
ChemBioChem 2002, 3, 455 ± 459 ¹ WILEY-VCH-Verlag GmbH, 69451 Weinheim, Germany, 2002 1439-4227/02/03/05 $ 20.00+.50/0 455

A Virtual Screening Method for Prediction
of the hERG Potassium Channel Liability of
Compound Libraries
Olivier Roche, Gerhard Trube, Jochen Zuegge, Pascal Pflimlin, Alexander Alanine,
and Gisbert Schneider*[a,b]

A computer-based method has been developed for prediction of
the hERG (human ether-a¡-go-go related gene) K�-channel affinity
of low molecular weight compounds. hERG channel blockage is a
major concern in drug design, as such blocking agents can cause
sudden cardiac death. Various techniques were applied to finding
appropriate molecular descriptors for modeling structure ± activity
relationships: substructure analysis, self-organizing maps (SOM),
principal component analysis (PCA), partial least squares fitting
(PLS), and supervised neural networks. The most accurate pre-

diction system was based on an artificial neural network. In a
validation study, 93% of the nonblocking agents and 71% of the
hERG channel blockers were correctly classified. This virtual
screening method can be used for general compound-library
shaping and combinatorial library design.
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Introduction

The K� channel encoded by the human ether-a¡-go-go related
gene (hERG or KCNH2) gives rise to the rapid component of the
delayed rectifier K�-channel current, IKr. The hERG K� channel
plays a crucial role for normal action potential repolarization in
the heart. It has been used as a therapeutic target for class-III
anti-arrhythmic agents, but a wide range of noncardiac drugs
also inhibit the hERG K� channel, resulting in a drug-induced
long QTsyndrome (LQTS) that can cause sudden cardiac death.[1]

This potentially lethal side effect is a major issue for the
development of any new drug, since it has been shown that
various molecules, such as antihistamines, psychoactive agents,
calcium antagonists, and antimicrobials, can inhibit the hERG
K� channel.[2] It is therefore important to assess the hERG
blocking potential of novel chemical structures as early as
possible during the drug discovery process. The only precise
method for determination of the compounds' potencies in K�-
channel inhibition, is patch-clamp electrophysiology, which is
time-consuming and labor-intensive. Higher-throughput meth-
ods, such as radioligand binding or detection of membrane
potential changes by fluorescent dyes, are indirect and not very
reliable. With the aid of a large set of compounds tested by patch-
clamping over several years of research, we have now developed
a fast, computer-based, virtual screening method for the pre-
diction of the hERG blocking potential of new compounds.

Results and Discussion

Data generation and compilation

The experimental data generation process has been performed
over the past three years. A standardized patch-clamp procedure

was used to compile a unique homogenous data set containing
hERG K�-channel inhibition data for 472 compounds. The aim
was to establish a structure ± activity relationship (SAR) model.
We grouped the data set into three classes:
Class 1: 96 compounds with IC50�1 �M (low IC50),
Class 2: 148 compounds with IC50� 10 �M (high IC50), and
Class 3: 228 compounds with 1 �M� IC50�10 �M (medium IC50).

Class 1 included some potent hERG K�-channel blockers
known from the literature and retested in our laboratory:
cisapride, dofetilide, E-4031, haloperidole, and terfenadine.

The first approach was to consider all available information by
using all three classes of compounds for SAR modeling.
Unfortunately, this approach completely failed to produce a
useful scoring scheme. This is most probably due to the error
range of the experimental results (up to twofold), which tends to
give rise to an ™ill-posed∫ problem; molecules with similar
features are classified into different classes (low, medium, high).
To avoid this problem, we followed the ™likeness concept∫, which
only uses the extremes of the data set (high and low IC50 classes) ;
this resulted in 244 nonredundant compounds.[3]
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For model validation we compiled from the literature a set of
38 drugs with known hERG K�-channel IC50 values. As the
experimental conditions for measuring IC50 values for these
drugs can be quite diverse, possibly resulting in significant

differences in the results, these values were only used as an
independent validating set, and not for elaboration of the
prediction scheme (Table 1). An additional set of 57 compounds,
which originated from other patch-clamp experiments per-
formed at Roche, was also used for validation.

Several techniques were applied to the identification of
appropriate molecular descriptors for SAR modeling: substruc-
ture analysis, self-organizing maps (SOM), principal component
analysis (PCA), partial least squares fitting (PLS), and supervised
neural networks.

Substructure analysis

With the aid of the commercially available software tool
LeadScope (release 2RC1),[4] we tried to identify substructures
capable of discriminating between hERG K�-channel blockers
(Class 1, low IC50) and nonblockers (Class 2, high IC50). LeadScope
describes compounds in terms of approximately 27000 prede-
fined structural features and displays their distribution by means
of separate histograms. Prevalent structural elements that might
be characteristic of the data sets were manually selected from
the program output. Strikingly, we were not able to identify
individual substructures exclusively present in either one of the
extremes. Nevertheless, some weak trends were revealed: pairs
of hydrogen-bond donors separated by six bonds were present
in 57% of the nonblocking agents and 30% of the blockers, and
benzenesulfonyl groups were found in 20% of the nonblockers
but in only 2% of the blockers. It must be stressed that 1-R-4-
alkyl-benzene moieties (where R� any atom) were also found in
49% of the blockers. This observation suggests a general
structural bias in the data rather than individual substructure
differences that are meaningful characteristic features of hERG
K�-channel blockers or nonblockers. A more extensive analysis
based on additional molecular descriptors was therefore required.

Descriptor generation and selection

A large number of different descriptor types was generated in
order to capture relevant molecule features. We first analyzed
general properties of the data (Table 2). The only significant
difference was found for the calculated octanol/water partition
coefficient computed by the clogP routine.[5] Blocking molecules
(low IC50) tend to be more lipophilic than nonblocking agents. It
should be stressed that increasing lipophilicity usually increases
binding to protein receptors, which is a general phenomenon
not restricted to the hERG channel. This feature alone is not
sufficient for classification, so additional sets of descriptors were
computed:
� One-dimensional (1D): 120 atom types defined by Ghose and

Crippen (GC descriptors),[6b] 78 TSAR descriptors,[7] and pKa[8]

� Two-dimensional (2D): 150 topological CATS descriptors[9]

� Three-dimensional (3D): 56 VolSurf descriptors[10]

� 853 DRAGON descriptors including the BCUT, WHIM, 2D-
autocorrelation, 3D-MoRSE, and Getaway descriptors[11]

For the three-dimensional descriptors, the molecular confor-
mations were generated and optimized with the programs
Corina and Cosmic respectively, as part of the TSAR 3.21
program.[7] In total, 1258 descriptors were generated. The SOM
technique was applied to identify a relevant descriptor subset.
The SOM approach generates a topology-preserving nonlinear
mapping of a high-dimensional space to a low-dimensional
space.[12] In this case the 1258-dimensional descriptor space was
projected onto the plane, and the standard Matthews correla-
tion coefficient for binary data, cc, was used to estimate the
classification ability of the map [Eq. (1)] .[12, 13]

cc � �NP� � �OU�
���������������������������������������������������������������������N � O��N � U��P � O��P � U�� (1)

In Equation (1), N, P, O, and U are the numbers of true negative
(low IC50; Class 1 compounds), true positive (high IC50; Class 2
compounds), false positive, and false negative predictions,
respectively. A perfect prediction gives a correlation coefficient
of 1.

The highest classification accuracy (cc� 0.70) was observed
for the VolSurf and GC descriptors (Figure 1). The other
descriptors gave values of: CATS: cc� 0.68, WHIM: cc� 0.61,
Getaway: cc�0.57, 3D-MoRSE: cc� 0.60, all 853 DRAGON de-
scriptors: cc� 0.58. For reasons of simplicity and calculation
speed, the GC descriptors were kept for further study.

Table 1. IC50 values and prediction scores of 38 drugs.

Name IC50 [�M] Score Name IC50 [�M] Score

Astemizole 0.001 0.03 Loratadine 0.17 0.80
Azimilide 0.6 0.78 Mdl74156 12.1 1.00
Bepridil 0.55 0.01 Mexiletine � 10 0.92
Ciproflozacin 966 0.94 Mizolastine 0.35 0.76
Clarithromycin 720 1.00 Mk-499 0.032 1.00
Demethylastemizol 0.001 0.01 Moxifloxacin 129 0.85
Diltiazem 17 1.00 Nifedipinde � 50 1.00
Domperidone 0.16 0.05 Nitrendipine � 10 1.00
Droperidol 0.032 0.03 Olanzapine 0.2 0.42
Ebastine 0.14 0.01 Ondansetron 0.81 0.63
Erythromycin � 10 1.00 Pimozide 0.018 0.01
Gatifloxacin 130 0.88 Risperidone 0.14 0.02
Glibenclamide 74 0.93 Sertindole 0.014 0.74
Glimepiride � 500 0.82 Sildenafil 30 0.15
Grepafloxacin 44 0.79 Sparfloxacin 18 0.78
Halofantrine 0.2 0.05 Sulfamethoxazole 10000 0.91
Isradipine � 10 0.96 Trimethoprim 240 0.98
Ketoconazole 49 1.00 Verapamil 0.8 0.02
Levofloxacin 915 0.81 Ziprasidone 0.15 0.22

Table 2. Properties of the training data.

Properties hERG K�-channel affinity
high IC50

[a] low IC50
[a]

molecular weight 333 (72) 345 (45)
lipophilicity (clogP)[5] 2.70 (1.16) 4.28 (1.12)
number of hydrogen-bond donors 1.68 (1.11) 1.47 (0.75)
number of hydrogen-bond acceptors 4.96 (1.79) 3.59 (1.24)
drug-likeness score[3] 0.71 (0.24) 0.77 (0.20)
™frequent-hitter∫ score[3] 0.18 (0.29) 0.11 (0.19)

[a] Values in parentheses are the standard deviations.
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Figure 1. Self-organizing map (SOM) projection of the compound distribution in
a high-dimensional space spanned by 120 GC descriptors. 10� 10 clusters were
formed. A) Density of high IC50 compounds (white�none, black�many).
B) Binary classification of chemical space; high IC50 compounds area in black, low
IC50 compounds area in white. The map forms a torus, as illustrated by the (2� 2)
replicas of the maps (lower row). The map does not contain empty neurons.

Linear prediction model

Having found a useful molecular representation for the given
prediction task, PCA was performed to extract a small set of
orthogonal factors describing the data distribution as defined by
the raw GC descriptors.[14] From the PCA, seven outliers were
identified (six nonblockers and one blocker). After this step, a PLS
model–a multivariate linear regression technique–was elabo-
rated to obtain a first prediction scheme. The SIMCA-P software
package was used for this purpose.[15] To estimate the stability of
these models to outliers, we compared the ranking of the
descriptors extracted with the variable influence on projection
parameters (VIP) values computed by SIMCA-P with respect to
the removal of the outliers identified by PCA. Variable ranking
was not significantly affected by outliers, a fact which suggests
that the solution may not be critically influenced by extreme raw
data values. The best linear prediction tool derived from the PLS
correctly reclassified 84% of the nonblocking compounds, but
only 77% of the blocking agents, thereby yielding a binary
Matthews correlation coefficient of cctraining�0.61. This value is
low for reclassification, which indicates that a linear model might
not be appropriate for discriminating between potent hERG
K� blockers and nonblockers on the basis of the particular
descriptor set chosen.

Nonlinear prediction model

The next step was a nonlinear prediction method, as given by a
supervised neural network system. Three-layered supervised
neural networks were used to find a discriminating scheme
between hERG K�-channel blockers and nonblockers. Such

systems are universal function estimators suited for quantitative
structure ± activity relationship (QSAR) modeling.[16] In our case,
their architecture contained an input layer (fan-out units), one
hidden layer (sigmoidal units), and a single sigmoidal output
unit.[17] These networks were trained by an evolutionary
algorithm implementing adaptive step-size control, as detailed
elsewhere.[16] The mean-square error served as the objective
function that had to be minimized during the network training.
In different training runs, the number of hidden layer units and
generations was systematically varied to find an appropriate
setting. The desired output value (target value) of the neural
network was 0 for compounds with a low IC50 value (Class 1) and
1 for compounds with a high IC50 value (Class 2). Ten-times cross-
validation was performed with random 80% (training) and 20%
(testing) splits of the data. For further validation, a validation set,
containing 95 compounds, was classified. The ™overlearning∫ (or
™overtraining∫) effect is often a main concern during neural
network training. To avoid this effect, the process was termi-
nated when the cc value reached an optimum for both the test
set and the validation set (forced stop). In addition, the least
complex network was selected as the final prediction model.

Of the networks tested, that with two hidden neurons seemed
to be best suited. This network reached a Matthews correlation
of cctraining�0.85 (reclassification of the training set; 93% correct)
and an average Matthews correlation of cctest�0.61 for the ten
random testing sets, which means that 89% of the nonblocking
compounds and 70% of the blocking agents were correctly
classified. Figure 2 shows the distribution of the raw prediction
scores for the test sets produced by this network. These results
indicate that the prediction tool is able to distinguish between
compounds with extreme properties (low and high IC50) but is
more suited to identify nonblocking compounds.

Figure 2. Distribution of the neural network output values (™hERG score∫) for the
test data (ten-times cross-validation result). The target values were 1 for high IC50

compounds (black bars), and 0 for low IC50 compounds (white bars). The y axis
gives the fractions of test compounds receiving a certain score value.

The validation set contained 72 compounds with high IC50

values and only 23 compounds with low IC50 values. 93% of the
nonblockers and 71% of the blockers were correctly predicted,
to yield a Matthews correlation of ccvalidation� 0.66. This result
demonstrates that the prediction model is flexible enough to
make acceptable predictions for a diverse set of molecules.

To assess the limits of the prediction scheme, we analyzed the
false positives and false negatives produced for both the training
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and the validating sets. Five drugs from the validation set were
misclassified as nonblockers (Scheme 1). Other known blockers
such as dofetilide, E-4031, cisapride, astemizole, and verapamil
were correctly categorized. For virtual screening purposes, it is
particularly desirable not to miss hERG channel blocking agents.
Therefore, the misclassification of known blockers reveal some
particular deficits of our prediction model. Very probably the
molecular descriptors used here do not appropriately represent
all essential features required for perfect prediction. This also
points to a general disadvantage in the neural network method,
namely the fact that an easy understanding of the decisive
molecular features can hardly be obtained. Nevertheless, the
prediction scheme is able to identify features shared by most of
the compounds of each class, as indicated by its good overall
performance. It identifies a trend towards hERG K�-channel
blocking activity rather than accurate predictions for each
molecule. As a consequence, it shows a moderate capacity to
distinguish small structural differences.

An explanation for misclassification can also be found in the
structure of the data set. Since the data set is project-related, the

diversity of the compounds is limited. Moreover, structural
motifs shared by many known hERG K�-channel blocking
compounds, such as ™aromatic ± linker ± aromatic∫ (where the
linker consists of 2 ± 10 bonds, usually including a basic nitro-
gen), are underrepresented in the data set. This is because
medicinal chemists usually try to avoid synthesis of such
molecules. Moreover, the different inhibitors might bind to
different receptor sites and affect the channel through different
mechanisms. Generally speaking, the data set contains less
information about the blockers than about the nonblockers. This
is reflected by the better performance on molecules that do not
inhibit the hERG K� channel.

Two virtual combinatorial libraries were analyzed by our
prediction method to demonstrate its applicability to compound
library shaping. Scaffold 1 represents a structural motif found in

many known hERG K�-channel blockers. Scaffold 2 was
designed to be devoid of any such known motif. Virtual
libraries were enumerated by attaching the identical set of
100 generic representative building blocks to each scaffold
exit vector (R1, R2), resulting in 10000 virtual products. From
the prediction results, the library based on scaffold 1
contains 58% potential hERG K�-channel inhibitors, whereas
the library of compounds based on 2 contains only 0.1%
potential blockers. This result was expected and clearly
shows that compound libraries, scaffolds, and building block
selections can be ranked on the basis of the prediction score.
It must be stressed that although a prediction may not be
perfect for an individual compound, general trends are
accurately recognized and therefore the prediction model
qualifies for virtual library shaping.

The new prediction scheme will join the already available
suite of in silico filters for drug-likeness, frequent hitters,
cytotoxicity, bioavailability, and others.[18] It can be used as a
general filter for hERG K�-channel liability to prioritize
compound collections from large databases and to design
new virtual libraries. The work presented in this paper should
be considered as a baseline study for assessing hERG affinity
in silico. Since new experimental results are constantly being
produced and added to the model, we are convinced that
the prediction tool can be improved further.

Experimental Section

The cell line stably expressing the hERG K� channel was obtained
from GENION (Hamburg). The complementary DNA coding for
the human ether-a¡-go-go related gene product (hERG; GenBank
access no. U04270) had been cloned into the pcDNA3 vector
(Invitrogen, Carlsbad, California). Plasmids had been introduced
into CHO cells by using DMRIE-C (Gibco, Carlsbad, California) as a
transfection agent. Cells were grown in minimal essential

Scheme 1. Structures of five misclassified drugs from the validation set. Notation:
name (IC50 (�M)/score).
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medium alpha (MEM; Gibco, Carlsbad, California) supplemented with
10% (v/v) heat-inactivated fetal calf serum, 1% (v/v) penicillin/
streptomycin/glutamine solution (Gibco, Carlsbad, California), and
1 mg/ml G418 (geneticine). For electrophysiology experiments the
cells were continuously superfused by extracellular saline containing
150 mM NaCl, 10 mM KCl, 1 mM MgCl2, 3 mM CaCl2, and 10 mM HEPES.
Compounds for testing were dissolved in dimethylsulfoxide at a
concentration of 10 mM and diluted in extracellular saline to the
desired concentration (mostly 1 and 10 �M). The glass micropipettes
for whole-cell patch-clamp recording were filled with intracellular
saline containing 110 mM KCl, 4.5 mM MgCl2, 10 mM 2-[4-(2-hydrox-
yethyl)-1-piperazinyl]ethanesulfonic acid (HEPES), 10 mM 1,2-bis(2-
Aminophenoxy)ethane-N,N,N�,N�-tetraacetic acid, 4 mM Na2ATP,
20 mM Na2-creatine-phosphate, and 0.2 gL�1 creatine-kinase.

The whole-cell configuration of the patch-clamp technique was used
for current recording.[19] Cells were clamped to a holding potential of
�80 mV, and the hERG K� channels were activated once every 10 s
by a voltage pulse pattern consisting of a 1 s depolarization to 20 mV
followed by a 20 ms hyperpolarization to �120 mV.[20] The amplitude
of the transient inward current at �120 mV was used for further
analysis (Figure 3A, B). Current responses were recorded for about
three minutes under control conditions. The test compound was
then applied to the investigated cell from a nearby capillary, usually
for another three minutes per concentration. Current amplitude
values were plotted versus time to depict the effect of the
compound (Figure 3C) and calculate the percentage of channel
inhibition (y). We tried to test at least two concentrations (c), usually
differing by a factor of ten, and bracketing the 50% inhibitory
concentration (IC50). The results obtained from at least three cells
were pooled and fitted by Equation (2) to estimate the mean values
of IC50, the 95% confidence limits, and the Hill coefficient H.

y � 100 %

1 � 10H�log IC50�log c� (2)

Since the logarithms of c and IC50 are used in the fitting equation, the
upper and lower confidence limits of IC50 are not equidistant from
the mean but must be expressed as a multiple or fraction of the
mean value. In 95% of cases, the confidence interval was narrower
than the range from half to twice the mean. The average value of H
was 0.90 (standard deviation 0.17). If the lowest (a) or highest (b)
tested concentration caused more or less than 50% inhibition,
respectively, we did not attempt a fit, but concluded that the IC50 was
below a or larger than b.
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Figure 3. Example of an experiment showing the effect of quinidine on the
membrane current in a Chinese hamster ovary (CHO) cell expressing the hERG
K� channel. A) Part of the voltage pulse pattern. B) Superimposed current
signals evoked by the voltage pulses before drug application (control) and in
the presence of 0.3 and 3 �M quinidine. C) Plot of the peak current amplitudes
versus time. The onset of drug application (0.3 and 3 �M) and its end (wash) are
indicated by the arrows.


