CHEMMEDCHEM

CHEMISTRY ENABLING DRUG DISCOVERY

Thioredoxín Reductase Inhibitíon

A Journal of

The inside cover picture shows the X-ray structure of human thioredoxin reductase dimer (TrxR; PDB: 2J3N; ribbon representation), with the catalytic site residues Sec and Cys highlighted (cyan surface). Enzyme activity assays and biochemical studies identified the Sec–Cys dyad as essential for TrxR inhibition by water-soluble Au^l-phosphine complexes. For more details, see the Full Paper by M. Laguna, P. J. Dyson, et al. on p. 96 ff.

www.chemmedchem.org

Inside Cover

Elena Vergara, Angela Casini, Francesca Sorrentino, Olivier Zava, Elena Cerrada, Maria Pia Rigobello, Alberto Bindoli, Mariano Laguna*, and Paul J. Dyson*

The inside cover picture shows the X-ray structure of human thioredoxin reductase dimer (TrxR; PDB: 2J3N; ribbon representation), with the catalytic site residues Sec and Cys highlighted (cyan surface). Enzyme activity assays and biochemical studies identified the Sec–Cys dyad as essential for TrxR inhibition by water-soluble Au^l–phosphine complexes. For more details, see the Full Paper by M. Laguna, P. J. Dyson, et al. on p. 96 ff.

