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Introduction

Most computer-assisted drug design (CADD) methodologies
focus on enzyme–ligand recognition as determined by nonco-
valent interactions.[1] This approach can be very useful in the
design of drugs for metabolic diseases. On the other hand,
well-optimized inhibitors of enzymes that are implicated in in-
fectious diseases and cancer rapidly loose their in vivo activity
through the development of mutational drug resistance.[2] A
study of FDA-approved anti-AIDS drugs that function as non-
covalent inhibitors of HIV protease demonstrated that about
75% of the enzyme’s amino acid residues are subjected to mu-
tations that facilitate drug resistance.[3] Structural analysis of
the enzyme–inhibitor interactions led to the conclusion that
mutations that give rise to drug resistance never occur at well-
conserved residues that constitute the catalytic machinery of
the enzyme. This conclusion led us to suggest that the prob-
lem of mutational drug resistance could be avoided if the
main contribution to inhibitor binding affinity came from inter-
actions with residues that constitute the enzyme’s catalytic
machinery. This would be achieved by covalent inhibitors,
which can bind their target enzyme either reversibly or irrever-
sibly. Analysis of the U.S. FDA Orange Book supports the phar-
maceutical importance of covalent inhibitors, demonstrating
that 65% of the 317 marketed drugs which are enzyme inhibi-
tors either undergo reactive chemistry in the active site of the
target enzyme or contain a structural motif related to the sub-
strate.[4] The candidates best suited to maximally use interac-
tions with the catalytic residues of the enzyme for binding
energy are probably transition state (TS) analogue inhibitors.[5]

A covalent inhibitor is formally composed of two parts: the
chemical site (CS) and the recognition site (RS). The former in-
cludes the atoms that covalently interact with the enzyme
active site and the immediate neighboring atoms that influ-
ence their electronic state. The RS part includes the rest of the
inhibitor and is generally considered to be responsible for the
selectivity of the inhibitor toward the target enzyme.

In a previous theoretical study of TS analogue inhibitors of
serine proteases, we demonstrated that the covalent bond
formed between an inhibitor CS fragment and the enzyme Ser
nucleophile in a thermodynamically stable enzyme–inhibitor
tetrahedral complex (TC) is about 30 kcalmol�1 stronger than
the analogous bond formed by a native substrate in the cata-
lytic reaction intermediate.[6] Wolfenden stressed that TS ana-
logue inhibitors are very specific for the enzyme whose activat-
ed complex they resemble, just as the transition state is
unique to that reaction.[5c] Therefore, even a relatively small TS
analogue inhibitor with a small CS and a small RS fragment
that occupies only the S1 and S1’ sites of the target enzyme
can be not only very potent but also sufficiently selective. At
the same time, such an inhibitor will suffer much less from mu-
tational drug resistance, as its recognition part is greatly de-
creased.

We have experimentally and theoretically demonstrated that
the trend of binding affinity in a series of isoselective inhibitors
(with identical RS and different CS fragments) depends mainly
on their CS fragments.[7] The relative binding affinities of any
two isoselective ligands are independent of variations of the
RS fragment. Isoselective inhibitors have the same affinity
trend toward different enzymes with a common catalytic
mechanism. In the present study we demonstrate that these
principles of isoselective inhibition can be used to introduce a
novel method of theoretical analysis of the binding trend of in-
hibitor CS fragments.

Common methodologies of computer-assisted drug design focus
on noncovalent enzyme–ligand interactions. We introduced
enzyme isoselective inhibition trend analysis as a tool for the
expert analysis of covalent reversible inhibitors. The methodology
is applied to predict the binding affinities of a series of transition-
state analogue inhibitors of medicinally important serine and
cysteine hydrolases. These inhibitors are isoselective: they have

identical noncovalent recognition fragments (RS) and different re-
active chemical fragments (CS). Furthermore, it is possible to pre-
dict the binding affinities of a series of isoselective inhibitors
toward a prototype enzyme and to extrapolate the data to a
target medicinally important enzyme of the same family. Rational
design of CS fragments followed by conventional RS optimization
could be used as a novel approach to drug design.
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Results and Discussion

We examined the method of isoselective inhibition trend anal-
ysis on TS analogue inhibitors of serine and cysteine hydrolas-
es in which the inhibitor forms a reversible covalent TC with
the enzyme. In all series considered, the electrophilic center of
the inhibitor is a carbonyl group modified by different covalent
substituents. Hydration of the carbonyl group of free water-sol-
vated inhibitor was considered as a competing reaction, and is
accounted for in the apparent binding constant, Kapp

i . We cor-
related the theoretically calculated Kapp

i values with the corre-
sponding experimental Kapp

i values for inhibitors of five medici-
nally important enzymes: human neutrophil elastase (HNE),[8]

fatty acid amide hydrolase (FAAH),[9] human a-thrombin,[10]

hepatitis C viral NS3 protease,[11] and human rhinovirus 3C pro-
tease.[12] Each inhibitor series was based on a different RS frag-
ment: the Cbz-Val-Pro-Val peptide in inhibitors of HNE (Fig-
ure 1a); the unsaturated hydrocarbon tail of the a-keto deriva-
tives of oleamide, the natural substrate of FAAH (Figure 2a);
Me-d-Phe-Pro-Arg in inhibitors of thrombin (Figure 3a); a pep-
tidomimetic in the NS3 inhibitors (Figure 4a); and a substitut-

ed isatin heterocycle in the 3C inhibitors (Figure 5a). The
varied substituent at the carbonyl group of the CS fragment is
marked by X. The trend of binding affinity of CS fragments in a
series of isoselective inhibitors is controlled by the energy of
the covalent bond formation in the TC.[6] Therefore, experimen-
tal values of Kapp

i are well reproduced by a simplified small-mo-
lecular modeling scheme for TC formation in the active site of
a serine hydrolase [Eq. (1)] and the hydration side reaction
[Eq. (2)] .[7] The cysteine hydrolase reaction can similarly be
modeled by Equation (3). In the latter model, the inhibitor CS
carbonyl oxygen atom is protonated in the TC, as has been
suggested by a few published studies.[13] This model also gave
much better correlation between the theoretically calculated
and experimentally reported Ki values than the corresponding
ionized (oxyanion) model (data not shown).

CH3O
�þCH3�CO�X ! CH3�CðO�ÞðOCH3Þ�X ð1Þ

H2OþCH3�CO�X ! CH3�CðOHÞ2�X ð2Þ

CH3S
�þCH3�CO�XþHþ ! CH3�CðOHÞðSCH3Þ�X ð3Þ

Linear-regression fitting of ex-
perimental values of Kapp

i,k was
calculated by two independent
variables : the relative free
energy of TC formation (DDGTC,k)
and the relative free energy of
competitive product formation
(DDGC,k) for a given inhibitor k
(see ref. [7] for details):

lnKapp
i,k ¼ aDDGTC,kþbDDGC,kþc

ð4Þ

The optimized linear regres-
sion coefficients a, b, and c were
used to calculate theoretical
values of lnKapp

i . The correspond-
ing plots of experimental lnKapp

i

versus calculated lnKapp
i values

for enzyme inhibition are pre-
sented in Figures 1b–5b.

The heterogeneous combined
protein/water environmental
effect on inhibitor binding affini-
ty was taken into account by our
QM/SCRF(VS) approach[14] with
empirically fitted dielectric con-
stant of the virtual solvent, eeff,
at the B3LYP/cc-pvdz level of
nonempirical quantum mechani-
cal DFT calculations. Such small-
molecule simulations can exam-
ine, in reasonable time, the affin-
ity of dozens of different CS frag-
ments in high-level ab initio
quantum mechanics. Another

Figure 1. a) Cbz-Val-Pro-Val peptide inhibitors of human neutrophil elastase (HNE); Cbz= benzyloxycarbonyl.
b) Linear correlation according to Equation (4) between experimental and theoretically calculated values of lnKapp

i

for the inhibition of HNE. The best fit corresponds to the following coefficients and parameters: eeff=6,
a=1.2888, b=�0.2661, c=�9.9641, SE=1.107.

Figure 2. a) a-Keto derivatives of oleamide, the natural substrate of fatty acid amide hydrolase (FAAH). b) Linear
correlation according to Equation (4) between experimental and theoretically calculated values of lnKapp

i for the in-
hibition of FAAH. The best fit corresponds to the following coefficients and parameters : eeff=20, a=0.7983,
b=�0.7286, c=�11.4807, SE=0.725.
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advantage of this approach, which focuses only on the reactivi-
ty functional groups, is that it does not require any 3D struc-
tural information about the enzyme. This latter feature is very

important in cases for which such information is not
available, as is the case for most membrane-bound
enzymes. On the other hand, this approach does not
take into account, at the explicit molecular level, any
possible local environmental effects such as hydro-
gen bonds and van der Waals interactions between
the inhibitor CS fragment and the enzyme active site.
Nevertheless, it gives excellent correlation between
theoretical and experimental lnKapp

i values, as the
enzyme–inhibitor covalent bond formed is by far the
most trend-dominating factor.[6] The small deviations
from linearity may indeed reflect various local nonco-
valent interactions. Taking these interactions into ac-
count with additional indexes in the regression analy-
sis [Eq. (4)] in a statistically significant way would re-
quire a much larger data set.

Gleeson et al. applied a QM/
MM computational approach,
the current state of the art in
the computational biochemistry
of enzyme active sites,[15] for
modeling the binding of the
series of peptidyl a-ketohetero-
cyclic inhibitors in the active site
of HNE.[16] Semiempirical quan-
tum mechanics with PM3 Hamil-
tonian was used for the active-
site fragment, molecular me-
chanics with AMBER force field
for the rest of the protein, and
TIP3P solvent model (with ex-
plicit water molecules in the pe-
riodic box) for the bulk water
solvation of the free inhibitor
and the enzyme–inhibitor com-
plex. Nevertheless, these calcula-
tions produced poor correlation
between the calculated and ex-
perimental binding energies for
the set of the inhibitors. The fail-
ure was attributed to insufficient
accounting of the solvation ef-
fects.[16] Our opinion is that all
factors are important. The poor
prediction could be the result of
intrinsic deficiencies of the semi-
empirical PM3 Hamiltonian, of
ignoring the competitive reac-
tions, and clearly of the solvation
model used. The graph of exper-
imental versus theoretical lnKapp

i

values, calculated by our
method for the same set of in-
hibitors, is presented in Fig-

ure 1b. Comparison of the quality of correlation of the QM/
MM approach with our method demonstrates the crucial role
of the CS fragment in the binding trend of isoselective inhibi-

Figure 3. a) Me-d-Phe-Pro-Arg inhibitors of human a-thrombin. b) Linear correlation ac-
cording to Equation (4) between experimental and theoretically calculated values of
lnKapp

i for the inhibition of thrombin. The best fit corresponds to the following coeffi-
cients and parameters: eeff=1, a=0.2925, b=0.1896, c=�17.5364, SE=0.629.

Figure 4. a) Peptidomimetic inhibitors of hepatitis C viral NS3 protease; Bn=benzyl. b) Linear correlation accord-
ing to Equation (4) between experimental and theoretically calculated values of lnK app

i for the inhibition of NS3
protease. The best fit corresponds to the following coefficients and parameters : eeff=8, a=0.3745, b=0.9129,
c=�20.6420, SE=1.018.

Figure 5. a) Substituted isatin heterocycle inhibitors of human rhinovirus 3C protease. b) Linear correlation accord-
ing to Equation (4) between experimental and theoretically calculated values of lnK app

i for the inhibition of 3C cys-
teine protease. The TC is protonated, as presented in the reaction scheme of its formation and in Equation (3).
The best fit corresponds to the following coefficients and parameters: eeff=1, a=�0.2932, b=0.3588,
c=�9.0766, SE=0.872.
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tors. Thus, inadequate calculation of the factors related to CS
reactivity cannot be compensated by extensive molecular me-
chanics accounting of the protein body and the noncovalent
enzyme–inhibitor interactions because the latter play a minor
role in the binding trend of covalent isoselective inhibitors.

We have presented very good correlations between experi-
mentally measured and theoretically calculated binding affini-
ties (Figures 1–5), but the real challenge is in the prediction of
binding affinities of new inhibitors with different CS fragments.
To demonstrate this, we considered a subset of four HNE inhib-
itors that span a wide range of binding affinities as a “training
set” with known experimental data and calculated their theo-
retical Kapp

i values [Eq. (4)] . The optimized linear regression co-
efficients a, b, and c obtained for this “training set” were then
used for prediction of the Kapp

i values of the other five inhibi-
tors. The resulting predicted binding affinities correlate very
well with the experimental data
(Figure 6a). A more demanding
task is the prediction of binding
affinities that are far outside the
range of affinities of the training
set (extrapolation). Figure 6b ex-
hibits such a successful applica-
tion for two inhibitors of FAAH.

The given medicinally impor-
tant target enzyme may be un-
available for various reasons. The
above formulated principles of
isoselective inhibitors provide a
solution for this problem. The in-
hibitor binding trend for the
target enzyme can be predicted
for an alternative, readily avail-
able enzyme (a “prototype”) if
both enzymes belong to the
same mechanistic enzymatic
family. Thus, the first step of the
method is to prepare a “training

set” of inhibitors—a representative set of varied CS fragments
(that cover a wide range of binding constants) of isoselective
inhibitors for the prototype enzyme. This step is followed by
the experimental measurement of binding constants for the
training set and the prototype enzyme. An optimized QSAR
model that correlates the experimental binding constants with
the reactivity descriptors such as DDGTC,k and DDGC,k, or any
other variables, will be generated. Based on this QSAR equa-
tion, it is now possible to predict binding constants for the
prototype enzyme of any other CS fragment that does not
belong to the training set.

To illustrate and validate this methodology, we used chymo-
trypsin as a prototype enzyme and Cbz-Phe-X (X=H, OH, CH3,
CF3, and COCH3) as the training set of isoselective inhibitors
(see ref. [7] for details ; Figure 7a). Equation (4) was used as a
QSAR model. HNE and FAAH are medicinally important en-

Figure 6. a) Prediction (interpolation) of binding affinities of “new” CS fragments in the inhibition of HNE by Cbz-
Val-Pro-Val peptide inhibitors. The set of isoselective inhibitors is the same as that shown in Figure 1a. Filled
squares indicate the “training set” isoselective inhibitors; open circles indicate the predicted isoselective inhibitors.
The best fit of the “training set” corresponds to the following coefficients and parameters: eeff=6, a=1.238,
b=�0.3180, c=�10.3073, SE=0.8647. b) Prediction (extrapolation) of binding affinities of “new” CS fragments in
the inhibition of FAAH by a-keto derivatives. The set of isoselective inhibitors is the same as that shown in Fig-
ure 2a. Filled squares indicate the “training set” isoselective inhibitors; open circles indicate the predicted isoselec-
tive inhibitors. The best fit of the “training set” corresponds to the following coefficients and parameters: eeff=20,
a=0.7796, b=�0.7819, c=�11.2889, SE=0.8211.

Figure 7. a) Inhibition of chymotrypsin by the Cbz-Phe-X (X=H, OH, CH3, CF3, and COCH3) training set of inhibitors; eeff=20, a=0.4221, b=�0.3057,
c=�11.0906, SE=0.9362. b) Prototype-based prediction for HNE inhibition. The set of isoselective inhibitors is the same as that shown in Figure 1a. The cal-
culations are based on the QSAR parameters for chymotrypsin and its training set (Figure 6a). c) Prototype-based prediction for FAAH inhibition. The set of
isoselective inhibitors is the same as that shown in Figure 2a. The calculations are based on the QSAR parameters for chymotrypsin and its training set
(Figure 6a).
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zymes that belong to the mechanistic family of chymotrypsin.
The corresponding predictions of inhibition constants of isose-
lective inhibitors of these two enzymes are presented in Fig-
ures 7b and c; they are based on the QSAR model obtained
for chymotrypsin and its own training set of isoselective inhibi-
tors. Comparison of Figures 1 and 2 with Figures 7b and c, re-
spectively, shows that very good correlations between the the-
oretically calculated and the experimentally measured Ki values
were obtained not only for direct modeling of the target
enzyme, but also for correlation of the experimental data with
calculations carried out on the “prototype” enzyme. They both
provide practically the same results, justifying the idea of ex-
trapolating trend data from one enzyme to another target
enzyme of the same mechanistic family.

Conclusions

The methodology presented herein is a tool for the expert
analysis of any set of new CS fragments that can be arranged
according to their binding affinity toward the target enzyme. It
allows prediction of the binding affinity of new inhibitors
based on the analysis of the binding trend of a “training set”
of inhibitors to the same enzyme. Furthermore, it is even possi-
ble to predict their binding to a prototype enzyme and to ex-
trapolate it to the target medicinally important enzyme. The
rational design of CS fragments followed by conventional RS
optimization[1] could be used as a novel approach toward new
classes of enzyme inhibitors.

Experimental Section

Computational methods: The most stable rotational conformers
of reactants and product TCs were identified by the Monte Carlo
Multiple Minimum (MCMM) method[17,18] implemented in the Mac-
romodel package.[19] The energies were calculated with the MM2
force field. These conformers were used for the following quantum
mechanical calculations.

The molecular structures of the reactants and the products were
fully optimized in the gas phase by the DFT method, applying
B3LYP functional and cc-pvdz basis set implemented in the
Jaguar 4.1 package.[20] The absolute gas-phase free energies of re-
actants and products were calculated in harmonic approximation.
The continuum reaction field solvation model implemented in
Jaguar, SCRF,[21,22] was used in B3LYP/SCRF//cc-pvdz level of the
DFT method to calculate free energies of solvation.
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