps

spinning in a coordinated manner at a common “speed”. In a

reaction which is first-order in the catalyst and in steady state,

this “speed” is defined by the turnover frequency (TOF) of the

cycle, given in eq 1 as the number of cycles (N) per catalyst

concentration (C) per time (t):1,2

TOF ¼ N
[C ]t

(1)

The TOFdetermines the efficiency of the catalyst, andhence,

it is important to interrogate thispropertyandproduce insight

that may allow control and design of better catalysts.
The manner by which this can be achieved has occupied

our thoughts for some years, and since we are computa-

tional chemists, we used quantum chemistry to seek a

winning recipe.3,4 However, the connection between co-

mputational and experimental results is not always ob-

vious, as the languages of these disciplines are different.

This recognition motivated us to create a bridge between

computational chemistry and experiment in a manner

that will allow efficient exploitation of both approaches.

In recent papers5-8 we studied the popular palladium

catalyzed cross-coupling.1,2,9-12 One objectivewas to tackle

a specific problem that interested experimentalists, namely,

to establish the chain length (n) that generates the most

efficient catalyst in the family of the bidentate-phosphine

ligands, L = Ph2P(CH2)nPPh2. The computed energy profiles

for two such catalysts are shown in Figure 1. Inspection of

the two profiles shows that while the catalyst with n = 3 has

lower transition states, it also features deeper lying inter-

mediates. As such, once all mechanisms were computed, an

important fact emerged: the computed energy profile gave

no clue about the identity of the better catalyst!

Since computational chemistry produces an energy land-

scape of the cycle, we needed an energy representation

(E-representation) of the TOF, rather than the rate constants-

based one (k-representation) which is used by experimen-

talists (Figure 2).

A mathematical derivation for the TOF of simple “serial”

catalytic cycles (as in Figure 3) has been published 50 years

ago by Christiansen,13 who calculated the TOF from the rate

constants using linear algebra. However, this formulation

which used the k-representation led to equations too com-

plex to grasp.6,13-15 In addition, this k-representation of the

TOF is less convenient formaking links to quantum-mechan-

ical (QM) studies. As such, our first goal became to generate a

straightforward mathematical model for TOF calculations

based on the E-representation.

FIGURE 1. Mechanisms for a cross-coupling reaction catalyzed by Pd[PH2(CH2)nPH2], with n = 3 and 6. All energies are gas-phase values with ZPE correc-
tions.5,6 A shorter chain (n = 3) produces low-energy transition states, but also low-energy intermediates, compared to n = 6.Which one is more efficient?
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2. The Energetic Span Concept
The energetic span (δE) term was coined by Amatore and

Jutand.16 Starting from the active species (Ca, the intermediate

preceding the determining transition state) and according to

Arrhenius, the rate of reaction is

r ¼ [Ca]A e- Ea=RT (2)

Since the concentration of the active species is given by

their Boltzmann distribution relative to the lowest inter-

mediate (C0), we have

[Ca] ¼ [C0] e-ΔE=RT (3)

Inserting eq 3 into eq 2 we get

r ¼ [C0]A e- Ea þΔEð Þ=RT

Ea þΔE ¼ δΕ
(4)

where δE is defined as the energy difference between the

summit and trough of the cycle (Figure 4).
The insightful Amatore-Jutand equation (eq 4) is accu-

rate only when the energy of the reaction (ΔGr) approaches

zero, in which case the forward rate also approaches zero.

The reason lies in the “Ouroboros-like” nature of a catalytic

cycle: once one turnover is completed, the catalyst restarts a

new cycle, wherein the starting-point is now below the

original one by the reaction energy, ΔGr. In this case, do

we apply the Boltzmann distribution (eq 3) with respect to C0
of the first or the second cycle (see Figure 5)? We must take

this cyclic nature into account, but how?

3. Accurate TOF Calculation
Based on Eyring's transition state theory, we can move

between the k- and E-representations of each chemical step

using eq 5 (Figure 2):

ki ¼ kBT
h

e-ΔG 6¼
i =RT ¼ kBT

h
e(I i-1 - Ti)=RT

k- i ¼ kBT
h

e-ΔG6¼
- i=RT ¼ kBT

h
e(I i - T i )=RT

(5)

Herein, Ii and Ti symbolize the standard-state Gibbs en-

ergies of the ith intermediate or transition state. Applying

FIGURE 3. Scheme of a simple “serial” catalytic cycle along with the
Ouroboros, the alchemical dragon biting its own tail, symbolizing the
periodicity of the cycle.

FIGURE 4. The original approximate energetic span (δE) definition:16

the energy difference between the summit and trough of the cycle,
following Arrhenius and his mentor Boltzmann.FIGURE 2. Two languages: Rate constant (k) representation versus

energy (E) representation. The k-representation is mostly used by
experimentalists, while the E-representation by theoreticians. Eyring's
transition state theory serves as translator.

FIGURE5. Two cycles in the continuous series of turnovers of a catalytic
reaction. Is Ca in equilibrium with C0 of the first or of the second cycle?
The Ouroboros nature of catalysis does not allow one to define a
Boltzmann distribution unless ΔGr = 0.
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eq 5 to Christiansen's k-formulation13 results in a much

simpler formula for serial catalytic cycles (Figure 3) of N

steps, due to cancellation of terms. These derivations

were explained in the original literature,6,14 and here we

show the final form:

TOF ¼ kBT
h

e-ΔGr =RT -1PN
i, j¼1

e(Ti - I j - δGi, j0)=RT
¼ Δ

M
ð6Þ

with

δGi, j0 ¼ ΔGr if i > j
0 if ie j

�
ð7Þ

By analogy to Ohm's law, eq 6 represents the TOF as a

catalytic-flux law (Figure 6).17 The TOF is given as the

forward chemical current of the reaction, determined by

the potential divided by the resistance. The potential of

the process is Δ, a function of the energy of the reaction

(ΔGr); the “-1” term provides thermodynamic consis-

tency for the case with ΔGr = 0, for which the TOF is zero,

or in the case of an endothermic reaction where the

current flows backward and the TOF is negative. The

resistance to the chemical flow is given byM, correspond-

ing to the sum of exponentials of Gibbs energy differ-

ences between all the combinations of intermediates (Ij)

and transition states (Ti).

The term δG0 which appears in the M expression derives

directly from the translation of the k- to the E-representation.

Thus, δG
i,j

0 = ΔGr whenever the ith TS follows the jth inter-

mediate in the forward direction, or zero if the TS precedes

the intermediate (eq 7). δG0 resolves the dilemmaof Figure 5:

as we are correcting this with the δG0 function, it does not

matter if we consider the TS that appears before or after the

intermediate. Applying eq 6 to the cross-coupling profile of

Figure 1 (using E þ ZPE gas phase values and room tem-

perature5,6), we obtain the relative TOF values as TOF(n=3)/

TOF(n = 6) = 1.45. Despite their very different energy

landscapes, both processes are virtually isokinetic! In

addition, having large effective barriers, the two cycles

have TOF values too low (10-16 h-1) to qualify as efficient

catalysts.

This is a good point tomention the technical difficulties to

compute accurate Gibbs energies for the proper use of the

model (i.e., eq 6). The above cross-coupling example is based

on internal energies, but since the cycles (Figure 1) have the

samemolecularity, there is no significant loss of accuracy on

the relative TOFs (see section 9).

4. The Energetic Span Approximation
Equation 6 can be simplified. For exothermal reactions

(ΔGr < 0) the “-1” term in the numerator can be neglected.

More important, the denominator is usually (but not always!)

dominated by a single term of the summation. In these

conditions, eq 6 can be shortened to

TOF ¼ kBT
h

e-δE=RT (8)

where now we define δE, the energetic span, as

δE ¼ TTDTS - ITDI if TDTS appears after TDI
TTDTS - ITDI þΔGr if TDTS appears before TDI

(a )
(b )

(

(9)

Two fundamental terms appear in eq 9: the TDTS (TOF-

determining transition state) and the TDI (TOF-determining

intermediate). These species are the TS and the intermediate

that maximize the energetic span within the cyclic con-

straints according to eq 9a and b, and thereby gauge the

kinetics of the cycle.

Let us point out that this approximate derivation of the

catalytic efficiency can be thought of as an extension of the

Curtin-Hammett principle18 (CHP). TheCHPwas formulated to

treat selectivity of reactions, wherein several intermediates are

in fast pre-equilibrium, followed by larger barriers to produce

different products. The product ratio is determined solely by

the energy difference of the transition states for the competing

processes.

Additionally, we point out that in some communities the

TDI is described by the term “resting state” (as it is the most

populated intermediate), while the TDTS is termed as “the

rate-limiting TS”. However, we prefer to use the terms TDI

and TDTS, which are functional and neutral terms describing

the fact that these species determine together the TOF of a

cycle. Thus, from eq 8, δE (given in Gibbs energies) serves as

the apparent activation energy of the cycle.19 As such, the

smaller the energetic span, the faster the reaction.20-24

FIGURE 6. Equivalent to Ohm's law, the TOF is given as the chemical
current determined by the potential (function of the reaction energy)
divided by the resistance (function of the mechanism).
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Let us apply the energetic span approximation to the

cross-coupling of Figure 1. For n = 3, the TDI is the Pd{-

[PH2(CH2)3PH2]PhCl}
þCl- species (here, it is the lowest

intermediate on the graph). The TDTS occurs at the reductive

elimination TS, even though it is not the highest state of the graph!

As the TDTS appears after the TDI for this example, we must

employ eq 9a, obtaining TOF = 1.2� 10-16 h-1. For n = 6, the

TDI is the same state as for n = 3, but the TDTS is the oxidative

addition; consequently, eq 9b defines the energetic span here

and leads to TOF = 1.2� 10-16 h-1. The TOFs ratio is then 1:1,

which is close to the value obtained by the full equation (eq 6).

From the above example, it is apparent that the TDTS is

not necessarily the highest state (as in the n=3 ligand), nor

the one that appearswith the highest activation energy (as

with the n = 6 ligand). There is no single step that controls

the kinetics; instead, the kinetics is determined by two

state As shown later (Figure 11), the energy graph can be

drawn in a manner that makes the TDTS the highest point

(or the TDI the lowest), since the starting point of the cycle

is arbitrary. However, this kind of cyclic considerationmay

not be immediately apparent, while eq 9a and b gives a

straightforward TOF result and spares this conceptual

difficulty.

The utility of finding the TDTS/TDI is exemplified in the

work of Carvajal et al. on the undesired alkene isomerization

byproduct (from a terminal to an internal double bond), formed

during the rhodium-catalyzed hydroformylation process.28 The

full cycle was computed using a small model ligand (Figure 7),

which provided the identities of the TDI and TDTS. Having this

information, determining the relative TOFs for the much larger

complexes (Cb and Cc in the figure) required the computations

of only these two determining states, thus savingmuch compu-

tational time. This quick estimate enabled identification of the

catalysts that led to the smallest amount of olefin isomerization.

An analogous approachwas used in aQM/MM (quantum

mechanics/molecular mechanics) analysis7 of the Pd cross-

coupling reaction using the small PH3 ligand as model.5,6 To

screen the activity of numerous large phosphine ligands, only

the TDTS and the TDIwere considered, as all the other states do

not affect the TOF. The results showed that medium sized elec-

tron withdrawing phosphines or bulky ones are the most effi-

cient for this reaction.Of course, this practice shouldbequalified,

since changing themodel catalystmay also change the identity

of the TDI and TDTS, or even change the mechanism.

5. Degree of TOF Control
The degree of rate control (Xrc) belongs to the family of

structure-reactivity coefficients used in physical organic

chemistry to describe the influence of various factors (substi-

tuents, solvents, equilibrium constants, etc.) on rates.29 Camp-

bell defined Xrc
30,31 as the normalized influence of a certain

rate constant on the overall rate of the reaction, where all the

other rate and equilibrium constants are held constant. Thus,

Xrc, i ¼ ki
r
Dr
Dki

�����
Km, kn 6¼i, - i

¼ Dln r
Dln ki

�����
Km, kn 6¼i, - i

(10)

Knowing from eqs 8 and 9 the connection between the k-

and E-representations, we derived the notion of “degree of

rate control” in catalytic cycles using state energies, and

termed it the degree of TOF control (XTOF):
6,14

XTOF, i ¼
����� 1
TOF

DTOF
DEi

����� (11)

where Ei can be a transition state or an intermediate

Gibbs energy. The meaning of XTOF is simple: the bigger

its value, the higher the influence of the corresponding

state (TS or intermediate) on the TOF. Equation 10 shows

that the condition of fixed equilibrium constants makes

Campbell's Xrc,i equal to our XTOF,i (eq 11) for transition

states. However, the newconcept in eq11 is the treatment

of the effects of intermediates (XTOF,I) and TSs (XTOF,T) on

equal footing.32 As eq 11 is normalized, the sum of all the

XTOF,T or XTOF,I is one.
, We can define the TDI and TDTS as

FIGURE 7. Simplified alkene isomerization reaction cycle occurring
during alkene hydroformylation catalyzed by a rhodium complex.28

The cycle was computedwith the small Ca ligand, for which the TDI and
TDTS were identified. Calculating only these two states enabled the
conclusion that the complex Cb leads to much more extensive
isomerization compared with Cc.
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the states that haveXTOF closest to one. These states are the

ones that maximize δE (eq 9), and hence, the use of XTOF
values is a quick method for identifying the TDTS and TDI

and for deciding whether there are more states that deter-

mine the kinetics of the cycle.
Applying eq 11 to eq 6, we can write the degree of TOF

control explicitly in the E-representation:

XTOF, Ti ¼

P
j

e(Ti - I j - δGi, j0 )=RT

P
ij

e(Ti - I j - δGi, j0 )=RT

XTOF, Ij ¼

P
i

e(Ti - I j - δGi, j0 )=RT

P
ij

e(Ti - I j - δGi, j0 )=RT

ð12Þ

If we apply eq 12 to the Pd cross-coupling of Figure 1, we

obtain for the shorter chain that only one TS and one

intermediate have a significant XTOF; these are the TDI and

TDTS species already described. However, for the ligand

with n = 6, along with a single TDI there are two influential

transition states: the oxidative additionwithXTOF,T=0.7 and

the reductiveeliminationwithXTOF,T=0.3.Thisexplainswhy

for n = 6, the TOF calculated with the exact eq 6 is 30%

smaller than the energetic span approximation (eq 8).

6. Influence of Reactant and Product
Concentrations
The influence of reactant/product concentrations is less pro-

nounced than that of state energies, but not negligible. More-

over, because experimentalists use concentration changes as a

technique for deciphering the kinetics, it is essential to analyze

concentration effects. A simple extension of the energetic span

approximation allows us to determine which reactants and

products affect the TOF:

TOF ¼ kBT
h

e- δE=RT
Y [R]

[P]

�����
from TDI to TDTS

ð13Þ

Herein, eq 8 was multiplied by the concentration of all

reactants consumed between the TDI and the TDTS, and

divided by the concentrations of all products generated in the

samesection.As such,highconcentrationsof reactantsentering

the cycle between theTDI and theTDTSaccelerate the reaction,

andproducts exiting the cycle in this portion inhibit the reaction.

All other species have negligible influence, as long as their

concentrations remain at “ordinary” levels (huge amounts or

only traces of reactants and products outside this active section

will also impact the kinetics). As can be seen from eq 13, a

change of a reactant or product concentration has a linear

influence, while a determining state energy affects the TOF

exponentially. The full derivation of the TOF including concen-

trations can be found in refs 14 and 33.

7. Nickel Cross-Coupling: An Example of the
Insight of the Model
A representative application is the cross-coupling reaction of an

anhydride with an organozinc reactant, catalyzed by a nickel

complex (Figure 8). This system was studied experimentally by

Johnson et al.34 and was found to exhibit a nontypical kinetic

profile: The rate of the reactionwas insensitive to the anhydride,

and the TOF grew linearly with the Et2Zn concentration until a

critical concentration, beyondwhich theTOF remained constant.

The natural conclusions reached by the Johnson group

were as follows:

(I) The oxidative addition step is not rate-determining,

since an anhydride concentration change should have

affected the TOF.

(II) At low Et2Zn concentration, transmetalation must be

the rate-determining step, since it follows first order

kinetics on the diethyl-zinc reagent.

(III) At high Et2Zn concentration, the TOF is independent

of the concentration, and thus, the reductive elimination,

being the only step left, must be rate-determining.

The energetic span model was used to test these conclu-

sions. Thus, a reaction mechanism was proposed, and a full

reaction profile was computed (Figure 9),35 leading to the

following observations:

FIGURE 8. Cross-coupling reaction of an anhydride with an organozinc
reactant catalyzed by a Ni-bipy complex, as appeared in the original
experimental paper. Adapted with permission from reference 34.
Copyright 2007 American Chemical Society.
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(I) Cyclooctadiene (COD), used in the experiment as a labile

ligand, has an important function of lowering the oxidative

addition (TSOA). This effect was not observed in the reduc-

tive elimination (TSRE) because of steric prohibition. If the Ni

does not bind to COD at the end of the cycle, the oxidative

addition of the next turnover will be much slower.

(II) To restart the catalyst, the COD replaces the product in

a ligand substitution (TSLS). This transition statewas found

to be the TDTS.

(III) Since current computational methods overestimate

the entropic factors,35-40 an accurate Gibbs energy could

thus be estimated to lie between the computed values of

the energy (E) and Gibbs energy (G) profiles.

(IV) In the G profile, the TDI is the NiII complex 2, while in

the E profile the TDI is the encounter pair 2Zn.

Let us apply the model, including concentrations, for this

Ni catalyst. According to eq 13 and considering the position

of the TDTS and the two TDIs, we can express the TOF in

both the energy and Gibbs energy profiles as41

TOF (E) ¼ kBT
h

e- E(TSLS)- E(2Zn)½ � (14a)

TOF (G) ¼ kBT
h

e- G(TSLS)-G(2)½ � Et2Zn½ � (14b)

As stated before, the most accurate energy values are

between the computed E and G values, and the resulting

TOF should be some combination of eq 14a and b. At low

Et2Zn concentration, eq 14b defines the TOF and the

kinetics have order one dependence on the zinc reagent,

while at high concentration eq 14a describes the TOF

wherein the reaction is independent of the diethyl-zinc

concentration. Figure 10 shows the fit of the so computed

TOF to the experimentally determined points.
It is apparent from this analysis that there is no meaning

for the rate-determining step term in catalytic cycles, as the

rate-determining states (TDI and TDTS) define the kinetics of

a catalytic cycle.

8. Reviewing Kinetic Terminology for
Catalytic Cycles
Although a lot of the concepts discussed above have been

“in the air” for a long time (e.g., the CHP18), some wrong

usages are still rooted in daily practice. Let us shownowhow

the above concepts help in restoring the correct kinetic

paradigm.6,7,14,32,33,35 Thus, eqs 8 and 9 demonstrate the

following:

1. One Transition State Does Not Determine the Ki-

netics of the Cycle. As the TDTS is only half of the story,

stating that a catalyst that lowers the rate-determining TS

will provide a faster reaction is incorrect, since the catalyst

may change also the energy of the TDI or even its

identity.21,24,42

2. The Determining States Are Not Necessarily the

Highest TS or the Lowest Intermediate. Because of the

condition that the TDI and TDTS must be the ones that

maximize the energetic span (eq 9), the determining states

may be different from the extreme state of the energy graph

(Figure 11).26,27

FIGURE 9. Energy (E, in purple) and free energy (G, in blue) computed
profiles for the Ni cross-coupling.35 The TDTS is the ligand substitution
(TSLS). The TDI is either intermediate 2 (in the E profile) or the encounter
complex 2Zn (in the G profile).

FIGURE 10. TOF of the Ni cross-coupling versus concentration of Et2Zn.
Red circles are the experimental values;34 the blue line corresponds to
the fitting using eq 14.35
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3. There Are No Rate-Determining STEPS, but Rate

Determining STATES. The rate-determining step (RDS) is a

deeply rooted paradigm in the kinetic community, although it

has been criticized as not necessary,43 misleading,44 or out-

moded.45 Is the RDS a real physical concept for catalytic cycles?

Can we answer this question using the energetic span model?

The common, naïve definition of the RDS is “the slowest

step of the reaction”.26,44,46 However, in a steady-state regime,

all steps proceedat the same rate, and therefore, this definition

is flawed.43,44 The IUPAC definition is (in a simplified form) the

step whose rate constant exerts the strongest influence on the

overall rate of the reaction, when all the equilibrium constants

(K) are held constant (this resembles Campbell's degree of

rate control, see eq 10).27,47,48 However, as we saw in

section 5, this actually means a change in a TS energy:when

wewere considering rate-determining steps, we in factmeant the

rate-determining TS.26,27,32

Besides, from eqs 8 and 9, we know that the influence of

the intermediates is equally significant (and easier to

study49,50). Moreover, as the TDI and TDTS are not necessa-

rily adjoined (as in Figure 12),26,27 several steps can partici-

pate in the shaping of the kinetics.9,25,51-53 Therefore, there

are no rate determining STEPS, but rate determining STATES!

9. A Word of Caution
The energetic spanmodel permits the kinetic assessment of

computationally calculated catalytic cycles. However, it is

important to bear in mind the approximations behind this

expression and thereby stress the correct usage of δE as a

predictor.

The model is derived with three conditions: (i) transition

state theory (TST) is valid, (ii) a steady state regime is appli-

cable, and (iii) the intermediates undergo fast relaxation.

For systems where TST is insufficient, for example when

having tunneling or other reasons where the transmission

coefficient κ is different than one, it is always possible to

convert κ to an exponential term and add it to the energy of

the TS as a correction.

Steady state can be typically achieved after some turn-

overs. Some exceptions are systems wherein the reaction is

too fast, or where there is a chaotic behavior. Fast relaxation

of the intermediates is easily reached in a solvent or under

moderate pressure in the gas phase.

Another key point is the fact that TST requires Gibbs

energies (G). Computationally, accurate G's are harder to

obtain than internal energies (E), since thermal/entropic

corrections rely on several approximations, such as harmo-

nic potentials or ideal-gas expressions. Solvation Gibbs en-

ergies provide further difficulties, as the entropic factors are

strongly diminished if there are strong solute-solvent inter-

actions, up to a point where it is sometimes better to

completely neglect the entropic contributions.35-40 Never-

theless, if we have the samemolecularity at the determining

states of the reactions, E and G will give similar results (this

was considered for the cross-coupling example of Figure 1).

FIGURE 11. (A) Energy profile of a model catalytic cycle. T1 and I2 are
the maximum and minimum energy states. Nevertheless, as T1
precedes I2, eq 9b shows that the activation energy would be reduced
by the reaction energy term. T2 and I1 are not extreme states in this
representation, but as T2 follows the intermediate, we must use eq 9a,
which reveals that combination of I1 and T2 maximizes δE and these
states result the TDI and TDTS. (B) The condition of eq 9b can be
rationalized by recognizing that since the cycle “flows forward”, we
cannot take I2 and go backward to T1. Insteadwemust consider I2 along
with the T1 in the following turnover, energetically equivalent to T1- I2
þΔGr. Note that ifwe start the cycle at theTDI, then theTDTSwill always
be the highest point.

FIGURE 12. Which step is the rate-determining step? Step 1, with the
highest energy TS? Step 2, having the highest activation energy? Or
maybe step 4, containing the TDTS? The answer is neither is right; the
kinetics is determined by the TDI and TDTS, and follows the maxim:
“There are no rate-determining STEPS, but rate determining STATES!”
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To this, we must add the errors on E estimations. For

example, using standard density functional theory, we

underestimate dispersion forces or deal poorly with static

correlation. Adding the fact that a small inaccuracy in

TDTS/TDI corresponds to an exponential error on the

TOF (eq 8), it is clear that accurate absolute TOF values

are still unattainable computationally. Yet, because of

error compensation, relative TOFs can be quantitatively

useful if we use the same computational level for all the

systems.

The last key factor to consider is the comparison of two

competing cycles that share states, like in Figure 13A. This

example showsaprofilewith two competingmechanisms in

connected cycles that lead to the same final product. Calcu-

lating relative δE's for the alternative mechanisms will lead

to an error. As in the Curtin-Hammett principle,18 the TDI

and the TDTS are shared states for both cycles and corre-

spond to themost stable intermediates and TS. In themodel

of Figure 13, the TDI is I20 and the TDTS is T3, thus mixing the

red and the green pathways (Figure 13B).

10. Conclusion and Prospects
The energetic span model offers a straightforward method

to calculate the TOFof catalytic cycles basedon its computed

energy profile (eqs 6 and 7). In most cases, the TOF is

determined by one transition state, the TDTS, one inter-

mediate, the TDI, and by the reaction energy,ΔGr (eqs 8 and

9). The energy difference between the TDI and the TDTS

(with due ΔGr correction), so-called the energetic span (δE), is

the apparent activation energy of the entire catalytic cycle

that determines the catalytic efficiency.6,14

We exemplified herein the usage of the energetic span

concept with two computed cross-coupling systems, based on

palladium and nickel complexes.5-8,35 Several significant no-

tions in catalytic kineticswere reviewed in the lightof themathe-

maticalmachineryof theenergetic spanmodel. The influenceof

reactant and product concentrations on the TOF and the degree

of TOF control for energy states were also assessed.

The energetic spanmodel constitutes a fundamental tool

for the computational chemist in the world of catalysis.

Alongside the quantitative aspect, it has a qualitative impact

of changing kinetic concepts; based on the energy repre-

sentation of the cycle's kinetics, we conclude that in catalytic

cycles there are no rate determining steps, but rate determin-

ing states (and inmany cases just two, the TDI and the TDTS).

Further developments of the model are currently being

considered and include the calculations of turnover num-

bers (TONs), which consider poisoning of catalysts, and the

treatment of a network of connected cycles.
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