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Introduction

Tuberculosis (TB), a chronic contagious disease caused by My-
cobacterium tuberculosis (MTB), is one of the leading causes of
death worldwide with approximately 3 million deaths and
8 million new cases each year.[1, 2] According to the World
Health Organization (WHO) one third of the world’s population
is infected with MTB, and nearly 30 million people will be in-
fected in next 20 years. The dangerous spread of TB is mainly
due to its association with HIV infection (about two-thirds of
the patients infected with TB are also HIV seropositive),[3] and
to the rapid development of multidrug-resistant (MDR) strains
of MTB.[4,5] No TB-specific drug has been discovered in the last
40 years, and most of the current antitubercular compounds
exhibit serious side effects and high-toxicity. Consequently
there is an urgent need to discover new structural classes of
antimycobacterial compounds in order to develop agents to
replace or supplement the established drugs.[6] Many attempts
have been made by our research group to identify new antitu-
bercular hits with innovative chemical structures.[7–11]

Due to their ability to decrease the cost of drug discovery
and development, computer-aided drug design approaches
have emerged as useful tools to select, from a large library of
possible compounds, a small subset for chemical synthesis and
testing.[12] The computational synthesis of new molecules
(which constitute the virtual library) is called “virtual library
generation”, while the selection of a subset of compounds
from a larger library is termed “virtual library design”.[13] Virtual
library design and virtual screening could be also viewed as an
attempt to merge the powerful tools of combinatorial chemis-

try and computer-aided drug design. Library design can also
be applied as a filtering method (in silico or virtual screening,
VS), by using computational models to filter databases or virtu-
al libraries by the evaluation of specific biological properties of
molecules.

In continuing our efforts to discover new chemical entities
endowed with activity against MTB, we present the successful
application of virtual library generation, design and screening
tools for the discovery of new leads with antitubercular activi-
ty. Two compounds with potential activity against MTB were
identified through a combination of computational ap-
proaches: a novel in silico screening protocol centered on a re-
cursive partitioning (RP) model (RP-centered virtual screening
protocol,[14] RPCVS) and a pharmacophoric model for antituber-
cular compounds previously generated by our research
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In an attempt to identify new inhibitors of the growth of Myco-
bacterium tuberculosis ACHTUNGTRENNUNG(MTB), the causative agent of tuberculo-
sis, a procedure for the generation, design, and screening of a
ligand-based virtual library was applied. This used both an in sili-
co protocol centered on a recursive partitioning (RP) model de-
scribed herein, and a pharmacophoric model for antitubercular
agents previously generated by our research group. Two candi-
dates emerged from databases of commercially available com-

pounds, both characterized by a minimum inhibitory concentra-
tion (MIC) of 25 mgmL�1. Based on these compounds, two series
of derivatives were synthesized by both parallel solution-phase
and microwave-assisted synthesis, leading to enhanced antimy-
cobacterial activity. During both the design and synthesis, atten-
tion was focused on the efficient allocation of available resources
with the aim of reducing the overall costs associated with calcu-
lation and synthesis.
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group.[7] For each lead compound a series of analogues was
synthesized by parallel solution-phase and microwave-assisted
synthesis, resulting in compounds with improved antimycobac-
terial activity.

The Computational Approach

The target of most antimycobacterial agents is still unknown
at the molecular level,[15] and thus no three-dimensional struc-
ture of the putative target(s) of antitubercular agents is avail-
able. Consequently, to develop a VS procedure aimed at identi-
fying new antitubercular compounds, we adopted a ligand-
based (LB) VS approach[16] (LBVS, based on the use of known
active compounds as templates), instead of the more popular
structure-based VS (based mainly on docking algorithms).

Here we report the use of a LBVS approach both as a filter-
ing method, based on Lipinski’s “rule of five”, and as an activi-
ty-based selection method (used as a RP-based technique for
compound classification). Note that LBVS constitutes only a
part of the overall computational protocol.

The first step of this protocol (Figure 1, step 1) consisted of
building a learning set of 471 compounds (reported in the lit-
erature as inhibitors of MTB), and generating from this a popu-
lation of classification structure–
activity relationship (CSAR)
models by means of RP analysis
(step 2). From these the best
model (in terms of predictive
power toward a test set) was se-
lected (step 3) and employed as
a part of a more precise VS pro-
cedure based on the model
itself (the RPCVS protocol)[14] in-
corporating two additional fil-
ters (Lipinski’s rule, and a calcu-
lated penalty factor) as de-
scribed below.

In a parallel exercise
(Figure 2), a large fragment-
based virtual library (more than
5 million compounds), the “large
library” (LL) was built, based on
a benzene core, (step 4). From
this a smaller set (5000 mole-
cules, the “small library”, SL) was
extracted by means of a library
design procedure (step 5),
aimed at decreasing the dimen-
sions while retaining as much
structural information of the
original library as possible. The
SL was subsequently filtered
(step 6) by using the RPCVS pro-
tocol, resulting in a “targeted li-
brary” (TL) of 114 compounds,
upon which a preliminary in sili-
co ADME evaluation was also

performed. Many commercially available databases were
searched for suitable TL compounds (step 7), leading to the
purchase of four members of the Asinex Gold Collection data-
base (step 8).[17] One of these showed good anti-MTB activity
(25 mgmL�1). A subsequent in silico screening of the whole
Asinex database, performed by using both our pharmacophor-
ic model and the RPCVS protocol (Figure 3, step 9), led to the

Figure 1. Computational steps leading from the learning set of antitubercu-
lar compounds to the recursive partitioning-centered virtual screening
(RPCVS) protocol.

Figure 2. Computational steps leading from the large virtual library (LL) to the identification of four antimycobac-
terial hit compounds within the Asinex database.
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selection of a second set of nine compounds. From these a
second lead compound was identified showing an anti-MTB
MIC of 25 mgmL�1. Importantly, at both the current and previ-
ous stages or our work, the search for virtual compounds in
databases of real (commercially available) compounds was per-
formed in order to obtain several hits for testing in a short
time; this served to assess quickly the reliability of the VS pro-
cedure, and thus avoid time-consuming and costly synthesis.

Two series of analogues of the lead compounds were syn-
thesized (step 10, Schemes 1–7), in order to obtain molecules
with improved antitubercular activity (compared with their
parent compounds), or data for a preliminary structure–activity
relationship (SAR) study.

Step 1: generation of the learning set

A learning set of 471 compounds from structurally diverse
chemical classes (imidazoles, pyridines, pyrroles, benzimida-
zoles, pyrazines, quinoxalines, quinolylhydrazones, benzani-
lides, etc.),[18] with their anti-MTB MIC values, was collated from
literature published between 1997 and 2002. (When expressed
as mgmL�1, MIC values were converted into mmolmL�1). Activi-
ty values spanned six orders of magnitude (5I10�4 to ~2I
102 mm). However, such a database suffers from several limita-
tions: since the mechanism of action at the molecular level is
often unknown, the possibility cannot be excluded that com-
pounds interact with different targets; and published activity
values cannot be treated as homogeneous data, as these have
been obtained from different MTB strains and with different
protocols. Although biological data were deemed unsuited for
a quantitative analysis, they were used in a semi-quantitative
approach,[19] by using the RP classification technique.[20] Learn-
ing set compounds were categorized into three groups:
“active”, “medium-active” and “inactive”. The boundaries be-
tween these class are shown in Table 1.

Step 2: RP analysis of the learning set

Recursive partitioning is a statistical classification method well
suited to the analysis of high-throughput screening data, as it
can both account for multiple structurally diverse classes of
compounds, and tolerate a certain amount of erroneous input
data.[20] This approach divides data sets along decision tree
structures through the use of two-state (absent/present, no/
yes) molecular descriptors. During the partitioning of a set of
active, medium-active and inactive compounds, RP attempts
to identify descriptor pathways that significantly enrich some
terminal nodes with correctly predicted compounds, irrespec-
tive of their activity class. The resulting RP models can then be
used to search databases for additional active compounds.
(Details on the RP method are provided in Supporting Informa-
tion). Three distinct statistical parameters can be used to evalu-
ate the quality of a RP model : a) Interclass prediction: only
molecules in the corresponding class are considered. For each
class this value represents the number of correctly predicted
compounds as percentage of the total number of compounds
known to belong to that class; b) Overall prediction: all mole-
cules in the set are considered. For each class this value indi-
cates the number of correctly predicted compounds as a per-
centage of compounds predicted to belong to that class; c)
Enrichment: for each class, this value represents the percent-
age of compounds correctly predicted divided by the percent-
age of compounds belonging to that class.

A total of 392 descriptors, belonging to 12 different families,
were calculated for all molecules. The dimensionality of the full
set of descriptors was then reduced by principal component
analysis (PCA), resulting in a significant decrease in the
number of variables. 379 compounds (approximately 80% of
the learning set) were then selected for the training set, while
the remaining 92 compounds were used as a test set. Training
set selection was performed with the aim of maximizing the
structural diversity of the selected compounds, as encoded by
the first three principal components (PCs), while maintaining
for the training set a distribution profile similar to that of the
learning set.

To identify the most appropriate set of descriptors, 12 RP
models were generated on training set compounds, starting
from each family of descriptors. Five additional RP models
were obtained from other sets (derived from different combi-
nations of the above 392 descriptors): the whole set, the set of
2D descriptors, the set of 3D descriptors, a default set provided
by the program, and a set of 94 descriptors (1D or 2D descrip-
tors, belonging to E-state keys, information-content, structural,
thermodynamic, topological and ADME families) referred to by
the program as “fast descriptors”, being characterized by a
very short computation time (a comprehensive list of all 94 de-
scriptors is available in Supporting Information). The ability of
such models to predict the activity class (active, medium-
active, or inactive) of the 92 test set compounds was then
evaluated on the basis of the statistical parameters described
above: Class%ObsCorrect (interclass prediction), Overall%
PredCorrect (overall prediction), and Enrichment. Being inter-
ested in an accurate prediction for the whole dataset, to

Figure 3. In silico screening of the whole Asinex database.

Table 1. Classification of compounds in the learning set.

Class MIC Range [mm] No. Compds Percent

active MIC<1I10�2 88 18.68
medium-active 1I10�2�MIC<4I10�2 175 37.16
inactive 4I10�2�MIC 208 44.16
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choose the RP model most suitable for our VS purposes we re-
sorted to the analysis of the values that the overall prediction
parameter (Overall%PredCorrect) assumed for all three
classes.[21] Accordingly, we selected the RP model, derived from
the set of 94 fast descriptors, which showed the highest aver-
age value of the overall prediction parameter (Table 2). This

model consisted of 41 terminal nodes of which 13 were classi-
fied as active, 15 as medium-active, and 13 as inactive (statisti-
cal parameters relative to test set predictions are reported in
Table 3). The corresponding decision tree is shown in Figure 4.

Notably, the statistical parameters of Tables 2 and 3 referred
to the test set, not only suggest the most suitable model de-
rived from the fast descriptor family, but also demonstrate its
good external predictive power. Moreover, the use of only fast
descriptors (requiring minimum CPU time) makes the model
particularly well suited to being applied to large sets of com-
pounds.

Step 3: RP-centered VS (RPCVS) protocol

The RP model described above was used in a VS protocol in
the search for antitubercular compounds. This consists of the

following three filters : 1) Lipinski’s rule of five: compounds
with one or more violations to Lipinski’s parameters are dis-
carded. Owing to the high lipophilicity of the mycobacterial
cell wall, the maximum value allowed for logP was raised from
5 to 6 so as not to penalize the more hydrophobic com-
pounds, which (presumably) can more easily penetrate the cell
wall. 2) RP model: each compound satisfying the first filter is
classified as either “active”, “medium-active” or “inactive” by
the RP model. Only active compounds are retained. 3) Ranking
criterion: compounds classified as active are ranked according
to a “penalty factor” calculated on the basis of the similarity
(encoded by molecular descriptors) to the most active com-
pounds belonging to the training set (see Experimental Sec-
tion). Molecules with the lowest penalty factor values are con-
sidered hit compounds.

The first three steps of the computational approach allowed
us to set up the RPCVS protocol to screen databases of virtual
and real compounds for new antitubercular agents. For this
purpose, we generated a virtual library and submitted this to
sequential filtering to decrease its complexity (number of pos-
sible hit compounds).

Step 4: virtual library generation: the large library (LL)

In general, VS has become attractive for the computational fil-
tering of large databases of compounds, in order to evaluate
their properties and thus identify preferred compounds and
eliminate those having undesired features. However, VS is not
limited to existing compounds: a virtual library can be generat-
ed, using a computational approach, with the aim of reducing
the costs of the drug discovery process.[22]

We decided to generate a large virtual library by using an
analogue building approach—the systematic insertion of a set
of side chains at different positions of a core structure
(Figure 2, step 4). This structure was selected on the basis of
an analysis of the common chemical features of compounds
belonging to the learning set, which showed that one benzene
ring (or more) is common to 380 of the 471 compounds ana-
lyzed (over 80%). This analysis also suggested the substitution
pattern for the benzene core. Three substitution points
(R groups) were defined at positions 1, 2, and 4 (R1, R2 and R3

in Figure 2), with 173 substituents specified for each
R group.[18] Of these, 120 fragments (with a wide structural va-
riety) were provided by the program as an internal structural
dictionary (a database of fragments), while the remaining 53
were derived from the analysis of the learning set compounds
that allowed us to identify structural motifs and privileged sub-
structures associated with antitubercular activity. The simulta-
neous use of these two distinct sets of substituents was aimed
at both covering a wide chemical space and biasing the library
toward compounds with antitubercular activity. The resulting
library (Figure 5) consisted of over 5 million compounds, result-
ing from the systematic combination of all substituent groups
at each position (173I173I173=5177717).

Table 2. Values of the Overall%ObsCorrect parameters for all the RP
models generated starting from each of the 17 different available sets of
descriptors.

Descriptor Set “Active” “Medium-Active” “Inactive” Average

Structural 44.44 57.14 71.74 57.77
Information 38.89 48.78 66.67 51.45
Spatial 40.00 41.18 68.42 49.87
E state keys 78.57 51.11 78.79 69.49
Topological 28.00 54.55 76.47 53.01
Thermodynamic 47.37 50.00 74.36 57.24
Electronic 30.77 52.17 72.73 51.89
QM 28.57 42.50 55.26 42.11
Catshape 30.00 48.48 61.54 46.67
Hypofit 47.62 65.38 60.00 57.67
3D fingerprint 54.55 66.67 77.50 66.24
3D feature count 66.67 58.82 67.35 64.28
Default descriptors 53.33 48.72 71.05 57.7
2D descriptors 55.56 57.58 78.05 63.73
3D descriptors 40.91 42.86 67.86 50.54
Fast descriptors 57.89 67.65 84.62 70.05
All 56.25 51.28 75.68 61.07

Table 3. Statistical parameters found for the fast descriptor family de-
rived RP model applied to test set compounds.

Class Class%ObsCorrect Overall%PredCorrect Enrichment

active 61.11 57.89 2.96
medium-active 71.88 67.65 1.94
inactive 78.57 84.62 1.85
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Step 5: a two-part virtual library design: the small library
(SL)

In view of the size of, and redundancy within the LL, a small
subset (5000 compounds, SL) was extracted using a two part li-
brary design procedure. The SL was designed to cover uni-
formly the chemical space of the original library (to retain the
maximum structural information) and to contain druglike mol-

ecules. Accordingly, molecules were selected by referring si-
multaneously to maximal structural diversity, and Lipinski’s rule
of five (logP=6), as design criteria.

In general, a library design protocol consists of the identifi-
cation of an objective function (a weighted combination of
terms, each reflecting a desired property of the reduced li-
brary), and an optimization step to identify reduced libraries
that exhibit improved value of the objective function.[23] (Addi-
tional details of the library design are in Supporting Informa-
tion.) A successful optimization procedure generates reduced
libraries with maximally improved values for the objective
function (that is, with optimized design properties). In both
parts of our library design procedure the objective function
consisted of two terms (one for each design criterion) account-
ing for the structural diversity of compounds (expressed by
molecular descriptors), and for their drug-likeness (Lipinski’s
rule of five).

Figure 4. Decision tree derived from recursive partitioning applied to the fast descriptor family calculated on training set compounds. For each terminal
node, the number of the node, the activity class (1: active; 2: medium-active; 3: inactive), and the number of compounds contained within the node are
reported.

Figure 5. Markush representation of the large library (LL).
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The conventional approach to library design includes the
enumeration of structures and descriptor calculation for the
entire library prior to the optimization procedure.[23,24] Enumer-
ation of structures and properties for a library containing over
5 million compounds requires substantial computational and
storage resources, increasing time and cost. Furthermore, in
our plans, the library design procedure should not be limited,
if possible, by the size of the virtual library, and thus should be
applicable to even larger libraries. On the basis of such limita-
tions, we adopted the “on-the-fly optimization” (OTFO) ap-
proach,[24] recently proposed as a suitable alternative to the
conventional approach, especially when dealing with extreme-
ly large virtual libraries. Unlike the conventional approach,
OTFO requires descriptor computation for only the reduced li-
braries selected during the optimization procedure. Conse-
quently, calculation of descriptors and storage of data for all LL
molecules are not necessary. Where, as in our case, descriptors
used in the calculations are additive in nature (see below),
these can be calculated without enumeration of structures, af-
fording further time and storage savings.[25]

Unfortunately the OTFO approach is restricted to a combina-
torial library design. Unlike the conventional approach, the re-
sulting reduced library consists solely of combinations of the
fragments selected for each R group; compounds cannot be
selected individually (“cherry picked”). Consequently in the first
part of the library design the OTFO approach was only applied
to reduce the size of the LL, resulting in an intermediate library
(the medium library (ML), Figure 2). The ML size was small
enough to allow the application of the conventional approach
in the second part of the library design. However, the ML
should be as large as possible to maintain the maximum infor-
mation content with respect to the parent library, thus reduc-
ing the limitation due to the combinatorial approach.

For the selection of ML from LL, structural diversity was as-
sessed using BCI fingerprints (1052 bits)[26] as descriptors and
“Fingerprints On Bits” as the diversity metric. Lipinski’s parame-
ters were used as upper bounds for molecular weight (Mr),
number of hydrogen bond acceptors (HBA), number of hydro-
gen bond donors (HBD) and logP (SlogP)[27] descriptors. Owing
to the high lipophilicity of the mycobacterium cell wall, the
maximum value allowed for logP was increased from 5 to 6 to
avoid the penalization of more lipophilic compounds, which
presumably penetrate the cell wall more easily. Molecules
whose descriptors exceeded one or more of the threshold
values were likely to be discarded. As in this case, violation of
the Lipinski’s rule is not intended to exclude a compound, but
contributes to a penalty function that reduces the possibility
that it is retained in the reduced library.

A series of calculations suggested that a ML containing 50I
50I50 compounds was the optimal solution, combining the
most appropriate library dimension with an acceptable compu-
tational demand. 50 substituents were selected for each
R group (combinatorial design) using a Monte Carlo (MC) algo-
rithm as the optimization method.

Using this strategy the selection of SL from ML was achieved
through a cherry picking method and was not limited by com-
binatorial constraints. The ML was entirely enumerated and 94

fast descriptors (the same as that used to build the RP model,
above) were calculated for all 125000 compounds. PCA was
then applied to reduce the number of variables and to remove
redundant information encoded in the original descriptors.
Structural diversity was evaluated in the space of the first eight
PCs (accounting for over 70% variance in the original dataset),
and the MaxMin function, belonging to distance-based meth-
ods of selection, was used as a diversity metric.[28] Lipinski’s pa-
rameters were used as upper bounds for Mr, HBA, HBD, and
logP (AlogP)[29] descriptors, penalizing molecules exceeding
one or more of these. A 5000 compound noncombinatorial li-
brary was then selected (SL), using a genetic algorithm (GA)
and a simulated annealing (SA) procedure for subset optimiza-
tion.

In summary, the realization of the SL through two successive
library design procedures allowed us to circumvent the limita-
tions associated with both the OTFO and conventional ap-
proaches.

Figure 6 shows SL entries (black) uniformly spanning the de-
scriptor space (first three PCs, accounting for about 50% of
the original variance) occupied by the ML (grey), in agreement
with the first selection objective represented by the maximal
structural diversity encoded in the molecular descriptors.

With respect to the Lipinski’s rule of five (representing the
second design criterion), Figure 7 shows the distribution pro-
files of Mr, HBA, HBD and AlogP descriptors for the 5000 mole-
cules of SL. All descriptors satisfy the above requirements, thus
demonstrating the effectiveness of this selection procedure.

Step 6: virtual screening: the targeted library (TL)

The SL was submitted to the RPCVS protocol previously de-
scribed. The RP model partitioned the 5000 entries of the SL
into active (574), medium-active (1732) or inactive (2694) com-

Figure 6. Projection of compounds belonging to both ML (grey) and SL
(black) in the space of the first three PCs.
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pounds. Molecules predicted as active were then ranked ac-
cording to the penalty factor, and those with a value higher
than 1.0 were discarded.[30] Note that Lipinski’s rule of five was
not applied as a filtering function at this stage because the
previous steps of the selection procedure (from LL to ML and
from ML to SL) had already rejected compounds with unac-
ceptable violations (see the distribution profiles of Mr, HBA,
HBD and logP descriptors of SL compounds in Figure 7).

The resulting TL contained 114 compounds (about 2% of
SL), classified as “active” and having a penalty factor less than
1.0. Figure 8 shows the projection of the TL (black) and SL
(grey) compounds in the descriptor space.

A preliminary evaluation of the pharmacokinetic properties
of the TL entries was performed by means of the Volsurf ap-
proach,[31] in order to assess their physicochemical properties.
Permeability and solubility models implemented in Volsurf

(Figure 9) suggested similar pharmacokinetic properties for all
TL compounds (yellow), all of which are located in the high-
permeability region (red: high, blue: low permeability) and
medium- to low-solubility regions (red: high, white: medium,
blue: low solubility).

Volsurf analysis confirmed the drug-likeness of these mole-
cules and their lipophilic properties. This is in agreement with
the criteria used to select the compounds and suggests that
their physicochemical properties should facilitate transfer
across the mycobacterium cell wall.

Step 7: database search of commercially available
compounds

We checked commercial databases for the presence of TL vir-
tual compounds, since these could be purchased and tested in

Figure 7. Distribution profiles of a) Mr, b) HBA, c) HBD, and d) AlogP descriptors for the 5000 molecules of SL.
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a very short time (essentially reduced to the time required for
testing against MTB). This provided biological data useful for
assessing the effectiveness and reliability of our VS protocol
before undertaking the time-consuming and costly step of syn-
thesis.

A number of various-sized databases of commercially avail-
able compounds were downloaded from the Internet,[18] pro-
viding approximately 2 million known compounds. A search
for the 114 TL compounds was made, based on the projection
of compounds belonging to both TL and the databases in a
common descriptor space. Common compounds are identified
by their co-location within the descriptor space. Unfortunately,

the database search resulted in the identification of only one
entry (compound I), found within the Asinex database.

Step 8: focused library from the Asinex database

In order to increase the number of compounds to be submit-
ted to biological evaluation, we decided to select, from the
Asinex database, a small-sized library based on the ten best
ranking TL compounds (those with the lowest penalty factor).
The Asinex database and the ten selected TL hits were project-
ed onto a common descriptor space. (The position of each
compound is determined by its calculated descriptor values.)
On the basis of the similar property principle,[32] we assumed
that Asinex molecules located very close to the preferred hits

should be considered as candi-
dates for testing. Accordingly, for
each preferred hit, the 20 closest
Asinex molecules were selected, re-
sulting in a 200-member focused li-
brary that was then filtered
through the RPCVS protocol:[14] 64
compounds were classified as
active, 101 as medium-active, and
35 as inactive (penalty factors
0.237 to 1.417). From the 60 mole-
cules both classified as active by
RP and with a penalty factor of less
than 1.0, three compounds with
the best score and belonging to
different structural classes were se-
lected.

Concluding the selection process
(Figure 2), we purchased four com-
pounds from the Asinex database
and evaluated these for their anti-
tubercular activity. Compound II

showed promising antimycobacterial activity (MIC=

25 mgmL�1) and was therefore chosen as a lead compound for
further development, while the remaining compounds, includ-
ing I, were found to be inactive (MIC>100 mgmL�1).

Step 9: in silico screening of the whole Asinex Gold
Collection database

Encouraged by the result of the biological assays, we decided
to filter the whole Asinex database by combining our pharma-
cophoric model for antitubercular compounds (detailed in
Supporting Information) and the RPCVS protocol[14] (Figure 3).

Figure 8. Projection of TL (black) and SL (grey) compounds in the descriptor
space: molecules of the TL are located in a restricted region of the descrip-
tor space relative to the whole SL.

Figure 9. Evaluation of the pharmacokinetic properties of compounds belonging to TL (yellow). Left : TL com-
pounds are located in the space of high-permeability compounds (red), whereas low-permeability compounds
are in blue. Right: TL compounds are located in the space of low- to medium-solubility compounds (blue and
white, respectively) ; high-solubility compounds are represented in red.
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A preliminary treatment of the Asinex database with the phar-
macophore model was required as it is a noncombinatorial da-
tabase and too large to permit the application of a library
design based on the protocol previously described. In fact,
OTFO is ineffectual for noncombinatorial databases, while our
computational resources impose a limit of 125000 compounds
(conventional approach, see above).

The Asinex database (>200000 compounds) was filtered
through the pharmacophoric model, rejecting all compounds
unable to map simultaneously all the features of the model,
The resulting library (43845 entries, about 20% of the original
database) was further filtered by the RPCVS protocol : only 447
compounds were retained showing no violation of Lipinski’s
rule of five (logP=6), classified as active by the RP model and
with a penalty factor less than 1.0. Nine of these, showing the
best fit against the pharmacophoric model and belonging to
different chemical classes, were purchased. Biological assays re-
vealed that compound III possessed a MIC value of 25 mgmL�1,
so this was selected as a second lead compound. Figure 10
shows the good superposition of compound III to the pharma-
cophoric model, used as the first filtering criterion.

By applying different in silico approaches we were able to
identify two lead compounds active against MTB: compounds
II and III. Compound II contains a pyrrole, and III, a pyrazole
ring which is not unusual for antitubercular agents. However,
despite the five-membered ring moiety, the structures of these
candidates differ substantially from those of pyrroles and pyra-
zoles reported as antituberculosis compounds. Whereas pyr-
roles are well-established as antitubercular com-
pounds,[11,15, 33–35] pyrazoles have been poorly investigated thus
far,[36] lending further value to our findings. Interestingly, both
lead molecules contain a substructure motif falling within a
more generic scaffold (Figure 11) which has been recently pro-
posed as a minimum common bioactive substructure (MCBS)
responsible for the activity of different chemical classes of anti-
mycobacterial agents.[37]

Step 10: lead development: synthesis of new analogues of II
and III

Since Lipinski’s parameters were involved in the selection pro-
cess, both II and III were expected to be suitable for drug de-

velopment. In fact, as well as showing good anti-MTB activity,
they should also have a good pharmacokinetic profile. Further-
more, their relatively simple chemical structures led us to con-
clude that the synthesis of their analogues would be feasible.
Consequently a series of derivatives for both lead compounds
was designed and synthesized with the purpose of obtaining
compounds with improved antimycobacterial activity, and data
for a preliminary SAR analysis.

Compounds 3 and 5 were designed from II to assess the in-
fluence on anti-MTB activity of the electron-donating and elec-
tron-withdrawing capacity of small substituents. Compounds
9a and 9b were synthesized to investigate on the role of di-
verse alkyl groups at positions 2 and 5. To gain a preliminary
insight on SAR of pyrazole derivatives, a series of congeneric
compounds of III were obtained with different substituents at
both the phenyl rings and at the hydroxy group at the posi-
tion 5. The benzoyl moiety at the position 4 was also ad-
dressed: its phenyl ring was replaced by different (hetero)cyclic
moieties (11l–o), and the carbonyl group was transformed into
various substituted imino moieties (12a–k).

Chemistry. To synthesize efficiently a series of derivatives of
our lead compounds, II and III, we set up a method for the so-
lution-phase parallel synthesis of pyrrole and pyrazole ana-
logues. 2,5-Dimethylpyrroles 3a–e were synthesized using a
BOchi Syncore parallel synthesizer in a three-step parallel pro-
cedure (Scheme 1). 2,5-Hexandione was placed in five reaction
vessels and reacted with five different anilines in excess in
order to drive the reactions to completion. Once the reactions
had completed acidic solid-support scavenger (polymer-bound
p-toluenesulfonic acid) was added to remove the excess ani-
lines and pyrroles 1a–e were obtained following a simple par-
allel filtration step (>95% purity). These were then subjected
to a parallel Vilsmeier–Haack reaction with POCl3 (in DMF,
100 8C, 2 h).[38] The reactions were performed in parallel, the
solvents evaporated under vacuum, and the residues filtered
through a silica gel pad to remove polymeric side products, re-
sulting in 2a–e (yield >90%). Compounds 2a–e were submit-
ted in parallel to treatment with benzylhydroxylamine in reflux-
ing benzene and in the presence of 4 P-molecular sieves to
take the reactions to completion.[39] Acidic scavenger was then
added to remove excess amine, leading to compounds 3a–e
after simple parallel filtration (>95% purity).
2b was treated with hydroxylamine to afford 4, from which

compounds 5a–g (Scheme 2) were obtained in good yield by

Figure 10. Compound III mapped to the pharmacophoric model. HY1, HI2:
hydrophobic regions; RA1, RA2: aromatic rings; HBA: hydrogen bond
acceptor.

Figure 11. Minimum common bioactive substructure (MCBS) recently report-
ed as responsible for antimycobacterial activity. Interestingly, both pyrrole
and pyrazole derivatives identified by the computational protocol reported
herein belong to this MCBS. A: any atom; [C,N]: carbon or nitrogen atom;
NOT[S]: any atom but not sulfur.
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parallel reactions with seven different alkylating agents (chlori-
nated or brominated, RT). Compounds 3a–e, 4, and 5a–g exist
as E/Z isomers at the C=N bond. Compound 2b was chosen as
the intermediate for 5a–g since, among pyrrole derivatives,
the p-fluorophenyl group at N1 of the pyrrole ring has been
shown to be a good substituent
for antimycobacterial activity.[11]

To expand the structure–activ-
ity relationships for pyrrole de-
rivatives, we also synthesized 2-
ethyl-5-methylpyrroles
(Scheme 3). In a separated reac-
tion vessel 2,5-heptandione 6
was synthesized following a
published procedure.[40] This was
reacted with 4-fluoroaniline to
afford 2-ethyl-5-methylpyrrole 7,
that was then converted in two
steps (using the parallel proce-
dure described above) into the
two regioisomers 9a and 9b
(ratio 2:3, as revealed by HPLC
analysis). These compounds

were separated by a semi-preparative HPLC column (simple
chromatography was unsuccessful), resulting in sufficient
amounts of each to confirm their structure by 1H NMR spec-
troscopy. The 2:3 mixture was also submitted to preliminary
antimycobacterial testing.

Based on our previous experience of microwave-assisted
chemistry[41] and with the aim of decreasing reaction times, we
also investigated the possibility of performing the previous re-
actions under microwave irradiation (Scheme 4). Compounds
1a–e, 7, 3a–e, 9a–b, and 4 were obtained in only 10 min in-
stead of the 24 h (1a–e and 7) and 3 h (3a–e, 9a–b, and 4)
which are required by the normal procedure.

Analogues of the lead compound III were also synthesized
by a parallel reaction approach. Pyrazolone 10a was commer-
cially available, while pyrazolones 10b–c were prepared from
ethylacetoacetate and arylhydrazines under microwave irradia-
tion in few minutes (Scheme 5).[42] III was easily prepared from
pyrazolone 10b following a reported procedure,[43] and acyl-
pyrazolones 11a and 11e–o were similarly synthesized from

10a–c as follows. Pyrazolones
were partitioned into 12 reac-
tion vessels (10a into nine ves-
sels, 10b into one, and 10c into
two) on a BOchi Syncore parallel
synthesizer and reacted in re-
fluxing dioxane with different
acyl chlorides in the presence of
Ca(OH)2. After completion of all
reactions, dioxane was evaporat-
ed and compounds 11 were
precipitated in 3n HCl, filtered
and recrystallized from EtOH
(Scheme 6). Compounds 11a,
11g, 11h, and 11 j–o were ob-

tained from 10a ; 11e was obtained from 10b ; and 11 f and
11 i were obtained from 10c. Compounds 11b–d were pur-
chased.

The possibility of carrying out these reactions under micro-
wave irradiation was also investigated. Compounds 11a and

Scheme 1. Parallel solution-phase synthesis of pyrroles 3a–e : a) Syncore,
T=130 8C, 300 rpm, t=24 h; b) toluene, p-toluenesulfonic acid, polymer-
bound; c) POCl3/DMF (1:1), DMF, 100 8C; d) filtration through silica gel pad;
e) PhCH2ONH2·HCl, Syncore, reflux, 300 rpm, t=3 h; f) benzene, p-toluenesul-
fonic acid, polymer-bound.

Scheme 2. Parallel solution-phase synthesis of pyrroles 5a–g : a) HONH2·HCl, Syncore, reflux, 300 rpm, t=3 h;
b) benzene, p-toluenesulfonic acid, polymer-bound; c) Syncore, T=25 8C, 300 rpm, NaI, overnight.

Scheme 3. Parallel solution-phase synthesis of pyrroles 9a and 9b : a) Al2O3, 0 8C; b) H2O2, K2CO3, 0 8C; c) D, Syn-
core, toluene, T=130 8C, t=24 h; d) POCl3/DMF (1:1), DMF, 100 8C; e) PhCH2ONH2·HCl, Syncore, benzene, reflux,
3 h.
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11e–o were obtained in good yield in only 5 min, instead of
the 3 h required by the usual procedure (Scheme 6).

To enlarge the SAR for pyrazoles, we synthesized a series of
derivatives, 12a–k, where the carbonyl group of the C4 ben-
zoyl moiety was replaced by functionally distinct imino groups.
Pyrazoles 11a and 11e were partitioned into 11 reaction ves-
sels (11a into seven vessels, 11e into four) on a BOchi Syncore
parallel synthesizer and reacted in refluxing ethanol with differ-
ent primary amines in the presence of Na2SO4 (Scheme 6).
Once the reactions were finished acidic solid-support scaven-
ger (polymer-bound p-toluenesulfonic acid) was added to
remove excess amine to obtain 12a–k following a simple par-
allel filtration step (>90% purity).

The methyl pyrazolone 13 was synthesized from 11a in re-
fluxing toluene in the presence of Me2SO4 (Scheme 7) to inves-

tigate further the influence of the C5 substituent on anti-MTB
activity.

Biology

Compounds were assayed for their inhibitory activities toward
M. tuberculosis H37Rv (ATCC27294) and M. avium (ATCC19421).
The minimum inhibitory concentration (mgmL�1) was deter-
mined for each compound (Table 4).

No improvement in activity was obtained for the pyrrole de-
rivatives of II, so this group was not investigated further. How-
ever, MIC values for the pyrazoles decreased from 25 mgmL�1

(lead compound III) to 12.5 (11 f) and 6.25 mgmL�1 (11a and
11e). Owing to the small size of the pyrazole group, a struc-
ture–activity relationship analysis allowed only a few observa-
tions. Introduction of a p-chloro substituent of the benzoyl

group at the position 4 led to enhanced activity rela-
tive to the parent compound (11a, 11e, and 11 f),
but a methyl or nitro substituent was detrimental
(11h and 11b). Modifications to the phenyl ring or
the carbonyl group of the 4-benzoyl moiety led to a
decrease in activity. Several of the new compounds
were also tested for their inhibitory effect on
M. avium, though none showed an activity better
than 50 mgmL�

ACHTUNGTRENNUNG(5d).

Conclusions

A ligand-based virtual screening approach has al-
lowed the identification of compounds exhibiting in-
hibitory activity toward MTB. This activity was opti-
mized by synthesizing additional pyrazole deriva-

tives by using parallel solution-phase and microwave-assisted
synthesis approaches.

Both computational and chemical procedures were struc-
tured to optimize the efficiency of each step in terms of time
and costs. For the calculations, both the use of fast descriptors
(for generating a recursive partitioning model) and avoiding
enumeration of the LL members contributed to a reduction of
CPU demand. Searches of databases of commercially available
compounds allowed the identification of putative hits. These
were purchased and submitted to biological testing in order to
validate computational models and avoid the time-consuming
and costly step of synthesis. For the synthesis, pathways were
designed for compounds identified as “actual hits” by applica-
tion of efficient approaches (i.e. , parallel solution-phase synthe-
sis), using commercially available reagents. Reaction time has

Scheme 4. Microwave-assisted synthesis of pyrroles: a) D, MW, T=180 8C,
t=2I5 min; b) HONH2·HCl or PhCH2ONH2·HCl, MW, DMF, T=120 8C,
t=2I5 min.

Scheme 5. Microwave-assisted synthesis of pyrazolones 10b and 10c :
a) MW, T=80 8C, t=10 min.

Scheme 6. Parallel solution-phase synthesis of pyrazoles 11a,e–o and 12a–k : a) Syncore,
Ca(OH)2, dioxane, reflux, 3 h or Ca(OH)2, dioxane, MW, 5 min; b) R1�NH2, Syncore, Na2SO4,
EtOH; c) p-toluenesulfonic acid, polymer-bound.

Scheme 7. Synthesis of pyrazolone 13 : a) Me2SO4, toluene.
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been also optimized by the application of microwave-assisted
chemistry.

The results reported herein should be considered prelimina-
ry. The intention has been to describe an efficient computa-

tional protocol for the virtual identification of compounds en-
dowed with inhibitory activity toward the growth of MTB.

Both the identification of hit compounds by means of the
computational model and the optimization of their activity

Table 4. Antimycobacterial activity of compounds 3, 5, 9, and 11–13.

Compd R R1 R2 MIC [mgmL�1] MIC [mgmL�1]
M. tuberculosis M. avium

3a H H CH >100 ND
3b (II) F H CH 25 ND
3c Cl H CH 100 100
3d CH3 H CH >100 >100
3e CF3 H CH 100 >100
5a F 4-F CH 100 >100
5b F 4-Cl CH 50 >100
5c F 3-Cl CH 100 >100
5d F 4-OMe CH >100 50
5e F 4-NO2 CH >100 >100
5 f F 3-F CH >100 >100
5g F H N 25 ND
9a[a] >100 ND
9b[a] >100 ND
III Cl H H 25 ND
11a H 4-Cl H 6.25 >100
11b[b] H 4-NO2 H >100 >100
11c[b] H 2-CH3 H 50 >100
11d[b] H 3-F H 25 >100
11e Cl 4-Cl H 6.25 ND
11 f F 4-Cl H 12.5 ND
11g H H H 50 ND
11h H 4-CH3 H 50 ND
11 i F H benzoyl 25 ND
11 j H 4-CH3 p-methylbenzoyl >100 ND
11k H 4-phenyl H 50 ND
11 l H 3-piridynyl >100 ND
11m H 2-thienyl 50 ND
11n H 2-naphthyl 25 ND
11o H 2-styryl 50 ND
12a H benzyloxy >100 ND
12b H benzyl >100 ND
12c H 4-fluorobenzyl >100 ND
12d H methoxy 25 ND
12e H cyclopropyl >100 ND
12 f H propargyl >100 ND
12g H propyl >100 ND
12h Cl methoxy 25 ND
12 i Cl propyl >100 ND
12 j Cl benzyloxy >100 ND
12k Cl cyclopropyl >100 ND
13 >100 ND
isoniazid 0.2 ND

[a] These compounds were tested as a 2:3 mixture (9a/9b). Considering their inactivity toward MTB, they were separated only to obtain each in sufficient
quantity for the confirmation of structures. [b] Compounds purchased from Asinex.
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through chemical procedures have prompted us to plan the
application of this virtual screening approach to all databases
of commercially available compounds,[44] and the synthesis of
additional pyrazole derivatives to enlarge the preliminary SAR
analysis.

Glossary
classification structure–activity relationship CSAR
genetic algorithm GA
large library LL
ligand-based LB
ligand-based virtual screening LBVS
medium library ML
minimum common bioactive substructure MCBS
minimum inhibitory concentration MIC
Monte Carlo MC
multidrug resistant MDR
Mycobacterium tuberculosis MTB
number of hydrogen bond acceptors HBA
number of hydrogen bond donors HBD
on the fly optimization OTFO
principal component analysis PCA
principal components PC
recursive partitioning RP
recursive partitioning centered virtual
screening

RPCVS

simulated annealing SA
small library SL
structure–activity relationship SAR
targeted library TL
tuberculosis TB
virtual screening VS

Experimental Section

Computational details : RP analysis (descriptor computation for
learning set compounds, training set selection and RP models gen-
eration), library generation, and library design were performed by
Cerius2 software (version 4.8.1).[45] Predictions of permeability and
solubility of TL molecules were made with Volsurf (version
3.0.11).[31] The search of the Asinex database (through the pharma-
cophoric model) was performed by using Catalyst software (ver-
sion 4.8).[45] All calculations were carried out on a SGI Origin 300
server, R14000, 4I500 MHz.

Building the RP model : RP models were generated for the training
set using the following parameters:

* Type of weighting: by observation, i.e. , each compound is con-
sidered of equal importance to the model, rather than each
class;

* Splitting method: Gini Impurity, i.e. , the scoring function that
determines how groups are partitioned into statistically distinct
nodes (and consequently where to split in a growing tree) tries
to minimize the impurity of nodes resulting from the split ;

* Pruning factor: no pruning, i.e. , no pruning procedure is ap-
plied to reduce the tree depth;

* Minimum number of samples per node: 2, i.e. , each node must
contain at least two compounds;

* Maximum number of knots per split : no Knot limit, i.e. , the
maximum number of ways a descriptor range can be split
before statistical significance is evaluated is not defined;

* Maximum tree depth: 10, i.e. , the maximum number of node
splits that can yield a terminal node is 10;

* Number of cross-validation groups: 10, i.e. , 10 random groups
are used for cross-validation test.

For each model, the following statistical parameters referred to the
test set were calculated: interclass prediction (Class%ObsCorrect),
overall prediction (Overall%PredCorrect) and enrichment.

Computation of the penalty factor : The penalty factor was calcu-
lated from the 19 most active compounds of the training set
(MIC<1.5I10�3 mm). For these, 94 descriptors (the same used to
derive the RP model) were calculated and their mean values were
used to define a penalty function.[23] This function was employed
to assign a penalty to each molecule: the greater the difference
between a descriptor value of a compound and the average value
of the reference compounds, the higher the penalty value associat-
ed to the compound.

Library generation : The “large library” (LL) was generated with the
Analog Builder tool. In a benzene core, three substituents (R1, R2,
and R3) were inserted at positions 1, 2, and 4, respectively. For each
R group, a set of 173 (120 predefined + 53 biased) substituents
was defined, resulting in a combinatorial library of 173I173I
173=5177717 compounds. To reduce CPU demand the LL was
not enumerated but encoded in a small file (in rg format), used as
the input to the following computational step (the OTFO proce-
dure).

Library design : 1) Selection of the medium library (ML). Combinato-
rial selection of the ML was performed through the OTFO ap-
proach, implemented in the LibX module. The Monte Carlo algo-
rithm (the optimization method) was set to run for 10000 steps
with at least 1000 idle steps (no improvement in the optimal result
found) before stopping, with a temperature factor of 300 K. 2) Se-
lection of the small library (SL). Design of the SL was based on the
“cherry picking” method, within the conventional approach. A ge-
netic algorithm (GA) followed by a simulated annealing (SA) proce-
dure were applied as optimization methods. The initial population
for the GA consisted of 20 random individuals (each corresponding
to a subset of 5000 molecules) and the evolution was allowed to
proceed for a maximum of 3000 generations, with 100 idle genera-
tions before stopping. Parent selection was performed by selecting
the best fitting from a random selection of three individuals. For
the evolution, the probability of crossover was 20%, and the prob-
ability of mutation was 80%. The three best fitting individuals re-
sulting from GA were refined by a SA procedure (Table 5). The indi-
vidual with the best final fitness was then chosen as SL.

Table 5. Simulated annealing protocol used to generate the small library
(SL).

Cycle Steps T [8C] Idle Steps Mutations

1 5000 100 500 10
2 5000 10 500 10
3 5000 0 500 10
4 5000 0 500 5
5 5000 0 500 2
6 5000 0 500 1
7 5000 0 500 1
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Projection on pharmacokinetic models : TL Compounds were con-
verted from 2D to 3D and then subjected to energy minimization,
in order to obtain reliable three-dimensional structures (no addi-
tional analysis was performed, since Volsurf descriptors are “hardly
influenced by conformational sampling and averaging”).[46] Volsurf
descriptors were calculated starting from GRID molecular interac-
tion fields derived for water, dry and carbonyl oxygen probes.
These were used to project molecules onto two quantitative
models provided by the program: the permeability (referred to
Caco2 cells) and the solubility models.

Search within databases of commercially available compounds :
Databases (SDF format) were downloaded from the Internet in and
imported into Cerius2. The database search method involved the
computation of a set of 94 fast descriptors (the same as used to
build the RP model) for both the TL and checked databases. PCA
was then applied and molecules belonging to the two different
sets were projected onto a common descriptor space (first three
PC). The use of a large number of descriptors assured that each
molecule would be characterized unequivocally, so that two mole-
cules located in the same point of the descriptor space (i.e. , with
equal values for all 94 descriptors) are expected to be the same
molecule. On the other hand, the use of fast descriptors allowed
the searching of large databases with minimal computational time.
After projection on the space of the first three PCs, the two libra-
ries were compared using the LibCompare module, allowing the
identification of molecules with null distance between them. The
method described above was applied to each database download-
ed from the web and led to the identification of one molecule of
the TL within the Asinex database.

Database search by means of the pharmacophoric model for an-
titubercular compounds : The pharmacophoric model[7] was used
as a three-dimensional query to filter the Asinex database,
(>200000 compounds). The database was downloaded as an SDF
file and converted into a Catalyst database (i.e. , a conformational
model consisting of a maximum of 250 conformers was generated
for each compound, so as to reproduce the flexibility of the mole-
cule during the database search). The database search was then
performed using the ‘fast flexible search’ method implemented in
Catalyst, which retrieves compounds able to map the three-dimen-
sional query represented by the pharmacophoric model, and finds
the best fit among the conformers. Only molecules mapping all
the pharmacophoric features were considered as hits resulting in
the identification of about 44000 compounds.

Chemistry : Reagents were obtained from commercial suppliers
and used without further purification. Dioxane was dried over
sodium/benzophenone prior to use. Anhydrous reactions were per-
formed under a positive pressure of dry N2. Merck silica gel 60 was
used for flash chromatography (23–400 mesh). 1H NMR spectra
were measured at 200 MHz on a Bruker AC200F spectrometer.
Chemical shifts are reported relative to CDCl3 at d=7.24 ppm and
tetramethylsilane at d=0.00 ppm. BOchi Syncore polyvap was used
for parallel synthesis, filtration and evaporation.

HPLC and MS analysis: The purity of compounds was assessed by
reversed-phase liquid chromatography and a mass spectrometer
(Agilent series 1100 LC/MSD) with a UV detector at l=254 nm and
an electrospray ionization (ESI) source. All the solvents were HPLC
grade (Fluka). MS data were obtained using an Agilent 1100 LC/
MSD VL system (G1946C, 0.4 mLmin�1 flow rate, methanol/water
binary solvent (95:5)). UV detection was monitored at l=254 nm.
MS data were acquired in positive mode scanning over the mass
range of 50–1500. The following ion source parameters were used:

drying gas flow: 9 mLmin�1; nebulizing pressure: 40 psig; drying
gas temperature: 350 8C.

Microwave irradiation experiments: Microwave irradiation was con-
ducted using a CEM Discover Synthesis Unit (CEM Corp. , Matthews,
NC). The machine consists of a continuous focused microwave
power delivery system with operator-selectable power output (0 to
300W). The temperature of the contents of the vessels was moni-
tored using a calibrated infrared temperature sensor mounted
under the reaction vessel. All the experiments were performed
using the stirring option whereby the contents of the vessel are
stirred by means of rotating magnetic plate located below the
floor of the microwave cavity and a Teflon-coated magnetic stir bar
in the vessel.

Parallel synthesis of 2,5-dimethyl-1-aryl-1H-pyrroles 1a–e and 2-ethyl-
5-methyl-1-(4-fluorophenyl)-1H-pyrrole 7; general procedure: 2,5-Hex-
andione (1 mL, 8.5 mmol), divided into five vessels, and 2,5-heptan-
dione (900 mg, 7 mmol) were placed in the BOchi Syncore and dis-
solved in toluene (5 mL). The appropriate anilines (1.2 equivmol�1)
were added, and the reaction mixtures were heated (130 8C,
300 rpm, 24 h). To the cooled solutions, p-toluenesulfonic acid po-
lymer bound scavenger was added (0.4 equivmol�1) and the mix-
tures stirred (300 rpm, 2 h, RT). The reaction mixtures were filtered
in parallel with a specific filtration unit (BOchi filtration unit for R-
24, cat. no. 015695285) and the scavengers washed twice with
CH2Cl2 (10 mL). The solvents were completely evaporated in the
same apparatus. Compounds 1a–e and 7 (obtained in quantitative
yields) were identified by LC/MS analysis and proved to be pure
enough (>95%) for the following step.

Microwave-accelerated synthesis of 2,5-dimethyl-1-aryl-1H-pyrroles
1a–e and 2-ethyl-5-methyl-1-(4-fluorophenyl)-1H-pyrrole 7; general
procedure: 2,5-Hexandione (1 mmol) or 2,5-heptandione (1 mmol)
and the appropriate anilines (1.2 equivmol�1) were mixed in oven-
dried pressure vials with magnetic stir bars. The vessels were
placed in the microwave oven and heated twice (180 8C, 5 min)
under microwave irradiation. To the cooled solutions, p-toluenesul-
fonic acid polymer bound scavenger was added (0.4 equiv/mol)
and the mixtures were stirred for 2 h at room temperature. The re-
action mixtures were filtered and the scavengers were washed
twice with CH2Cl2 (10 mL). The solvent was removed under re-
duced pressure affording 1a–e and 7.

Parallel synthesis of 2,5-dimethyl-1-aryl-3-formylpyrroles 2a–e and 2-
ethyl-5-methyl-1-(4-fluorophenyl)-3-formylpyrroles 8a–b ; general pro-
cedure: Phosphorous oxychloride (6 mmol) was dropped into ice-
cooled N,N-dimethylformamide (12 mL) under stirring and an N2 at-
mosphere. The mixture was kept at room temperature (15 min),
then partitioned equally into six vessels in the BOchi Syncore. Solu-
tions of 1a–e and 7 in N,N-dimethylformamide (5 mL) were then
added to the vessels under N2 atmosphere and heated (100 8C,
300 rpm,3 h). After cooling, 30% NaOH was added to each solution
until it became alkaline, and the resulting mixture stirred (15 min,
300 rpm). CH2Cl2 (15 mL) was then added to each and the mixtures
stirred (10 min). The water layers were removed with a specific fil-
tration unit (BOchi filtration unit for R-24, cat. no. 015695285) and
the remaining organic layers were evaporated to dryness in the ap-
paratus. The solid residues were filtered through a pad of silica gel
(petroleum ether/ethyl acetate (3:1) as eluent) to remove polymer-
ic side products, affording pure compounds 2a–e and 8a–b (70–
85% yield).[47]

Parallel synthesis of 2,5-dimethyl-1-aryl-3-(benzylhydroxyamino)-
methylene-pyrroles 3a–e, 2-ethyl-5-methyl-1-(4-fluorophenyl)-3-(ben-
zylhydroxyamino)methylene-pyrrole 9a, 2-methyl-5-ethyl-1-(4-fluoro-
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phenyl)-3-(benzylhydroxyamino)methylene-pyrrole 9b, and 2,5-di-
methyl-1-(4-fluorophenyl)-3-(hydroxyamino)methylene-pyrrole 4 ; gen-
eral procedure: Compounds 2a–e and 8a–b (0.5 mmol) were
placed in the BOchi Syncore and dissolved in benzene. Activated
4 P-molecular sieves were added. Benzylhydroxylamine
(1.5 equivmol�1) or hydroxylamine hydrochloride (1.5 equivmol�1)
was then added and the reactions heated at reflux (300 rpm, 3 h).
p-toluenesulfonic acid polymer bound scavenger was added
(1 equivmol�1) to the cooled solutions and the mixtures stirred
(300 rpm, 2 h, RT). The reaction mixtures were filtered in parallel
with a specific filtration unit and the scavengers were washed
twice with CH2Cl2 (10 mL). The solvents were evaporated complete-
ly in the same apparatus. Compounds 3a–e, 4 (all in quantitative
yield) and 9a–b were identified by LC/MS analysis and proved to
be >95% pure. The final products 3a–e were further purified by
flash chromatography (petroleum ether/ethyl acetate 4:1) to afford
a >98% purity. 4 was used in the next step without further purifi-
cation, while 9a and 9b were separated by using a semiprepara-
tive Agilent ZORBAX ODS 9.4I250 mm 5-mm HPLC column (aceto-
nitrile/water 60:40) to confirm their structure.

Microwave-accelerated synthesis of 2,5-dimethyl-1-aryl-3-(benzylhy-
droxyamino)methylene-pyrroles 3a–e, 2-ethyl-5-methyl-1-(4-fluoro-
phenyl)-3-(benzylhydroxyamino)methylene-pyrrole 9a, 2-methyl-5-
ethyl-1-(4-fluorophenyl)-3-(benzylhydroxyamino)methylene-pyrrole 9b,
and 2,5-dimethyl-1-(4-fluorophenyl)-3-(hydroxyamino)methylene-pyr-
role 4 : Compounds 2a–e and 8a–b (0.2 mmol) were dissolved in
benzene in pressure vials equipped with magnetic stir bar. Benzyl-
hydroxylamine (1.5 equivmol�1) or hydroxylamine chloridrate
(1.5 equivmol�1) was added. Activated 4 P-molecular sieves were
added to the mixtures and the vessels placed in the microwave
oven and heated twice (120 8C, 5 min) under microwave irradiation.
p-toluenesulfonic acid polymer bound scavenger was added
(1 equivmol�1) to the cooled solutions, and the mixtures stirred
(2 h, RT). The reaction mixtures were filtered and the scavengers
washed twice with CH2Cl2 (10 mL). The solvent was removed under
reduced pressure affording 3a–e, 4, and 9a–b.

Parallel synthesis of 2,5-dimethyl-1-aryl-3-(arylmethylhydroxyamino)-
methylene-pyrroles 5a–g ; general procedure: Compound 4 (100 mg,
0.43 mmol), was divided into seven vessels, placed in the BOchi
Syncore and dissolved in dry THF (5 mL). NaH (2 equivmol�1) was
added and the reaction mixtures stirred (300 rpm, 1 h). The appro-
priate benzyl chloride or benzyl bromide (1 equivmol�1) and NaI
(cat.) were then added, and the resulting mixtures were stirred
overnight (300 rpm, RT). Water (5 mL) and AcOEt (5 mL) were
added and the resulting mixtures were stirred (1 h). The organic
layers were then filtered out in parallel and evaporated to dryness
to afford crude compounds 5a–g, which were purified by flash
chromatography (petroleum ether/ethyl acetate (4:1)) to afford the
final products (60–75% yield).

Microwave synthesis of 1-chlorophenyl-3-methyl-5-pyrazolone 10b
and 1-fluorophenyl-3-methyl-5-pyrazolone 10c : Ethylacetoacetate
(3 mmol), the appropriate phenylhydrazine (3 mmol) and EtOH
(5 mL) were mixed in oven-dried pressure vials equipped with
magnetic stir bars. The vessels were placed in the microwave oven
and heated (80 8C, 10 min) under microwave irradiation. The solu-
tions were cooled and ethanol evaporated under vacuum. Diethyl
ether was added and the crystals filtered. The products were puri-
fied by flash chromatography (petroleum ether/ethyl acetate (2:1))
to afford the products 10b–c.

Parallel synthesis of pyrazoles 11a–o ; general procedure: Pyrazo-
lones 10a partitioned into 12 vessels (150 mg, 0.86 mmol), 10b

(160 mg, 0.76 mmol), and 10c divided into two different vessels
(113 mg, 0.58 mmol), were placed in the BOchi Syncore and dis-
solved in dioxane (10 mL). Ca(OH)2 (2 equivmol�1) and the appro-
priate acyl chlorides (2 equivmol�1 for 11 i and 11 j, 1 equivmol�1

otherwise) were added. The reaction mixtures were refluxed
(300 rpm,3 h). The cooled solutions were completely evaporated in
under vacuum. 3n HCl was added to precipitate crude compounds
11a–o which were then filtered and recrystallized from EtOH (50–
70% yield after crystallization).

Microwave-accelerated synthesis of pyrazoles 11a–o ; general proce-
dure: Pyrazoles (1 mmol in 5 mL dioxane), Ca(OH)2 and the appro-
priate acyl chlorides (1 equivmol�1 or 2 equivmol�1), were mixed in
oven-dried pressure vials equipped with magnetic stir bars. The
vessels were placed in the microwave oven and heated (100 8C,
5 min) under microwave irradiation. After cooling, 3n HCl was
added, the solid phase removed by filtration, washed with water
and recrystallized from EtOH to afford 11a–o.

Parallel synthesis of pyrazoles 12a–k ; general procedure: Com-
pounds 11a, partitioned into seven vessels (200 mg, 0.64 mmol),
and 11e, divided into four different vessels (200 mg, 0.57 mmol),
were placed in the BOchi Syncore and dissolved in ethanol (10 mL).
Na2SO4 (1.5 equivmol�1) and the appropriate amine
(1.5 equivmol�1) were then added. The reaction mixtures were re-
fluxed (300 rpm, 4 h). p-toluenesulfonic acid polymer bound scav-
enger was added (1 equivmol�1) to the cooled solutions and the
mixtures stirred (300 rpm, 2 h, RT). The reaction mixtures were fil-
tered with a specific filtration unit and the scavengers were
washed twice with CH2Cl2 (10 mL). The solvents were evaporated
completely in the apparatus. Compounds 12a–k (all in >70%
yield) were identified by LC/MS analysis and proved to be >90%
pure. The final products 12a–k were further purified by flash chro-
matography (hexane/ethyl acetate (4:1)) yielding a purity >98%.

Synthesis of 4-(4-chlorobenzoyl)-1,2-dihydro-1-methyl-2-phenyl-3H-
pyrazol-3-one 13 : A mixture of 11a (200 mg, 0.64 mmol) and
Me2SO4 (0.18 mL, 1.92 mmol) was heated in refluxing toluene (2 h).
The mixture was then poured into water, stirred (15 min) made al-
kaline with 2n NaOH and extracted exhaustively with CH2Cl2. The
organic phases were washed twice with brine, dried (Na2SO4) and
evaporated. The residue was recrystallized from toluene to afford
pure 13.

Biological assays : Compounds: Initial stock solutions of each com-
pound and isoniazid (INH; Sigma Chemicals, St. Louis, MO, USA),
employed as reference drug, were made in DMSO at 10 or
20 mgmL�1 and stored at �20 8C. Further dilutions were made in
Middlebrook 7H9 broth (Difco Laboratories, Detroit, MI, USA). To
avoid interference by the solvent, the highest DMSO concentration
was 0.5%.[48]

Mycobacterial strains: M. tuberculosis H37Rv (ATCC27294) and
M. avium (ATCC19421) were used in this study. These were main-
tained on Lçwenstein–Jensen (bioMXrieux, Marcy l’Ytoile, France)
agar slants until needed.

Antimicrobial susceptibility testing: MIC values were determined by
a standard twofold agar dilution method.[49] Middlebrook 7H11
agar (1 mL, Difco Laboratories) supplemented with 10% oleic acid–
albumin–dextrose–catalase (OADC) enrichment (Difco Laboratories)
containing the testing compound, or INH, in 24-multiwell plates at
concentrations between 0.09 and 100 mgmL�1, was inoculated
with 10 mL of a suspension containing M. tuberculosis H37Rv 1.5I
105 cfumL�1 obtained as described below. Final inoculum was 1.5I
103 per well. Plates were incubated for 28 days, and MIC values

ChemMedChem 2006, 1, 973 – 989 A 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemmedchem.org 987

Identification and Synthesis of M. tuberculosis Inhibitors

www.chemmedchem.org


were read as minimal concentrations of compound completely in-
hibiting visible growth of mycobacteria.

Inoculum preparation: Suspension of M. tuberculosis to be used for
antimicrobial susceptibility testing was prepared by inoculating the
organism grown on Lçwenstein-Jensen slants in tubes containing
7H9 broth supplemented with 10% albumin-dextrose-catalase
(ADC) enrichment (Difco Laboratories) and Tween-80 (0.05% v/v).
The suspension was incubated aerobically (14 days). The cells were
then washed, suspended in 7H9 broth, shaken, and sonicated in an
ultrasonicator until visible clumps were disrupted (typically 15–
30 s). The suspension was then diluted in 7H9 broth to a turbidity
of 1 McFarland and finally diluted in the same medium to 1.5I
105 cfumL�1.
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