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Introduction

The QT interval of the electrocardiogram (ECG) is a widely used
measure of the ventricular repolarization process. The prolon-
gation of the QT interval is associated with an increased risk of
torsades de pointes (TdP). Once considered a trivial physiologi-
cal finding, drug-induced long QT syndrome has been identi-
fied as a critical side effect of non-cardiovascular drugs and
has caused the withdrawal of many drugs from the market.[2]

Further investigation has placed focus upon a voltage-depen-
dent potassium ion channel, encoded by the hERG (the human
ether-,-go-go-related gene),[3] as almost all cases of drug-in-
duced QT prolongation can be traced to the blockade of hERG.
As drug-induced QT prolongation increases the likelihood of
TdP, which may cause sudden death, the current regulatory
guidelines scrutinize all hERG blockers to determine whether
they cause QT prolongation.[4] Furthermore, unlike other ion
channels that interact only with structurally specific ligands,
the hERG potassium ion channel can be blocked by a broad
spectrum of structurally diverse drugs. Therefore, removal of
potential hERG blockers from the drug-discovery pipeline is an
important issue for projects across all therapeutic areas.[5] To in-
clude hERG information on a compound early in the decision-
making process, many in vitro and in silico methods have been
developed to estimate hERG activity.[6] If hERG blockers can be
identified at the early stages of drug development, the focus
of research resources may be directed to druglike compounds
without potential hERG liability.
Structural approaches to hERG blockade include the efforts

to understand molecular recognition from both the protein
side, by solving crystal structures of potassium ion channels or

constructing homology models, and the ligand side, through
pharmacophore models and QSAR (quantitative structure–ac-
tivity relationship) models. Several crystal structures of potassi-
um ion channels have been solved recently, covering voltage-
gated, calcium-gated, and families of inwardly rectifying potas-
sium channels.[7–10] These structures brought us closer to fully
understanding potassium ion channel function, but did not
shed much light upon the puzzle of why the hERG channel
can accept molecules of all different chemotypes. Some key
residues involved in the binding of hERG blockers have been
identified through mutagenesis approaches and homology
modeling.[11–13] Homology models constructed from the closed-
state crystal structure of a K+ channel from Streptomyces livi-
dans (KcsA) clearly revealed a ligand-binding site that is too
small to accommodate some of the known hERG blockers.
More recently, Reynolds and co-workers developed multiple
homology models of the hERG potassium ion channel on the
basis of both the closed-state structure of KcsA and the
opened-state structure of a K+ channel from Methanobacteri-
um thermoautotrophicum (MthK), attempting to address the
flexibility of the hERG channel.[14] The opened state represent-
ed a bigger cavity through a bending of the S6 helix at the
GLY hinge.
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Drug-induced QT interval prolongation has been identified as a
critical side-effect of non-cardiovascular therapeutic agents and
has resulted in the withdrawal of many drugs from the market.
As almost all cases of drug-induced QT prolongation can be
traced to the blockade of a voltage-dependent potassium ion
channel encoded by the hERG (the human ether-<-go-go-related
gene), early identification of potential hERG channel blockers will
decrease the risk of cardiotoxicity-induced attritions in the later
and more expensive development stage. Presented herein is a
naive Bayes classifier to categorize hERG blockers into active and
inactive classes, by using a universal, generic molecular descrip-
tor system.[1] The naive Bayes classifier was built from a training

set containing 1979 corporate compounds, and exhibited an ROC
accuracy of 0.87. The model was validated on an external test
set of 66 drugs, of which 58 were correctly classified. The cumula-
tive probabilities reflected the confidence of prediction and were
proven useful for the identification of hERG blockers. Relative per-
formance was compared for two classifiers constructed from
either an atom-type-based molecular descriptor or the long
range functional class fingerprint descriptor FCFP_6. The combi-
nation of an atom-typing descriptor and the naive Bayes classifi-
cation technique enables the interpretation of the resulting
model, which offers extra information for the design of com-
pounds free of undesirable hERG activity.
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Pharmacophore models proposed to date are quite similar.
Cavalli et al. derived a four-point pharmacophore model, with
one basic nitrogen atom surrounded by three aromatic moiet-
ies, based on the analysis of 31 QT-prolonging drugs.[15] Al-
though the model gave a reasonable prediction for six drugs
in a validation set, pharmacophore models, in general, per-
formed well only on analogues structurally similar to those in
the training set, which limits their application to the problems
involving structurally diverse hERG blockers. The “general hERG
pharmacophore model” developed by Ekins and co-workers
was generated by using 15 compounds selected from the liter-
ature that consisted of four hydrophobes and one positive
charge.[16] Again, the model was not general enough to be ap-
plicable to different compound series. Alternatively, a compara-
tive molecular similarity analysis (CoMSiA) was performed by
Pearlstein and co-workers for a data set containing 22 sertin-
dole analogues and 10 structurally diverse hERG inhibitors.[17]

Their CoMSiA and homology models revealed some detailed
intermolecular interactions between hERG blockers and the ion
channel. Roche et al. applied various techniques, including
substructure analysis, self-organizing maps (SOM), principal
component analysis (PCA), partial least squares regression
(PLS), and supervised artificial neural network (ANN) to model
hERG activities of 472 druglike compounds.[18] The ANN model
correctly classified 93% of the hERG-inactive agents and 71%
of the hERG channel blockers in a 95-compound test set.
KeserH and co-workers collected 68 druglike compounds from
Roche’s data set and Fenichel’s list,[19] and both 5-parameter
traditional QSAR and 6-component hologram QSAR (HQSAR)
models gave reasonable predictions of the whole data set.[20]

Judging from the fact that the hERG channel can accommo-
date a wide spectrum of structurally diverse compounds, hERG
blockade might be a multiple mechanism problem. Even
though it has been widely accepted that hERG blockers inter-
act directly with the transmembrane domain of the channel, as
supported by mutagenesis evidence, there is yet no observa-
tion which can exclude the involvement of the PAS domain at
the N terminus of the channel in interactions with hERG block-
ers. Multiple mechanisms make it challenging to construct a
global model for the prediction of hERG activity, but data-
driven QSAR modeling simplifies the problem by projecting
from the problem domain to the chemical domain, avoiding
the need to invoke specific mechanisms.[21] For an attempt at
this kind of global model, the availability of a large and struc-
turally diverse training set is a preliminary requirement. In the
study reported herein, a large corporate data set was em-
ployed for construction of the hERG classification model.

Methods

Data sets

The training set consisted of 1979 compounds from Roche cor-
porate compound library with measured hERG activities. The
compounds were selected from more than 30 projects to maxi-
mize the structural diversity. The average Tanimoto distance[22]

of the training set was computed to be 0.233, with the pair-

wise Tanimoto distances ranging from 0.013 to 0.989. As
shown in Figure 1, the distributions of molecular weight, calcu-
lated logP, and the counts of hydrogen-bond donors and ac-
ceptors illustrate that the compounds in the training data set
aligned well with the chemical space of druglike compounds.
To measure hERG activity, Chinese hamster ovary (CHO) cells
stably expressing the hERG cardiac potassium channel were
used. Standard whole-cell patch-clamp electrophysiology was
performed to record hERG channel currents from these cells at
35–37 8C. Cells were held at a resting voltage of �80 mV and
then stimulated by a voltage pattern to activate hERG channels
and conduct IKhERG current (both inward and outward). After
the fibers stabilized for a few minutes, the amplitude and ki-
netics of IKhERG were recorded at a stimulation frequency of
0.1 Hz. The test compounds were added to the cells in ascend-
ing concentrations, and apparent IC50 values for hERG channel
inhibition were calculated.
The test set used in this study comprised 66 drugs reported

in the paper by KeserH after removing the two duplicate com-
pounds A-56268 and Hismanal.[20] All IC50 values for the inhibi-
tion of hERG potassium ion channels were measured under ex-
perimental conditions similar to those of the training set.
Like many other toxicity endpoints, a qualitative description

of the hERG activity of a compound is often sufficient for deci-
sion-making. In the laboratory, more accurate measurement
generally requires more time and greater compound supply,
which significantly slows down the process. On the other
hand, in silico models based on qualitative data are more toler-
ant of uncertainty in the training data. In this study, com-
pounds were classified into hERG positives and negatives ac-
cording to their hERG activities or IC50 values. The overriding
question is at which IC50 value a compound is considered free
of hERG liability. There exists no universal answer to this ques-
tion. Considering the possibility of accidental overdose, a com-
pound is considered safe if its hERG activity, as measured by
IC50, is at least 10- to 30-fold higher than the anticipated
plasma or tissue concentration necessary for its therapeutic ac-
tivity.[5] Assuming the required plasma concentration of a mod-
erately potent drug to be 1 mm, the threshold for hERG safety

Figure 1. Histograms of the molecular properties of the 1979 compounds in
the training set: a) calculated logP, b) molecular weight, c) hydrogen-bond
acceptors (HBA), and d) hydrogen-bond donors (HBD).
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should be set at 30 mm. Although there are compounds with
IC50 values of over 30 mm that are cardiotoxic, most com-
pounds that reach this threshold have been found to be
safe.[20,23] With 30 mm as the cutoff activity, 307 compounds in
the training set were set as hERG negative, the rest as positive.

Atom-type classification

The typing of an atom, assigned according to its own chemical
properties and the neighboring atoms and bonds, is not only
straightforward but interpretable. As described in a previous
paper,[1] atom types were assigned to each atom through a
classification tree. The key steps towards an accurate classifica-
tion tree are to determine where to split and where to stop
splitting the tree. To make sure each atom type can reasonably
reflect its chemical environment, the classification tree was
trained by optimizing the logP predictions of the compounds
in Starlist. Starlist is a high-quality data set, which contains
nearly 11000 structurally diverse compounds. The optimized
atom types have been proven applicable to deriving models
for the prediction of different molecular properties.[1,24] Details
on the method of atom-type classification were described in
reference [1].

Naive Bayes classifier

The theory of naive Bayes classification has been described in
detail in a previous paper,[24] thus, only some key points are
summarized herein. Using atom types as molecular descriptors,
each molecule can be represented as a vector a= ha1, a2, …,
ani, for which a1, a2, …, an are the occurrences of the atom
types A1, A2, …, An. The probability of a new compound be-
longing to a certain class C, say being hERG positive, can be
expressed as P(C=++jA1=0, A2=0, …, Ai=1, …, Aj=1, …, An=

0), in which Ai�Aj corresponds to the atom types of the com-
pound.
According to Bayes’ theorem,[25]

PðþjA1;A2; . . . ;An:Þ ¼
PðA1;A2; . . . ;AnjþÞPðþÞ

PðA1;A2; . . . ;AnÞ
ð1Þ

The three probabilities on the right side of Equation [1] can
be learned from a training set that contains a number of com-
pounds with known hERG activities. The prior probability P(+)
is simply the percentage of positive compounds in the training
set, whereas the marginal probability P(A1, A2, …, An) can be ig-
nored, as it is the same to all classes. Therefore, the problem is
simplified to estimating P(A1, A2, …, An j+).
By using Bayes’ theorem recursively and assuming that each

atom type is conditionally independent of every other atom
type, we get Equation [2].

PðA1;A2; . . . ;AnjþÞ ¼
Yn
i¼1

PðAi ¼ aijþÞ ð2Þ

This is a key decoupling step in which the molecule ex-
pressed as a vector of atom types in the conditional probabili-

ty is broken down to individual atoms on the right side of the
equation. Now each factor in the product can be easily esti-
mated from a training set:

PðAi ¼ aijþÞ ¼ countðAi ¼ ai \ C ¼ þÞ
countðC ¼ þÞ ð3Þ

The marginal probability can be cancelled out by simple
mathematical operation. Let p�=P(C=�) and p+ =P(C=++), let
pi�=P(Ai=aijC=�) and pi+ =P(Ai=aijC=++), then

p ¼ PðC ¼ þ A1 ¼ a1;j A2 ¼ a2; . . . ;An ¼ anÞ ¼
Yn
i¼1

piþ

 !
pþ
z

ð4Þ

and

q ¼ PðC ¼ � A1 ¼ a1;j A2 ¼ a2; . . . ;An ¼ anÞ ¼
Yn
i¼1

pi�

 !
p�
z

ð5Þ

for which z is marginal probability, a constant. As p+q=1,
then

log
p
q
¼ log

p
1� p

¼
Xn
i¼1

ðlog piþ � log pi�Þþðlog pþ � log p�Þ

ð6Þ

Here, marginal probability is cancelled, and p can be evaluat-
ed by exponentiating both sides and rearranging the terms.
There are only a couple of practical issues remaining to be

addressed: zero counts and missing values. Zero counts were
generally overcome by using Laplace correction. For a 2-class
problem, the Laplace corrected P(Ai=aijC=++) could be ex-
pressed (count(Ai=aijC=++) + 0.5)/(count(C=++) +1.0), as
adopted by the program Pipeline Pilot.[26] Missing atom types
are ignored to avoid introducing unproven information.
SciTegic’s Pipeline Pilot (version 3.0) was used to perform

the naive Bayes classification.[26]

Results and Discussion

Atom-type classification

After being trained by logP,[1] 218 atom types were identified
by the atom-type classification tree. Twenty seven correction
factors introduced in this study were the same as those used
in reference [1]. Finally, a 246R1979 matrix in which the last
column is hERG activity membership (positive/negative) was
prepared as the input for naive Bayes analysis.

Naive Bayes classifier

The activities of hERG were classified into two classes: hERG-
positive compounds with pIC50 values greater than 4.52, and
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hERG-negative compounds with pIC50 values less than or equal
to 4.52. By setting the less populated hERG-negative com-
pounds (15.5%) as “good” samples and the highly populated
hERG-positive compounds as “background”, the classifier de-
rived from the 1979-compound training set gave a model with
receiver operating characteristic (ROC) accuracy of 0.87.
Figure 2 depicts the enrichment plot and ROC plot of the
model. The enrichment plot illustrates how fast all the hERG-
negative compounds could be identified if the compounds
were resorted according to the model. An enrichment curve
close to the perfect model is a good indication of the high pri-
oritization power of the model. In this model, 50% of hERG-
negative compounds would be found if only 12% of the com-
pounds were tested, compared with 7.75% of a perfect model
and 50% of a random model.
Although the naive Bayes classifier is known to be optimal

when attributes are independent given the class, it has been il-
lustrated from the analysis of a large amount of both artificial
and real-world data that naive Bayes classifiers performed sur-
prisingly well, even when the independence assumption was
seriously violated.[27] It has also been proven that the probabili-
ty estimates of the naive Bayes classifier were only optimal
under quadratic loss if the independence assumption held,
whereas the classifier itself could be optimal under zero–one

loss even when this assumption was violated by a wide
margin.[24,27–30] In practice, the naive Bayes classifier has been
demonstrated to outperform other sophisticated classifiers in
text characterization and anti-spam filtering, and has recently
started to be applied in drug discovery.[31–33] In this study, a tra-
ditional naive Bayes classification was carried out, in which
each atom type contributed equally and objectively in deter-
mining the final class membership of a compound. The high
ROC accuracy and enrichment performance indicated that
highly correlated atom-type descriptors did not have a clear
negative impact on the performance of the classifier.
The way that the naive Bayes classifier treated the occur-

rence of an atom type in a molecule was qualitative. In other
words, an atom type occurring three times in a molecule was
a subfeature, and the same atom type occurring six times was
another independent sub-feature; therefore, three and six lost
their numerical meanings. This qualitative treatment of atom
types reflected the real situation implied by atom typing, but
resulted in more missing values. As missing value means miss-
ing information in prediction, a good model is always based
on a large and structurally diverse training set with minimal
negative effect of missing values. Not surprisingly, a naive
Bayes classifier tends to give better prediction to the com-
pounds similar to those in the training set, owing to the mini-
mized missing value effect.

Validation of the model

To validate its predictive performance, the model was applied
to predict an independent external data set. Table 1 lists the
calculated cumulative possibilities of the 66 compounds in the
test set, together with their experimentally determined hERG
activities and class membership. It turned out that 58 out of
66 drugs, or 87.9%, in the test set were correctly classified ac-
cording to their cumulative probabilities. Encouragingly, the 41
most hERG-active drugs with IC50<5 mm were all correctly pre-
dicted by the model. Table 1 was sorted according to the cu-
mulative probabilities, which could be considered as the confi-
dence level of predictions. The first 43 drugs, most likely to be
hERG positive based on prediction, were all shown to be hERG
positive by the assay. Similarly, if only the last one-third of the
drugs were to be selected for further development, the set
would include all the hERG-negative drugs, except cetirizine,
with an IC50 value of 30 mm, which is exactly the cutoff concen-
tration. Further inspection of the eight misclassified drugs indi-
cated that their measured activities, expressed as the pIC50
values, were mostly between 4.0 and 5.0, except Nicotine
(3.61) and MDL-74156 (5.23). In other words, the hERG activi-
ties of these six misclassified drugs were within a threefold dif-
ference from the cutoff activity of 30 mm. Even the most so-
phisticated hERG assay system cannot guarantee to control
the experimental error within a threefold scale; thus, in this
sense, the model was very predictive. Misclassification of nico-
tine might be a result of its low molecular weight of 162.26, as
there were very few compounds in the training set that had a
molecular weight less than 200 (Figure 1). It became clear by
investigation of the ligand-binding site of the hERG potassium

Figure 2. a) Enrichment and b) ROC plots of the atom-typing model for the
1979-compound training set.
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ion channel and the published
pharmacophore models that
small molecules like nicotine
were too small to bind tightly
to the channel. MDL-74156 was
a close analogue of another
misclassified drug dolasetron,
and both contained a rarely oc-
curring fused ring system, as
shown in Figure 3, which was
not well represented by the
training set. Both drugs were
weak hERG blockers, but mis-
classified as hERG negative.

Comparison with fingerprint
descriptors

As an unsupervised learner,
naive Bayes classifier has no fit-
ting process and no tuning pa-
rameters, making it an appropri-
ate algorithm for comparing the
effectiveness of different molec-
ular descriptor systems. As
FCFP_6 is a well-known finger-
print type molecular descriptor
system supplied by Pipeline
Pilot, it is interesting to com-
pare the performance of rela-
tively low-dimensional atom-
type-based descriptors to that
of fingerprint-based descriptors

Table 1. Cumulative possibilities of the 66 compounds in the test set computed from the atom-typing model
together with their experimentally determined hERG activities and class membership (sorted according to
prediction).

ID Name pIC50 Class Prediction ID Name pIC50 Class Prediction

46 quinidine 6.49 P �11.4969 19 diphenhydramine 4.57 P �4.1074
53 thioridazine 6.44 P �10.8210 43 ondansetron 6.09 P �4.0533
34 mesoridazine 6.49 P �10.6060 33 loratadine 6.77 P �4.0385
14 clozapine 6.49 P �10.1042 5 azimilide 5.85 P �3.9157
3 amitriptyline 5.00 P �9.5267 60 flecainide 5.41 P �3.7638
58 desmethylastemizole 9.00 P �9.1441 49 sildenafil 5.48 P �3.2451
51 terfenadine 6.70 P �9.0785 2 amiodarone 5.00 P �3.2033
10 chlorpromazine 5.83 P �8.3113 7 carvedilol 4.98 P �3.0620
27 halofantrine 6.70 P �8.3030 9 chlorpheniramine 4.68 P �2.8490
28 haloperidol 7.52 P �8.2536 31 ketoconazole 5.72 P �2.8310
52 terikalant 6.60 P �7.9100 8 cetirizine 4.52 N �2.7321
67 RP-58866 6.70 P �7.9100 24 epinastine 4.00 N �2.5712
41 norclozapine 5.35 P �7.7977 55 vesnarinone 5.96 P �2.3463
66 olanzapine 6.74 P �7.7080 29 ibutilide 8.00 P �2.2196
59 droperidol 7.49 P �7.5467 38 nicotine 3.61 N �1.9022
61 fluoxetine 5.82 P �7.5254 1 alosetron 5.49 P �1.3344
57 citalopram 5.40 P �7.5125 44 perhexiline 5.11 P �1.3179
16 ziprasidone 6.92 P �7.3375 15 cocaine 5.14 P �0.5110
4 astemizole 8.00 P �7.0462 20 disopyramide 4.04 N �0.3536
30 imipramine 5.47 P �7.0289 18 diltiazem 4.76 P �0.0886
64 mefloquine 5.25 P �6.9943 63 MDL-74156 5.23 P 2.7902
17 desipramine 5.86 P �6.8341 11 ciprofloxacin 3.02 N 3.0836
6 bepridil 6.26 P �6.2496 40 nitrendipine 5.00 P 3.1676
54 verapamil 6.85 P �6.1638 42 ofloxacin 2.85 N 3.4216
35 mibefradil 5.84 P �6.0297 32 levofloxacin 3.04 N 3.4216
65 norastemizole 7.55 P �5.7983 68 trimethoprim 3.62 N 3.5334
45 pimozide 7.30 P �5.7970 22 dolasetron 4.92 P 4.5953
23 E4031 7.70 P �5.6031 26 grepafloxacin 4.30 N 4.7111
21 dofetilide 8.00 P �5.4991 37 moxifloxacin 3.89 N 4.9413
48 sertindole 8.00 P �4.9358 39 nifedipine 4.30 N 5.1602
36 mizolastine 6.36 P �4.8675 25 gatifloxacin 3.89 N 5.3897
47 risperidone 6.82 P �4.3696 50 sparfloxacin 4.74 P 5.8530
12 cisapride 7.40 P �4.2547 13 clarithromycin 4.23 N 15.6526

Figure 3. Structures of the eight misclassified drugs in the test set.
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of high dimension. The classifier built from FCFP_6, together
with other physicochemical properties, including AlogP, molec-
ular weight, number of hydrogen-bond donors and acceptors,
and number of rotatable bonds, gave an excellent ROC accura-
cy of 0.93, which was significantly better than the atom-typing
model (Figure 4). However, the predictive power of both
models was similar, as evaluated from the success rate of pre-
dicting the hERG activities of the 66-compound testing set. In-
terestingly, six drugs were misclassified by both classifiers,
namely cetirizine, nicotine, disopyramide, epinastine, nitrendi-
pine, and sparfloxacin (Table 2). FCFP_6 model correctly pre-
dicted the pair of the similar analogues of dolasetron and
MDL-74156, but failed to categorize sildenafil.

Model interpretation

A major difference between the two descriptor systems men-
tioned above is the model interpretability. Although they carry
more specific structural information, high-dimensional finger-
print-based molecular descriptors tend to lose the interpreta-
tion of chemical features. In contrast, atom-type-based descrip-
tors are capable of extracting fragmental information under-

standable to chemists. The assignment of a particular atom
type depends on not only its own properties, but also its
neighborhood environment; therefore, atom types often im-
plicitly carry fragmental information. On the other hand, atom
typing does not explicitly predefine any fragments, and this
decreases the possibility of introducing bias at the beginning
of the model construction and enables learners to identify
structural features that are not well-defined by usual frag-
ments.
The discriminating power of an atom type is determined by

at least two factors, namely the uneven occurrence of the
atom type across different classes and its total occurrence in a
training set. Table 3 lists the most important atom types and
correction factors in terms of discerning power. Accordingly,
acidic groups abolish hERG activity, whereas basic groups such
as piperidines and piperazines are warning signals for hERG lia-
bility. All 11 amino acids (M7), which were not close analogues,
were hERG negative. Similarly, 25 out of 28 acids containing an
acidic oxygen atom O6 were hERG negative. The observation
that acidic groups abolish hERG activity was successfully ap-
plied to remove hERG affinity from the drug terfenadine and
resulted in a close analogue fexofenadine which was hERG-
free.[34] Many pharmacophore models suggested that a posi-
tive-charge center was essential for hERG affinity of a com-
pound,[6] which might be true for hERG blockers effective in
the nm range, but hardly held for mm-range hERG inhibitors. Pi-
peridine and piperizine are the most frequently used functional
groups to introduce a positive-charge center to a molecule.
Indeed, only 24 out of 522 compounds containing one N16
atom, a charged aliphatic cyclic nitrogen, were hERG negative;
within 38 compounds carrying two or three N16 atoms, only
one was hERG negative. However, neutral nitrogen atoms in
an aliphatic ring also played an important role in affecting the
hERG activity of a compound. N15, an aliphatic cyclic nitrogen
atom next to a carbonyl group, appeared in 61 compounds in
the training set, but only one of these was hERG negative.
The number of aromatic rings seemed to be a good predic-

tor of hERG activity. Ninety-four compounds had less than
three unsubstituted aromatic carbon atoms (C3), 49 of which
were hERG negative, whereas only two out of 32 compounds
with more than 13 C3 atoms fell into the same category. All 43
compounds with four C4 atoms, implying two biphenyl groups
in a molecule, were hERG positive. Another atom type with
strong discerning power was C68, a carboxylic carbon atom at-
tached to any aromatic atom. Fifty out of 77 compounds con-
taining C68 were hERG negative, a ratio that was significantly
higher than 15.5% hERG negatives in the whole training set.
C7, an aromatic carbonyl carbon atom, appeared in seven
compounds, six of which were hERG negative. There were 200
compounds in the training set carrying one C55 atom, a terti-
ary carbon atom bonded to an aromatic ring; only 13 of these
compounds were hERG negative. Thirty-one compounds con-
taining two C55 atoms were all hERG positive. The observation
implied that compounds which branched immediately after an
aromatic ring tended to be hERG blockers.
Like other machine learning methods, the naive Bayes classi-

fier cannot learn anything beyond the training data set. As

Figure 4. a) Enrichment and b) ROC plots of the FCFP_6 model for the 1979-
compound training set.
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training sets are not perfect, the resulting classifiers can only
be as good as the training sets. As a result, one needs to be
very cautious in drawing any conclusion from analysis of the
statistics table to avoid over-interpretation. For example, all 34

compounds in the training set
with exactly three N3, an aro-
matic nitrogen atom next to an-
other aromatic nitrogen atom,
were hERG positive, but there
was still no evidence showing
that triazole-containing com-
pounds were all hERG blockers.
Traditional naive Bayes clas-

sification, as applied in this
study, is very objective, in which
each atom type contributed
equally to the determination of
the membership of a new com-
pound and missing values were
ignored. There are at least two
modifications which might
result in an improved model.
1. If the contributions of differ-
ent atom types were weighted
to optimize the prediction of
the training set, a better model
would be reached. However, in-
troduction of extra variables will
inevitably decrease the predic-
tive power of the model. 2. In-
stead of ignoring missing
values, using the adjusted prob-
ability of its closest neighbors
could minimize information
loss.

Conclusion

The application of a universal
molecular descriptor system has
been extended to the field of
hERG activity prediction. The
naive Bayes classifier built from
a training set containing 1979
corporate compounds was pre-
dictive with an ROC accuracy of
0.87. In the external validation
test, the classifier correctly cate-
gorized 87.9% of a 66-drug test-
ing set, whereas the cumulative
probabilities were useful in se-
lecting the compounds with
high hERG activities. Model in-
terpretation through a statistics
table identified the specific
atom types and fragments that
contribute most significantly to

hERG affinities. This information can be used as a guideline for
the rational design of compounds free of hERG liability.

Table 2. Cumulative possibilities of the 66 compounds in the test set computed from the FCFP_6 model
together with their experimentally determined hERG activities.

ID pIC50 Name Prediction ID pIC50 Name Prediction

1 5.49 alosetron �8.1128 34 6.49 mesoridazine �20.2439
2 5.00 amiodarone �17.2389 35 5.84 mibefradil �15.0664
3 5.00 amitriptyline �10.4950 36 6.36 mizolastine �13.3043
4 8.00 astemizole �27.0853 37 3.89 moxifloxacin 34.0105
5 5.85 azimilide �16.6013 38 3.61 nicotine �5.1061
6 6.26 bepridil �17.4115 39 4.30 nifedipine 13.2423
7 4.98 carvedilol �8.2639 40 5.00 nitrendipine 11.9937
8 4.52 cetirizine �11.3888 41 5.35 norclozapine �11.2082
9 4.68 chlorpheniramine �9.7790 42 2.85 ofloxacin 24.8823
10 5.83 chlorpromazine �14.4107 43 6.09 ondansetron �15.1415
11 3.02 ciprofloxacin 18.2765 44 5.11 perhexiline �2.8562
12 7.40 cisapride �19.3406 45 7.30 pimozide �31.0103
13 4.23 clarithromycin 60.0559 46 6.49 quinidine �18.1679
14 6.49 clozapine �18.4460 47 6.82 risperidone �14.4783
15 5.14 cocaine �5.9731 48 8.00 sertindole �30.5150
16 6.92 ziprasidone �18.5950 49 5.48 sildenafil 6.5217
17 5.86 desipramine �5.3075 50 4.74 sparfloxacin 14.9438
18 4.76 diltiazem �6.8601 51 6.70 terfenadine �16.0668
19 4.57 diphenhydramine �10.3002 52 6.60 terikalant �12.3389
20 4.04 disopyramide �3.1246 53 6.44 thioridazine �19.0038
21 8.00 dofetilide �11.9990 54 6.85 verapamil �11.4427
22 4.92 dolasetron �11.5793 55 5.96 vesnarinone �21.0527
23 7.70 E4031 �14.2971 57 5.40 citalopram �15.1844
24 4.00 epinastine �2.0248 58 9.00 desmethylastemizole �34.5987
25 3.89 gatifloxacin 32.2819 59 7.49 droperidol �28.4837
26 4.30 grepafloxacin 24.8195 60 5.41 flecainide �8.7831
27 6.70 halofantrine �21.9482 61 5.82 fluoxetine �19.1338
28 7.52 haloperidol �29.1959 63 5.23 MDL-74156 �11.8898
29 8.00 ibutilide �11.2523 64 5.25 mefloquine �7.1699
30 5.47 imipramine �12.5002 65 7.55 norastemizole �10.9182
31 5.72 ketoconazole �8.4830 66 6.74 olanzapine �17.3489
32 3.04 levofloxacin 24.8823 67 6.70 RP-58866 �12.3389
33 6.77 loratadine �6.6196 68 3.62 trimethoprim 10.7152

Table 3. The atom types and correction factors showing strong discerning power.

Atom
Type[a]

Occurrence
in Molecule

Normalized
Probability

Feature
Count[b]

Subset
Count[c]

Atom
Type

Occurrence
in Molecule

Normalized
Probability

Feature
Count[b]

Subset
Count[c]

O6 1 1.582 28 25 C2 4 �1.449 21 0
M7 1 1.489 11 11 N30 1 �1.422 47 1
M8 1 1.424 82 56 N9 2 �1.373 19 0
M2 2 1.379 65 43 C46 5 �1.333 18 0
C68 1 1.371 77 50 F5 1 �1.307 65 2
C7 1 1.211 7 6 M3 6 �1.293 64 2
C3 0, 1 1.210 32 19 F2 6 �1.293 64 2
O3 2 1.206 9 7 M4 2 �1.291 17 0
C4 4 �2.037 43 0 C18 2 �1.249 61 2
N3 3 �1.836 34 0 C70 1 �1.248 16 0
C55 2 �1.759 31 0 N4 2 �1.238 38 1
N15 1 �1.625 59 1 N16 2 �1.215 37 1
C71 1 �1.485 22 0 C58 1 �1.202 15 0

[a] The definition of atom types and correction factors is the same as in reference [1] . [b] Feature count repre-
sents the number of molecules in the training set with the indicated feature. [c] Subset count is the number of
hERG-negative compounds with the same feature.
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