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Introduction

Prolonged QT intervals, which correspond to the action poten-
tial duration of the surface electrocardiogram (ECG), can lead
to ventricular tachyarrhythmias generally referred to as tor-
sades de pointes (TdP), that can degenerate into ventricular fi-
brillation and sudden death.[1] Consequently, several non-anti-
arrhythmic drugs such as sertindole (antipsychotic), terfenadine
(antihistaminic), and cisapride (prokinetic agent) have recently
received “black box” warnings or have been withdrawn from
the market following reports of QT interval prolongation.
Moreover, the number of reports of TdP and QT interval pro-
longation continues to increase, leading to a major pharmaco-
logical safety concern for the pharmaceutical industry and
health regulatory agencies.[2] Novel chemical compounds with
this cardiotoxic side effect should therefore be identified as
early as possible in the drug-discovery process to limit cost
and save time in development.
The hERG K+ channel (Kv11.1), which gives rise to the rapid

component of the delayed rectifier K+-channel current (IKr), is
involved in normal cardiac repolarization and has become the
focus of many studies, as most of the QT-prolonging drugs
have been shown to inhibit IKr.

[2,3] In addition, other drug char-
acteristics can cause QT interval prolongation such as bioavail-
ability at the target organ, metabolic issues, or the involve-
ment of other ion channels.[4] Although diverse functional in vi-
tro assays have been developed to identify potential hERG in-
hibitors, patch-clamp electrophysiology is the most highly sen-
sitive technique available but it is throughput-limited and
expensive.
The possibility of using in silico screening to predict hERG af-

finity in the early phase of the drug-discovery process would
provide cost-effective screening tools that can be used in asso-
ciation with other in vitro assays. Recently, several predictive
models have been proposed, and some have been successful

in gaining insight into the molecular basis of hERG channel
blockage, and in the prediction of the QT-prolonging potential
for a large number of compounds.[2,3,5] Computational ap-
proaches include both structure- and ligand-based meth-
ods.[6–14] The latter methods include traditional and hologram
QSAR[11] studies, pharmacophore modeling,[12] and neural net-
work systems.[13] Moreover, predictive models for hERG block-
ers based on the support vector machine method[14] using 73
drugs from the literature have been described recently. Overall
accuracies of 90 and 95% have been achieved according to a
cutoff for separating hERG-active and -inactive compounds of
1 and 40 mm, respectively. Herein, using a large validated data-
set (203 molecules), we propose a novel in silico model based
upon the recursive partitioning (RP) method to rapidly screen
out potential hERG blockers. This classification technique is
based on a decision tree algorithm, which divides compounds
into a hierarchy of smaller and more homogeneous subgroups
using the statistically most significant descriptors. More pre-
cisely, RP involves the creation of a decision tree composed of
binary split nodes that divide the initial training set into small-
er sets of higher purity, such as sets containing a majority of
blockers or a majority of nonblockers as reported herein. Each
split node can be compared to a binary question (yes or no)
regarding the value of a particular molecular descriptor. The
model can be used to classify any other new compound for
which the descriptors used in the split nodes have been com-
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puted. This rapid computational method has shown efficiency
in a variety of classification exercises and with other statistical
techniques.[15–17] A decision tree model[18] was previously re-
ported based only on three calculated physicochemical de-
scriptors to distinguish hERG binding. Equipped with a larger
amount of data and diverse two-dimensional (2D) molecular
descriptors, we report herein efficient predictive models for
classifying hERG channel blockers with a higher degree of ac-
curacy than previously described.

Results

Selection of the data sets

To generate RP models, 194 drugs were separated into two
classes according to their activities on the hERG channel, high
and weak blockage classes, with the cutoff being 1 mm. Fur-
thermore, to increase the weak-blocker set, nine compounds
which inhibited hERG channel activity by less than 20% at con-
centrations between 10 mm and 50 mm were added. In total
there were 96 and 107 molecules in the high and weak class,
respectively (Table 1, Model 1). The second model was based

on a multi-class approach by dividing the dataset into three
classes of high, moderate, and weak blockers, which relate to
IC50�1 mm (96 molecules), IC50 between 1 and 10 mm (48 mole-
cules), and IC50�10 mm (59 molecules), respectively (Table 1,
Model 2). Finally, we selected the extreme classes for the third
model, that is, high and weak hERG blockers (Table 1, Model 3).
It should be noted that for models 1 and 3, sufficient numbers
of molecules in each category (>50) allowed us to split the
compounds in each class into a training set and a test set. The
training set allowed us to generate the model with an internal
validation, assessed by a cross-validation approach explained
in the Computational Methods section. The test set consisted
of molecules not present during any phase of model develop-
ment, and therefore represented an external prediction set.
Concerning Model 2, only the internal validation was assessed.

Chemical diversity of data sets

The chemical diversity of the three classes was assessed using
nearest-neighbor searching algorithm as implemented in

ChemAxon application Compr.[20] Table 2 summarizes estima-
tions of the average self-dissimilarity and inter-classes dissimi-
larity. The weak class showed the highest self-dissimilarity

(66.8%). The corresponding values for moderate and high
classes (63.4 and 57.2%, respectively) still indicated a reasona-
ble chemical diversity within these classes. Inter-class dissimi-
larities range from 62.9 to 67.0%, which suggests that these
datasets were sufficiently diverse. In Figure 1, the whole hERG
dataset of 203 molecules is widely spread in the plane defined
by the two main Principal Component Analysis (PCA) axes cal-
culated from the 184 molecular descriptors. The first two prin-
cipal components explain 41.2% of the variance. The screening
collection of the Specs[25] database was used to illustrate the
chemical diversity of the hERG dataset.

Model 1: cutoff of 1 mm

A support vector machine model and a QSAR approach have
set the active/inactive boundary for hERG compounds at IC50=
1 mm.[11,14] To evaluate our approach, RP models have been
generated using the same separation value. The RP method is
known to be sensitive to unbalanced training sets for con-
structing models. Therefore, an equal number of compounds

Table 1. Compound distribution for each predictive model generated.

Model 1 Model 2 Model 3
Training Test Training Training Test

High
(IC50�1 mm)

80 16 96 50 46

Moderate
(1 mm<IC50<10 mm)

80 27

48

Weak
(IC50�10 mm
%Inh<20%)

59 50 9

Table 2. Average dissimilarity statistics between the three classes based
on the nearest-neighbor searching algorithm (ChemAxon application
Compr).

Class High Moderate Low

High 57.2%
Moderate 62.9% 63.4%
Low 66.4% 67.0% 66.8%

Figure 1. Representation of hERG compounds (203) within the chemical
space of the Specs database (December 2005, 77438 compounds) according
to the first two PCA axes computed using 184 2D molecular descriptors.
Grey and black dots correspond to the Specs database and hERG com-
pounds, respectively.
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(80 per class) has been chosen to create the training set. In ad-
dition, the molecules have been selected using Diverse Subset
as described in the methods section, to obtain the 80 most
various compounds in each class. The aim of this approach,
was to obtain the most global model with a large coverage of
the chemical space. To limit the over-fitting issue that can
result by using a pool with too many descriptors, selection of
the most relevant descriptors involved in decision tree-based
models among all 184 2D descriptors was performed using
CFS algorithm (Table 3). 23 uncorrelated relevant descriptors
were identified which led to the best performance. Interesting-
ly, several selected descriptors belong to the subdivided sur-
face areas P_VSA parameter type, which express structural in-
formation based on molecular surfaces. Therefore, two predic-
tive models were constructed using either the set of 23 rele-
vant descriptors or the set of 32 P_VSA descriptors. Consider-
ing the training set, both models built using relevant or P_VSA
descriptors have high classification ability, with 96 and 97.5%
accuracy respectively (Table 4, Model 1). The overall classifica-
tion accuracy of the models decreased to 74 and 81% when

the test set was applied to validate the models (Table 5,
Model 1). Although 94% of high blockers were correctly pre-
dicted, the models had difficulty in classifying weak hERG
blockers, with a precision of 63 and 74% for relevant and
P_VSA descriptors, respectively. Among the ten false negatives
misclassified in the model based on relevant descriptors, nine
molecules had an IC50 value between 1 and 10 mm. Similarly,
five compounds of the seven false negatives in the P_VSA
model possessed IC50 values between 1 and 10 mm.

Model 2: tri-class models

Based on the observations of misclassification with molecules
possessing biological activities between 1 and 10 mm, a new
RP model was generated using three classes of compounds ac-
cording to their IC50 values, measured on the hERG channel
(Table 1, Model 2). The former weak class was split creating an
intermediate category composed of molecules having an IC50
value between 1 and 10 mm (moderate blockage). The new
weak hERG blockers possessed IC50�10 mm. Roche et al.[13]

Table 3. List of most relevant molecular descriptors used in the decision-tree-based models, selected by the Correlation-based Feature Selection algo-
rithm.

Descriptor Definition Type Models

PEOE_VSA+5 Sum of vi where PEOE�qi is in the range [0.25,0.30). Subdivided surface areas 1, 2
PEOE_VSA�5 Sum of vi where PEOE�qi is in the range [�0.30,�0.25). Subdivided surface areas 1, 2, 3
SlogP_VSA2 Sum of vi such that SlogP is in (�0.2,0] . Subdivided surface areas 1, 2, 3
SlogP_VSA7 Sum of vi such that SlogP is in (0.25,0.30] . Subdivided surface areas 1, 2, 3
SlogP_VSA8 Sum of vi such that SlogP is in (0.30,0.40] . Subdivided surface areas 2, 3
SMR_VSA1 Sum of vi such that SMR is in (0.11,0.26]. Subdivided surface areas 1, 2, 3
SMR_VSA2 Sum of vi such that SMR is in (0.26,0.35] . Subdivided surface areas 1, 3
SMR_VSA5 Sum of vi such that SMR is in (0.44,0.485]. Subdivided surface areas 1, 2, 3
SMR_VSA6 Sum of vi such that SMR is in (0.485,0.56]. Subdivided surface areas 1, 2, 3
VdistEq If m is the sum of the distance matrix entries, then VdistEq is defined to be the sum

of log2 m�pi log2 pi/m where pi is the number of distance matrix entries equal to i.
Adjacency and distance
matrix descriptors

1, 2, 3

BCUT_SLOGP_2 BCUT descriptors using atomic contribution to logP (using the
Wildman and Crippen SlogP method) instead of partial charge; SlogP values
in (�0.2,0] .

Adjacency and distance
matrix descriptors

2, 3

BCUT_SMR_2 The BCUT descriptors using atomic contribution to molar refractivity. SMR values in (�0.2,0] . Adjacency and distance
matrix descriptors

1

GCUT_PEOE_1 GCUT descriptors are calculated from the eigenvalues of a modified graph
distance adjacency matrix. PEOE-qi is in the range [0.05,0.10).

Adjacency and distance
matrix descriptors

2

GCUT_SLOGP_0 GCUT descriptors using atomic contribution to logP (using the
Wildman and Crippen SlogP method). SlogP values<=�0.4.

Adjacency and distance
matrix descriptors

1

GCUT_SLOGP_2 GCUT descriptors using atomic contribution to logP (using the
Wildman and Crippen SlogP method). SlogP values in (�0.2,0] .

Adjacency and distance
matrix descriptors

1, 2, 3

GCUT_SMR_2 GCUT descriptors using atomic contribution to molar refractivity.
SMR values in (�0.2,0] .

Adjacency and distance
matrix descriptors

1

balabanJ Balaban’s connectivity topological index. Adjacency and distance
matrix descriptors

1, 2, 3

Zagreb Zagreb index. Connectivity indices 1
PEOE_VSA_FHYD Fractional hydrophobic van der Waals surface area. Partial charge descriptors 1, 2, 3
PEOE_VSA_FPPOS Fractional positive polar van der Waals surface area. Partial charge descriptors 1, 2, 3
PEOE_VSA_FPNEG Fractional negative polar van der Waals surface area. Partial charge descriptors 3
PEOE_VSA_HYD Total hydrophobic van der Waals surface area. Partial charge descriptors 1, 2
PEOE_VSA_FPOL Fractional polar van der Waals surface area. Partial charge descriptors 1
lip acc The number of O and N atoms. Atom counts and bond counts 2
LogS Log of the aqueous solubility. Physical properties 1, 2, 3
vsa pol Approximation to the sum of VDW surface areas of polar atoms (atoms that are both

hydrogen bond donors and acceptors), such as -OH.
Pharmacophore feature
descriptors

1, 2, 3

SlogP Log of the octanol/water partition coefficient (including implicit hydrogen atoms). Physical properties 1, 2, 3
TPSA Total polar surface area. Physical properties 1, 2, 3
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split their data set in a similar way, and failed to produce a pre-
dictive model because of the error range of the experimental
results. Using relevant molecular descriptors to construct the
first model, an overall classification accuracy of 86% has been
obtained after a 5-fold cross-validation (Table 4, Model 2). Fur-
thermore, all compounds from the weak class have been posi-
tively predicted in the second model based only on the P_VSA
parameters with an improved accuracy of 90% (decision trees
generated for Models 1 and 2 are described in the Supporting
Information).
Although the precision of both models for the new weak

class improved compared to Model 1, these new models still
had difficulty in classifying the moderate blockers, with a preci-
sion of 69 and 65% for relevant and P_VSA descriptors, respec-
tively. 12 of 15 and 9 of 17 misclassified moderate blockers
were predicted as high blockers for relevant and P_VSA de-
scriptors, respectively. As shown in Figure 2, we selected two
relevant and conventional descriptors, TPSA and SlogP, in-
volved in the decision tree generation to represent the distri-
bution of compounds of each class. Interestingly, high and
weak compounds seemed to be located in quite distinguisha-
ble zones on the graph. High blockers had generally, higher
SlogP values and lower TPSA values than weak blockers. In
contrast, compounds belonging to the moderate category
hold great variability which might explain the low capacity of
our models to correctly discriminate intermediate compounds.

Model 3: prediction of high and weak hERG blockers

The results obtained with the previous models indicate the dif-
ficulty in classifying the moderate class with a limited number
of compounds. Therefore, new RP models using the same set
of descriptors have been constructed omitting the moderate
class, leaving the extreme classes (high and weak blockers).
The molecules were split into training (see Supporting Informa-
tion) and test sets following the same procedure used for
Model 1, that is, a diverse balanced training set composed of
50 molecules per class (Table 1, Model 3). Using relevant de-
scriptors, the tree built was able to successfully classify the
compounds from the training set with an overall accuracy of
97% (Table 4, Model 3). In addition, validation of this model
using the test set, correctly predicted 98 and 89% of high and
weak hERG blockers (Table 5, Model 3). Moreover, another effi-
cient model was obtained using the P_VSA descriptors, with a
very low misclassification rate R(T) of 0.04, the model was able
to predict correctly 94% of high and 98% of weak hERG block-
ers from the training set. To further validate this model, the
predictions were performed using the validation set. The pre-
diction is still of good quality with 94% of high and 100% of
weak hERG blockers classified correctly. The decision trees are
shown in Figure 3, correlation matrices of the main molecular
descriptors involved in the classification of the hERG channel
blockers are given in the Supporting Information and indicate
a low degree of correlation among them. For both models, de-
scriptors included logP-based descriptors related to the hydro-
phobic character of molecules, like SlogP, SlogP_VSA2, SlogP_
VSA7, and refractivity descriptors such as SMR VSA1,
SMR VSA4, SMR VSA5, and SMR VSA6 which take into ac-
count the size and the polarizability of molecules. The approxi-
mation to the sum of van der Waals surface areas of polar
atoms (atoms that are both hydrogen bond donors and ac-
ceptors) was also found to be a discriminating feature. Other
descriptors used were PEOE_VSA_FHYD, PEOE_VSA+0, and
PEOE_VSA+1. These atomic partial charge descriptors reflect
the positive charge that most of the molecules bear in the
present molecular system. A difference between high and
weak classes might be noted by observing the descriptor
values. For both classes, Table 6 contains averages of the mo-
lecular descriptors (P_VSA and relevant) which were used to

Table 5. Correct classification determined by external validation (test set)
for each model generated with relevant or P_VSA descriptors.

Descriptors
Relevant P_VSA

Model 1
High 15/16 (94%) 15/16 (94%)
Weak 17/27 (63%) 20/27 (74%)
All 74% 81%

Model 3
High 45/46 (98%) 42/46 (94%)
Weak 8/9 (89%) 9/9 (100%)
All 96% 93%

Table 4. Correct classification determined by cross-validation (training
set) for each model generated with relevant or P_VSA descriptors.

Descriptors
Relevant P_VSA

Model 1
High 78/80 (97.5%) 78/80 (97.5%)
Weak 75/80 (94%) 78/80 (97.5%)
All 96% 97.5%

Model 2

High 89/96 (93%) 92/96 (96%)
Moderate 33/48 (69%) 31/48 (65%)
Weak 53/59 (90%) 59/59 (100%)
All 86% 90%

Model 3
High 48/50 (96%) 47/50 (94%)
Weak 49/50 (98%) 49/50 (98%)
All 97% 96%

Figure 2. Score plot of two relevant descriptors TPSA and SlogP for hERG
compounds from each class; High (^), Moderate (+), Weak (~).
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build Model 3. All these descriptors, except vsa_pol and
SlogP_VSA2, were found to be larger for hERG channel block-
ers. Some relevant selected descriptors are exemplified for
molecules from both classes (Table 7). For example, Terfenadine
and Fexofenadine belong to different classes with obvious dis-
tinct descriptors, and yet have other relevant descriptors which
are very close. A simple substitution of tert-butyl by isobutyric
acid group modifies the molecule classification. This can be
used as a local predictor, by changing the substituents around
the chemical scaffold to make descriptor values fall into the
high- or weak-blocker range.

Interestingly, passing the 48 compounds belonging to the
moderate class into these models led to a balanced split of the
molecules, for the P_VSA model 52% were classified as high
and 48% classified as weak hERG blockers, and using the rele-
vant descriptors set, 69% of the compounds were classified as
high and 31% were classified as weak. No significant correla-
tion was found between the IC50 values and the classification
(data not shown).

Table 6. Differences in the values of selected descriptors in the training set (100 molecules) of Model 3 using P_VSA and relevant descriptors for blockade
classification.

Relevant descriptors P_VSA descriptors
Average value Average value

Descriptor High Weak Descriptor High Weak

SlogP 4.68 2.45 SlogP_VSA2 11.68 45.15
PEOE_VSA_FHYD 0.92 0.84 SlogP_VSA7 135.72 83.86
SMR_VSA1 33.68 31.72 SMR_VSA4 13.08 9.76
SMR_VSA6 52.76 44.22 SMR_VSA5 188.83 122.36
vsa_pol 4.71 17.49 SMR_VSA6 52.76 44.22

PEOE_VSA+0 110.59 107.97
PEOE_VSA+1 64.82 53.48

Figure 3. Decision trees for the model 3 training set using either a) relevant descriptors or b) P_VSA descriptors. W and H define compounds classified as
weak or high blockers, respectively. For each node, descriptor average value � SEM is indicated and distribution of compounds is represented in brackets.
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Discussion

In this study, we have developed efficient predictive filters to
screen out potential hERG blockers using high quality data
sets and a quite powerful statistical method, recursive parti-
tioning classification. One major element in the success of a
predictive model is the precision and quality of the biological
data from which the model is calculated. From the knowledge
base developed at Aureus Pharma, high quality datasets which
have a large range of chemical diversity and detailed biological
information can easily be generated. Furthermore, although
data came from diverse sources with wide experimental varia-
tions, a precise selection of data sets allowed us to generate
robust binary classification trees with overall accuracies consis-
tently above 80% and as high as 96% for the extreme classes
model.
RP is gaining popularity as a method for analyzing large

drug discovery screening sets.[15,17,26] Binary classification trees
are simple to understand and interpret, and can be computed
very quickly and efficiently. This approach has been successful-
ly used in the field of ADMET. Indeed, Susnow et al.[15] using
binary classifications for the prediction of inhibitors of the cy-
tochrome P450 isoform 2D6, reported 80% overall accuracy
using an external set of 51 compounds. Recently a test set of
88 COX-2 inhibitors were correctly classified with an accuracy
of 82%.[16] In this study, we developed three different RP
models based on a biological activity cutoff for hERG channel
blockage prediction.
Mutagenesis and homology modeling studies have shown

that Tyr652 and Phe656 are the key residues primarily respon-
sible for the high affinity of hERG channel for several known li-
gands.[6,7,27] These residues are located on the S6 domain, or
near the pore helix. Two important physicochemical interac-
tions were identified. The first is a hydrophobic interaction

with Phe656, and the second is an electrostatic interaction
(cation–p interaction) between the basic N of the ligand and
Tyr652.
3D pharmacophore modeling analysis corroborated these

assumptions.[7–9] In the present study, we employed 2D molec-
ular descriptors to build classification models. Considering the
best model, model 3, both P_VSA and relevant descriptors
used to build the model encode principal chemical features in-
volved in the blockage of the hERG channel. Hydrophobic in-
teraction is expressed by logP-based descriptors, whereas
atomic partial charge descriptors PEOE_VSA_FHYD, PEOE_
VSA+0, and PEOE_VSA+1, are related to the electrostatic in-
teraction. The size effect of the inhibitor ligand was revealed
by the molecular refractivity-based descriptor SMR_VSA. In
their SVM study, Tobita et al.[14] used 57 2D descriptors comput-
ed by MOE, and 51 molecular fragment-count descriptors. For
a threshold of 1 mm, they found three 2D descriptors and five
molecular fragment-count descriptors to be important for clas-
sification accuracy. These descriptors include VSA_Base, PEOE_
VSA+0, SMR_VSA0, and four other fragment-count descrip-
tors. These descriptors are equivalent to the descriptors select-
ed to build our models. These findings confirm the robustness
of the recursive partitioning method as used in our present
work.
Our first model, separated compounds into high and weak

blockers at IC50=1 mm. The trained model reached an overall
classification accuracy of 97.5% after a 5-fold cross-validation
for the P_VSA descriptor set. Similarly, Tobita and co-workers[14]

reported an accuracy of 90% with an SVM-based model using
the same cutoff after a 10-fold cross-validation on 73 drugs.
Their model correctly predicted 86% of high, and 93% of
weak blockers. Using a larger amount of data (203 molecules),
our P_VSA model correctly classified 97.5% of both high and
weak blockers. To further validate this model, we applied an

Table 7. Descriptor comparison of six compounds with their observed class and their predicted class.

Molecules[a]

Terfenadine Fexofenadine Cisapride C24H32ClN3O4 Ibutilide Sematilide
Class/Prediction High/High Weak/Weak High/High Weak/Weak High/High Weak/Weak
SlogP 6.85 5.92 3.66 3.68 4.26 1.13
PEOE_VSA_FHYD 0.93 0.84 0.88 0.86 0.88 0.83
SMR_VSA1 53.89 53.89 40.08 64.89 28.50 3.12
SMR_VSA6 55.32 63.06 81.50 81.50 55.32 79.01
vsa_pol 27.13 54.27 0 32.82 13.57 0

[a] Additional information regarding these molecules can be found in the Supporting Information.

ChemMedChem 2006, 1, 622 – 630 E 2006 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemmedchem.org 627

Classification of hERG Channel Blockers

www.chemmedchem.org


external data set of 43 compounds. KeserU et al.[11] using a
QSAR approach, generated a model (cutoff of 1 mm) able to
classify 83% of actives and 87% of inactives correctly, from a
test set of 13 compounds. Although we obtained a better pre-
diction for the high blockers (94 vs. 83%), our model had less
capacity to classify the weak compounds (74 vs. 87%). Interest-
ingly, among the false negatives a majority had IC50 values be-
tween 1 and 10 mm, suggesting the involvement of different
chemical features for discriminating this category of molecules.
Therefore, we generated a second approach using three
classes of compounds, including a new moderate class of mol-
ecules with this range of activity (1–10 mm). The results report-
ed herein, showed a better positive prediction of high (96%)
and weak blockers (100%) achieved with the P_VSA descrip-
tors but a difficulty to predict moderate blockers (overall accu-
racy of 90%). In order to gain some insight, the distribution of
compounds belonging to the moderate class were represent-
ed, and compared to high and weak blockers using two rele-
vant descriptors from the decision tree. As shown in Figure 2,
the discrimination of moderate blockers was difficult to assess
using this set of descriptors. Furthermore, as there were a lim-
ited number of compounds in the moderate class, it was not
possible to create an external test set. Collection of additional
data is currently in process, as is assessment of new statistical
approaches to further update and improve our models. In a
previous study, Roche et al.[13] , described a model in a super-
vised neural network system, which considered only the ex-
treme classes of blockage, that is, compounds with a high IC50
value under 1 mm and compounds with a low IC50 value above
10 mm. 71% of the high blockers and 93% of the non-blockers
were correctly predicted in a validation set of 95 proprietary
compounds. To critically evaluate our approach, a third model
was generated with the extreme classes and using the same
descriptors sets. Regarding our test set, the model achieved a
prediction accuracy of 96 and 93% for relevant and P_VSA de-
scriptor sets, respectively. The relevant descriptors seem the
more interesting model as the depth tree is only 4 and needs
less descriptors than the P_VSA model to classify the mole-
cules.
In conclusion, we have developed computer-based models

which allow the effective classification of hERG channel block-
ers. In silico models are gaining interest as the cost of cardio-
toxicity failures is recognized. However, it should be noted that
the prediction accuracy of these models is strongly affected by
the diversity of compounds used as the training set. For this
purpose, the Aureus Pharma hERG knowledge database al-
lowed us to extract a biologically filtered and diverse molecular
set. The fast RP method is suitable for the early discovery pro-
cess to screen out new compounds and can be used as a gen-
eral filter for cardiotoxic side effects related to hERG channel
blockage.

Computational Methods

Data set extraction : A series of compounds tested in electrophysi-
ology experiments on the wild type hERG channel have been se-
lected from our hERG knowledge database. The Aureus Pharma

hERG knowledge database is comprised of comprehensive knowl-
edge from literature on the hERG channel, as well as other chan-
nels involved in cardiotoxicity.[19] This first selection retrieved 510
molecules associated with 1970 biological activities, coming from
187 publications and 11 patents (June 2005 release). We then se-
lected 217 molecules having at least, a measured IC50 value. As
shown in Figure 4, a wide range of biological activities were cov-
ered with this set of compounds.

Next, all molecules for which the IC50 had been measured in non-
mammalian cells, such as Xenopus laevis oocytes (15 out of 217)
were removed. We excluded these values based on a correlation
study performed with values from mammalian cells and oocytes. It
was shown that hERG blocker drug potency was underestimated
(as much as 100-fold) in frog cells. This has also been noted by
other studies.[5] To improve our data set, 9 compounds which were
described only as having the ability to inhibit hERG channel activity
by less than 20% were added to the set. After withdrawing mole-
cules which were stereo-chemical duplicates, the global dataset
contained 203 unique compounds, all of which had a biological
measure on the hERG channel (for information on the 203 com-
pounds see Supporting Information).

Data set diversity : The degree of diversity of the datasets was
evaluated using an algorithm that applies nearest-neighbor search-
ing (ChemAxon application Compr).[20] A weighted Euclidean dis-
tance calculation applied the Tanimoto (Jaccard) coefficient based
on ChemAxon CF fingerprints.[20] The dissimilarity between mole-
cules was given by the following formula:

DðA,BÞ ¼ 1�TðA,BÞ ¼ f½1�TðA,BÞ
 þ w1½C1ðAÞ�C1ðBÞ
2

þ w2½C2ðAÞ�C2ðBÞ
2 þ . . .g1=2
ð1Þ

Where w1, w2 … are weights, TACHTUNGTRENNUNG(A,B) is the Tanimoto coefficient for
molecules A and B, and Ci(A) is the value of descriptor i of mole-
cule A. Diversity statistics of the library self-dissimilarity test were
expressed by the average and maximum dissimilarity.

Two-dimensional molecular descriptors : 2D molecular descriptors
were calculated by the QuaSAR-Descriptor module from Molecular
Operating Environment (MOE) software.[21] Two sets of descriptors
were generated for all the compounds, 32 P_VSA descriptors and a
set containing all 2D descriptors available including P_VSA (184 de-

Figure 4. Distribution of IC50 values for compounds studied on hERG chan-
nel. IC50 values from electrophysiology experiments on hERG channel have
been retrieved from the hERG database[19] . The ordinate axis represents the
number of compounds and the abscissa represents the range of IC50 values.
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scriptors). These descriptors are based on evaluating a descriptor
for a specific range [u,v) of the specified property values P. The de-
scriptor value corresponds to the sum of the atomic van der Waals
(VSA) contributions of each atom i with Pi in [u,v) range. The quan-
tity P_VSA ACHTUNGTRENNUNG(u,v) is defined by Equation (2):

P VSAðu; vÞ ¼
X

VidðPi 2 ½u; vÞÞ ð2Þ

where Vi is the atomic contribution of atom i to the VSA of the
molecule. A set of n descriptors associated with the property P are
defined as follows:

P VSAðu; vÞ ¼
X

i

VidðPi 2 ½ak�1;akÞÞk ¼ 1; 2; :::n ð3Þ

where a0<ak<an are interval boundaries such that [a0, an) includes
all values of Pi in any molecule. Each P_VSA-type descriptor is char-
acterized as the amount of surface area with P in a certain range.
Thus, Labute defined three sets of P_VSA molecular descriptors: 10
SlogP_VSAk intended to capture hydrophobic and hydrophilic ef-
fects, 8 SMR_VSAk intended to capture both the size and the polar-
izability of a molecule, and 14 PEOP_VSAk to reflect the electrostat-
ic interactions.[22]

The P_VSA descriptors were found to be weakly correlated with
each other over a large collection of compounds and reasonably
good QSAR/QSPR models were built using these descriptors.[16,22]

Other molecular descriptors included: physical properties, atom
and bound count descriptors subdivided according to various cri-
teria, Kier and Hall connectivity and Kappa shape indices intended
to capture different aspects of molecular shape, and adjacency and
distance matrix descriptors including BCUT and GCUT descriptors.
Pharmacophore feature descriptors considered only the heavy
atoms of a molecule and assigned a pharmacophoric type to each
atom. The feature set was donor, acceptor, polar (both donor and
acceptor), positive (base), negative (acid), and hydrophobic. Other
descriptors were evaluated on the basis of partial charges. MOE
uses the Partial Equalization of Orbital Electronegativities (PEOE)
method of Gasteiger to calculate partial charges.[23]

Relevant descriptors : Commonly called feature selection, the pro-
cess of selecting more relevant descriptors can have a positive
effect on the performance of classification algorithms, and enhance
their accuracy and speed. To accomplish this task, we used a Corre-
lation-based Feature Selection (CFS) algorithm.[24] CFS uses a search
algorithm along with a function to evaluate the merits of feature
subsets, where features are referred to by molecular descriptors. It
takes into account the usefulness of individual features for predict-
ing the class label along with the intercorrelation among them.
The following Equation (4) formalizes the CFS algorithm:

MeritS ¼
k�rcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k þ kðk � 1Þ�rff
p ð4Þ

where MeritS is the heuristic “merit” of a feature subset S contain-
ing k descriptors, �rcf the average feature-class correlation, and �rff
the average feature–feature intercorrelation. The numerator can be
thought of as giving an indication of how predictive are a group
of features, and the denominator of how much redundancy there
is among them.

Diverse subset composing : Diverse Subset is used to rank entries
in a database, based on their distance from each other. The rank-
ing order is suitable for extracting a subset of the database com-
prising entries which are farthest from each other. To calculate the

distance between two entries, MACCS keys fingerprints were em-
ployed using Tanimoto similarity metric.

Computation : Computing molecular descriptors, preparing data-
sets, building the trees and predicting the classes were performed
using MOE on a Windows platform computer (3 GHz CPU, 1 Gb
RAM). Decision trees were constructed from the training data
using the QuaSAR-Classify module, that implements a recursive
partitioning algorithm. The prediction accuracy was evaluated by
means of 5-fold cross-validation methodology. To avoid overtrain-
ing during the tree growing, QuaSAR Classify used a pruning pro-
cess. A sequence of subtrees was constructed from the initial tree,
and the internal test data set was used to choose the final output
tree from this sequence. “Pruning” removed one or more branches
of a tree. The roots of the branches removed remained part of the
pruned tree becoming leaf nodes. Optimized parameters for Node
Split Size (5) and Max Tree Depth (15) were used. A node sized less
than or equal to the specified Node Split Size parameter will not
be split further, and will become a leaf node of the tree. The Max
Tree Depth parameter defines the limit number of splits between
the root node and the lowest leaf node. It should be noted that
the maximum tree depth observed in this study reached only
seven. The final selection of the tree was made by comparison of
the internal quality score; the misclassification rate R(T). It meas-
ures the proportion of cases that are incorrectly classified by a
tree. R(T) can be defined as Nmissclassified/Ntotal where Nmissclassified is the
total number of misclassified cases and Ntotal is the total number of
cases in the training set. Additionally, the performance of obtained
models was measured by the quantity of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) used to
evaluate: 1) the overall classification accuracy of a prediction
model where Accuracy=TP+TN/(TP+TN+FP+FN)=1/R(T) includ-
ing both active and inactive compounds, 2) the accuracy of pre-
dicting an active class, Precision=TP/ ACHTUNGTRENNUNG(TP+TN), and 3) the ability of
a predictive model to select instances of a certain class from a data
set, Recall=TP/ ACHTUNGTRENNUNG(TP+FN).
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