An investigation of the selective oxidation of NH_3 to N_2 in gasified biomass in the presence of excess CO and H_2 using zeolite catalysts

M. Amblard*, R. Burch** and B.W.L. Southward

School of Chemistry, The Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland, UK E-mail: r.burch@qub.ac.uk

Received 9 December 1999; accepted 25 May 2000

The selective oxidation of NH_3 to N_2 in simulated biogas containing a large excess of CO and H_2 has been examined using zeolite catalysts. Of the materials examined zeolite Beta gave the highest N_2 yield (85% at 475–575 °C), while ZSM5 produced 75% at 575 °C, but HY was both less active and selective. In all cases N_2 is formed via an internal selective catalytic reduction between NO_x (derived from the oxidation of NH_3) and NH_3 adsorbed on Brønsted sites of the zeolite.

Keywords: biomass, heterogeneous catalyst, selective NH3 oxidation, zeolite

1. Introduction

The use of renewable energy sources is widely accepted as an essential element of a strategy to both extend fossil fuel reserves and lower CO_2 emissions. This has led to an examination of the use of biomass-derived gas (biogas) for combined heat and power generation [1–8]. However, attempts to utilise biogas in conventional burners have encountered problems due to high NO_x emissions. These arise from the total oxidation of the NH₃ (600–4000 ppm) formed during gasification of fuel-bound nitrogen in biomass. Catalytic combustion may overcome this problem but to date the selectivity for the conversion of NH₃ to N_2 is unsatisfactory, typically <70% [2,4].

Conversely, NH_3 is used to reduce NO_x emissions by the selective catalytic reduction process (SCR) [9] following equation (1):

$$NH_3 + NO + \frac{1}{4}O_2 \rightarrow N_2 + \frac{3}{2}H_2O$$
 (1)

We have demonstrated that the selective oxidation of NH_3 to N_2 over heteropoly acids and Al_2O_3 -supported oxides occurs via a similar mechanism, namely the internal (or *in situ*) SCR (*i*SCR) [5,7,8]. In this process part of the NH_3 is oxidised to NO_x but then this is reduced by the remaining NH_3 to give N_2 yields >90%, significantly higher than in previous studies [2,4]. Moreover, in the case of heteropoly acids it was found that strong Brønsted acidity facilitated the adsorption and specific reaction of NH_3 [7]. A possible extension of this methodology is the use of zeolites, which

are well known for their strong acidity [10–14] and ability to facilitate SCR-type reactions [9,11].

Thus we have studied the efficacy of zeolite catalysts for biogas oxidation, with emphasis on the selective oxidation of NH_3 to N_2 even in the presence of a large excess of other, very reactive, reductants, namely CO and H_2 . This paper presents our findings and briefly examines the possibility that the iSCR may be a generic mechanism for N_2 production with solid acid catalysts.

2. Experimental

All reactions were performed in a conventional atmospheric pressure microreactor unit described previously [7]. The reaction mixture was regulated by independent mass flow controllers and typically comprised 1.5% CO, 1.0% H₂, 7.5% O₂, 1000 ppm NH₃, balance He. Reactions were performed using 60 mg of sample in a flow of 300 ml min⁻¹ (effective GHSV of ca. 240 000 h⁻¹). Product analysis was by mass spectrometry (Hiden DSMS with appropriate corrections for m/z overlaps) with NO_x emissions and residual NH3 levels being confirmed using an external NH3 oxidation reactor (with independent O2 supply) coupled to a NO_x chemiluminescence detector (Signal series 4000). All zeolites (Y, Beta, ZSM5 with SiO₂: Al₂O₃ ratios of 4, 20 and 31, respectively) were supplied in their protonic form by Zeolyst International and used without further treatment.

3. Results and discussion

Figure 1 illustrates the temperature response of HZSM5 for biogas oxidation. The data reflect the low inherent com-

^{*} Present address: Laboratoire de Physico-Chimie des Interfaces et Applications, Université d'Artois, Faculté Jean Perrin, rue Jean Souvraz, SP 18, 62307 Lens Cedex, France.

^{**} To whom correspondence should be addressed.

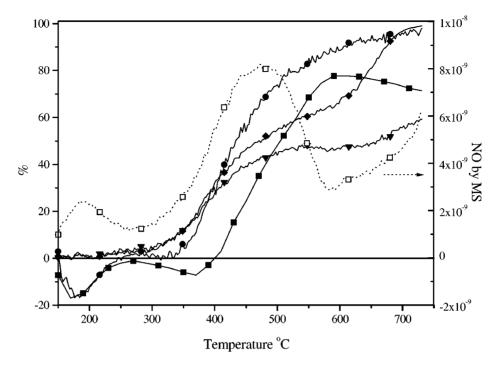


Figure 1. Conversion of simulated biogas over HZSM5. Reaction conditions: 1.5% CO, 1% H_2 , 1000 ppm NH₃, 7.5% O_2 , GHSV = 240 000 h⁻¹. (\bullet) NH₃ conversion by MS, (\blacksquare) NH₃ to N₂ by NO_x analysis, (\blacktriangledown) CO conversion by MS, (\blacklozenge) H₂ conversion by MS and (\square) NO concentration by MS (Y2 axis).

bustion activity of the non-exchanged zeolite with light-off (>20% conversion of fuel) only occurring at ca. 360 °C. Below this temperature there is an apparent negative peak in conversion of NH₃/N₂ production due to the desorption and oxidation of physisorbed species (150-250 °C). A second, smaller negative N₂ production peak is recorded upon light-off at 360 °C, coincident with the reported temperature of desorption of NH₃ from weaker Brønsted acid sites [12]. The low combustion activity below NH₄ dissociation temperatures is similar to the behaviour observed on heteropoly acids [5] and suggests that free acid sites are necessary for combustion. Above 360 °C, N2 production then increases rapidly, as does conversion of all of the feed components, albeit with the slight preference: $NH_3 > H_2 > CO$, in contrast to the specificity exhibited by heteropoly acids [5]. Peak N₂ production is 75% and occurs at ca. 575 °C, correlating with the reported NH₃ desorption maximum for strong Brønsted acid sites [12]. In contrast, there is a small sharp peak of NO_x production (ca. 300 ppm NO plus trace levels of NO₂) centred some 100 °C lower, coincident with the NH₃ desorption minimum reported by Le Van Mao et al. [12].

The link between N_2 production and NH_3 desorption is consistent with an iSCR mechanism. This is further supported by the behaviour of HZSM5 for the NH_3 –NO–CO– H_2 – O_2 reaction (figure 2). On exchanging 1% NH_3 /He (1000 ppm NH_3) for pure He, there is a drop in the NO conversion, while re-introduction of NH_3 restores full activity, confirming that the N_2 production does not occur through the NO–CO or NO– H_2 reactions. These data and the possibility of the iSCR reaction are also in agreement with

the findings of Richter et al. [11] who have used NH₃ adsorbed upon Brønsted acid sites to facilitate the NH₃–NO_x reaction at low temperatures. In addition previous work concerning selective oxidation of NH₃ has shown that activation of NH₃ to produce an oxidised intermediate is the rate-determining step and introduction of NO facilitates N₂ production at significantly lower temperatures [7,8].

The effect of choice of zeolite upon N_2 production was examined by a comparison of HZSM5 (figure 1) with Beta and HY (figures 3 and 4, respectively). The latter two samples present very different activities, with Beta producing a small peak of NO_x upon light-off followed by increasing N_2 production to give a yield of N_2 of 80%, between 475 and 575 °C above which temperature NO_x again increases. Thus in general, Beta presents a similar reactivity profile to HZSM5. In contrast, the reaction profile over HY is markedly different. N_2 production is significant only at higher temperatures and peaks at 70% N_2 at ca. 675 °C. Concomitant with this, HY also produces significantly more NO_x over the whole of the temperature range.

These results again illustrate the strong connection between activity and acidity. In the case of Beta, Nivarthy et al. [13] have demonstrated that NH₃ desorption occurs, as with HZSM5, in a bimodal manner, with a low-temperature maximum at ca. 310 °C and a broad high-temperature feature centred around 510 °C, with NH₃ desorption decreasing at T > 550 °C. These figures compare extremely favourably to light-off (ca. 300 °C), peak N₂ production (approximately 510 °C), and increasing NO_x for T > 550 °C observed in this study, following the same trends observed for HZSM5.

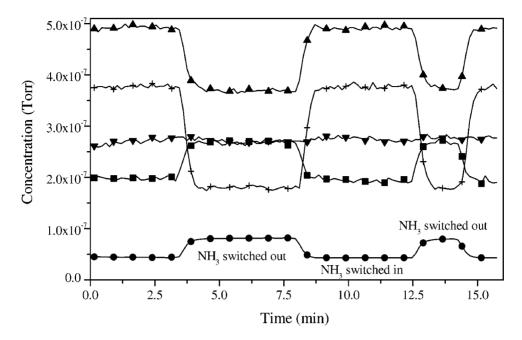


Figure 2. Effect of NH₃ switches on the NO–CO–H₂–O₂–(NH₃) reaction over HZSM5. Reaction conditions: 1000 ppm NO, 1.5% CO, 1% H₂, 7.5% O₂, 1000 ppm NH₃ switched in/out, GHSV 240 000 h⁻¹. (\blacksquare) m/z = 44 (N₂O or CO₂), (\bullet) m/z = 30 (NO), (\blacktriangle) m/z = 28 (CO or N₂), (\blacktriangledown) m/z = 18 (H₂O) and (+) m/z = 2 (H₂).

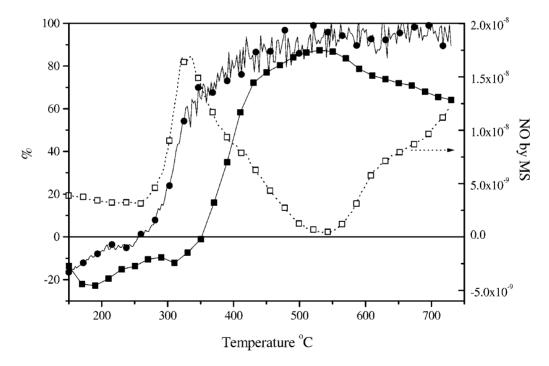


Figure 3. Nitrogen-containing products from the conversion of simulated biogas over zeolite Beta. Reaction conditions: 1.5% CO, 1% H₂, 1000 ppm NH₃, 7.5% O₂, GHSV = $240\,000~h^{-1}$. (\bullet) NH₃ conversion by MS, (\blacksquare) NH₃ to N₂ by NO_x analysis and (\square) NO concentration by MS (Y2 axis).

In the case of HY, recent results [14] have indicated that NH₃ desorption does not follow the bimodal distribution of HZSM5 or Beta. Moreover, the Brønsted acid sites are weaker with an NH₃ desorption maximum at ca. 310 °C [14], again coincident with the light-off point of the catalyst. However, the same study reports pyridine TPD data showing the presence of both weak and strong acid sites

(maxima at 264 and 555 °C), which may account for the high-temperature activity. Thus the high N_2 yields on Beta and HZSM5 seem to occur because the weaker acid function provides NO_x , from the oxidation of meta-stable adsorbed NH_3 , which then reacts with NH_3 adsorbed on stronger Brønsted sites to give N_2 , in similar fashion to that reported by Richter et al. [11]. Conversely, for HY,

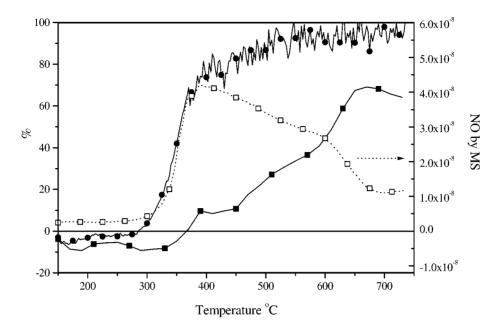


Figure 4. Nitrogen-containing products from the conversion of simulated biogas over HY. Reaction conditions: 1.5% CO, 1% H_2 , 1000 ppm NH_3 , 7.5% O_2 , $GHSV = 240\,000\ h^{-1}$. (\bullet) NH_3 conversion by MS, (\blacksquare) NH_3 to N_2 by NO_x analysis and (\square) NO concentration by MS (Y2 axis).

the lower concentration of available NH_4^+ to participate in reaction results in higher NO_x emissions and lower N_2 formation.

4. Conclusions

The selective oxidation of NH_3 to N_2 in simulated biogas is possible using zeolite catalysts. In all cases N_2 is formed from the reaction of NO_x , produced from non-selective oxidation of NH_3 , and NH_3 adsorbed on Brønsted sites. Hence N_2 production is dependent upon acid site strength and distribution with a bimodal distribution of weak and strong sites giving the highest N_2 yields.

Acknowledgement

We are pleased to acknowledge the financial support of ABB-Alstom, the DTI, and EPSRC through the FORE-SIGHT Challenge initiative. Helpful discussions with Cranfield University (Mr. J.J. Witton, Professor B. Moss, Mr. J.M. Przybylski and Dr. E. Noordally) and at ABB-Alstom (Mr. M. Cannon) are gratefully acknowledged.

References

- M.F.M. Zwinkels, G.M. Eloise Heginuz, B.H. Gregertsen, K. Sjöström and S.G. Järås, Appl. Catal. A 148 (1997) 325.
- [2] L. Lietti, C. Groppi and C. Ramella, Catal. Lett. 53 (1998) 91.
- [3] Development of Improved Stable Catalysts and Trace Element Capture for Hot Gas Cleaning, DTI/ETSU/Clean Coal Power Generation Group, Project Profile 178 (1996).
- [4] E.M. Johansson and S.G. Järås, Catal. Today 47 (1999) 359.
- [5] R. Burch and B.W.L. Southward, J. Chem. Soc. Chem. Commun. (1999) 1475.
- [6] T. Okuhara, N. Mizuno and M. Misono, Adv. Catal. 41 (1996) 113.
- [7] M. Amblard, R. Burch and B.W.L. Southward, Appl. Catal. B 22 (1999) L159.
- [8] M. Amblard, R. Burch and B.W.L. Southward, Catal. Today, in press.
- [9] G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal. B 18 (1998) 1.
- [10] A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, Chichester, 1988).
- [11] M. Richter, R. Eckelt, B. Parlitz and R. Fricke, Appl. Catal. B 15 (1998) 129.
- [12] R. Le Van Mao, T.S. Le, M. Fairbairn, A. Muntasar, S. Xiao and G. Denes, Appl. Catal. A 185 (1999) 41.
- [13] G.S. Nivarthy, K. Seshan and J.A. Lercher, Micropor. Mesopor. Mater. 22 (1998) 379.
- [14] F. Arena, R. Dario and A. Parmaliana, Appl. Catal. A 170 (1998) 127.