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Thermodynamic Control of Electron Transfer
Rates in Multicentre Redox Proteins
Teresa Catarino*[a] and David L. Turner[b]

In the analysis of kinetic data from multicentre redox proteins, it is
essential to distinguish between the observable macroscopic rate
constants and the structurally relevant microscopic properties. This
distinction is complicated by the existence of interactions between
centres. The problem is illustrated by the case of two interacting
redox centres and generalised for the analysis of stopped-flow
kinetic data for the reduction of cytochrome c3 , in which four redox
centres and at least one proteolytic centre are mutually interacting.
It is shown that fast intramolecular electron transfer, which is
typical of many multicentre redox proteins, and, where present, fast
proton exchange, ensure that only N rate constants can be
measured for a protein with N redox centres. The equations that

relate the observable macroscopic rate constants to the micro-
scopic rate constants of individual centres depend on a set of
parameters that can be approximated by using the Marcus theory
of electron transfer together with a set of reasonable assumptions.
The results are tested by fitting experimental data for the reduction
of cytochrome c3 by sodium dithionite, including its pH depen-
dence.
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Introduction

Many important biological processes depend upon small soluble
proteins or large protein complexes, including transmembrane
proteins, that possess multiple redox centres. These proteins
participate in electron transfer (ET) reactions that are often
involved in energy transduction and/or catalysis. Rates of ET
between centres within multicentre proteins have been studied
intensively,[1] by using methods such as laser flash photolysis,
with the aim of understanding how the proteins function.
However, ET between such proteins and their physiological
partners is essential to cell metabolism.

In this work we propose a model for analysing the kinetics of
ET between multicentre redox proteins and their electron
donors or acceptors, with the aim of obtaining information on
the kinetic properties of the individual redox centres. The model
is applicable to situations in which intramolecular ET is much
faster than intermolecular ET. Under these conditions, the
distribution of electrons inside the multicentre protein is
thermodynamically controlled and the complex kinetic scheme
that involves all possible (microscopic) ET steps collapses into a
simple mechanism of N consecutive (macroscopic) ET steps for a
protein with N redox centres. The macroscopic rate constant of
each step is the weighted average of the microscopic rate
constants that participate in the step, and the weights are the
respective fractional populations.

The Marcus theory[2] can be used to establish a relationship
between the rate constants of each individual centre at different
levels of global reduction, on the basis of the driving force for
each microscopic ET reaction. In this way, it becomes possible to
extract information on the kinetic behaviour of the individual
centres. Two different sets of assumptions are discussed. In
model 1, the redox centres are assumed to be intrinsically

different with respect to binding affinity for the electron donor
and ET parameters such as the reorganisation energy, but these
parameters are assumed to be independent of the global redox
state. Thus, only the driving force for each redox centre is
allowed to change from one step to another. In model 2, the
redox centres are assumed to be similar in all respects other than
their microscopic redox potentials. However, these parameters
are assumed to depend on the global redox state and are
allowed to change from step to step. Each model therefore
requires only one variable per redox centre, but both models
require a detailed thermodynamic characterisation of the multi-
centre redox protein in order to analyse the kinetic behaviour of
individual centres.

The kinetic models described here are illustrated with an
application to the reduction of cytochrome c3 , a tetrahaem
cytochrome isolated from Desulfovibrio gigas, by sodium di-
thionite. It is shown that the models are capable of describing
the pH dependence of the kinetic traces on the basis of the
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change in the driving force due to the haem ± proton inter-
actions (redox-Bohr effects) characterised previously,[3] hence
validating the assumptions used.

One important aspect concerning the use of dithionite as
reducing agent is that the complicated equilibrium chemistry of
sodium dithionite and bisulfite makes its effective midpoint
redox potential dependent on pH and also on concentration.[4]

However, when the SO2
ÿ radical is the actual reducing agent,[5]

the midpoint potential of the SO2/SO2
ÿ couple is all that is

relevant for the calculation of the driving forces. This has a value
of ÿ0.3 V which does not depend on the dithionite concen-
tration and is pH-independent above pH 2.[6] An excess of
dithionite and the equilibrium reactions of SO2 that follow
electron transfer from SO2

ÿ to the protein acceptor still drives
the reaction to completion even for redox centres with negative
midpoint potentials, such as those of cytochrome c3 .

Results and Discussion

Kinetic modelling of multicentre redox proteins

The complete kinetic scheme for an ET reaction between a
protein, P, and an electron donor, D, has to take into account at
least the following steps: 1) complex formation, 2) electron
transfer within the complex, and 3) complex dissociation, as
shown in Scheme 1. For a multicentre redox protein interacting

Scheme 1. Kinetic steps for electron transfer with complex formation; Pox and Pred

represent the oxidised and the reduced states, respectively, of the protein, and Dred

and Dox represent the reduced and the oxidised states, respectively, of the electron
donor. The complexes that result from the association of the redox partners are
represented in brackets.

with a single electron donor, this sequence of events should be
considered for each individual centre. Since at least six rate
constants are required for each redox centre, it is virtually
impossible to define all of them. However, the analysis of the
system can be simplified significantly with certain approxima-
tions, making it possible to determine rate constants that can
be related to the rate constants of Scheme 1. In particular,
under steady-state conditions, the complete kinetic scheme
for the reduction of centre i in protein P can be approximated
by a simple collisional model (Scheme 2). The rate constants

Scheme 2. Rate constants for electron transfer in a simple collisional model.

k�i and kÿi in Scheme 2 are composite parameters, defined in
Equations (1 a) and (1 b), which include information on com-
plex formation (k�1i and kÿ1i), electron transfer (k�2i and kÿ2i)

and complex dissociation (k�3i and kÿ3i), involving redox
centre i :

k�i �
k�1i k�2i k�3i

kÿ1i kÿ2i � kÿ1i k�3i � k�2i k�3i

(1 a)

kÿi �
kÿ1i kÿ2i kÿ3i

kÿ1i kÿ2i � kÿ1i k�3i � k�2i k�3i

(1 b)

The kinetic models presented in this article are collisional
models, which are applicable to systems for which the steady-
state approximation is valid and ET is rate-limiting, that is, there
is fast equilibrium of the electron donor/electron acceptor
complex before ET takes place.[7] Under these conditions, k�i�
(k�1i/kÿ1i) k�2i and kÿi� (kÿ3i/k�3i) kÿ2i , which are products of
binding constants and ET rates.

The simplest possible description of the kinetics of reduction
of a multicentre redox protein is applicable when each centre
reacts independently with the electron donor, in the absence of
intramolecular electron exchange. In that case the protein would
act as a cluster of independent monocentre proteins and the
forms in which, for example, one of the centres is reduced while
the rest remain oxidised are then distinct species, or states, that
correspond to the same stage in the overall process of reduction.
The reduction of a protein with N redox centres is then described
by the sum of N exponentials with amplitudes directly related to
the reduction of a particular centre. However, the assignment of
each rate constant to a specific centre is possible only if the
centres are spectroscopically distinguishable in the kinetic
experiment. It should be noted that this simple model is of
limited use because intramolecular electron exchange is usually
significant, as a result of the small distances that separate redox
centres inside protein molecules.[8a,b] There are, however, several
multimeric proteins in which the monomers are effectively
independent.

Whereas intramolecular electron exchange is usually fast,
intermolecular exchange between identical protein molecules is
unlikely to be physiologically significant, and it can be minimised
experimentally to mimic the physiological situation. We shall,
therefore, focus on the derivation of kinetic models for systems
in which intramolecular electron exchange is fast and intermo-
lecular electron exchange is slow, both on the time scale of the
experiment. The immediate consequence of fast intramolecular
ET is the existence of thermodynamic equilibrium between
states with the same number of reduced centres that we shall
refer to as the microstates of a redox stage.

For the sake of simplicity, but without loss of generality, we
shall illustrate the discussion by referring to a molecule with only
two redox centres and irreversible electron transfer steps, as
appropriate for a strong reducing agent. The assumption of
irreversibility is necessary only in order to present analytical
solutions to the rate equations, but the conclusions concerning
the relationship of macroscopic and microscopic rate constants
are also applicable to reversible reactions. The kinetic scheme for
the two-centre system, going from the oxidised to the reduced
form, comprises four microsteps that interconvert the four redox
microstates (Scheme 3). When intramolecular electron exchange
is fast on the experimental time scale, the relative populations of
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Scheme 3. Kinetic scheme for the reduction of a two-centre protein. The pseudo-
first-order rate constants for the reduction of centre i in the first and in the second
ET steps are ki

I and k II
i , respectively. Microstates are labelled with lower case and

the macroscopic stages by capital letters. Dashed arrows indicate fast
equilibration between microstates b1 and b2 , where the subscript indicates the
centre which remains oxidised. The kinetic scheme for the macroscopic
populations is shown in the bottom part. In this consecutive mechanism, kI and
kII are the macroscopic pseudo-first-order rate constants for the first and second
electron transfer steps, respectively.

microstates (b1 and b2) reach thermodynamic equilibrium before
the next reduction step and can be expressed as a fraction of the
total population of molecules with one centre reduced (redox
stage B). These fractions depend exclusively on the relative
microscopic redox potentials of the two centres. Under these
circumstances the complex kinetic scheme of four microscopic
redox steps collapses into a simple system of two consecutive
one-electron steps with macroscopic rate constants kI and kII.

The relative values of kI and kII define the shape of the kinetic
trace, that is, the shape of the curve of reduced fraction versus
time. For a kinetic mechanism of two consecutive irreversible

steps, the time dependence of the concentration of the stages A,
B and C is given by Equations (2 a ± c):

[A] � [A]0 eÿkIt (2 a)

[B] � [A]0

kI

kII ÿ kI

� �
(eÿkItÿ eÿkIIt)� [B]0 eÿkIIt (2 b)

[C] � [A]0 1ÿ kII

kII ÿ kI

�
eÿkIt� kI

kII ÿ kI

eÿkIIt

�
� [B]0 (1ÿ eÿkIIt)� [C]0 (2 c)

where [A]0, [B]0 and [C]0 are the concentrations of the stages at
time zero, such that [B]0� [C]0�0 in a fully oxidised sample.
Since one centre is reduced in stage B and two centres are
reduced in stage C, the global reduced fraction for a sample
which is fully oxidised at time zero is given by Equation (3):

�B� � 2 �C�
2 ��A� � �B� � �C�� � 1� kI ÿ 2 kII

2 �kII ÿ kI�
eÿkIt� kI

2�kII ÿ kI�
eÿkIIt (3)

Note that the result for the global reduced fraction is the sum
of two exponentials with variable amplitudes that may even be
negative, and that the rate constants are not simply those of the
two individual centres.

If kI� kII, the curve is biphasic with equal amplitudes and the
two rate constants are readily accessible from the data (Fig-
ure 1 a). This situation is typical since kI will be twice as large as kII

if all of the microscopic rate constants are equal, simply because
both centres are available to accept electrons in the first step.
When kI�kII, the observed kinetic trace is approximately
monophasic (Figure 1 b). The expressions in Equations (2 b) and
(2 c) are undefined when kI� kII exactly ; integration of the rate
equations then gives Equation (4):

[B] � {kt[A]0� [B]0} eÿkt (4)

Figure 1. Simulated kinetic traces for the reduction of a fully oxidised two-centre system with a variety of macroscopic pseudo-first-order rate constants. The global
reduced fraction is shown as a thick line and the populations of the individual redox stages are shown as fine lines. Equations (2 a ± c), (3) and (4) were used to generate
the curves. a) kI� 10ÿ1 sÿ1, kII� 10ÿ2 sÿ1 ; b) kI� kII� 2.5� 10ÿ2 sÿ1 ; c) kI� 10ÿ2 sÿ1, kII� 10ÿ1 sÿ1 ; d) kI� 10ÿ2 sÿ1, kII� 102 sÿ1.
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in place of Equation (2 b), and the result for [C] follows from
the conserved total protein concentration. When kI<kII there
may be an apparent lag phase because one of the exponential
components has a negative amplitude (Figure 1 c). The limiting
case for kI� kII is purely monophasic and only the rate constant
of the slower step can be determined from an experiment
starting from the fully oxidised state (Figure 1 d).

It remains possible to determine the faster rate constant when
kI<kII by making use of experiments starting from thermody-
namic equilibrium in partially reduced samples. Then there will
be some fraction of molecules in state B available for reduction
to state C with the fast rate constant, resulting in a biphasic curve
from which both kII and kI can be determined. In the case of
redox centres displaying very different reduction potentials,
virtually all molecules in a 50 % reduced sample at thermody-
namic equilibrium are in state B (Figure 2 a). This is quite different

Figure 2. The global reduced fraction (thick lines) and the populations of stages
at thermodynamic equilibrium as a function of solution potential and the reduced
fraction during a kinetic experiment as a function of time. a) Simulation of the
populations at equilibrium for a two-centre protein with noninteracting midpoint
potentials e1� 0.3 V, e2� 0.1 V and I12� 0 V. b) Time evolution of the reduced
fraction for the kinetic trace represented in Figure 1 c, kI� 10ÿ2 sÿ1, kII� 10ÿ1 sÿ1.
The inset curve shows the result for starting from a 50 % reduced sample at
thermodynamic equilibrium. Note that this behaviour is compatible with model 2
(discussed in the following section), but not with model 1.

from the population of state B at 50 % reduction in the kinetic
experiment presented, for example, in Figure 1 c. In this case,
with kI< kII, an approximately monophasic trace with the slower
rate constant is observed in an experiment starting from the
oxidised form, and another monophasic trace with the faster rate
constant is observed in an experiment starting from a 50 %
reduced sample (Figure 2 b). In fact, if the kinetic run could be
interrupted at 50 % reduction and the sample given time to

reach thermodynamic equilibrium before restarting, then the
trace would follow the thick line in Figure 2 b.

Although the rate constants of the macroscopic steps, kI and
kII in the two-centre system, are accessible from the experimen-
tal data, they do not give direct information about the kinetic
properties of the individual redox centres. Equations (5 a) and
(5 b) relate these macroscopic rate constants and the rate
constants of the microsteps (see Scheme 3):

kI � kI
1� k I

2 (5 a)

kII � c1k II
1� c2kII

2 (5 b)

where k I
i and k II

i are the rate constants for the reduction of centre
i in steps I and II, respectively, and ci is the molar fraction of the
microstate which has centre i oxidised in stage B and, con-
sequently, still available to receive an electron. These equations
show that the macroscopic rate constant of each step is given by
the weighted average of the microscopic rate constants of all
microsteps involved in that particular step. As will be discussed
below, the rate constants of the individual centres can change
between step I and step II for a variety of reasons, including a
change of the driving force for the electron transfer process due
to interactions between the redox centres. The key question is
whether it is possible to define them unequivocally from the
experimentally accessible macroscopic rate constants for each
step, ks.

The problem of deriving microscopic constants from macro-
scopic properties is commonly associated with the possibility of
distinguishing the redox centres spectroscopically in the kinetic
experiment. However, the existence of different spectroscopic
characteristics is not important under conditions of fast intra-
molecular electron transfer. In fact, the order of reduction of the
centres that is observed in a kinetic experiment under these
conditions is dictated by the thermodynamics of the system. This
is easily demonstrated by considering two centres with very
different redox potentials (e1� e2) which display different
spectroscopic characteristics. If the rate constant for the
reduction of centre 1 is larger than the rate constant for the
reduction of centre 2 (k I

1 > kI
2�, then the kinetic experiments will

show centre 1 being reduced at a higher rate than centre 2, as
expected. However, even if k I

1 < kI
2, centre 1 will still become

reduced before centre 2 because of intramolecular electron
transfer. Centre 2 is actually being reduced by the exogenous
electron donor at a faster rate than centre 1, but the electrons are
immediately transferred, or ªdrainedº, to centre 1, according to
the relative redox potentials. Consequently, the observed order
of reduction of the redox centres under conditions of fast
intramolecular ET will always reflect their relative redox poten-
tials, that is, their thermodynamic properties, and not necessarily
their relative kinetic properties. It is clear from this example that
the problems associated with the determination of the rate
constants of the individual centres are not related to the
possibility of monitoring the redox centres separately but do
depend on knowing the microscopic thermodynamic properties
of the centres.
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Application of the Marcus theory

Because only N rate constants can be obtained from the
experimental data for a system with N centres and fast intra-
molecular ET (kI and kII in the two-centre system, in which there
are four microscopic rate constants), it is necessary to reduce the
number of unknowns by making approximations. Two possible
approaches will be discussed below in which it is assumed that
the ET step is rate-determining.[7] It will be shown that the
determination of the rate constants of the microsteps depends
upon the accurate determination of the thermodynamic proper-
ties of the individual redox centres.

The Marcus equation for ET rates[2] may be applied with the
simplification that electrostatic interactions can be neglected in
solutions of moderate ionic strength, and also neglecting
orientation effects, which is particularly suitable for small
reducing agents. Each microscopic rate constant of the kinetic
scheme (Scheme 3) may then be expressed [Eq. (6)] as a function
of a factor, Z, with the dimensions of a collision frequency, the
reorganisation energy, l, and the driving force for the ET
reaction, DG :

k � Z exp[ÿ (DG�l)2/(4lRT)] (6)

The effect of the binding constant, distance between redox
centres, and the intervening medium are included in the factor Z.
The value of DG may be calculated for any individual microstep
because it depends solely on the thermodynamic parameters of
the system, which may be accessible from equilibrium experi-
ments. It may vary between microsteps because of intrinsic
differences in the microscopic reduction potentials of the
centres and also because the potential of each individual centre
may change with the overall stage of reduction. Therefore, it is
useful to rewrite Equations (5 a) and (5 b) to separate the effect of
DG from the effect of Z and l and also to separate the variable
microscopic reduction potentials of the centres, ei, from the
reduction potential of the donor, eD. We define a reference rate
constant for each microstep in which the microscopic reduction
potential of the centre is set equal to zero. Thus, for example, kos

i

is the reference rate constant for the reduction of centre i in step
s. Now the actual rate constants of the microsteps, kst

i , are related
to the reference rates by factors gst

i , defined by Equation (7).

gst
i � exp

�
est

i F

2RT

�
1� eDF

lst
i

ÿ est
i F

2lst
i

��
(7)

The labelling of each rate constant must specify the macro-
scopic redox step, s, the centre involved, i, and the state of all the
other centres in the system that remain unchanged in the
microstep, t. We shall use these labels in the form kst

i , but the
specification t is not necessary in a system with just two centres
because there is only one microstep per centre in each
macroscopic step. Therefore, Equations (5 a) and (5 b) may be
rewritten in the form of Equations (8 a) and (8 b):

kI � gI
1koI

1 �g I
2koI

2 (8 a)

kII � c1 g II
1koII

1 � c2 g II
2 koII

2 (8 b)

where ci and gs
i depend solely on the thermodynamic param-

eters of the system, koI
i are the microscopic rate constants for the

reference in the first reduction step, and koII
i are the correspond-

ing rate constants for the second reduction step.
Differences between the microscopic reduction potentials of

the centres are intrinsic, but interactions between centres
provide the key to many functional properties. Therefore, it
may be useful to divide the factors of Equation (7) into terms that
depend on the redox potentials of the centres in some reference
state and terms that depend on changes in the driving force. We
shall consider a microstep that involves centre i in step s while
the remaining centres remain unchanged in a state that we label
collectively as t. Step s�1 contains microsteps that involve
centre i and the remaining centres in a state t' that differs from t

simply by a change of state of one centre, j. A factor is then
defined as ss

ij�gst
i /g�s�1�t'

i . For example, there is only one sigma
factor for each centre in the case of a two-centre system, sij�g I

i/
g II

i . If the reorganisation energy, li, does not change from step to
step, the sigma factor is a simple function [Eq. (9)] of the change
in the driving force between steps, dGij :

ss
ij � exp

�ÿdGij

2RT

�
1�DG�s�1�t'

i

li

� dGij

2li

��
(9)

where dGij�DGst
i ÿDG�s�1�t'

i if the convention of referring
energies to those of the reduced form is used.[9] The driving
force used as a reference in this article is DGi for the last
reduction step, that is, DGN

i for a system with N centres, which is
equal to (eDÿ eN

i �F. The change in the driving force between the
last step and the penultimate step depends on the interaction
potential between the centres, dGij�ÿ Iij F, and so on. Now a
single gamma factor can be defined for each centre [Eq. (10)]
and the superscript st used to specify individual microsteps can
be dropped:

gi � exp

�
eN

i F

2RT

�
1�eDF

li

ÿ eN
i F

2li

��
(10)

The reorganisation energy, li, associated with each centre is
difficult to determine, but it may not be crucial to have an exact
value since the reference potential for the centre, eN

i F, and the
potential for the donor, eDF, are usually much smaller than li. The
gamma factor of Equation (10) can then be approximated by
Equation (11), in which the gi factors depend exclusively on the

gi � exp

�
eN

i F

2RT

�
(11)

reduction potential of centre i in the reference state. Similarly,
the driving force, DGi, for ET reactions in biological systems and
the interaction energies, IijF, are typically much smaller than the
reorganisation energy li.[10] Thus, Equation (9) can be approxi-
mated by Equation (12), in which sij depends solely on the

sij � exp
Iij F

2RT

� �
(12)

interaction potential between the two redox centres. In other
words, sij is a function of the change of the driving force along
the reduction process only. Moreover, because microscopic
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reversibility implies that Iij� Iji, only one sigma factor is required
for a two-centre system under this approximation. Even so, it is
preferable to obtain a reasonable value for the reorganisation
energy and use the full expression.

A factor similar to that in Equation (12) was used in an earlier
study of a tetrahaem cytochrome c3 , without reference to the
Marcus theory.[11] In effect, the multiplier of RT was treated as a
variable, but the value 2 was preferred on the grounds of
treating oxidation and reduction symmetrically. Here, the factor
emerges directly from the theory as a result of the assumptions
that li�DGi and li� IijF. The factor in Equation (11) refers to the
microscopic potentials in a single reference state (e.g. stage N,
the fully reduced protein), and the relative rates of microsteps in
successive steps can be obtained by multiplying giko

i by one
sigma factor for each step.

Equations (8 a) and (8 b) can now be written in the form of
Equations (13 a) and (13 b).

kI � g1 s12 koI
1 �g2 s21 koI

2 (13 a)

kII � c1 g1 koII
1 � c2 g2 koII

2 (13 b)

At this point, the difference in the microscopic redox
potentials of the centres of the reduced protein have been
separated in the form of gamma factors, and the variation in
potentials due to interactions is accounted for by the sigma
factors. However, since there are still four reference rate
constants for the microscopic steps and only two observables,
further assumptions are needed to reduce the number of
unknowns.

First, we shall consider proteins with redox centres in very
different environments and very different exposure to the
solvent, for which it might be reasonable to assume different Z
factors and reorganisation energies for each centre. However, it
is then necessary to assume that these values are fixed and do
not change from one step to the next. Thus, the rate constants
are assumed to be modulated by DGi only, and there is only one
reference rate that can be adjusted for each centre, that is, koI

i �
koII

i � ko
i in the two-centre system, with ko

1 and ko
2 as variables

[Eqs. (14 a) and (14 b)].

kI � g1 s12 ko
1�g2 s21 ko

2 (14 a)

kII � c1 g1 ko
1� c2 g2 ko

2 (14 b)

We shall refer to this set of assumptions as model 1. The
number of unknowns is equal to the number of observables, but
the model can only fit experimental data if the rates are under
thermodynamic control and the Z factors and reorganisation
energies of each centre are not dependent on the global
oxidation state of the protein.

The second approach, model 2, is suitable for proteins in
which the centres have similar environments and similar
exposure to the solvent but undergo significant changes in
each redox step. In this case, we assume that the centres have Z
factors and reorganisation energies that are all identical within
each macroscopic redox step, but they are allowed to change

from step to step, that is, they may depend on the number of
electrons in the molecule. In the two-centre system, the
independent variables of this model are a reference rate
constant for step I, koI� koI

1 � koI
2 , and a reference rate constant

for step II, koII, that is also the same for both centres. According to
this parameterisation of the system, and by using the approx-
imations in Equations (11) and (12), Equations (8 a) and (8 b) can
be expressed in the form of Equations (15 a) and (15 b):

kI � (g1 s12�g2 s21) koI (15 a)

kII � (c1 g1� c2 g2) koII (15 b)

In this case, the difference between koI and koII reflects the
difference in Z factors or reorganisation energies between the
first and the second ET steps. Note that Equations (8 a) and (8 b)
are exact, but factorisation of the thermodynamic terms
depends on the approximation of the reorganisation energy
being large because l may be different for the same centre in
different steps. Any system that fulfils the requirements of rapid
internal equilibration, such that N macroscopic rate constants
are observed for N centres, should be fitted exactly by this
model. In effect, this model fits the N rate constants and
determines the rates for the individual microsteps within a
macroscopic step according to the relative driving forces, which
are fixed. Thus, any discussion of the rates of individual
microsteps derived from model 2 must depend on arguments
that justify the specific assumptions made in the model and not
simply on the ability to fit the data.

The approximations made in each of the models achieve the
aim of reducing the number of variables that link the rate
constants of the macroscopic electron transfer steps to those of
the individual redox centres to equal N, the number of
observables. However, the factors require detailed information
about the thermodynamic properties of the system.

For ET reactions between protein complexes that are phys-
iological partners, specific protein ± protein interactions make ET
most likely to occur through a single binding, or docking, site.
This would apply to membrane-bound proteins with little
surface exposure. In this case, the rate constants for electron
transfer for each centre are essentially controlled by the distance
to the docking site. Since only model 1 allows the values of ko

i to
be adjusted independently of the relative value of DGi for the ET
process, it is, in principle, more appropriate than model 2 for
describing ET reactions between physiological partners. In the
example of a two-centre protein, if the centres are associated
with sites that display significantly different binding constants
for the electron donor, then the characteristics of the kinetic
trace will tell immediately if the strongest interaction is in the
vicinity of the centre with the largest driving force. If the centre
with smaller driving force is associated with the docking site,
then the kinetic trace will be approximately monophasic (see
Figure 1 b). This is because the faster intramolecular electron
exchange will keep the ªentry gateº centre free to receive
electrons from the external donor, while the other centre is
being reduced by intramolecular ET. If the docking site involves
the centre with the larger driving force, the kinetic trace will be
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biphasic (Figure 1 a), with the biphasic character increasing with
the separation between the reduction potentials of the centres.

Generalisation to systems with more than two redox centres is
straightforward and is subject to the same limitations. To extract
kinetic information for individual centres, it is necessary that: 1)
the thermodynamic properties are characterised in detail, and 2)
some model is used to relate individual rates. Application of the
Marcus theory allows the number of variables to be reduced
either by assuming that Z and l are equal for all centres within a
given ET step or that Z and l are different for each centre, but do
not change as the protein is reduced.

Analysis of the kinetics of reduction of a tetrahaem protein

We shall now illustrate the application of the theory to the
reduction of Desulfovibrio gigas tetrahaem cytochrome c3 by
sodium dithionite. The thermodynamic properties of this protein
have been thoroughly investigated[3, 12, 13] and NMR spectro-
scopic studies have shown that intramolecular ET is fast on the
time scale of stopped-flow experiments.[12] However, intermo-
lecular ET between cytochrome c3 molecules can be neglected
because it is at least 100 times slower than ET from sodium
dithionite.[11, 12]

The effective midpoint redox potential of sodium dithionite
(ca. ÿ0.5 V) is sufficiently negative[4] to ensure that ET proceeds
from the exogenous donor to the cytochrome only, leading to
irreversible ET steps. Moreover, the use of a large excess of
sodium dithionite makes the process pseudo-first order. Because
the concentration dependence of the rates shows that the SO2

ÿ

radical is the reducing species,[5, 11] the relevant value of eD is that
of the SO2

ÿ/SO2 couple. Thermodynamic calculations[14] and
direct experiments[6] provide a value of ÿ0.3 V at 298 K that is
pH-independent above pH 2.

Early NMR studies showed that the midpoint redox potentials
of the four haems depend on the redox state of the neighbour-
ing haems and also on the pH.[12] In a study by Coletta et al. ,[13]

the protein was treated as having fundamentally different
properties in its acidic and basic forms, with 21 thermodynamic
parameters. Fitting these by grid searching in 10-mV steps
obscured the fact that they are not well defined. In fact, 15
parameters are sufficient to describe the system in the frame-
work of a model with five interacting centres since only two-
centre interactions are required.[9] Thus, there is no evidence for
major proton-linked changes in conformation. These micro-
scopic parameters, namely the four midpoint potentials of the
haems and the pKa of the acid/base group in the reference state,
plus six haem ± haem interaction potentials and four haem ±
proton interaction potentials have all been determined for
D. gigas cytochrome c3 .[3] The complete description of the
system involves 16 protonated and 16 deprotonated micro-
states, which are in equilibrium because proton exchange is fast.
Upon reaction with the electron donor these 32 microstates are
interconverted through 64 possible ET microsteps. Therefore,
the complete kinetic characterisation of this protein at the
microscopic level involves the determination of 64 microscopic
rate constants (Figure 3). As discussed above, the existence of

Figure 3. Schematic representation of the microstates of a protein with four
redox centres and one acid/base centre. For simplicity only the eight ET
microsteps involving one centre in the protonated form are indicated out of a
total of 64. Protonated microstates are represented by A and deprotonated
microstates by B, subscripts indicate the centres that are oxidised in each
microstate. Because of fast intramolecular electron and proton transfer between
microstates that belong to the same redox stage, the complex kinetic scheme
collapses into the simple mechanism of four consecutive one-electron transfer
steps with only four macroscopic rate constants, shown in the bottom part of the
figure. Redox stages are defined according to the number of reduced centres and
kI ± kIV are the macroscopic pseudo-first-order rate constants for the four
consecutive one-electron transfer steps. Note that a system with N centres gives
rise to N� 1 different redox stages (numbered n� 0,. . .N), each of which
comprises Cn

N microstates, where C is a binomial coefficient. These stages are
linked by N macroscopic redox steps (numbered s� 1,. . .N), each of which
comprises sCs

N microscopic redox steps. Within step s, each of the N centres is
involved in Csÿ1

Nÿ1 of the microsteps.

fast equilibrium within microstates belonging to the same stage
leads to a much simpler kinetic scheme of four consecutive one-
electron steps. Consequently, a maximum of four rate constants
are available from experimental data and, in practice, the kinetic
traces appear to be no more than biphasic. Thus, unless further
assumptions are used to limit the number of variables to a
maximum of four, the system is undefined.

Two different approaches to this problem have been de-
scribed here: In model 1 the four haems have different Z factors
and reorganisation energies and these parameters remain
unchanged throughout the reduction process; in model 2 the
four haems have identical Z factors and reorganisation energies,
but these parameters may depend on the number of electrons in
the molecule and change from step to step. In both cases the
effect of DG on the rate constants is accounted for by
introducing the appropriate gamma and sigma factors. General-
isation of Equations (14 a) and (14 b) for applying model 1 to the
tetrahaem cytochrome is straightforward [Eqs. (16 a ± d)] if it is
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assumed that the Z factor and reorganisation energy for each
centre is unaffected by protonation:

kI �
X

i

gi sij sik sil(cA
ijkl�siH cB

ijkl�ko
i (16 a)

kII �
X

i

gi

X
jk

 
sij sik cA

ijk�siH

X
jk

sij sik cB
ijk

�
ko

i (16 b)
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X

i

gi

X
j

 
sij c

A
ij �siH

X
j

sij c
B
ij

�
ko

i (16 c)

kIV �
X

i

gi(cA
i �siH cB

i �ko
i (16 d)

The macroscopic rate constants, kI, kII, kIII and kIV, are simply
the weighted average of all microscopic rate constants that
contribute to each particular step. The weighting factors are the
relevant fractional populations, cijkl, cijk, cij, ci, where subscripts
indicate the haems which are oxidised and superscripts A and B
refer to protonated and deprotonated microstates, respectively
(Figure 3). The midpoint potentials of the haems contribute to
the microscopic rate constants through the gamma factors gi,
defined in Equation (10), which refer to the driving force for each
centre in the final step to the fully reduced state of the
protonated protein. The factors sij account for haem ± haem
interaction potentials, Iij, according to Equation (9). The siH

factors are exactly analogous to the factors in Equation (9) for
interactions between redox centres and account for haem ±
proton interaction potentials, IiH. Because haem ± haem inter-
action potentials have been defined between the haem that is
being reduced and those haems that remain oxidised, products
of three sij factors contribute to the rate constants of the first
reduction step, products of two sij factors contribute to the rate
constants of the second reduction step, and so on. No sij factors
are necessary in the last reduction step, which provides the
reference rates for each centre. According to this model, the four
parameters to be adjusted are the rate constants of four
hypothetical haems with zero midpoint potential, ko

i . These
constants account for the difference in Z factors and reorganisa-
tion energies between the four haems.

If model 2 is used, the approximations of Equations (11) and
(12) allow expressions of exactly the same form as Equations
(16 a ± d), but with the reference rates for each centre, ko

i ,
replaced by the reference rates of the macroscopic steps, kos. As
before, the gamma factors defined in Equation (7) for individual
microsteps, labelled st, can be used to provide exact expressions
if the values of l are known. The four parameters to be adjusted
are now koI, koII, koIII and koIV, which correspond to the rate
constants of a hypothetical haem with zero midpoint potential in
each particular step.

The kinetics of reduction of cytochrome c3 from Desulfovibrio
gigas by sodium dithionite display a biphasic profile with a fast
phase accounting for ca. 25 % of the process.[11] An experiment
starting from partially reduced samples showed that the fast
phase disappears if the sample at time zero is more than 30 %
reduced. The fast phase also disappears at low pH because the
rate of the slower phase increases. In this cytochrome, haem 4 is
almost fully reduced in step 1, whereas the other haems are still
mostly oxidised. The remaining haems all have similar, more

negative, midpoint redox potentials, which makes it difficult to
separate them kinetically. According to model 1, the rapid
reduction of haem 4 could arise either through rapid reaction
of haem 4 itself or through reduction of another centre followed
by intramolecular ET. However, if electrons were being drained to
haem 4 rather than delivered directly, the fast phase should
account for more than 25 % of the process. Thus the shape of the
complete curve should be capable of distinguishing the
possibilities. From the point of view of model 2, the initial 25 %
fast phase clearly corresponds to a larger rate constant for the
first step, koI, regardless of whether haem 4 is reduced directly or
indirectly, and the 75 % slow phase corresponds to slower rate
constants for the subsequent steps, koII, koIII and koIV.

The test of the analysis is to fit kinetic traces obtained at
different pH values and with varying degrees of reduction in the
starting material. Kinetic experiments were carried out in a SF-61
Hi-Tech Scientific stopped-flow apparatus inside an anaerobic
chamber. Absorbance changes were monitored at 552 nm.
Concentrations after mixing were [cytochrome c3]� 1.5 mM,
[dithionite]� 65 mM, and 50 mM tris/maleate buffer. The temper-
ature was maintained at 25 8C. The theory discussed above
predicts that each trace yields a maximum of four macroscopic
rate constants and that the complete set of data can be fitted
with a maximum of four variables, with the set of predetermined
thermodynamic parameters taken from ref. [3] .

Using the Marquardt method to fit a set of traces, with a value
of 1 eV for the reorganisation energy[15] and independent
parameters for the four haems (model 1), gave rates close to
zero for haems 2 and 3. Therefore, these rates were fixed at zero
and the resulting simulations, shown in Figure 4, have only two

Figure 4. Kinetics of reduction of cytochrome c3 from Desulfovibrio gigas by
sodium dithionite. Solid lines were obtained by fitting all of the data
simultaneously to model 1 using only two parameters: ko

1� (7.7� 0.5)�
108 Mÿ1 sÿ1, ko

4� (5.8� 0.9)� 108 Mÿ1 sÿ1. The rate constants for haems 2 and 3
were set to zero. a) Reduction of oxidised samples at pH 5.6, 7.0 and 8.4;
b) reduction of partially reduced samples at pH 8.4.
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fitted parameters. Fitting the traces according to model 2, with
independent rates for the four ET steps, gave fits of similar
quality.

Figure 4 shows that the full range of behaviour, both as a
function of pH and of the degree of reduction of the initial
samples, is well described by model 1 with a set of predeter-
mined thermodynamic parameters[3] and just two fitted rate
constants. This is in contrast with earlier analyses of similar data
in which as many as eight parameters were used,[11] following the
thermodynamic analysis in terms of fundamentally different
acidic and basic forms.[13] However, it appears that the kinetic
properties are adequately described by treating the protonation
as just one more factor that affects the driving force, through the
redox-Bohr interactions with the proton, without changing the
reorganisation energy significantly with respect to the corre-
sponding microstep in the protonated form. The same con-
clusion follows from the ability to fit the pH dependence of the
kinetic traces using model 2.

The two models also agree that haem 4 is the primary electron
acceptor in step I. According to model 2, the majority of the flux
of electrons in step I passes through haem 4 because it has the
largest driving force. In model 1, although the reference rate
fitted for haem 1 is larger than that for haem 4, the actual rate for
the microstep involving haem 4 in step I is much greater than
that of haem 1, again as a result of its larger driving force. In the
case of the reduction of cytochrome c3 by sodium dithionite,
model 1 is arguably more appropriate because, although each of
the four haems is exposed to the reducing agent, the local
charges and collision frequencies are likely to be different. As
discussed above, model 1 is more restrictive, and yet it fits the
data as well as model 2. However, the molecule also undergoes
subtle conformational changes upon reduction,[16] which would
favour the assumptions made in model 2. Thus, in this particular
case, conclusions about the kinetic properties of the individual
centres will be most reliable when the results of the two models
agree.

In practice, model 1 and model 2 represent simplifications that
are necessary to extract information about the many micro-
scopic redox steps, and hence the individual centres, from the
few observable macroscopic rate constants. The true situation in
most cases is likely to be a mixture of the two. The fact that the
kinetics of reduction of cytochrome c3 by sodium dithionite can
be described simply in terms of the thermodynamic interactions
between the redox centres and with an acid/base group does
not rule out the possibility that the rate constants may also be
influenced by, for example, variations in the charge on the
surface of the protein, but the observable properties provide no
further information.

Conclusion

The models discussed here, with the appropriate approxima-
tions, appear to be fully adequate for the analysis of the kinetic
properties of systems under thermodynamic control, in which

case a protein with N redox centres yields a kinetic trace with a
maximum of N exponential components. Therefore, the limi-
tations of the information that may be extracted are clear, both
in terms of the number of parameters and their physical
significance. Model 2 fits the time constants with reference rates
for these macroscopic steps and apportions the rates for
individual microsteps according to the relative driving force.
Thus, the quality of fit should provide a test of the experimental
data as well as the assumption of thermodynamic control.
However, model 2 implies that the centres have equal accessi-
bility as well as equal reorganisation energies, which may be
unrealistic. Model 1 is more restrictive, insofar as any change in
rate from one macroscopic step to the next can only be the
result of the change in driving force for each of the centres, but it
is more realistic for proteins with centres in widely different
environments. Thus, the significance of rates obtained for
individual centres or microsteps must be judged with respect
to the assumptions of the model being used, and comparison of
the parameters obtained with the two models should provide
additional insight into their reliability.
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