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Scaffold-Hopping Potential of
Ligand-Based Similarity Concepts

Steffen Renner and Gisbert Schneider*[a]

Manipulating living systems at the molecular level requires a
profound knowledge of the variability of small-molecule effec-
tors that provoke a particular cellular response. Medicinal
chemistry relies on libraries of molecular probes that can be ra-
tionally designed to contain a desired degree of chemotype di-
versity. Despite great advances in the field of virtual screening
and rational compound library design, “scaffold hopping” re-
mains a challenging goal.[1] The concept of scaffold hopping is
aimed at finding isofunctional but structurally dissimilar molec-
ular entities.[2–5] The ideal screening methods that perform suc-
cessful scaffold hops would not only find a maximum number
but also a maximally diverse set of active compounds from a
given chemical subspace. Only until recently has the focus in
the development and evaluation of virtual screening methods
often been purely on the retrieval of large numbers of “active”
molecules, irrespective of the number of retrieved chemotypes.
This has led to the impression that methods which employ a
low level of abstraction from the molecular structure, such as
substructure fingerprints, are among the most efficient ligand-
based virtual screening methods.[6, 7] In contrast to substruc-
ture-based molecular descriptors, pharmacophore models and
physicochemical metrics represent a comparably high level of
abstraction from chemical structure. Consequently, such meth-
ods have been employed for the design of screening libraries,
relying on their scaffold-hopping potential.[2, 3, 8–12] In this study
we compared the scaffold-hopping efficiency of topological,
three-dimensional and molecular-surface-based pharmaco-
phore pair descriptors with a popular substructure fingerprint
method.

Two molecules are considered to have different scaffolds if
they have different topologies.[4] This idea is based on the con-
cept that druglike molecules are built up from a scaffold and
side chains.[13] There are several reasons for seeking a set of di-
verse scaffolds. Different chemotypes offer a choice in terms of
chemical accessibility and prospects for lead optimization. Mul-
tiple lead structures (“backup” compounds) lower the chance
of attrition in drug development through undesirable ADMET
(absorption, distribution, metabolism, excretion, and toxicity)
properties.[5] Scaffold hopping can also be applied to move
from natural substrates to more druglike chemotypes.[4, 5, 14] Fur-

thermore, the creation of intellectual property is facilitated
when multiple novel bioactive agents are available.

Different virtual-screening concepts have been proposed for
scaffold hopping.[4] These include three-dimensional pharmaco-
phore models,[9, 15] pseudoreceptors,[16] protein-structure-based
de novo design,[1, 17] and ligand-based similarity searching.[18]

Typically, rapid similarity searching is based on the comparison
of descriptor vectors rather than on the explicit alignment of
molecules to a reference and can thus be efficiently applied to
screening large datasets.[18] Herein, we concentrated on such
methods.

Similarity searching is founded on the similarity principle,
which states that similar molecules exhibit similar biological ef-
fects.[19] A straightforward similarity-searching approach is to
compare the connection tables to assess the similarity be-
tween two molecules. Such methods include substructure fin-
gerprints like the MACCS keys,[20] which are based on exact
chemical substructures. Substructure matching approaches
were reported to be among the most successful for virtual
screening.[6, 7] The classification of intermolecular interactions
into general pharmacophore types provides a way to obtain a
more general description of the underlying chemotypes of
molecules.[3, 9] Three such descriptors were employed in the
work reported herein: the topological CATS descriptor,[2, 21] the
three-dimensional CATS3D descriptor,[11] and the molecular-sur-
face-based SURFCATS descriptor (Figure 1).

Molecular representations that are based on three-dimen-
sional conformations like molecular surface-based descriptors
are independent from the molecular connectivity and should
have a favorable scaffold-hopping potential.[22, 23] The three
CATS descriptors describe a molecule in the form of a histo-
gram that contains the normalized frequencies of all pairs of
potential pharmacophore points (PPP) in a molecule. In our
study, PPP pairs were further subdivided into PPP–PPP distan-
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Figure 1. The CATS family of descriptors: CATS, CATS3D, and SURFCATS. All
descriptors are based on a PPP (potential pharmacophore point)-type de-
scription of the underlying molecule. For each descriptor, pairs of PPPs are
transformed into a correlation vector. CATS is calculated from the topologi-
cal distances of atom-based PPP pairs. For CATS3D the spatial distances be-
tween atom-based PPPs are used instead. SURFACTS uses the spatial distan-
ces between PPPs on the contact surface of a molecule. Here the PPPs rep-
resent the atom types of the nearest atom to each surface point.
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ces and different pharmacophore types. For CATS, pairs of
PPPs with shortest topological distances of up to ten bonds
were counted, matching at least one of the pharmacophore
types: anion, cation, hydrogen-bond donor, hydrogen-bond ac-
ceptor, or hydrophobic.[21] For CATS3D and SURFCATS, pairs of
PPPs were considered to fall into one of 20 equal-distance bins
from 0–20 E. For the latter two methods, one of the pharma-
cophore types anion, cation, hydrogen-bond donor, hydrogen-
bond acceptor, polar (hydrogen-bond acceptor and hydrogen-
bond donor), or hydrophobic were assigned with the ph4_
aType function in the software suite MOE.[24] For SURFCATS,
surface points were calculated with the Gauss–Connolly func-
tion in MOE with a spacing of 2 E which were subsequently as-
signed to the pharmacophore type of the nearest atom. Finally,
each bin of the three descriptors was scaled by the added oc-
currence of the respective PPPs.[11] For comparison with a con-
ceptually different descriptor, the MACCS keys were used as
implemented in MOE.

To assess the degree of scaffold hopping, one must define
the term “scaffold”. Herein, we followed the concept of Xu and
Johnson employing the software suite Meqi,[25] which has re-
cently been devised for the analysis of chemical libraries.[26, 27]

Two different definitions of a scaffold were applied: cyclic
system (“Scaffold”, Sc) and reduced cyclic system (“Reduced
Scaffold”, ReSc) (Figure 2). In Meqi, each molecular topology is

specified by a particular molecular equivalence index (meqi)
which is used to distinguish between different scaffolds and
reduced scaffolds.

Ligands from ten different target classes from the COBRA
database[28] of annotated ligands (version 2.1, 4705 molecules)
were used as reference for retrospective virtual screening: an-
giotensin-converting enzyme (ACE, 44 compounds, 28 scaf-
folds, 17 reduced scaffolds), cyclooxygenase 2 (COX2, 94, 27,
14), corticotropin-releasing factor (CRF antagonists, 63, 33, 23),
dipeptidyl peptidase IV (DPP, 25, 13, 7), human immunodefi-
ciency virus protease (HIVP, 58, 46, 31), matrix metallopro-
teinase (MMP, 77, 47, 19), neurokinin receptors (NK, 118, 65,
49), peroxisome proliferator-activated receptor (PPAR, 35, 29,
17), b-amyloid-converting enzyme (BACE, 44, 13, 12), and
thrombin (THR, 188, 100, 36). According to the number of scaf-
folds and reduced scaffolds in relation to the number of mole-

cules, the datasets range from sets with a low scaffold diversity
(for example, COX2) to sets with a large relative scaffold diver-
sity (such as PPAR and HIVP). The complete COBRA database
contained 1628 different scaffolds and 637 distinct reduced
scaffolds. For retrospective screening, each molecule from
each target class was taken iteratively as the reference mole-
cule for a virtual screening experiment, in which all other mol-
ecules were ranked according to their similarity to the refer-
ence molecule.

For quantification of “similarity” three similarity indices were
employed: Manhattan distance [Eq. (1)] , Euclidean distance
[Eq. (2)] , and Tanimoto similarity [Eq. (3)]:

DA;B ¼
XN

i¼1

xiA � xiBj j ð1Þ

DA;B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

xiA � xiBð Þ2

s
ð2Þ

SA;B ¼

PN
i¼1

xiAxiB

PN
i¼1

xiAð Þ2 þ
PN
i¼1

xiBð Þ2 �
PN
i¼1

xiAxiB

ð3Þ

in which DA,B denotes the distance and SA,B denotes the similari-
ty between objects A and B. N is the total number of vector el-
ements and xi is the value of the vector element i.

Virtual screening experiments were evaluated by the enrich-
ment factor ef, which represents the ratio between the percen-
tages of active molecules (“hits”) in a top x% fraction of the
ranked database to the expected percentage of active mole-
cules. In summary, we employed ten different datasets, four
descriptors (CATS, CATS3D, SURFCATS, MACCS), and three mo-
lecular representations (atomic, scaffold, and reduced scaffold)
for the retrospective screening experiments.

The average relative performance of the four methods for
the first 5 % of the database over the ten activity classes is
summarized in Figure 3. The relative performance of one par-
ticular method within one activity class was defined as the ef
yielded with this method divided by the average ef of the four
methods (using the same similarity index). The influence of dif-
ferent similarity indices on the overall enrichment was low, and
for most parts was indistinguishable within the standard devia-
tions. For all molecular representations, the ranking of the
methods in terms of the enrichment factors for the top 5 % of
the hit lists was found to be MACCS>CATS>CATS3D�SURF-
CATS for consideration of the average values only. With regard
to the enrichment of scaffolds and reduced scaffolds, CATS,
CATS3D, and SURFCATS slightly improved in comparison with
the MACCS keys. An explanation for the high performance of
the MACCS keys in scaffold enrichment might be that the con-
nectivity between the substructures is not taken into account
by this descriptor. This can lead to an effective retrieval of mol-
ecules with slightly different scaffolds but similar side-chain
decoration.

Figure 2. Definition of the cyclic system “Scaffold” (Sc) and the reduced
cyclic system “Reduced Scaffold” (ReSc). Herein, we define the scaffold of a
molecule as the side-chain-depleted molecular graph without annotation of
atom types. A reduced scaffold is a more general representation which does
not discriminate between rings consisting of different numbers of heavy
atoms, but systems containing different numbers of rings are still not con-
sidered to be equal.
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Does this finding justify the conclusion that substructure fin-
gerprints are best suited for the purpose of scaffold hopping?
To find an answer to this question, a more detailed analysis
was performed with observation of the enrichment of the indi-
vidual ligand classes. We compared the Tanimoto ef values ob-
tained by the four methods for the ten different activity classes
(Supporting Information). None of the descriptors outper-
formed any other descriptors within the error. Judging from
the average values only, MACCS performed best for COX2, CRF,
and DPP for full molecules, scaffolds, and reduced scaffolds.
CATS performed best for ACE, HIVP, and THR. CATS3D was best
for NK in all molecular representations. SURFCATS was not
found to be best for any one class. However, each descriptor
of the CATS family was found to be better than the other de-
scriptor family members for some ligand classes. This under-
scores the dependence of descriptor performance on the
screening database. In other words, there is no globally best
descriptor. We stress that this interpretation has limited rele-
vance owing to large standard deviations, and therefore repre-
sents trends only. Further investigations with additional de-
scriptors, metrics, and larger high-quality drug databases will
be needed to scrutinize these findings.

Figure 4 shows the fraction of scaffolds and reduced scaf-
folds relative to the number of molecules found in the ten
ligand classes. For the classes preferred by MACCS, the average
fraction of scaffolds was 0.44 (�0.13), and the average fraction
of reduced scaffolds was 0.27 (�0.11). For CATS, the fractions
were 0.65 (�0.13) and 0.37 (�0.17), and for CATS3D, 0.55 and
0.42. One might speculate that MACCS performed best in
classes with low numbers of different topologies, that is, low
scaffold diversity, and that CATS and CATS3D performed best
in classes with a high degree of scaffold diversity. We conclude

that pharmacophore descriptors might be more suited for the
design of diverse compound libraries than for substructure fin-
gerprints. Still, one must be aware that these results are similar
within the error margin.

In an earlier publication, we reported that different descrip-
tors are often found to retrieve different molecules, despite
having equal enrichment factors.[21] In the present study, we
witness a similar situation: descriptors complement each other
in the retrieval of different scaffolds and reduced scaffolds
(Table 1).

Two of the virtual hit lists were further investigated: the re-
sults for the COX2 inhibitors celecoxib (Figure 5) and rofecoxib
(Supporting Information). For each scaffold class, the best-rank-
ing hits were surveyed. Although the two reference molecules
share a common reduced scaffold, different scaffold classes
were retrieved at different ranking positions. Again, the four

Figure 3. Average relative performance (APrel) for the first 5 % over ten
ligand classes from the COBRA database. Comparison of the performance of
MACCS, CATS, CATS3D, and SURFCATS for molecule scaffolds (Sc) and re-
duced scaffolds (ReSc). Three similarity metrics were applied: the Tanimoto
similarity (black bars), the Euclidean distance (light grey bars), and the Man-
hattan distance (dark grey bars).

Figure 4. Scaffold diversity of the ligand classes. The diversity is given by the
fraction (fract) of scaffolds (light gray) or reduced scaffolds (dark gray) rela-
tive to the number of molecules in a data set. With enrichment factors for
the first 5 %, MACCS performed best for the classes COX2, CRF, and DPP,
CATS performed best for the classes ACE, HIVP, and THR, and CATS3D per-
formed best for NK. For MMP, PPAR, and BACE, no method clearly dominat-
ed in performance.

Table 1. Overlap of the results for pairs of descriptors in the first 5 % of
the ranked hit list.[a]

Descriptor MACCS CATS CATS3D SURFCATS

Scaffold Representations
MACCS 13.8
CATS 8.6 15.4
CATS3D 8.2 9.3 13.2
SURFCATS 7.7 8.9 9.8 12.9

Reduced Scaffold Representations
MACCS 8.9
CATS 6.1 9.8
CATS3D 5.8 6.5 8.7
SURFCATS 5.3 6.1 6.5 8.1

[a] Average numbers over all ten classes of retrieved scaffold representa-
tions which were found by both methods. The numbers on the diagonal
(in bold) are the average numbers of scaffolds found with the respective
descriptor. The similarity index employed was the Tanimoto coefficient.
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similarity-searching methods differed in their ability to retrieve
diverse scaffolds which results in a complementation of the
methods. This outcome is remarkable, especially in light of the
relatedness of the query structures.

The two reduced scaffolds that were found exclusively with
the MACCS keys for rofecoxib (ReSc classes 6 and 7) reflect
that MACCS keys include no direct information of the size of
the retrieved molecules (Supporting Information). These mole-
cules might have been rejected by the other methods as a
result of their large size. Still large reduced scaffolds were also

found with CATS for celecoxib (ReSc class 2), which might have
resulted from the restriction of the descriptor to a maximal
path length of 10 bonds in the present study. Such a cutoff
might be inappropriate for a database with potentially long li-
gands and respective pharmacophores such as those annotat-
ed to HIVP, MMP, and PPAR—particularly in prospective
screens.

In conclusion, we found that both substructure fingerprints
(MACCS) and pharmacophore-pair descriptors (CATS) are suited
for retrospective scaffold retrieval. For more diverse ligand

Figure 5. Best hits for each reduced scaffold obtained with celecoxib. For each descriptor, the best-scored molecule in each reduced-scaffold class that was
retrieved in the first percent of the ranked database is shown.
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classes, the pharmacophore-based CATS descriptors slightly
outperformed substructure (MACCS) keys as an average trend.
The fact that structurally focused collections of pharmacologi-
cally active compounds are typically employed for retrospec-
tive screening studies might explain the often-found high per-
formance of substructure keys or related descriptors.[6, 7] Our re-
sults suggest that for the particular purpose of scaffold hop-
ping, a reasonable strategy might be to use more generalized
molecular representations like pharmacophore descriptors. The
use of several complementing methods can be recommended
for the purpose of scaffold hopping. We hope that our study
will stimulate further investigations on this important topic of
medicinal chemistry.
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