Vol. 6 (1958)

brownish oil that separated was taken up in benzene, washed, dried, and evaporated. The residue formed a faint yellow syrup, which did not solidify. Yield, 0.75 g.(91%).

Dipicrate: Yellow scales (from EtOH), m.p. $131\sim132.5^{\circ}$ (decomp.). Anal. Calcd. for $C_{35}H_{42}O_{18}N_8$: C, 48.7; H, 4.9; N, 13.0. Found: C, 48.8; H, 5.2; N, 13.2.

Fig. 1 is the ultraviolet absorption spectrum of the ester of the free base which shows the characteristic maxima of dihydroisoquinoline at 228, 272, and 307 mμ.

Summary

Isoquinoline cyclization of N-(3,4-dimethoxyphenethyl)-2-ethoxycarbonylacetamide and 2-alkyl and 2-dialkyl derivatives was studied. Contrary to expectations, the cyclization of dialkyl-substituted acetamide derivatives proceeded most smoothly with excellent yield of the product. One of such products, ethyl α , α -diethyl- α -(6,7-dimethoxy-3,4-dihydro-1-isoquinolyl)acetate, resisted all attempts at dehydrogenation and the starting dihydro base was recovered quantitatively. β -Diethylaminoethyl α , α -diethyl- α -(6,7-dimethoxy-3,4-dihydro-1-isoquinolyl)acetate was also prepared for pharmacological evaluation.

(Received December 3, 1957)

UDC 547.833.07

32. Masao Murayama: Synthesis of 1-tert-Alkyl-6,7-dimethoxyisoquinolines.

(Pharmaceutical Institute, Medical Faculty, University of Tokyo*)

Trialkyl-substituted acetamides of general formula $RR'R''C-CONH_2^{1)}$ with number of carbon atoms of $12\sim17$ in their alkyl portion are reported to have strong spasmolytic activity. More recently it was revealed that trialkyl-substituted acetic acids with number of carbon atoms of $16\sim18^{1)}$ are far stronger antispasmodics. Trialkyl-substituted alkylpyridine-carboxamides²⁾ are also known to work analogously.

In continuation of the preceding work³⁾ this paper describes the synthesis of 1-tert-alkyl-6,7-dimethoxyisoquinolines as a possible spasmolytic agent.

Attempts to synthesize this type of isoquinolines are not without precedence. Sugasawa, Sugiura, and Kawanishi⁴⁾ prepared 1-tert-butyl- and 1-(β , β -dimethyl)propyl-6,7-methylenedioxy-3-methylisoquinolines, which, however, were found to be devoid of spasmolytic activity. Later their work was developed by Sugasawa and Yoshida⁵⁾ who found that the cyclization of (I)-type of amides to isoquinolines (II) proceeds via oxazoline derivatives (II), which could be isolated in substance. They have also shown that the yield of (III) decreases rapidly with increasing bulkiness of tert-alkyl group in (I). For instance 1-tert-butylisoquinoline can be obtained in 69% yield, whereas the yield of 1-tripropylmethyl- and 1-tributylmethyl-isoquinolines did not exceed 10%. Their attempt at the synthesis of (III) via its 3,4-dihydro derivative, the cyclization product of (IV), reportedly failed at the cyclization stage.⁶⁾

^{*} Hongo, Tokyo (村山正雄).

¹⁾ N. Sperber, R. Fricano: J. Am. Chem. Soc., 71, 3352(1949).

²⁾ N. Sperber, D. Papa, E. Schwenk: Ibid., 72, 2012(1950).

³⁾ M. Murayama: This Bulletin, 6, 183(1958).

⁴⁾ S. Sugasawa, T. Sugiura, M. Kawanishi: Yakugaku Zasshi, 65, 450(1945).

⁵⁾ S. Sugasawa, N. Yoshida: *Ibid.*, 74, 625(1954).

⁶⁾ S. Sugasawa, N. Yoshida: Unpublished result. The present author repeated their work and confirmed their result.

In the preceding paper it was reported that the compound (V) could be cyclized with an excellent result, and this fact induced the author to attempt the cyclization of α, α, α -trialkyl-N-(3,4-dimethoxyphenethyl)acetamides of the general formula (VI). The corresponding 1-tert-alkyl-6,7-dimethoxy-3,4-dihydroisoquinolines (VII) were produced in high yields, regardless of the size of trialkylmethyl portion of the starting amides. This result is in striking contrast to that of Sugasawa and Yoshida, whose failure, therefore, appears to be ascribed to the presence of methyl group on the α -carbon atom of nitrogen of the starting amides.

For the preparation of trialkylacetic acids are known the method of Zielger,⁷⁾ Sperber,⁸⁾ and some others.⁹⁾ Among these Sperber's method seems to be excellent for the preparation of trialkylacetic acid with the same three alkyl groups, otherwise the purity of the product is not always satisfactory.

For the present purpose the reaction was started from a certain alkylacetic acid, $R-CH_2-COOH$, which was converted into alkylcyanoacetate (A), to which the first alkyl group (R') could be introduced with ease, giving dialkylcyanoacetate (B). The latter was hydrolyzed, decarboxylated, and the resulting dialkylacetonitrile (C) was alkylated (R") for the second time, furnishing trialkylacetonitrile (D), which could be hydrolyzed to the corresponding acetic acid (F) via the amide (E). Though somewhat tedious this method gives pure compounds in satisfactory yields on each stage, as can be seen from Tables I, II, and III.

The trialkylacetyl chlorides (Table IV) were prepared as usual from the acids and were condensed with 3,4-dimethoxyphenethylamine giving the corresponding amides (VI) in excellent yields (Table V). Since most of the amides did not solidify, they were directly cyclized by treating with phosphoryl chloride in boiling toluene or xylene, forming 3,4-dihydroisoquinolines (VII) again in good yields (Table VI).

The dehydrogenation of the dihydro compounds was only successful when they were

⁷⁾ K. Ziegler, H. Ohlinger: Ann., 495, 84(1932).

⁸⁾ N. Sperber, D. Papa, E. Schwenk: J. Am. Chem. Soc., 70, 3091(1948).

⁹⁾ e.g. T. Reichstein, H. Rosenberg, R. Eberhardt: Helv. Chim. Acta, 18, 721(1935).

Table I. $\begin{array}{c} R \\ R' \rightarrow C \cdot CN \\ R'' \end{array}$													
No.	No. of C in R R' C-	R	R′	R"	b.p. (°C/mm. Hg)	Yield (%)	Solve	Reaction time (hr.)					
$\left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right\}$	R"/ 7	$\left\{ \begin{matrix} CH_3 \\ CH_3 \\ C_2H_5 \end{matrix} \right.$	${ m CH_3} \ { m C_2H_5} \ { m C_2H_5}$	${^{ extstyle C_4 extstyle H_9}_{ extstyle C_3 extstyle H_7}_{ extstyle C_2 extstyle H_5}}$	$75.5/30$ $83/40$ $60 \sim 64/10$	74 61 60	B T B	4.4 3.5 4.0					
$\left\{ \begin{array}{c} 4\\5\\6 \end{array} \right\}$	8	$\left\{ \begin{matrix} CH_3 \\ CH_3 \\ C_2H_5 \end{matrix} \right.$	${ m CH_3} \ { m C_2H_5} \ { m C_2H_5}$	$C_5H_{11} \\ C_4H_9 \\ C_3H_7$	79~81/18 84~86/21 81~82/18	70 70 40	В В Т	4.0 6.5 3.5					
7 }	9	$\left\{ \begin{array}{l} \mathrm{CH_{3}} \\ \mathrm{C_{2}H_{5}} \end{array} \right.$	$egin{array}{c} { m C}_2{ m H}_5 \ { m C}_2{ m H}_5 \ { m C}_2{ m H}_5 \end{array}$	${f C_5 H_{11}} \ {f C_4 H_9} \ {f C_5 H_{11}}$	99~100.5/19 81.5/9.5 113~115.5/18	81 54.5 77.5	B B B	4.0 5.5 7.0					
$\binom{9}{10}$	10	$\left\{ \begin{array}{l} {\rm C_2H_5} \\ {\rm C_2H_5} \\ {\rm C_3H_7} \end{array} \right.$	$ C_3H_7 $ $ C_3H_7 $	$\mathrm{C_4H_9} \ \mathrm{C_3H_7}$	110~112/18 110~106/14 127~129/5	72 61 79	T T T	5. 0 6. 5 7. 0					
12	13	C ₄ H ₉	C ₄ H ₉ * B	C ₄ H ₉ : Benze		oluene	1	7.0					
				TABL	E II. $\begin{array}{c} R \\ R' \\ R'' \end{array}$	NH_2							
No.	No. of C in R R' C- R"	R	R′	R"	b.p. (°C/mm. Hg)	m.p. (°C)	Yield (%)	Crystal Form					
$\left\{ \begin{array}{c} 1\\2\\3 \end{array} \right\}$	7	$\left\{ \begin{matrix} CH_3 \\ CH_3 \\ C_2H_5 \end{matrix} \right.$	$\mathrm{CH_3} \ \mathrm{C_2H_5} \ \mathrm{C_2H_5}$	$C_4H_9 \\ C_3H_7 \\ C_2H_5$	141~142/17 140~141/17 148~149/21 153~154/20	93~93.5 40~43 106~108 100~102	70 6 9	faint yellow prisms colorless dices faint yellow prisms					
$\left\{\begin{array}{c}4\\5\\6\end{array}\right\}$	8	$ \begin{cases} CH_3 \\ CH_3 \\ C_2H_5 \end{cases} $ $ CH_3 $	${ m CH_3} \ { m C_2H_5} \ { m C_2H_5} \ { m C_2H_5}$	$egin{array}{c} C_5H_{11} \ C_4H_9 \ C_3H_7 \ C_5H_{11} \end{array}$	$149.5 \sim 150/19$	$24 \sim 25$ $58.5 \sim 70$ $15 \sim 17$	60 86	faint yellow prisms faint yellow prisms colorless needles					
7 } 8 }	9	C_2H_5	$egin{array}{c} C_2H_5 \ C_2H_5 \end{array}$	C_4H_9 C_5H_{11}		67.5~69 43~45 39~41	92 93	faint yellow dices colorless prisms colorless prisms					
$10 \atop 11 $	10 13	$ \begin{cases} C_2H_5 \\ C_3H_7 \end{cases} $ $ C_4H_9 $	$egin{array}{c} \mathrm{C_3H_7} \\ \mathrm{C_3H_7} \\ \mathrm{C_4H_9} \end{array}$	$egin{array}{c} C_4H_9 \ C_3H_7 \ C_4H_9 \end{array}$	133~134/2.5 —	69 58~60	96	colorless prisms colorless prisms					
				TABL	E III. R' C·CO	ОН							
	No. of C in				_	m n	Yield						
No.	R' R" C-	R	R′	R"	b.p. (°C/mm. Hg	m.p. (°C)	(%)	Crystal Form					
$\left. egin{array}{c} 1 \\ 2 \\ 3 \end{array} ight\}$	7	$\left\{egin{array}{l} \mathrm{CH_3} \ \mathrm{CH_3} \ \mathrm{C_2H_5} \end{array} ight.$	$egin{array}{c} \mathrm{CH_3} \ \mathrm{C_2H_5} \ \mathrm{C_2H_5} \end{array}$	${f C_4 H_9} \ {f C_3 H_7} \ {f C_2 H_5}$	$115 \sim 117/15$ $118 \sim 119.5/15$ $117 \sim 118/14$		87 95 85	colorless oil colorless oil colorless prisms					
$\left. egin{array}{c} 4 \\ 5 \\ 6 \end{array} \right\}$	8	$\left\{egin{array}{l} \mathrm{CH_3} \ \mathrm{CH_3} \ \mathrm{C_2H_5} \end{array} ight.$	$egin{array}{c} \mathrm{CH_3} \ \mathrm{C_2H_5} \ \mathrm{C_2H_5} \end{array}$	$C_5 H_{11} \\ C_4 H_9 \\ C_3 H_7$	128~130.5/15 131~133/16 129~130.5/15	-	87 91 94	colorless oil colorless oil colorless oil					
$\left. \begin{smallmatrix} 7 \\ 8 \end{smallmatrix} \right\}$	9	$\left\{ \begin{array}{l} \mathrm{CH_{3}} \\ \mathrm{C_{2}H_{5}} \end{array} \right.$	$egin{array}{c} C_2H_5 \ C_2H_5 \end{array}$	C_5H_{11} C_4H_9	147~148/18. 140~142/15	*******	97 96. 5 94. 5	colorless oil colorless oil colorless oil					
$\left. egin{array}{c} 9 \\ 10 \\ 11 \end{array} ight\}$	10	$\left\{ \begin{array}{l} {\rm C_2H_5} \\ {\rm C_2H_5} \\ {\rm C_3H_7} \end{array} \right.$	$C_{2}H_{5} \\ C_{3}H_{7} \\ C_{3}H_{7}$	$C_5H_{11} \\ C_4H_9 \\ C_8H_7$	$153 \sim 154/15$, $150 \sim 150$, $5/15$, $150 \sim 151/15$	 65	91 93	colorless oil colorless prisms					
12	13	C_4H_9	C_4H_9	C ₄ H ₉	135~138/3	35~36 COOCH₃	80.5 I	colorless prisms COOCH ₃					
	R-CH ₂ -CO	OH <i>→</i>		Br-COO	(A		· I	$C \subset CN$					
	$\longrightarrow \underset{R'}{\overset{R}{\nearrow}}$	CH-CN	—→ R R R	C-CN (D)	$R \longrightarrow R' \longrightarrow C - C$ $R'' \longrightarrow C - C$ (E)	CONH ₂ —	$ \begin{array}{ccc} R' & C & C & C & C & C & C & C & C & C & $	C-COOH					

	Table IV. $\begin{array}{c} R \\ R' \\ \end{array}$ C•COC1													
	No. of C in													
				~	b. ₁	n.	Yield	Fa						
No.	R	R	R'	R"	(°C/mn		(%)	Form						
	R"/				V = 1	٥,	0.07							
1.		CH_3	CH_3	C_4H_9	75~	78/25	quant	. colorless	oil					
$\frac{1}{2}$	7	$\left\{\begin{array}{c} CH_3 \\ \end{array}\right.$	$\tilde{\mathrm{C}}_{2}\tilde{\mathrm{H}}_{5}$	C_3H_7		84/33	90	colorless	oil					
$\left\{ egin{array}{c} 1 \\ 2 \\ 3 \end{array} ight\}$	·	C_2H_5	C_2H_5	C_2H_5		68/17	84.5	5 colorless	oil					
			_			95/26	guant	colorless	oil					
$\left\{\begin{array}{c}4\\5\end{array}\right\}$	o	$\left\{ egin{array}{l} \mathrm{CH_{3}} \\ \mathrm{CH_{3}} \end{array} ight.$	$\mathrm{CH_3} \ \mathrm{C_2H_5}$	${f C_5 H_{11} \atop {f C_4 H_9}}$	95~1 97~1		quant							
$\binom{5}{6}$	8	C_2H_5	C_2H_5 C_2H_5	C_3H_7		98/26	92.5							
								colorless						
$\{7\}$	9	$\left\{ \begin{array}{l} \mathrm{CH_{3}} \\ \mathrm{CH_{3}} \end{array} \right.$	C_2H_5	C_5H_{11}			98 90	colorless						
8 }		C_2H_5	C_2H_5	C_4H_9	117~1	10/29	90							
9 ;		C_2H_5	$\mathrm{C_{2}H_{5}}$	C_5H_{11}			quant							
10 }	10	$\{C_2H_5\}$	C_3H_7	C_4H_9	109~1		98	colorless						
11 J		C_3H_7	C_3H_7	C_3H_7	111~1	14/14	94.5							
12	13	C_4H_9	C_4H_9	C_4H_9	140~1	41/14	92.	5 colorless	oil					
		- 0												
			TABLE	СН V. СН		H ₂ •NH•	CO•C R'							
	No. of Ci	n												
No.	R R' R''	R	R′	R''	m.p.		Yield	Crystal Form						
110.	$R' \rightarrow C-$	K	7.	10	(°C)		(%)							
	R">													
$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	1	$_{CH_3}$	CH_3	C_4H_9	Personal		91	faint brown vitre						
2	7	$\left\{\begin{array}{c} CH_3 \end{array}\right\}$	C_2H_5	C_3H_7			97	faint yellow vitre	ous					
3)		$C_2\mathrm{H}_5$	$\mathrm{C_2H_5}$	C_2H_5	65~67		84	colorless needles						
4)	i	CH ₃	CH_3	C_5H_{11}			quant.	yellow brown vitr	eous					
$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	8	$\left\{ \text{ CH}_{3}^{\circ}\right\}$	$\mathrm{C_2}\mathring{\mathrm{H}_5}$	C_4H_9			quant.	faint yellow vitre						
6)		$\bigcup_{\Sigma_2 H_5}$	C_2H_5	C_3H_7			96	faint yellow vitre	ous					
7)	(CH ₃	$\mathrm{C_2H_5}$	C_5H_1			quant.	faint yellow vitre	ous					
7) 8)	9	$\left\{ \begin{array}{c} C_1 I_3 \\ C_2 H_5 \end{array} \right.$	$C_{2}H_{5}$	C_4H_9			95	faint yellow vitre	ous					
-	,	-					98	colorless needles						
9	10	$\int_{C}^{C_2H_5}$	C_2H_5	C_5H_{11}			97	faint yellow vitre	0115					
$\frac{10}{11}$	10	$\left\{ egin{array}{l} \mathrm{C_2H_5} \ \mathrm{C_3H_7} \end{array} ight.$	C_3H_7	C ₄ H ₉	73~75		quant.	colorless scales	ous					
	,		C_3H_7	C_3H_7			-							
12	13	C_4H_9	C_4H_9	C_4H_9	93~94	:	95	colorless needles						
	No. of C in			TABLE	VI. CH ₃ O-	N C R R	ı II							
	R \		_	_	b.p.	m.p.		Picrate	Yield					
No.	$R' \rightarrow C$	R	R′	R"	(°C/mm. Hg)	(°C)	(00)	Compared Brown	(%)					
	R"/				(- /	(- /	$m.p.(^{\circ}C)$	Crystal Form	/					
1)		$_{1}$ CH $_{3}$	CH_3	C_4H_9	144~146/0.4		142.5~143.	5 yellow plates	91					
$\tilde{2}$	7	CH ₃	C_2H_5	C_3^{4119}	139~141/0.09		149.5~151.		90					
$\left\{ egin{array}{c} ar{2} \ 3 \end{array} \right\}$	•	C_2H_5	$\tilde{C}_2^2 \tilde{H}_5^3$	C_2H_5		62	$173 \sim 174$	yellow needles	82					
					128_ 1/9/0 05		117~119	vellow scales	88					
$\left\{\begin{array}{c}4\\5\end{array}\right\}$	Q	$\int_{CH}^{CH_3}$	$_{ m CH_3}$	C_5H_{11}	$138 \sim 142/0.05$	30~32		yellow scales yellow pillars	87					
$\begin{cases} 5 \\ 6 \end{cases}$	8	CH ₃	C_2H_5	C ₄ H ₉	$145 \sim 147/0.06$ $140 \sim 143/0.06$	J∪~32	$133 \sim 134$	yellow prisms	85					
		C_2H_5	C_2H_5	C_3H_7				•						
$\left. \begin{array}{c} 7 \\ 8 \end{array} \right\}$	9	{ CH₃	C_2H_5	C_5H_{11}	$150 \sim 152/0.05$		122~124	yellow needles	85					
8 ∫	J	C_2H_5	C_2H_5	C_4H_9	$150 \sim 152/0.05$		160~161	yellow dices	82.5					
9)		C_2H_5	C_2H_5	C_5H_{11}	159~162/0.07	46~47	114~115	yellow needles	92					
10 }	10	$\{C_2H_5\}$	$C_3^2H_7$	C_4H_9	$160 \sim 163/0.05$	35	$125 \sim 127$	yellow prisms	84.5					
11 J		$\int C_3 H_7$	C_3H_7	C_3H_7		82.5~83	3 129 ~ 131	yellow plates	88					
12	13	C_4H_9	C_4H_9	C_4H_9		42~44	142~143	yellow scales	88					
		-49	-49	- *A				•						

Table VII.
$$\begin{array}{c} CH_3O - \\ CH_3O - \\ \end{array}$$

				$^{\setminus}$ R $''$											
No.	No. of C	in R	R′	R"	b.p.	m.p.	P	icrate	Yield						
	R' R">C-	K	K	Κ″	(°C/mm. Hg)	(°C)	$m.p.(^{\circ}C)$	Crystal Form	(%)						
$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	7	$\left\{ \begin{matrix} CH_3 \\ CH_3 \\ C_2H_5 \end{matrix} \right.$	${^{ m CH_3}_{ m 2H_5}} \ {^{ m C_2H_5}_{ m 5}}$	${f C_4 H_9} \ {f C_3 H_7} \ {f C_2 H_5}$	153~154/0.04 150~153/0.04 —	 74	138~139 165.5~167.5 201~202	yellow needles yellow prisms yellow prisms	80.5 79 67						
$\left\{\begin{array}{c}4\\5\\6\end{array}\right\}$	8	$\left\{ \begin{array}{l} \mathrm{CH_3} \\ \mathrm{CH_3} \\ \mathrm{C_2H_5} \end{array} \right.$	$\begin{array}{c} \mathrm{CH_3} \\ \mathrm{C_2H_5} \\ \mathrm{C_2H_5} \end{array}$	${f C_5 H_{11}} \ {f C_4 H_9} \ {f C_3 H_7}$	163~165/0.05 157~158/0.03 155~158/0.035	47~48 56~57	111~112.5 149~151 188~189	yellow rhombs yellow needles yellow needles	81 78 80						
$\left. \begin{smallmatrix} 7 \\ 8 \end{smallmatrix} \right\}$	9	$\left\{ egin{array}{l} \mathrm{CH_{3}} \\ \mathrm{C_{2}H_{5}} \end{array} ight.$	$\substack{C_2H_5\\C_2H_5}$	${^{ ext{C}_5 ext{H}_{11}}_{ ext{C}_4 ext{H}_9}}$	$163 \sim 164/0.02$ $162 \sim 163/0.04$	 56~57	141~142.5 175~175.5	yellow prisms yellow needles	81 94						
$\left. egin{matrix} 9 \\ 10 \\ 11 \end{smallmatrix} ight\}$	10	$\left\{ egin{array}{l} { m C_2H_5} \ { m C_2H_5} \ { m C_3H_7} \end{array} ight.$	${f C_2H_5} \ {f C_3H_7} \ {f C_3H_7}$	${f C_5 H_{11}} \ {f C_4 H_9} \ {f C_3 H_7}$	164~165/0.035 162~163/0.03	 93∼94.	151.5~152.5 139~140	yellow needles yellow needles yellow needles	75.5 67.5 94						
12	13	C_4H_9	C_4H_9	C_4H_9		88	142.5~143	yellow pillars	61						
		236 4.5- 235			CH ₃ O-	N	 10.1164 γ/cc.	in EtOH							
					H₃Ć C	H ₅ C ₃ H	7								
		3.5	268 304	h	CH ₃ O-	N	4.027 γ/cc. ir	n EtOH							
		30		\	н³с с	C ₂ H ₅ C ₃ H	7								
		200													

heated with 30% Pd-C in boiling ethyl cinnamate, which served as a solvent and also as a hydrogen acceptor, furnishing isoquinolines (VIII) in fair to good yields (Table VII).

350 mu Fig. 1. Ultraviolet Absorption Spectra

The ultraviolet absorption curves of (WI: $R=CH_3$, $R'=C_2H_5$, $R''=C_3H_7$) and (WI: R,R', R'' as above) shown in Fig. 1 will serve to show the successful dehydrogenation.

Pharmacological experiments of (VII) and (VIII) are now under progress and the results will be published in due course.

The author thanks Professor Sugasawa for his interest in this work.

Experimental

(1) Preparation of Trialkylacetic Acids—Each stage will be shown with one example. Methyl a-Ethyl-a-propyl-a-cyanoacetate (B: $R=C_2H_5$, $R'=C_3H_7$)—To a cold methanolic MeONa solution (10'g. of Na in 100 cc. of MeOH), methyl α -ethyl- α -cyanoacetate (A: 50 g.) was added, followed

TABLE W. R/>C CN COOCH3

			_			A	nalyse	s (%)					
No.	R	R'	b.p. (°C)	Yield (%)			Calcd.		Found				
						ć	\mathbf{H}	N	ć	Н	N		
1	CH_3	CH_3	185~190	77	$\mathrm{C_6H_9NO_2}$	56.7	7.1	11.0	5 6. 5	7.3	11.3		
2	CH_3	C_2H_5	190~193	81	$C_7H_{11}NO_2$	59.6	7.8	9.9	59.2	7.5	9.5		
3	C_2H_5	$\mathrm{C_{2}H_{5}}$	199~204	86.5	$C_8H_{13}NO_2$	61.9	8.4	9.0	62.4	8.4	9.2		

by dropwise addition of PrBr (55 g.). The whole was then refluxed on a steam bath for 5 hrs., when the solution became neutral. After evaporating MeOH, water was added to the residue, separating an oily substance, which was extracted with ether, washed, dried, and evaporated. The residue distilled at $215\sim218^{\circ}$; yield, $55 \, \mathrm{g.}(83\%)$. Anal. Calcd. for $C_9H_{15}O_2N$: C, 63.9; H, 8.9; N, 8.3. Found: C, 64.3; H, 9.1; N, 8.1 (For other examples see Table WI).

α-Methyl-α-ethylacetonitrile (C: $R=CH_3$, $R'=C_2H_5$)—Methyl α-methyl-α-ethyl-α-cyanoacetate (124 g.) was mixed with methanolic KOH-solution prepared from 64 g. of KOH dissolved in 200 cc. of MeOH. The mixture was allowed to stand overnight at room temp. and then refluxed on a steam bath for 4 hrs. MeOH was then removed *in vacuo* and the residue was mixed with water, separating an oily layer, which was taken up in ether, washed, dried, and evaporated. The viscous syrupy residue was distilled by heating in an oil bath kept at 180°; vigorous evolution of CO₂ being observed. The distillate was dissolved in ether, washed with dil. Na₂CO₃ solution, dried, and evaporated. The residue distilled over P_2O_5 at 122~126° as a colorless oil; yield, 50 g.(65%). *Anal.* Calcd. for C_5H_9N : C, 72.3; H, 10.8; N, 16.9. Found: C, 72.7; H, 10.4; N, 17.25. (cf. Table IX for other examples).

Table IX. $\underset{R'}{R}$ CH·CN

							Analyse	es (%)			•	
No.	R	R'	b.p. (° C)	Yield (%)			Calcd.					
			, ,	0.37		c	Н	N	c	H	$\overline{}_{ m N}$	
1	C_2H_5	C_2H_5	144~148	81	$C_6H_{11}N$	74.2	11.3	14.4	74.3	11.5	15.0	
2	C_2H_5	C_3H_7	$164 \sim 165$	7 5	$C_7H_{13}N$	75.7	11.7	12.6	75.4	12.0	12.9	

a-Methyl-α-ethyl-α-butylacetonitrile (D: $R=CH_3$, $R'=C_2H_5$, $R''=C_4H_9$)—α-Ethyl-α-methylacetonitrile (17 g.) and BuBr (31 g.) were dissolved in benzene (30 cc.) and to this solution a suspension of powdered NaNH₂(9 g.) in 40 cc. of benzene was added during 1.5 hrs. with stirring and heating at 80~90°. After about 5 hrs.' heating the evolution of NH₃ almost ended. The product was worked up as usual, giving a colorless oil of b.p₂₁ 84~86°. Yield, 20 g.(70%). Anal. Calcd. for $C_9H_{17}N$: C, 77.6; H, 12.2; N, 10.1. Found: C, 77.9; H, 12.0; N, 10.3 (cf. Tables I and X).

Table X.
$$R' \rightarrow C \cdot CN$$

			maryses (%)									
R	R′	R"			Calcd.			Found	_			
				Ć	\mathbf{H}	N	c	\mathbf{H}	N			
CH_3	CH_3	C_4H_9	$C_8H_{15}N$	76.8	12.0	11.2	77.1	11.83	11.5			
CH_3	C_2H_5	C_3H_7	$C_8H_{15}N$	76.8	12.0	11.2	76.4	11.77	10.9			
C_2H_5	C_2H_5	C_2H_5	$C_8H_{15}N$	76.8	12.0	11.2	76.3	12.45	11.1			
CH_3	CH_3	C_5H_{11}	$C_9H_{17}N$	77.62	12.2	10.1	77.6	12.5	10.2			
C_2H_5	C_2H_5	C_3H_7	$C_9H_{17}N$	77.6	12.2	10.1	77.7	11.86	9.7			
CH_3	C_2H_5	$\mathrm{C_5H_{11}}$	$C_{10}H_{19}N$	78.4	12.4	9.1	78.6	12.5	9.3			
$\mathrm{C_2H_5}$	$\mathrm{C_2H_5}$	C_4H_9	$C_{10}H_{19}N$	78.4	12.4	9.1	78.2	12.3	9.5			
C_2H_5	C_2H_5	$\mathrm{C_5H_{11}}$	$C_{11}H_{21}N$	79.0	12.6	8.4	78.6	12.6	8.8			
C_2H_5	C_3H_7	C_4H_9	$C_{11}H_{21}N$	79.0	12.6	8.4	79.2	12.3	8.1			
	$ \begin{array}{c} CH_{3} \\ CH_{3} \\ C_{2}H_{5} \\ CH_{3} \\ C_{2}H_{5} \\ CH_{3} \\ C_{2}H_{5} \\ C_{2}H_{5} \end{array} $	$\begin{array}{cccc} CH_3 & CH_3 \\ CH_3 & C_2H_5 \\ C_2H_5 & C_2H_5 \\ CH_3 & CH_3 \\ C_2H_5 & C_2H_5 \\ CH_3 & C_2H_5 \\ C_2H_5 & C_2H_5 \\ C_2H_5 & C_2H_5 \\ C_2H_5 & C_2H_5 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

Table XI.
$$\begin{array}{c} R \\ R' \\ R'' \end{array}$$
 C•CONH₂

				Analyses (%)											
No.	R	R′	R"			Calcd.			Found						
					ć	H	N	ć	\mathbf{H}	N					
1	CH_3	CH_3	C_4H_9	$C_8H_{17}ON$	67.1	11.9	9.8	67.4	12.1	9.6					
2	CH_3	C_2H_5	C_3H_7	$C_8H_{17}ON$	67.1	11.9	9.8	67.2	11.8	9.8					
3	CH_3	CH_3	$\mathrm{C_5H_{11}}$	$C_9H_{19}ON$	68.8	12.1	8.9	68.5	11.7	8.7					
4	$\mathrm{CH_3}$	$\mathrm{C_2H_5}$	C_4H_9	$C_9H_{19}ON$	68.8	12.1	8.9	69.2	12.3	8.8					
5	$\mathrm{C_2H_5}$	$\mathrm{C_{2}H_{5}}$	C_3H_7	$C_9H_{19}ON$	68.8	12.1	8.9	69.1	11.8	9.1					
6	CH_3	$\mathrm{C_{2}H_{5}}$	$\mathrm{C_5H_{11}}$	$C_{10}H_{21}ON$	70.2	12.3	8.2	70.5	11.9	8.0					
7	$\mathrm{C_2H_5}$	$\mathbf{C_2H_5}$	C_4H_9	$\mathrm{C}_{10}\mathrm{H}_{21}\mathrm{ON}$	70.2	12.3	8.2	69.9	11.9	7.8					
8	$\mathrm{C_2H_5}$	$\mathrm{C_3H_7}$	$\mathrm{C_4H_9}$	$C_1, H_{23}ON$	71.3	12.4	7.6	71.3	12.5	7.8					

 α ,α-Diethyl-α-amylacetamide (E: R=R'=C₂H₅, R"=C₅H₁₁)—A mixture of α,α-diethyl-α-amylacetonitrile (20 g.) and H₂SO₄(200 g. of 80%) was heated on a steam bath for 12 hrs. with vigorous stirring. The reaction mixture was diluted with water, separating a brown oil, which was taken up in benzene, washed, and evaporated. The residue was distilled *in vacuo*, furnishing an almost colorless vitreous substance of b.p₃ 133~134°, which soon solidified on standing. Colorless prisms of m.p. 43~45°. Yield, 20.5 g.(93%). *Anal.* Calcd. for C₁₁H₂₃ON: C, 71.3; H, 12.4; N, 7.6. Found: C, 71.3; H, 12.9; N, 7.1 (cf. Tables II, and XI).

α-Ethyl-α-propyl-α-butylacetic Acid ($F: R=C_2H_5, R'=C_3H_7, R''=C_4H_9$)—The amide with the same alkyl substituents (17 g.) was dissolved in glacial AcOH(90 cc.) and to this solution was introduced a stream of dry HCl-gas during 15 mins., followed by an addition of butyl nitrite (20 g.) during 1 hr. with cooling. The mixture was stirred for additional 2 hrs. at room temp. and then further 2 hrs. on a steam bath. AcOH was now evaporated *in vacuo*, and the residue was dissolved in dil. NaOH solution, which was washed with benzene. The aqueous layer was acidified with dil. HCl, separating an oily substance, which was taken up in benzene. The residue obtained after evaporation of benzene was distilled, giving almost colorless oil of b.p₁₅ 150~150.5°. Yield, 15.5 g. (91%). *Anal.* Calcd. for C₁₁H₂₂O₂: C, 70.9; H, 11.9. Found: C, 70.5; H, 11.75 (cf. Tables III and XII).

Table XII.
$$R' \rightarrow C \cdot COOH$$

					Analy	ses (%)		
No.	R	R'	R"		Cal	cd.	Fou	ınd
					ć	H	Ć	H
1	CH_3	CH_3	C_4H_9	$C_8H_{16}O_2$	66.6	11.2	66.5	11.2
2	CH_3	$\mathrm{C_2H_5}$	C_3H_7	$\mathrm{C_8H_{16}O_2}$	66.6	11.2	66.2	11.2
3	CH_3	CH_3	C_5H_{11}	$\mathrm{C_9H_{18}O_2}$	68.3	11.5	68.0	11.6
4	CH_3	$\mathrm{C_{2}H_{5}}$	C_4H_9	$\mathrm{C_9H_{18}O_2}$	68.3	11.5	68.4	11.8
5	C_2H_5	$\mathrm{C_2H_5}$	C_3H_7	$\mathrm{C_9H_{18}O_2}$	68.3	11.5	68.1	11.8
6	CH_3	$\mathrm{C_2H_5}$	C_5H_{11}	$\mathrm{C_{10}H_{20}O_{2}}$	69.7	11.7	69.5	11.8
7	C_2H_5	$\mathrm{C_{2}H_{5}}$	C_4H_9	$\mathrm{C_{10}H_{20}O_{2}}$	69.7	11.7	69.5	11.6
8	C_2H_5	$\mathrm{C_{3}H_{7}}$	C_4H_9	$C_{11}H_{22}O_2$	70.9	11.9	70.6	12.0

(2) Preparation of N-(3,4-Dimethoxyphenethyl)-a,a,a-trialkylacetamides

N-(3,4-Dimethoxyphenethyl)- α , α , α -tripropylacetamide (VI: $R=R'=R''=C_3H_7$)—To a stirred mixture of 3,4-dimethoxyphenethylamine (4.5 g.), benzene (10 cc.), and Na₂CO₃ solution (20 cc. of 10%) a benzene solution of tripropylacetyl chloride (5 g.) (prepared from the acid and SOCl₂ as usual) was added with cooling in ice water. Worked up as usual. A faint yellow vitreous substance was obtained, which solidified on standing to colorless scales (from ligroine), m.p. 73~75°. Yield, 8.7 g. or almost quantitative. Anal. Calcd. for $C_{21}H_{35}O_3N$: C, 72.2; H, 10.1; N, 4.0. Found: C, 72.6; H, 10.4; N, 4.5.

All other amides were prepared analogously. Those which did not solidify were used as such directly for the next stage (cf. Tables V and XII).

				Analyses (%)									
No.	R	R'	R"			Found		Calcd.					
					C	\mathbf{H}	N	Ć	H	$\hat{\mathbf{N}}$			
1	CH_3	CH_3	C_4H_9	$C_{18}H_{29}O_3N$	-		4.6	-		4.3			
2	$\mathrm{CH_3}$	C_2H_5	C_3H_7	$C_{18}H_{29}O_3N$			4.6			4.8			
3	C_2H_5	$\mathrm{C_2H_5}$	C_2H_5	$C_{18}H_{29}O_3N$	70.3	9.5	4.6	70.4	9.4	4.7			
4	CH_3	CH_3	C_5H_{11}	$C_{19}H_{31}O_{3}N$			4.4			4.5			
5	CH_3	$\mathrm{C_2H_5}$	C_4H_9	$C_{19}H_{31}O_{3}N$			4.4			4.0			
6	$\mathrm{C_2H_5}$	$\mathrm{C_2H_5}$	C_3H_7	$C_{19}H_{31}O_{3}N$	-	-	4.4			4.1			
7	CH_3	$\mathrm{C_{2}H_{5}}$	C_5H_{11}	$C_{20}H_{33}O_{3}N$			4.2			4.4			
8	C_2H_5	$\mathrm{C_2H_5}$	C_4H_9	$C_{20}H_{33}O_3N_1$			4.2			3.9			
9	C_2H_5	$\mathrm{C_2H_5}$	C_5H_{11}	${ m C_{21}H_{35}O_{3}N}$	72.2	10.1	4.0	71.9	9.8	3.9			
10	C_2H_5	$\mathrm{C_{3}H_{7}}$	C_4H_9	$C_{21}H_{35}O_{3}N$			4.0			3.8			
11	C_4H_9	C_4H_9	C_4H_9	$C_{24}H_{41}O_3N$	73.6	10.55	3.6	73.8	10.3	3.8			

(3) Cyclization

1-Tributylmethyl-6, 7-dimethoxy-3, 4-dihydroisoquinoline (VII: $R=R'=R''=C_4H_9$) —The amide

				_		.			~~	_								_			••		. –	_	
			Z	10.9	10.8	10.8	10.6	10.2	10.3	10.0	10.0						Z	10.9	10.5	10.6	10.8	10.4	10.0	9.9	10.0 9.3
		Found] #		6.0	5.7	. 6	6.4	5.9	6.2	6.4					Found] 		5.2	6.0	5.4	0.0 7.0 8.0	6.3	6.2	6.1 6.9
	ite		၂	55.9	55.8	56.4	56.0	57.2	57.4	58.0	57.8	70°.			ıte		ပ	55.9	56.0	56.8	56.9	57.6	57.8	58.1	58.3 60.3
	Picrate	}	/Z	10.8	10.8	10.5	10.5	10.25	10.25	10.0	10.0	10.0			Picrate)	(Z	10.85	10.85	10.6	10.6	10.6 10.3	10.0	10.0	10.0 9.3
		Calcd.	 #	ю 8 9	က် လ	6.1	6.1				6.57 7.				,	Calcd.]]#	ខ្មា	o гo	7		<u>,</u> 6	, -		6.1
			ပ	55.6	55.6	56.4	56.4 4.05	57.1	57.1	57.8	57.8	0.70				0	ြ	55.8	55.8	56.6	56.6	50.0 57.3	58.0	58.0	58.0 60.0
				$C_{24}H_{30}O_9N_4$	C24H30O9N4 C24H30O9N4	C ₂₅ H ₃₂ O ₉ N ₄	C25H32OgN4	$\mathbf{C}_{26}\mathbf{H}_{34}\mathbf{O}_{9}\mathbf{N}_{4}$	$C_{26}H_{34}O_{9}N_{4}$	$\mathrm{C}_{27}\mathrm{H}_{36}\mathrm{O}_9\mathrm{N}_4$	C ₂₇ H ₃₆ O ₉ N ₄	C27H36O9IN4						C ₂₄ H ₂₈ O ₉ N ₄				C25H30O9N4			$C_{27}H_{34}O_9N_4$ $C_{30}H_{40}O_9N_4$
	3		z	1	5.1	1	4; 4;	I	I	9.8	9.6 R	8. 55	C-KN KKK KKK KKK KKK KKK KKK KKK KKK KKK	¥ (%)		ſ	Z	I	4.7	4.8	13	4.6 8		1	4.4 3.9
CH ₃ O-CH ₃ O-CH ₃ O-CH ₃ O-CCH ₃ O-CCH ₃ O-CCH ₃ O-CCH ₃ O-CCCH ₃ O-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Found	Found	Н	1	9.6			1	l	10.2	10.1	y. Y	CH ₃ O-CH	Analyses (%)	Found		Н	l	8.8	8.95	1 6	2 2 2	;	I	9.2 9.8
0 0			C C C C C C C C C C C C C C C C C C C			0	l	75.3	76.0	1	75.6	5	i	76.3 77.5											
TABLE XIV.		(Z	1	4.9	1 4	0.1	1	i	9.62	9.65	9.00	TABLE XV.			(Z	Personal Property Control of the Con	6.9	4.7	1 :	4.7	: !	•	4. c. 8. 8
	Colod	Calcu.	Н	l	9.4	1 2	9.55	1	Į	10.0	10.0	10.0			Calcd.		Н	l	80	0.6	1 6	0.0 0.0	; [1	9.4 10.0
			, c	1	74.7		1.6/	i	1	76.1	76.1	1.07				l	ပ	i	75.2	75.7	l	7.67	5		76.6
				I	C,8H,,O,N		C19H29O2N	I	1	$\mathrm{C}_{21}\mathrm{H}_{33}\mathrm{O}_{2}\mathrm{N}$	$C_{21}H_{33}O_2N$	$C_{21}H_{33}O_{2}N$			`			Ī	C, H. O.N	$\mathrm{C_{19}H_{27}O_2^{\prime}N}$	1	C ₁₉ H ₂₇ O ₂ N		i	$ m C_{21}H_{31}O_2N \ C_{24}H_{37}O_2N$
		R"		C4H ₉	CH,	C_5H_{11}	C4H3	C_5H_{11}	C_4^H	C_5H_{11}	C4H,	Ç3⊞7				Κ"		C ₄ H ₉	CH,	$\tilde{\mathrm{C_{5}H_{11}}}$	C_4H_9	CaH,	C_5H_{11}	$\mathrm{C_4H_9}$	$\mathrm{C_3H_7}$ $\mathrm{C_4H_3}$
		Ŕ		$_{CH_3}$	CH,	CH3	C.H.	C_2H_5	$\mathbf{C_{2}H_{5}}$	$\mathrm{C_2H_5}$	C_3H_7	C3H7				R,		CH ₃	CH,	$ ext{CH}_3$	$\mathbf{C}_2\mathbf{H}_5$	C H H	C_2H_5	$\mathrm{C_{3}H_{7}}$	C ₃ H, C ₄ H ₉
		R		CH3	$C_{ m H_5}$	CH3	CH,	CH ₃	$\mathrm{C_2H_5}$	$\mathrm{C_2H_5}$	C_2H_5	C ₃ H ₇				R		CH ₃	CHI CHI	$\tilde{\mathrm{CH}_3}$	$_{ m CH_3}$	CH,	C_2H_5	$\mathrm{C_2H_5}$	$\mathrm{C_3H_7}$ $\mathrm{C_4H_9}$
		No.		, c	1 m	4 ⊓	, w	2	∞	6	10	11				No.		⊣ ¢	4 m	4	വ	۵ ۷	- ∞	6	10

 $(5.5 \, \mathrm{g.})$ in pure xylene (120 cc.) was mixed with freshly distilled $POCl_3(28 \, \mathrm{g.})$ and the whole was refluxed in an oil bath for 6 hrs., giving a light brown solution. Xylene and an excess of $POCl_3$ were removed in vacuo and the residue obtained was mixed with ice water containing some HCl. The mixture was once shaken with benzene and the benzene layer was extracted with dil. HCl, which was added to the original aq. acid layer and basified, separating an oily substance. The oil was taken up in benzene, washed and evaporated, leaving a faint brown vitreous substance, which gradually solidited on standing. Purified from petr. ether, it formed colorless prisms of m.p. $42\sim44^\circ$. Yield, $4.6 \, \mathrm{g.}(88\%)$. Anal. Calcd. for $C_{24}H_{39}O_2N$: C, 77.2; H, 10.4; N, 3.7. Found: C, 77.5; H, 10.6; N, 3.7 Picrate: Yellow needles (from EtOH), m.p. $142\sim143^\circ$. Anal. Calcd. for $C_{30}H_{42}O_9N_4$: C, 59.8;

H, 7.0; N, 9.3. Found: C, 60.2; H, 7.1; N, 9.2. (cf. Tables VI, and XIV).

(4) Dehydrogenation

1-(Methyl-ethyl-amylmethyl)-6,7-dimethoxyisoquinoline (VIII: $R=CH_3$, $R'=C_2H_5$, $R''=C_5H_{11}$)—The dihydro base (3.5 g.), ethyl cinnamate (15 g.), and Pd-C (2.5 g. of 30%) were mixed and the whole was heated in an atmosphere of CO_2 in an oil bath kept at $280\sim290^\circ$. After 8 hrs.' heating the reaction mixture was dissolved in benzene, filtered from the catalyst, and the filtrate was extracted repeatedly with dil aq. HCl. The combined acid solution was basified and the oil separated was extracted with benzene, washed, and evaporated, leaving a colorless syrup, which dilstilled at $163\sim164^\circ(0.02 \text{ mm.})$. Yield, 2.85 g.(81%).

Picrate: Yellow prisms (from EtOH) m.p. 141~142.5°. Anal. Calcd. for $C_{26}H_{32}O_9N_4$: C, 57.3; H, 5.9; N, 10.3. Found: C, 57.0; H, 5.9; N, 10.6. (cf. Tables VII, and XV).

Summary

A series of 1-tert-alkyl-6,7-dimethoxy-3,4-dihydroisoquinolines was synthesized in high yields by cyclizing N-(3,4-dimethoxyphenethyl)-2,2,2-trialkylacetamides with phosphoryl chloride. They were dehydrogenated over palladium-carbon only under strenuous conditions to furnish the corresponding isoquinolines. Their spasmolytic activity will be examined. A general procedure for the preparation of trialkylacetic acids of high purity was also described.

(Received December 3, 1957)

UDC 547.759.07

33. Shigehiko Sugasawa and Masao Murayama: Synthesis of dl-Esermethole.

(Pharmaceutical Institute, Medical Faculty, University of Tokyo*)

For folicanthine, an alkaloid first isolated from the leaves of *Calycanthus floridus* L. and investigated by Eiter and Svierak,^{1,2)} two structural formulae (A) and (B) were proposed by Hodson and Smith,³⁾ of which the former (A) was considered more probable.⁴⁾

$$\begin{array}{c} \text{CH}_3\text{CH}_3\\ \text{CH}_2\text{-CH}_2\text{-N}\\ \text{N}\\ \text{N}\\ \text{N}\\ \text{CH}_3\text{CH}_3\\ \text{CH}_3\\ \text{CH}_3\text{CH}_3\\ \text{CH}_3\\ \text{C$$

Many years ago one of the present authors (S. S.) had attempted to synthesize dl-esermethole (IX) according to the following scheme:

- * Hongo, Tokyo (菅沢重彥, 村山正雄).
- 1) K. Eiter, O. Svierak: Monatsh., 82, 186(1951).
- 2) Idem.: Ibid., 83, 1453(1952).
- 3) H.F. Hodson, G.F. Smith: Chem. & Ind. (London), 28, 740(1956).
- 4) Based on many experimental results Hodson and Smith later abandoned the formula (A) in favor of (B) (cf. J. Chem. Soc., 1957, 1877).