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1. Introduction

By the use of genomics, proteomics, and bioinformatics, the
possibility to identify and validate target proteins has recently
improved. When the target has been identified, the search
begins for a pharmacophore—a structural fragment that binds
to the target and exerts a given effect with an acceptable ther-
apeutic potency. After finding such a structure, the lead opti-
mization is initiated. Computational chemistry (CC) and high-
throughput screening (HTS) is used to synthesize new com-
pounds and optimize them with regard to increased potency.
The lead optimization is performed in cycles, and in the end
the leads with the highest potency might be rather structurally
diverse from the starting structure. The chemical library ob-
tained can comprise several thousands of new structures. The
synthesized library is experimentally examined for its developa-
bility through the use of rapid experimental techniques that
measure such factors as stability, solubility, permeability, and
toxicity. After these determinations, one to two candidate
drugs (CD) are selected from the library for further develop-
ment (Figure 1).

The increase in the number of new structures generated
each year has not resulted in the expected increase in the
number of marketed new drugs. This has been attributed,
among other factors, to poor pharmacokinetic (PK) properties
of the CDs.[1] Hence, reliable screening filters for factors such as
absorption, distribution, metabolism, elimination/excretion,
and toxicity (ADMET) are highly desirable.[2–4] Indeed, the effort
that has been invested in the development of experimental
absorption filters such as cell monolayers for permeability de-
terminations[5,6] and the turbidimetric method for solubility
measurements,[7] has lately resulted in a decrease in the attri-
tion rate related to PK properties (Figure 2).[8] However, to
allow an ADMET analysis of computationally designed druglike
molecules prior to their chemical synthesis, computer-based fil-
ters for predicting PK properties are needed.

Additionally, in today’s pharmaceutical research new chal-
lenges have been added for which additional considerations
must be taken with respect to toxicological effects, such as
avoiding interactions with hERG (human Ether-a-go-go-Related
Gene) as well as potential interactions with cytochrome P450,
related to avoidance of Phase 1 metabolism. A particular prob-

lem associated with predictions of toxicological effects is the
lack of one well-defined and measurable target (endpoint) for
which the same mechanism is involved in giving rise to the
observed effects. On the contrary, even fairly similar com-
pounds may exert their toxicity through different mechanisms.

From a development perspective, one of the first properties
to evaluate is gastrointestinal absorption, as the extent to
which a drug is absorbed through the intestine will determine
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This Review describes some of the approaches and techniques
used today to derive in silico models for the prediction of ADMET
properties. The article also discusses some of the fundamental re-
quirements for deriving statistically sound and predictive ADMET
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countered during these investigations. It is the intension of the
authors to make the reader aware of some of the challenges in-
volved in deriving useful in silico ADMET models for drug devel-
opment.

Figure 1. From target identification to candidate drug (CD): Target identifica-
tion and validation are followed by lead discovery and lead optimization.
The lead-optimization process is performed in cycles, and in the end of the
lead-optimization process the developability of the compounds is tradition-
ally investigated.
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if it is possible to administer the drug in the form of an oral
dosage. This formulation is the most convenient, as it allows
the patient to take the medication independently. Two of the
main factors that influence intestinal absorption are the solu-

bility of the compound in the gastrointestinal fluid and the
permeability of the compound through the intestinal wall. The
solubility will restrict absorption if the oral dose given is not
soluble in 250 mL within the pH interval relevant in the gastro-
intestinal tract (pH 1 in the stomach and up to pH 8 in the
colon).[9] Permeability will restrict absorption if the permeability
coefficient through the enterocytes is low, thus leading to the
transport of only a fraction of the compound in solution across
the epithelium during the transit time in the small intestine.
Both solubility and permeability are dependent on the physi-
cochemical properties of the molecule, but unfortunately in an
opposing manner (Figure 3). For instance, lipophilicity, which is
the major driving force for permeability, is one of the most re-
stricting properties for aqueous solubility.

1.1. Drug solubility

The aqueous solubility of the compound is dependent on both
the intramolecular forces in the solid state and the intermolec-
ular forces between the drug molecule and the surrounding in-
testinal fluid. The solubility will be poor if it is more energeti-
cally favorable for the molecules to bind to each other than to
the water molecules; as a result, the drug molecules favor
their solid form over dissolution into the aqueous fluid. How-
ever, poor solubility might also be a result of unfavorable
bonding between water and drug molecules. Depending on
which of these underlying properties is dominant, different
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Figure 2. The following reasons for attrition in drug development in 1991
and 2000 were observed: clinical safety (black), efficacy (red), formulation
(green), PK/bioavailability (blue), commercial (yellow), toxicology (gray), cost
of goods (purple), and unknown/others (white). Note that formulation and
cost of goods were only observed as reasons for attrition in 2000 and not
1991. Further, PK/bioavailability profiles of new drugs were largely improved
during this decade. Finally, commercial reasons for attrition were over three-
fold greater in 2000 than in 1991.

Figure 3. Molecular properties important for solubility and permeability:
a) The tablet needs to dissolve in the GI tract to be able to permeate the in-
testinal wall. One of the main properties restricting solubility is hydropho-
ACHTUNGTRENNUNGbicity, which is a driving force for transcellular permeability. b) The following
general properties can be extracted for permeability (from the left-hand
side): the transcellular route is used by nonpolar, medium-sized (Mw<500),
and uncharged compounds; the paracellular route is used by compounds
that are polar, small (Mw<180), and charged; energy-dependent active-
transport processes (transport efflux and influx proteins) are used by com-
pounds in the medium to large size range, both polar and nonpolar. Fur-
thermore, the compounds may be charged or uncharged.
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physicochemical properties will be important for the behavior
of the molecule in water. Multivariate data analysis of melting
point, a property that reflects the stability of the solid state,
has shown that molecules proven to form stable crystals in
general are small, rigid, and polar.[10] On the other hand, com-
pounds that are hydrophobic, flexible, and large demand a
larger cavity to be formed in the aqueous fluid in order to go
into solution, and may have restricted solubility as a result of
these properties. Models for prediction of solubility are further
discussed in section 4.2, but the above-mentioned contrasts in-
dicate that solubility is not a straightforward property to pre-
dict.

1.2. Intestinal permeability

A compound can permeate the intestinal wall by using the
paracellular route (between the cells) or the transcellular route
(through the cells) by passive diffusion. In general, small, hy-
drophilic and/or charged compounds, which cannot permeate
the lipophilic cell membrane, diffuse through the aqueous
pores. However, the pores cover less than 1% of the intestinal
surface,[11] and this, in concert with the solute restriction by the
tight junctions of the pores, largely limits the contribution of
the paracellular pathway. Compounds that show a reasonable
hydrophobicity (logDpH7.4=0–2) and intermediate size (up to
Mw=500) are assumed to permeate the intestinal wall by pas-
sive transcellular diffusion. Even though the transport by the
transcellular route seems to be a rather complex process that
demands partitioning between lipophilic and hydrophilic mi-
lieus several times, the vast majority of druglike compounds
use this pathway. Larger molecules with a large number of hy-
drogen bond donors and acceptors, sometimes in combination
with a high lipophilicity value, may use active processes and
transport proteins to get through the cells. However, the latter
properties also increase the risk that the compound might be
transported by efflux proteins, resulting in a secretion of the
compound back to the intestinal lumen. Such efflux results in
a lower drug concentration reaching the blood circulatory
system and the site of action.

To conclude, two of the main factors that influence intestinal
drug absorption are aqueous solubility and intestinal permea-
bility. These characteristics are dependent on opposed physico-
chemical properties, resulting in difficulties in finding easily in-
terpretable models for prediction of the drug-absorption pro-
cess. Many computational solubility and permeability models
have been developed so far, and a majority of these are either
dataset restricted (for example, only a small volume of the
druglike space has been included in the training of the model),
or mechanism based (for example, valid for a specific transport
route or transport protein). This indicates that first, the data-
sets used in the development of absorption models applicable
in the drug-discovery process need to cover a large volume of
the druglike space. Second, the development of pharmaceuti-
cal informatics tools is crucial for the extraction of correct in-
formation from combinations of all mechanism-based models
that are available.

1.3. Toxicity

Structure–activity relationships in toxicology are based on the
assumption that an adequate representation, that is, geometric
and electronic, of the investigated structures will permit the
derivation of a quantitative statistical model. This assumption
is not unique for toxicological modeling but is true for all
other areas of ADME modeling as well. However, in toxicology
the situation is somewhat further complicated by the fact that
toxicological effects may result from many different mecha-
nisms. This, in turn, means that it is possible to establish good
in silico models for congeneric series of molecules, but that
more general models may be difficult to derive. Already in
1969, Corwin Hansch, the founder of modern QSAR, proposed
that, in general, a biological and toxicological action for a con-
generic series of structures could be described by the model :

logðactivityÞ ¼ aðpÞ þ bðeÞ þ cðSÞ þ d ð1Þ

for which p, e, and S are related to hydrophobic, electronic,
and steric descriptions of the studied compounds, respectively.

Toxicological structure–activity investigations have been
conducted over the years in areas such as nonspecific toxicity,
aquatic toxicology, mutagenicity, and carcinogenicity as well as
developmental toxicity and skin sensitization. For a recent arti-
cle on the subject, see reference [12].

2. History and Development

Traditionally, the discovery setting has worked in serial with
the primary focus set on the identification of new structures
that show good pharmacological effects. After the screen for
pharmacological effects, other important properties such as
solubility, permeability, stability, metabolism, distribution, elimi-
nation, and toxicity are investigated one after each other. This
is an ineffective, time-consuming drug-discovery process that
does not necessarily result in the identification of the optimal
drug molecule, due to the investigation of one property at a
time. The pharmaceutical industry is currently working with ex-
perimental screens in a parallel setting, in which the above-
mentioned properties are experimentally examined at the
same time and thereafter evaluated. Hence, all properties
affect the final decision on which compounds to pursue, lead-
ing to improved selection of the CDs. Further, the discovery
setting is now moving into the virtual era, applying several vir-
tual tools to further cut time and costs during the discovery
process. By designing virtual compound libraries and testing
these by virtual docking to targets and in silico models for
ADMET properties, a prioritized library predicted to have a fa-
vorable pharmaceutical profile and acceptable pharmacologi-
cal potency is computationally selected and thereafter synthe-
sized. This scenario results in knowledge-based synthesis of
fewer compounds with better properties than can be generat-
ed by both the serial and parallel setting. After the synthesis of
the prioritized library, the potency and the developability of
the compounds must be experimentally confirmed (Figure 4).
Thus, methods for rapid and reliable experimental screening of
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these properties are warranted. Today, rapid methods have
been devised for the screening of several of the ADMET prop-
erties at the expense of reliability,[7, 13] resulting in a large
number of false-positive results in the screens. By incorporat-
ing reliable computational and experimental screens, better
leads will be produced, saving time and money during the dis-
covery process. However, if the virtual-based discovery setting
is to be successful, new computational tools need to be devel-
oped. The development of informatics tools applicable for
pharmaceutical profiling and with the capacity to handle large
databases with such diverse information as in silico, in vitro,
and in vivo data as well as qualitative and quantitative infor-
mation will be of utmost importance.

3. General Considerations

3.1. General terms

When trying to develop in silico models for the prediction of
ADMET properties there is, in most cases, a trade-off between
accuracy, speed, and, many times, transparency of the derived
models. This is not always a significant problem, as the various
models may be intended for different use, such as high-
throughput in silico screening or for guidance and focusing. In
reality this often means that rapidly computed descriptors,
often of one- and two-dimensional nature, are used in the
former type of model, whereas more computationally inten-
sive, three-dimensional-based variables are employed (some-
times in conjunction with one- and two-dimensional represen-
tations) for the latter model type.

Schultz and Cronin[14] have put forward some rather basic re-
quirements to derive statistically sound models:

1) A well-defined and measurable target;
2) A chemically and biologically diverse data set;
3) Physicochemical descriptors that are consistent with the

modeled target;
4) Use of an appropriate statistical technique;
5) Where possible, a strong mechanistic basis.

3.2. Datasets and models

One consideration to take into account in ADMET modeling is
the availability of relevant and accurate datasets. In general
there exists a relatively small number of them, especially
public datasets, with a desirable quality of data, diversity of
the investigated structures, and which are large enough to
permit sufficient validation of the derived model. In the
ADMET literature, especially within the areas of solubility, ab-
sorption, and permeability, it is common that models are de-
rived on rather few compounds (fewer than 50). These models
are usually rather local, and have a limited scope with respect
to their predictive ability. Local models, however, are quite
useful in many cases for advancing a particular project or set
of compounds, but in one particular respect, a vast majority of
the published models lack information with respect to the ap-
plicability domain in which they operate. Very few publications
of ADMET models explicitly point out or discusses how the ap-
plicability domain of the derived model in question is estab-
lished. Statistical models in general, including in silico ADMET
models, should always have some protocol (measure) to deter-
mine if the prediction of a property for a particular compound
is within, on the border of, or outside (perhaps also how far
outside) the applicability domain of the model based on the
chemical description employed. This aspect is further discussed
in section 3.3.6 together with an approach on how to proac-
tively use the information of outliers to further advance the
model. Absorption and permeability models and the datasets
on which they were based also have a particular problem with
respect to active transport. In the past, datasets were modeled
under the assumption that the absorption or permeation pro-
cess was devoid of active transport, although later analysis
showed that this was not entirely true. Compounds in datasets
investigated today will probably be found later to be involved
in active transport by transporters not yet identified. An exten-
uating circumstance is the fact that if a model with good sta-
tistics and good predictive ability is derived despite the fact
that some compounds of the training set (i.e. , the compounds
used to derive the model) are involved in active transport,
then two alternative explanations may emerge: 1) the amount
of active transport of a particular compound is rather small
(negligible), or 2) the derived model somehow encompasses
the information also related to active transport, although this
was not the intent from the start in most cases.

Figure 4. The traditional setting (left) applied in the candidate drug (CD) se-
lection was a serial experimental testing of pharmacology (P) followed by
the different ADMET properties, resulting in extended development times
and difficulties in finding the optimal compound. Today the pharmaceutical
industry applies a parallel setting (center) and moves toward the knowl-
edge-based setting. In the parallel setting, both pharmacology and ADMET
properties are experimentally evaluated simultaneously, and the complete
profile can be used when selecting the CD. In the knowledge-based setting
(right), a virtual library designed in the computer is primary evaluated
through different in silico models for pharmacology and ADMET properties.
A privileged library is synthesized based on the results from the virtual
screening, and the compounds are thereafter experimentally tested.
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3.3. Statistical tools

3.3.1. Linear multivariate methods

The statistical methods most often employed for developing
ADMET in silico structure–property relationships are linear mul-
tivariate methods such as multiple linear regression (MLR) or
partial least squares (PLS). Although aimed at the same end-
point, namely to derive a statistically sound and predictive
structure–property relationship, the underlying assumptions re-
garding the information contained in the independent varia-
bles (i.e. , the chemical description of the investigated struc-
tures) are different for the two methods. With respect to MLR,
the following should be considered:

1) MLR assumes each variable to be exact and relevant; that
is, the information content in each variable is to be used
100% for developing the statistical model.

2) Strong colinear variables must be eliminated by removing
all but one of the strongly correlated variables. Otherwise
spurious chance correlation may result.

3) The number of variables cannot exceed the number of ob-
servations (for example, the number of measured ADMET
property points) to be studied. A rule-of-thumb is that the
number of variables used should not exceed a fourth of
the number of observations.

Regarding PLS, the following applies:

1) The descriptors (variables) are not treated as exact and rele-
vant but as consisting of two parts: one related to the de-
pendent variable and the other not related (noise).

2) Strong correlations between relevant variables are not a
problem in PLS, and all such variables can be kept in the
analysis. In fact, the models derived using PLS become
more stable with the inclusion of strongly correlated and
relevant parameters.

3) The number of original descriptors may vastly exceed the
number of compounds in the analysis, as PLS uses internal-
ly only a few (usually fewer than 5–10) latent variables for
the actual statistical analysis.

4) Again, a rule-of-thumb is that the number of latent varia-
bles used should not exceed a fourth of the number of ob-
servations.

The PLS model becomes identical to the MLR when the
number of latent variables of a PLS-derived model becomes
equal to the number of actual independent variables, some-
thing that rarely happens as a consequence of model valida-
tion. The regression coefficients of the MLR model are straight-
forward to interpret, whereas the PLS latent variables need to
be retransformed back into original variable space in order to
be interpreted in a similar manner. This also means that the
PLS “regression” coefficients are dimensional dependent, that
is, they depend on how many latent variables (PLS compo-
nents) are used. However, as each PLS component explains a
decreasing amount of variance, it is usually not that important
if a PLS model is based on three or four components which

also means that the PLS “regression” coefficients will not differ
very much between the three- and four-component model.

3.3.2. Nonlinear multivariate methods

Although a majority of the published ADMET models are
based on linear multivariate methods as discussed in sec-
tion 3.3.1, other nonlinear methods have also been employed.
The most commonly used nonlinear method in ADMET model-
ing is neural networks (NN). Back-propagation NNs have been
used to model absorption, permeation, solubility, and toxico-
logical effects. A particular problem for many NNs is the ten-
dency for these networks to overtrain (see further discussions
on model validation in section 3.3.4). This needs to be closely
monitored to avoid the situation in which the derived model
becomes an “encyclopedia”, that is, the model can perfectly
explain the variance of the investigated property of the com-
pounds used to derive the model, yet can have poor predictive
ability with respect to new compounds.

3.3.3. Dataset pretreatment

It is very important to give the variables used in the model de-
velopment equal chance, regardless of their respective numeri-
cal scales, to influence the outcome of the analysis. This can
be achieved by scaling the variables in an appropriative way.
One popular method for scaling variables is auto-scaling,
whereby the variance of each variable is adjusted to 1. Some-
times it is also desirable to center each of the variables with re-
spect to their mean values.

3.3.4. Model validation

Stringent model validation is a cornerstone for the successful
development of any statistical model. Without proper valida-
tion, the predictive ability of the derived model cannot be esti-
mated. Likewise, the derived model may equally well be noth-
ing more than a random model. There are a few standard tech-
niques that should be employed to ensure proper validation:

1) Cross-validation is one technique for the internal validation
of a proposed model. When using cross-validation, the
training set is divided into groups, usually four to seven in
number, and one group is removed from the set. The
model is then derived using the rest of the training set. The
dependent property of the compounds of the group left
out is then predicted by the developed model. Each group
is successively left out and predicted in the same manner
as just described. The predicted residual error sum of
squares (PRESS) is computed from all the predictions. The
PRESS value is compared with the sums of squares for the
dependent variable y (SSY):

Sðyi, measured�ymeanÞ2 ð2Þ
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A squared correlation coefficient (Q2) is then defined as:

Q2 ¼ 1�PRESS=SSY ð3Þ

A significant difference between Q2 and the normal
squared correlation coefficient (R2) is that the former may
also assume negative values, indicating that the model has
worse predictive ability than using the mean value as pre-
dicted value for each compound. Q2 should be >0.5 for
the model to be considered to have reasonable practical
predictive performance.

2) An external validation set should be used as an independ-
ent test of the predictive ability of a derived model.

3) The value of the dependent variable is randomly redistrib-
uted among the compounds (randomization of the depen-
dent variable). A model is then derived based on the redis-
tributed values and checked for its predictive performance
using the methods outlined under points 1) and 2) above.
This procedure is repeated typically between 50–100 times.
There should be a clear separation in predictive ability be-
tween the model based on the “true” dependent values
versus the models based on redistributed values.

3.3.5. Training and test set selection

It is certainly possible to chose a training set at random and
also to derive a statistically sound and predictive model. Chan-
ces are, however, that the choice of training set compounds is
somewhat skewed. This, in turn, probably means that many of
the remaining compounds, the external test set, will fall out-
side of the applicability domain of the derived model and con-
stitute outliers to the present model. For a model to show
good predictive capability and to cover the investigated de-
scriptor space in a good manner, the training set must be
chosen with some care. There are several methods available
for the selection of well-distributed training sets. Two such
methods are exemplified here:

1) Experimental design methods of some appropriate com-
plexity are one such choice. The number of compounds to
be used for the training set depends on the chosen design
scheme and the number of investigated independent varia-
bles (descriptors), but may typically range between 8 and
64.

2) Maximin methods, in which the aim is to maximize the
closest (minimum) distance between two potential training
set compounds in the investigated descriptor space is an-
other. By maximizing the closest distance, all other distan-
ces between training set compounds are greater thus en-
suring a rather uniform distribution of compounds compris-
ing the final training set.

3.3.6. Applicability domain estimation

It is essential that the applicability domain of a derived model
can be evaluated so that outliers to the model may be indicat-
ed. If an established statistical model is to be regarded as poor
from a predictive point of view, this should be done based on
correct reasons, namely, that the model has truly poor predic-
tive ability and not from the fact that the model cannot esti-
mate outliers to the model with acceptable accuracy. The latter
case is probably the most common cause for statistical
(ADMET) models to “fall from fame”, especially those that can
be accessed through internal or external web services. In many
cases it is difficult if not impossible to find out about the com-
pounds used as training set and/or the chemical description
used in the model. Thus, many compounds outside the applic-
ability domain of the model will be submitted. It is therefore
of great importance to have an indication together with the
prediction whether or not the compound is considered to fall
inside or outside of this domain, that is, if the compound is an
outlier or not. The outlier information, and possibly how far
from the model the compound in question is, may in many
cases be used in a more proactive way than just realizing that
a number of compounds submitted to the model for predic-
tion are, in fact, outliers to the present model. Thus, by analyz-
ing the outliers, perhaps virtual compounds, from various
points of view, for example, structural or synthetic, some of
these compounds may later be synthesized and tested experi-
mentally. The same compounds may then be incorporated into
a revised model that will have a broader applicability domain.
There are different methods to determine whether a particular
compound is to be labeled as an outlier or not. In this section
we describe two of these methods:

1) The first of these methods is the Mahalanobis distance. This
distance in descriptor space measures how similar the in-
vestigated compound is to the training set compounds.
The Mahalanobis distance is superior to the corresponding
and more familiar Euclidian distance, as the former takes
correlations between the variables into account; the Maha-
lanobis distance does not assume orthogonal descriptors
as does the Euclidian distance.

2) The second method is related to the remaining amount of
information present in the variables used to describe the
compound that has not been used by the model. This
method is more closely related to the PLS method (see sec-
tion 3.3.1). Thus, if a particular compound contains much
more unexplained variance (information) in the chemical
descriptor variables than is the case for the training set
compounds, it is likely that the compound in question has
other properties not taken into account by the present
model that will impact the true value for the investigated
ADMET property. Therefore, the predicted value will most
likely deviate substantially from the corresponding experi-
mental value.
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3.3.7. Calculation of descriptors

A large number of different descriptors have been used to
model ADMET properties. 1D-, 2D-, and 3D-based computed
chemical properties have been found useful for deriving statis-
tically sound and predictive ADMET models. The choice of
which type of descriptors, or combinations thereof, to use very
much depends on the aim for the derived model. Is the model
to be used for screening large sets of (virtual) compounds or
for smaller sets of structures? How important is interpretability
versus predictive accuracy and robustness of the prediction?
How much computational time is allowed to be spent on each
individual prediction? In fortunate cases, many of these consid-
erations coincide; the model is robust, shows good predictive
capability, and is based on rapidly computed descriptors that
are easy to interpret from a mechanistic of physicochemical
point of view. However, in most cases, there is a tradeoff be-
tween objectives. Depending on the priorities for the develop-
ment of the particular model at hand, different sets of descrip-
tors have to be employed. With these aspects in mind, it is
usually quite useful to develop more than one model for the
same ADMET property based on different sets of descriptors.
This way, interpretability (incorporated into a model with ac-
ceptable although perhaps not the best predictive ability), ro-
bustness, speed, and accuracy can be achieved. For instance,
the first kind of model can be used for understanding the im-
portant physicochemical properties that influence the particu-
lar ADMET property in question: how these physicochemical
properties should be modified to achieve a suitable level for
the investigated ADMET property. This, in turn, gives an indica-
tion of how new and improved compounds could be de-
signed, and enables one to focus on promising regions of the
chemical space of the model. Thus, instead of simulating a
very large number of virtual compounds for prediction by the
model, a much smaller number can be submitted. Subsequent-
ly, this smaller number of structures can then be submitted to
a more robust and accurate yet more complex model for the
final estimation of the ADMET property. In many cases, consen-
sus or ensemble models, although more complex in nature,
are useful for deriving in silico ADMET models with high levels
of predictive accuracy and high degrees of robustness. These
models may often be looked upon as “gray” and not “black”
boxes, as each model can be interpreted, but the multitude of
them makes the overall picture difficult to comprehend.

1D and 2D descriptors are generally much faster to compute
than the corresponding 3D-based descriptors. Moreover, the
possible problems associated with generating a reasonable 3D
conformation for the investigated structure are eliminated.

1) 1D descriptors such as molecular weight, molar refractivity,
and the number of atoms and bonds have been used to
model permeability, absorption, solubility, and toxicological
effects. These kinds of descriptors are usually rather easy to
interpret.

2) There is a large number of 2D descriptors. Many of them
are topological in nature, that is, they are computed from
the connectivity of the investigated compound or, more

specifically, from the mathematical graph that the structure
represents. They often contain important information with
respect to ADMET modeling. Some of the more well-known
and frequently used topological variables are the Kier and
Hall descriptors. However, these topological descriptors are
often somewhat difficult to interpret with respect to the
question: “How should the present structure be modified
to improve the ADMET property presently investigated?” A
particular subset of topological descriptors, the so-called
electrotopological descriptors, is an exception with respect
to interpretability. These kinds of descriptors are relatively
easy to interpret in terms of hydrogen bonding, and quite
a few published investigations report the electrotopological
(or e-state) descriptors as useful for deriving good ADMET
models.

3) In many cases descriptors derived based on 3D descriptors
are superior to lower-dimensional descriptors because they
capture important information such as internal hydrogen
bonds and other potentially important, yet buried, func-
tional groups, which are revealed only by using the actual
3D representation of the investigated compound. The 3D
descriptors may also be easier to interpret than some of
the previously mentioned variables. However, choosing the
correct 3D conformation may, in some cases, cause prob-
lems depending on how rapidly the descriptors must be
generated. Software is available for converting 2D struc-
tures into 3D structures (for example, Corina and Concord).
Although successful in a vast majority of cases, both these
programs sometimes fail during the conversion process, or
the 3D conformation given is not reasonable for the partic-
ular modeling exercise. Certainly, some sort of conforma-
tional analysis would be desirable in many cases. For the
3D descriptors there is a large difference in complexity and
computational speed, ranging from rapid calculations of
various surfaces and volumes of a structure to high-level
(e.g. ab initio) quantum-mechanics-based descriptors such
as orbital energies, charges, polarizabilities, and multi-pole
moments (Table ).

In some cases, it is possible to go from more computational-
ly demanding descriptors to more rapidly computed descrip-
tors while preserving the information content from one de-
scriptor matrix to the other.

4. Applications and Practical Examples

4.1. Physiological factors and experimental parameters influ-
encing the accuracy of predictions of intestinal drug absorp-
tion

4.1.1. Solubility

The intestinal solubility of a compound is dependent on physi-
cochemical properties of the molecule (discussed in sec-
tions 1.1 and 4.2), the location in the gastrointestinal (GI) tract,
the general physiology, and the dosage form. By analyzing the
descriptors in the Noyes–Whitney equation[15] the physiological
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and pharmaceutical influence on dissolution becomes appar-
ent:

dm=dt ¼ DAðCsÞ=h ð4Þ

in which Cs is the maximum amount of drug that can be dis-
solved in the fluid (the solubility value), A is the surface area of
the undissolved compact, D is the diffusion coefficient in the
intestinal fluid, and h is the height of the diffusion layer adja-
cent to the undissolved tablet. The diffusion coefficient of a
molecule is dependent on the viscosity of the fluid; the higher
the viscosity, the lower the diffusion coefficient, and thereby a
smaller amount of compound will be dissolved per unit time.
Furthermore, the larger the surface area of the undissolved
compact and the higher the solubility of the compound, the
more of the compound will be dissolved per unit time.

The pH conditions the GI tract vary from pH 1 in the stom-
ach up to pH 8 in the colon. Thus, the solubility of protolytes,
compounds with one or several ionizable groups, will be de-
pendent on the location in the GI tract.[16] Compounds with an
acidic functional group will show increased solubility at pH
values above the pKa, whereas the solubility of bases will im-
prove at pH values below the pKa value. For ampholytes the
lowest solubility will be found at the isoelectric point, which is
obtained at a pH value between the acidic and basic pKa

values. Another physiological factor that will influence the sol-
ubility is the ionic strength of the intestinal fluid. This will be
dependent on food and fluid intake, and on absorption and
secretion of fluid within the intestine.[17] In general, the solubili-
ty decreases with increased ionic strength as a result of the
salting-out effect and/or the common-ion effect displayed by
the counterions in the solution.[18,19] However, the presence of
electrolytes can, in specific cases, improve the solubility.[20] This
phenomenon is known as the salting-in effect and occurs
when additives such as electrolytes loosen up the tight water
structure, thereby driving the formation of solvent cavities for
the drug molecule. Further, food induces the secretion of bile
salts (surfactants secreted by the bile bladder), which may im-

prove the solubility of poorly soluble compounds by acting as
a wetting agent or by solubilization within the lipophilic core
of bile salt micelles formed at higher bile salt concentra-
tions.[21]

The in silico models derived for solubility are based on in-
trinsic solubility as their experimental input data. The intrinsic
solubility is the solubility value determined for the neutral (i.e.
uncharged) species of the compound and is generally deter-
mined at two pH units above the pKa value of bases, and two
pH units below the pKa value for acids. Ampholytes are deter-
mined at their isoelectric point. Therefore, solubility values
used for model development seldom reflect the apparent solu-
bility observed in the intestinal fluids. Hence, the predicted
values obtained from the models need to be transferred to an
in vivo situation, for instance by use of the Henderson–Hassel-
balch equation, which takes into account the pH dependence
of solubility.[16]

4.1.2. Permeability

The rate and extent of intestinal permeation is dependent on
physicochemical properties of the compound (see sections 1.2
and 4.3) and physiological factors. Drugs are mainly absorbed
in the small intestine because it has a larger surface area and
looser epithelium than the colon.[17] The permeation of the in-
testine may be affected by the presence of an aqueous boun-
dary layer and mucus adjacent to the cells, but for a majority
of substances the epithelial barrier is the most important barri-
er to drug absorption. The lipoidal cell membrane restricts the
permeability of hydrophilic and charged compounds, whereas
large molecules are restricted by the ordered structure of the
lipid bilayer.

In the gastrointestinal tract, pH-dependent permeability is
observed (see also section 4.1.1) ; the higher degree of ioniza-
tion of the compound, the poorer the permeability. Other
physiological factors that influence the permeability of com-
pounds include the motility of the gastrointestinal tract, the
expression of transport proteins, and the thickness of the

Table 1. Examples of commercial software available for prediction of ADMET-related properties.[a]

Software Company Dis[b] Sol[c] Per[d] Tps[e] OB[f] HIA[g] BBB[h] Mtb[i] OtherPK[j] Tox[k]

AbSolv S S
ACD Solubility DB ACD Labs S
ADME batches PharmaAlgortihms S S S
ADME boxes PharmaAlgorithms S S S S
Cerius2 AccelRys S S S S S S
Cloe PK Cyprotex S S S
GastroPlus Simulations Plus S S S S S S S
iDEA PKexpress Lion Biosciences S S S S
KnowItAll ADME/Tox Bio-Rad Laboratories S S S S S S
OraSpotter ZyxBio S S S
PK-sim Bayer Technology Services S S S S S S
QikProp Schrçdinger S S S
QMPRPlus Simulations Plus S S S S S S
SLIPPER TimeTec S S

[a] S : Indicates property predicted in the reported software. [b] Dissolution. [c] Solubility. [d] Intestinal permeability. [e] Transporters. [f] Oral bioavailability.
[g] Human intestinal absorption. [h] Blood–brain barrier permeability. [i] Metabolism. [j] Other pharmacokinetic properties. [k] Toxicity.
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mucus layer adherent to the enterocytes. These factors influ-
ence the permeability as follows: the better the motility of the
intestine, the smaller the unstirred water layer (UWL) adjacent
to the cells. In general, peristalsis is so good in vivo that the
UWL does not become the rate-limiting step in the absorption
process. Furthermore, the extent to which the transport pro-
teins is expressed will largely influence absorption. The fraction
absorbed (FA) will either increase or decrease with high expres-
sion levels of the transporter depending on whether the trans-
port protein is an influx protein, which transports compounds
through the enterocytes into the bloodstream, or if it is an
efflux protein, which transports compounds out from the cell
back to the intestinal lumen. Finally, a thick mucus layer adja-
cent to the cells may slow the diffusion of the compound and
become the rate-limiting step of the absorption process. Taken
together, these physiological factors may result in large inter-
individual variability in the permeability value, giving large
standard deviations in the FA in vivo.

The in silico models derived for permeability are based on
experimentally determined permeability values using different
cell culture models. The most commonly used is the Caco-2
cell line, which is a human colon carcinoma cell line.[22, 23] This
cell line is inexpensive and easy to culture; these factors, in
concert with its human origin, make it a popular cell model.
However, the colonic epithelium is somewhat tighter than the
small-intestinal epithelium, resulting in permeability values 1–2
orders of magnitude less than that observed in small-intestinal
tissue. Despite this fact, the permeability ranking of the com-
pounds is in good agreement with that obtained in the small
intestine, and therefore the model is a valid tool for estimates
of FA over the small-intestinal wall. Other cell lines used for de-
terminations of permeability values are, for example, MDCK
cells, which originate from canine kidney tissue[24] and 2/4/A1
cells, which originate from the rat small intestine.[25] The draw-
back with these cell lines is that they are not obtained from
human tissues, and the MDCK cell line is further restricted by
its kidney origin, resulting, for example, in an expression pat-
tern of transporters that is different from that of the human
small intestine. In vivo perfusion studies in humans can be
used to determine intestinal drug permeability.[26] All the differ-
ent experimental settings and protocols applied for permeabili-
ty measurements will largely influence the permeability data
obtained. It is therefore important that the experimental
values used in the development of computational models are
determined in a consistent manner, within the same laboratory
using one experimental setting and one experimental protocol.
Only then is the in silico model based on high-quality data,
and the noise level minimized.

4.1.3. Fraction absorbed

Several computational absorption models based on human
fraction absorbed (FA) data have been published.[27–30] These
models should be interpreted with caution, owing to the fact
that the datasets are compiled from a large number of litera-
ture sources of varying quality. The following facts must be
taken into consideration:

1) Different experimental methods are used to determine the
FA, resulting in a large variability in the numbers reported.

2) The influence of active transporters and the concentration
dependence in vivo are not always clear.

3) It is not clear whether the FA is solubility-limited and/or
permeability-limited, resulting in difficulties in obtaining a
mechanistically transparent model.

4) The datasets obtained are often heavily biased toward
compounds with high FA due to the fact that a majority of
the compounds for which FA is known are commercially
available compounds. Hence, these compounds are the re-
sults of years of discovery and development and they are
expected to show a good absorption profile. However, this
fact will influence the in silico models obtained. These will
be rather good at sorting compounds as high FA, but poor
in determining other classes such as intermediate or poor
FA due to the lack of such compounds in the training sets.

It is not unusual that published FA data for the same com-
pound vary largely. For example, FA can be reported as either
10% or 60%, generally classified as poor and intermediate FA,
respectively. If such data are used for training the in silico
model, the model will, to a large extent, be based on noise.
This leads to poor external predictions and non-interpretable
results. In our view, it is more relevant to estimate the FA
based on in silico solubility and permeability screens.

4.2. In silico solubility models

Modeling solubility represents perhaps a bigger challenge
than modeling absorption and permeability. Why is this so?
Some of the particular issues involved in trying to derive good
statistical models for solubility are related to the quality and
precision of the dependent variable, that is, the solubility
values, the complexity (or lack thereof) and diversity of the
compounds of the investigated datasets, the possible influence
of the solid state for each of the studied compounds, and
whether or not modeling solubility is fundamentally a linear or
nonlinear problem. With respect to the first issue, namely the
quality (precision) of published solubility values, it must be rec-
ognized that these values stem from a variety of experimental
procedures that make comparisons between sets of measure-
ments rather difficult. It is not uncommon to find published
values for a particular compound that differ by as much as a
factor of 10! This, in turn, certainly makes modeling solubility a
difficult problem. Many of the publications on modeling solu-
bility contain a large number of compounds, but in many
cases a majority of these structures are rather simple, non-
druglike molecules in which the structural complexity with re-
spect to functional groups and ring systems is somewhat limit-
ed. Such datasets are easier to model and for which to derive
good quantitative structure–solubility relationships. Also, it has
been recognized for many years that the solid state of each of
the investigated compounds may very well play an important
role in the success or failure of the modeling attempt. The diffi-
culty here lies in the fact that it is rather difficult to obtain a
theoretical estimate of the solid phase within reasonable com-
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putation time and with satisfactory precision. Nevertheless,
many attempts have been made, and many articles have been
published over the years on how to model solubility. In this
section, some of these recently published works will be de-
scribed and commented upon to illustrate the present status
of field:

1) A well-known paper is that by Huuskonen.[31] In this investi-
gation, a back-propagation artificial neural network (ANN)
was used as statistical engine and e-state descriptors to pa-
rameterize the chemical structures. The investigation was
based on 1297 compounds, also known as the “Huuskonen
dataset”, and used a large training set, a randomly chosen
test set, and a second (external) test set consisting of 21
compounds. A model with good statistical quality was de-
veloped (see Table 2). Notable in this investigation is the
use of the dataset-specific “test” set where, in this case, ac-
cording to the author: “The network architecture and the
training end point giving the highest coefficient of determi-
nation, r2pred, and the lowest standard error s for the predic-
tions of the test set were then used”. This means that the
randomly chosen test set is, in fact, a validation set for the
training of the neural network and the only “true” external
test set is the 21-compound set. A somewhat larger exter-
nal test set is desirable to evaluate the predictive ability of
the derived model in question more extensively. The statis-
tical results are presented in Table 2.

2) Several other investigations of solubility using the Huusko-
nen dataset and other datasets using ANNs and various
other neural network methods such as Bayesian NNs and
Kohonen’s self-organizing NNs have been published the
last few years (see Table 2 for results and references).

3) Jorgensen and Duffy published a recent review of predic-
tions of solubility focused on drugs.[32]

4) Consensus modeling using ANNs have been published by
Manallack and co-workers.[33] They used BCUT variables
with diagonal elements consisting of charges, hydrogen
bonding acceptor and donor ability, and polarizability.

Many, not to say an overwhelming majority, of the investiga-
tions published on the prediction of aqueous solubility of
drugs (and other compounds) have identified the most impor-
tant (influential) factors to be related to hydrogen bonding,
polarizability or polarity as well as hydrophobicity expressed
through terms such as e-state indices, hydrogen bonding
terms, and the logP variable.

Lately, consensus modeling has come into play as a useful
tool to obtain robust models with good predictive ability. By
using this approach the weakness of one particular model is
compensated by the other models, thus obtaining a much
more robust behavior for the ensemble of models.

However, there is a problem with the presently derived
models apart from the accuracy of experimental data as dis-
cussed earlier. Although at first sight these models appear to

be quite respectable statistical
models with rather good pre-
dictive ability, they are not opti-
mal for predicting the solubility
of drugs. Why is this?

An investigation by Norinder,
LidVn and Bostrçm[34] will be
used to illustrate the situation,
but again, this is a general defi-
ciency among the published
models for predicting aqueous
solubility. The statistics for the
model is appreciable (see
Table 2, Norinder; PLS, and also
a plot of experimental versus
calculated solubility in Figure 5).

However, closer inspection of
the solubility range relevant for
most drugs, �6 to �3, reveals a
rather different picture
(Figure 6). For the accurate pre-
diction of such entities the de-
rived model is not very useful.
This is, however, the situation
that investigators are faced with
when trying to derive models
for accurately predicting drug
solubility that can be of valua-
ble practical use for medicinal
chemists, biologists, pharmacol-

Table 2. Summary of different methods and models for the Huuskonen aqueous solubility dataset.

Training Set Test Set Test Set 2
Model Type n[a] R2[b] s[c] n R2 s n R2 s Ref.

Gasteiger MLR 797 0.79 0.93 496 0.82 0.79 21 0.56 1.20 [64]
ANN40-8-1 797 0.93 0.50 496 0.92 0.59 21 0.85 0.77

Liu ANN7-2-1 1033 0.86 0.70 258 0.86 0.71 21 0.79 0.93 [65]

Tetko MLR 879 0.86 0.75 412 0.85 0.81 21 0.77 0.99 [66]
ANN33-4-1 879 0.94 0.47 412 0.91 0.60 21 0.90 0.64

Huuskonen MLR 884 0.89 0.67 413 0.88 0.71 21 0.83 0.88 [31]
ANN30-12-1 884 0.94 0.47 413 0.88 0.60 21 0.91 0.63

Wegner ANN9-15-1 1016 0.94 0.52 253 0.93 0.54 21 0.82 0.79 [67]

Norinder PLS 800 0.87 0.69 497 0.93 0.58 21 0.80 0.82 unpublished
work

Norinder RDS/ensemble 800 0.97 0.35 497 0.95 0.51 21 0.87 0.67 unpublished
work

Model Type n Accuracy [%][d] n Accuracy [%] n Accuracy [%]

Norinder RDS/
classification

800 82.10 497 80.30 21 0.83 unpublished
work

Norinder RDS/
classification/
ensemble

800 98.00 497 86.90 21 0.91 unpublished
work

[a] Number of compounds. [b] Squared correlation coefficient. [c] Standard error. [d] Percentage of compounds
correctly classified into the three classes: good, medium, and poor.

930 www.chemmedchem.org � 2006 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim ChemMedChem 2006, 1, 920 – 937

MED U. Norinder and C. A. S. Bergstrçm

www.chemmedchem.org


ogists, and others in trying to advance research projects to
arrive at compounds with reasonable solubility. Using consen-
sus or ensemble modeling instead of a single model usually
improves the situation somewhat, as exemplified by a rule-
based ensemble model using 2D parameters on the Huusko-
nen dataset (Table 2, Norinder; RDS/classification/ensemble).[34]

Sometimes, depending on the targeted use of the model as
well as the precision of the experimental data, it is more useful
to bin the range of solubility into two or three bins (catego-
ries). This approach is exemplified on the same dataset in
which three categories (logS : good, >�2; medium, �2 to �4;
poor, <�4) were used. The results of a single-model approach
as well as an ensemble modeling (50 models) are reported in
Table 2.

4.3. In silico models of permeability and FA

4.3.1. Descriptors used for permeability predictions

Response parameters in the study of permeability-related ab-
sorption can include permeability through a cell monolayer
such as that of Caco-2, MDCK, and 2/4/A1 cells, the permeabili-
ty coefficients obtained from Ussing experiments, the effective
permeability in the intestine, and the FA of the dose. Permea-
bility models predicting intestinal absorption are generally
models of transcellular passive diffusion, and descriptors of hy-
drophobicity, hydrophilicity, and size have proven important
(see Table 3). Hydrophobic descriptors can be regarded as
measures of distribution capacity into the membrane, hydro-
philic descriptors as desolvation restriction when the com-
pound partitions from the intestinal aqueous fluid into the hy-
drophobic membrane, and size reflects the steric hindrance to
diffusion through the membrane.[35] The logPoct descriptor has
been used historically to predict membrane permeability, and
hence it is incorporated into a large number of the models de-
veloped. For noncomplex datasets, properties such as logPoct,
polar surface area (PSA), and hydrogen bond counts have each
been used as a single predictor of permeability.[36–39] However,
lipophilicity can be regarded as a composed property that is
largely dependent on the size and hydrophilicity of the com-
pound. Thus, the use of these two components might be re-
garded sounder than logPoct. Indeed, the use of molecular
weight and the number of hydrogen bonds have been shown
to predict permeability of a smaller dataset better than the use
of logPoct.

[40]

The introduction of more complex datasets used for model
development has pointed at the need for several descriptors
and multivariate data analysis (Table 3). For instance, combina-
tions of PSA and NPSA (nonpolar surface area) were able to
predict the permeability of a series of peptides when PSA
alone failed.[41] Moreover, the introduction of larger structures
and structures with greater flexibility showed that the parti-
tioned total surface areas (PTSAs, the surface area of the mole-
cule occupied by a specific atom) and/or descriptors related to
the flexibility of the molecule are also needed in the permea-
bility predictions.[42,43]

Electrotopological indices have been used to predict perme-
ability computationally (Table 3). The electrotopological de-
scriptors are not always easily understood, even though they
can be attributed to describe hydrophobicity, hydrophilicity,
and size. Other typical 2D-generated descriptors are related to
dispersion forces, polarizability, solute molar volume, and hy-
drogen bonding acidity and basicity.[44–47] Descriptors such as
logPoct/logDoct, polarizability, polarity, Lewis base and acid
strength, and the number and strength of hydrogen bond
donors/acceptors obtained from quantum mechanics have
also been correlated to permeability.[42,48, 49] These descriptors
did show high accuracy in the prediction, even though less
complex and more rapidly calculated descriptors were almost
as accurate. Thus, as quantum mechanics descriptors do not
outperforming the fragment-based descriptors with respect to
accuracy, they will not be usable in the drug-discovery setting
until such calculations become faster.

Figure 5. Model of the Huuskonen aqueous solubility dataset using PLS (ref-
erence [34]). Training set: ~, test set: *. The plot shows the “deceptively”
good performance of the developed model with respect to use for predict-
ing aqueous solubility for new potential drug compounds (see also
Figure 6).

Figure 6. Close-up of the area of aqueous solubility that is of interest from a
drug-development perspective (reference [34]). Training set: ~, test set: *.
The graph shows the “true” or limited performance of the developed solubil-
ity model with respect to predictive capability for new compounds.
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4.3.2. Factors that influence the accuracy of computational
permeability models

Most published models are based on experimentally deter-
mined permeability data in Caco-2 cell monolayers. However,
models based on FA (human intestinal absorption) have also
been developed. The descriptors used in these models are of
the same type as found in the cell-based models. However, the
response parameters used generally show large variability de-
pending on the methodology used to determine the FA in
humans and the inter-individual variability (see section 4.1.3),
and hence the accuracy of the model obtained is heavily influ-
enced. Even for datasets in which the compounds were care-
fully selected to use only passive diffusion to permeate the in-
testinal cell membrane,[50] it later became evident that some of
the compounds included also have an active component as
part of their transport mechanism. The quality of the response
parameters can also vary for the datasets used in permeability
models based on cell lines. Permeability values obtained for
the same compound using the same cell line in different labo-
ratories will differ in their absolute numbers due to effects of

cell culture protocols and experimental procedures during the
measurements. Hence, the dataset used for training and evalu-
ation should be determined within the same laboratory using
the same experimental protocol. However, classification
models might be based on compiled data, as measurements in
the different laboratories, in general, will result in the same
ranking of compounds; the compounds will be correctly
sorted as poor-, intermediate-, or high-permeability com-
pounds even though the absolute numbers between the labo-
ratories may differ greatly.

Other important factors that influence the accuracy and ap-
plicability of the model are the chemical diversity of the train-
ing set used in the model development, the statistical tools
used in the development, and the transport mechanisms in-
cluded in the response parameter. These will influence the
models as follows: to be generally applicable and highly accu-
rate in the prediction of drug permeability, the training set
used should cover a large volume of the druglike space. If a
model applicable for a specific therapeutic class is warranted,
the training set should be focused on this region of the drug-
like space. In any of these scenarios, the most important fact

Table 3. Quantitative in silico models based on Caco-2 permeability values or human fraction absorbed (FA) data.[a]

Response Descriptor Type Statistical
Method

R2[b] ntr
[c] nte

[d] Ref.

Caco-2 Papp
[e] number of H bonds LR[j] 0.94 10 0 [36]

Caco-2 Papp PWASA[h] LR 0.98 11 0 [38]
Caco-2 Papp PSA[i] SR[k] 0.96 9 0 [68]
Caco-2 Papp molecular surface areas MLR[l] 0.96 19 0 [41]
Caco-2 Papp solute and solvation related MLR 0.86 30 8 [69]
Caco-2 Papp PSA, lipophilicity, size, and ACHTUNGTRENNUNGflexibility MLR 0.71 77 23 [70]
Caco-2 Papp H bond capacity, lipophilicity, and size MLR 0.71 33 12 [71]
Caco-2 Papp H bond strength and ACHTUNGTRENNUNGelectrostatics PLS[m] 0.85 9 8 [48]
Caco-2 Papp H bond capacity, lipophilicity, size, and ACHTUNGTRENNUNGflexibility PLS 0.80 16 0 [72]
Caco-2 Papp H bond capacity and lipophilicity PLS 0.92 11 0 [73]
Caco-2 Papp size, surface tension, and dielectric ACHTUNGTRENNUNGconstant PLS 0.90 16 0 [74]
Caco-2 Papp electrotopological indices PLS 0.71 17 10 [42]
Caco-2 Papp H bond strength and ACHTUNGTRENNUNGelectrostatics PLS 0.87 17 10 [42]
Caco-2 Papp surface areas PLS 0.93 17 10 [42]
Caco-2 Papp electrotopological indices PLS 0.91 9 8 [75]
Caco-2 Papp surface areas PLS 0.93 13 10 [55]
Caco-2 Papp H bond capacity, PSA, and charge PLS 0.83 20 10 [76]
Caco-2 Papp H bond capacity, charge, polarizability, and ACHTUNGTRENNUNGdipole moment NN[n] 0.62 87 0 [77]
Caco-2 Pc

[f] PSA SR 0.91 9 0 [39]
Caco-2 actp[g] (peptides) size, electrostatics, and ACHTUNGTRENNUNGflexibility PLS 0.75 20 0 [78]
Caco-2 actp (peptides) electrotopological indices PLS 0.92 20 0 [78]
Caco-2 Papp H bond capacity, charge, PSA, and ACHTUNGTRENNUNGelectrotopological indices PLS 0.88 20 10 [76]
FA PSA SR 0.94 20 0 [37]
FA PSA SR 0.91 20 0 [68]
FA structural fragments MLR 0.79 417 50 [28]
FA H bond capacity, lipophilicity, size, and ACHTUNGTRENNUNGflexibility PLS 0.50 85 0 [72]
FA H bond capacity and lipophilicity PLS 0.93 74 0 [73]
FA electrotopological indices PLS 0.83 13 7 [75]
FA H bond capacity, size, and flexibility NN 0.87 76 10 [50]
FA H bond capacity, flexibility, and ACHTUNGTRENNUNGhydrophobicity NN 0.86 76 10 [29]

[a] Compilation of descriptors, size of datasets, statistical models used, and accuracy of published in silico absorption models. Several classification models
can be found in the literature which are regarded as qualitative models and are therefore not reported. Caco-2 and FA data were selected for the compila-
tion, as these are the main responses used in the development of computational models. However, other responses such as permeability in 2/4/A1 cell
monolayers, artificial membranes, and the MDCK cell line have also been used in computational model development. [b] Coefficient of determination.
[c] Number of compounds in training set. [d] Number of compounds in test set. [e] Apparent permeability. [f] Cellular permeability. [g] Active transport.
[h] Polar water accessible surface area. [i] Polar surface area. [j] Linear regression. [k] Sigmoidal regression. [l] Multiple linear regression. [m] Partial least
squares projection to latent structures. [n] Neural network.
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to bear in mind is that the training set should be representa-
tive for the type of compounds that are to be predicted; if a
model is to predict the permeability of drugs, then druglike
molecules must be used in the model development. Regarding
the statistical tool used, it is important to select a statistical
and mathematical tool that is sound. Hence, the data has to
be pre-analyzed so that linear versus nonlinear methods are
correctly selected. Finally, it is difficult to obtain transparent
and interpretable models if all different kinds of transport
routes are included in the measured permeability value. Ideally,
separate models are developed for passive transcellular diffu-
sion, passive paracellular diffusion, and for each of the trans-
port proteins that can be used. After the establishment of
these models, pharmaceutical informatics tools are used to ex-
tract the information on the apparent permeability through
the intestinal wall.

In plots of permeability versus FA, different cell models will
result in largely different slopes and ranges of the respective
permeability curve. All the cell models have relatively steep
slopes as a common feature, as exemplified in Figure 7. The 2/
4/A1 cell line has the steepest slope and highest apparent per-
meability values of the two cell lines which is in good agree-
ment with the values obtained in human perfusion studies.[25]

The steep slopes of these model systems result in that the in
silico models based on these data are good at discriminating
high permeability from low permeability. However, a small dif-
ference in predicted permeability relative to the experimental
value in the region of the slope may shift the compound from
being predicted as having intermediate permeability to being
either highly or poorly permeable. Hence, the predictions in
the mid-range of the permeability values are much more diffi-
cult to interpret and draw conclusions from regarding further
development.

4.4. A computer-based biopharmaceutical classification
system

The biopharmaceutics classification system (BCS) is one way of
gathering information on drug absorption.[51] According to the
BCS, compounds can be sorted into four classes depending on

their solubility and permeability : class I compounds, high solu-
bility and high permeability; class II compounds, poor solubility
and high permeability ; class III compounds, high solubility and
poor permeability ; and class IV compounds, poor solubility
and poor permeability. High solubility is defined as the maxi-
mum oral dose given being soluble in 250 mL within a pH
range of 1–7.5; otherwise compounds are classified as having
low solubility. High permeability is defined as �90% absorbed,
any value less than this is considered low.[9] If a compound is
categorized as a class I compound, no further clinical studies
need to be performed after minor changes in the formulation.
Various cutoff values for the BCS have been previously applied
as qualitative screening tools for drug absorption in drug dis-
covery and development.[9,52, 53] Recently, a semi-experimental
study using published solubility data in combination with FA
data predicted from the calculated logPoct correctly sorted
65% of a series of 29 compounds.[54] If a computer-based BCS
with high accuracy in the prediction of the absorption charac-
teristics were devised, it would be possible to sort compounds
in accordance with their developability in terms of absorption
prior to synthesis. Such virtual tools applied in early drug dis-
covery would result in a decreased number of CDs with formu-
lation problems.

In a recent study we used a BCS with six classes, according
to which the solubility was classified as either “low” or “high”
in accordance with the cutoff values set by the U.S. Food and
Drug Administration (FDA), and the permeability was classified
as “low” (FA<20%), “intermediate” (20%<FA<80%) or “high”
(FA>80%).[55] This classification was chosen because we be-
lieve it provides a better tool for ranking compound absorp-
tion in drug discovery than the stricter permeability classifica-
tion provided by the FDA. Experimental determinations of the
Caco-2 permeability and intrinsic solubility were performed in-
house, and PLS in silico models based on PTSAs were derived.
In comparison with the experimentally determined data, the
combination of the two in silico models resulted in 87% of the
compounds being sorted into the correct class. The com-
pounds included in a reference test set given by the FDA were
correctly sorted with an accuracy of 77%. In summary, these
results indicate that more sophisticated in silico models that
combine computational analysis of solubility and permeability
can successfully estimate the absorption process both qualita-
tively and quantitatively.[55]

4.5. In silico toxicity models

Toxicology is a rather different matter compared with the
other ADME disciplines because many different mechanisms
may be involved. Thus, although they appear to be rather simi-
lar, the compounds of the investigated dataset may be subject
to different toxicological mechanisms that, in turn, give rise to
different types of toxicological responses. A large number of
papers have been published over the years with proposed
models (relationships) that relate molecular structure to a toxi-
cological endpoint of some sort. Three good published starting
points with respect to the present state of in silico toxicology
statistical modeling are reported by Green,[56] Schultz et al. ,[57]

Figure 7. Permeability versus human fraction absorbed (FA): The range and
slope of the apparent permeability values obtained from different cell
models used for in vitro studies of absorption differ largely, as exemplified
with Caco-2 (c) and 2/4/A1 (a) cell-permeability values. Adapted from
Ref. [76] with permission, Copyright� American Chemical Society, 2005.
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and Dearden.[58] The work by Green is an update on the vari-
ous software that is present for prediction toxicology, such as
DEREK, OncoLogic, HazardExpert, COMPACT, multi-CASE, and
TOPCAT, whereas the report by Schultz et al. focuses on quanti-
tative structure–activity relationships (QSARs) in toxicology.
Toxicological endpoints that are referred to in this investigation
are acute and aquatic toxicity, receptor-mediated toxicity, mu-
tagenicity and carcinogenicity, skin sensitization, and skin and
eye irritation. The article by Dearden deals with software as
well as references to some specific toxicological QSAR investi-
gations related to endpoints such as cytotoxicity, drug resist-
ance, and skin permeability. Useful reading for the develop-
ment of QSARs in toxicology from a historical perspective was
published by Schultz, Cronin, and co-workers.[12] Within the
area of modeling QSARs, including pharmacophore ap-
proaches, several articles have appeared in recent years. A
more QSAR-related article for cytochrome P450s was published
by Lewis et al.[59] Relationships between binding affinities relat-
ed to various binding site interactions such as hydrogen bond-
ing and p–p stacking but also to parameters related to hydro-
phobicity, (i.e. logP and logD) have been developed. An exten-
sive review article related to QSARs of cytochrome P450s was
recently published by Hansch and co-workers.[60] A large
number of P450 endpoints and datasets for which QSARs have
been investigated are presented in this review article. A slight
drawback with many of the P450 datasets in this review is that
they are relatively small in size. Typically, many P450 datasets
contain 7–15 compounds, and the largest investigated dataset
contains only 28 members. Although useful for elucidating im-
portant properties and possibly rendering some mechanistic
insight in fortunate cases, the resulting statistical models are
rather local in character with a small applicability domain. The
practical use of these models for predicting the behavior of
new and virtual sets of compounds may therefore be of limit-
ed value. Lately, additional considerations with respect to
hERG have entered into the drug-development scenario,
owing to the severe consequences associated with hERG inter-
action such as QT interval prolongation. Avoiding interactions
with hERG has become a top priority for many pharmaceutical
companies as a consequence of the increased attention to this
issue by the FDA and regulatory agencies in other countries.
Only a few studies on hERG SARs have been published so far,
and much work is currently being conducted to identify prop-
erties and/or structural entities that cause hERG channel inhibi-
tion. One model of hERG inhibition based on the KcsA crystal
structure has been published, while the other models are
ligand-based, with 3D QSAR techniques such as CoMFA,
CoMSIA, and Catalyst. Recently, 2D QSAR descriptions using
both more traditional variables as well as holograms have
been used to derive models for hERG inhibition. For a recent
minireview, see the work by Norinder.[61] Again, the publicly
available training sets for developing in silico models for hERG
are rather limited in size, which restrain these models with re-
spect to predictive ability for estimating inhibition of new
compounds.

An interesting article published by Stouch et al. addresses
some cases in which ADME/Tox models fail and the reasons for

these failures.[62] In some cases, the failure is related to the in-
tended use of the in silico model and the expectations of the
users of the model. In other cases, failures are related to devel-
opment aspects of the model, such as choice of statistical tool
and description of the investigated structures, as well as limit-
ed model validation. The work by Feng and co-workers has
benchmarked some different sets of descriptors, such as con-
stitutional descriptors (CONS), topological information indices
(TI), BCUT parameters, and some fragment (fingerprint) de-
scriptors (FRAG), as well as statistical methods, such as recur-
sive partitioning (RP), artificial neural networks (ANN), and par-
tial least squares (PLS) on four different datasets with different
toxicological endpoints.[63] They found that three combinations,
BCUT and RP, FRAG and PLS, and FRAG and RP worked better
than expected, whereas two combinations, BCUT and NN to-
gether with TI and RP worked somewhat worse than expected.
The fact that fragment (fingerprint) descriptors seem to work
well is not too surprising, as the concept of toxicophores has
been used for quite some time in explaining the toxicological
behavior of compounds. At the same time, however, the au-
thors of the article also state that for large datasets, there is a
clear need for the development of new descriptors and/or stat-
istical methods.

5. Future Development and Conclusions

To improve solubility, permeability, and toxicity predictions fur-
ther, a number of actions are needed. First, as mentioned
above, focus should be set on the datasets used for the train-
ing of the in silico models. The compounds included in the
model development and validation need to be representative
for the application of the model. Hence, if a general in silico
model is to be developed, a large dataset (i.e. hundreds of
compounds) with a chemical diversity covering the volume of
the druglike space should be used. On the other hand, if a
model applicable for the prediction of a specific subset is war-
ranted, focus should be set on this region of the druglike
space to improve the accuracy of the model. Second, the ex-
perimental setting needs to be standardized and the experi-
mental values used in the model development should be con-
sistently determined using one type of assay. Only high-quality
data should be incorporated to minimize the effect of noise on
the model. Third, the models should be simplified as much as
possible. In our opinion, in terms of permeability, it is therefore
better to develop several mechanism-based models that
reveal, for example, the extent of the passive transcellular and/
or paracellular transport and eventual binding to important
transport proteins. Finally, to extract information from such dif-
ferent models to transfer the computational predictions to ap-
proximations of the in vivo behavior, new data-mining tools
need to be devised (Figure 8). The need for such tools for
pharmaceutical informatics is exemplified by the absorption
process per se. The extent to which a compound is absorbed
will be dependent on its dissolution rate, stability (chemical
and enzymatic), solubility, and permeability (passive transcellu-
lar component, passive paracellular component, active influx,
and active efflux). For each component in the ADMET screen,
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the same scenario is valid; that is, a large number of in silico
models need to be devised to predict each of the ADMET com-
ponents. Hence, one of the future challenges will be the devel-
opment of user-friendly, transparent, and rapid data-mining
tools that allow pharmaceutical informatics to be performed in
early drug discovery. If such computational tools are devised
and highly accurate in silico models of ADMET properties appli-
cable to the druglike space are developed, the prerequisites
for a successful virtual drug-discovery setting are given.
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