UDC 547.94.; 582.937; 547.838.1

Shoshichiro Kimoto, Masao Okamoto, and Hiroshi Kondo: Studies on the Alkaloids of Amsonia elliptica Roem et Schult. IV. 17-Ketoyohimbine.

(Kyoto College of Pharmacy*)

In 1943, Witkop²⁾ proposed the exact structure of yohimbone, which can be regarded as the most important substance in the field of structural research of yohimbine-type alkaloids.

When yohimbine was refluxed with aluminum phenoxide and cyclohexanone in xylene, yohimbone was obtained with a good yield and it was assumed that the hydroxyl group at C-17 in yohimbine (I) should be oxidized to a β -ketoester (II), followed by saponification of the methoxycarbonyl group at C-16 and decarboxylation to yohimbone.

Accordingly, it was expected that if milder reaction conditions were used in the above-mentioned Oppenauer oxidation, the unknown intermediate substance, the β -ketoester (II), would be obtained. In order to clarify this assumption, yohimbine was refluxed with aluminum phenoxide and cyclohexanone by the use of benzene as a solvent, instead of xylene, and the β -ketoester (II) was obtained as expected, which was named 17-ketoyohimbine.

This new compound formed faint yellow needles of m.p. $254\sim255^{\circ}$, $(\alpha)^{\circ}_{10} + 15.8^{\circ}$ (pyridine); UV $\lambda_{max}^{\text{EiOH}}$ m μ (log ε) 232(4.05), 283(3.96), and exhibited two absorption peaks at 5.78 \mu and 5.88 \mu in its infrared spectrum (Nujol), associated with the ester group and the carbonyl group, respectively, and the band at $2.82 \mu (\nu_{OH})$ recognized in yohimbine had disappeared.

In addition, yohimbone, m.p. 302~303°(decomp.), was obtained from 17-ketoyohimbine by heating the latter with potassium hydroxide in ethanol and it may be concluded that the preceding assumption was correct.

In an earlier paper³⁾ it was shown that a new base had been isolated from Amsonia elliptica Roem et Schult and was named amsonine. It was later found that amsonine was identical with β -yohimbine, while Janot and co-workers pointed out that β yohimbine might be the C-17-epimer of yohimbine; therefore, the former might carry an equatorial hydroxyl group at C-17. However, there is no positive evidence as to this As a rule, compounds carrying equatorial hydroxyl groups are oxidized more slowly than their epimers carrying axial hydroxyl groups, and it might be anticipated that β -yohimbine would hardly be oxidized under foregoing mild condition. experiments were repeated by an improved method, 17-ketoyohimbine was not obtained from β -yohimbine and the starting material was recovered unchanged.

A. Le Hir, R. Goutarel: Bull. soc. chim. France, 1953, 1023.

Yamashina-Misasagi, Higashiyama-ku, Kyoto (木本正七郎, 岡本正夫, 近藤 宏).

S. Kimoto, M. Okamoto: This Bulletin, 3, 392(1955).

<sup>B. Witkop: Ann., 554, 83(1943).
S. Kimoto, S. Honjo: Yakugaku Zasshi, 63, 159(1943).</sup>

The authors wish to express their indebtedness to the Research Laboratory of Tanabe Seiyaku Co., Ltd. for the measurement of infrared spectra.

Experimental

Oppenauer Oxidation of Yohimbine—To a mixture of yohimbine $(2.0\,\mathrm{g.})$ and $\mathrm{Al}(\mathrm{OPh})_3(12.0\,\mathrm{g.})$, 50 cc. of purified cyclohexanone (b.p. 156°) and 50 cc. of dehyd. benzene were added, and the mixture was heated at $115\sim125^\circ$ in an oil bath for 48 hr. After cool, the resulting reddish brown solution was treated with 10% NaOH solution and the organic layer was shaken with successive portions of 30% H₂SO₄ solution until the aqueous layer no longer produced a precipitate with Mayer reagent. After the combined aq. acid solution was allowed to stand overnight, the resulting white precipitate was collected and washed successively with 10% Na₂CO₃ solution and water.

The same precipitate was also obtained from the mother liquor by addition of 20% Na₂CO₃ solution. This crystalline base was collected and recrystallized from MeOH to faint yellow needles, m.p. $254\sim255^{\circ}(\text{decomp.})$; $(\alpha)_D^{20}+15.8^{\circ}(\text{c=1, pyridine})$. Anal. Calcd. for C₂₁H₂₄O₃N₂•CH₃OH: C, 68.72; H, 7.34; N, 7.29. Found: C, 69.20; H, 6.91; N, 7.67.

Hydrolysis of 17-Ketoyohimbine—A solution of 17-ketoyohimbine (0.03 g.) and KOH (0.01 g.) in EtOH (5 cc.) was refluxed on a water bath for 4 hr. The reaction mixture was evaporated under a reduced pressure, the residue was washed with water, and recrystallized from MeOH. The white crystalline needles melted at 302~303°, undepressed on admixture with an authentic sample of yohimbone.

(Received January 26, 1959)

UDC 591.05:615.782.54

Hisao Tsukamoto, Satoshi Toki, and Kyokuritsu Kaneda: Metabolism of Drugs. XX.¹⁾ Metabolic Fate of Methylhexabital (5–Cyclohexenyl-3,5–dimethylbarbituric Acid). (9).²⁾ Interconversion of 3–Keto–MHB (5–(3–Oxo–1–cyclohexenyl)–3,5–dimethylbarbituric Acid) and 3–OH–MHB (5–(3–Hydroxy–1–cyclohexenyl)–3,5–dimethylbarbituric Acid) in the Rabbit.

(Pharmaceutical Institute, Medical Faculty, University of Kyushu*1)

In an earlier investigation on the metabolic fate of methylhexabital (MHB, 5-cyclohexenyl-3,5-dimethylbarbituric acid) in the dog, Bush *et al.*³⁾ have shown that keto-MHB-I and -II, and other metabolites were excreted in the urine. Cooper and Brodie⁴⁾ also reported that the same oxidation products were obtained by enzymic biotransformation of MHB. On the other hand, Tochino isolated hydroxy-MHB from the urine of rabbits administered MHB,⁵⁾ and confirmed its formation by *in vitro* study using a rabbit liver.⁶⁾

Previous work^{7,8)} from this laboratory showed that two diastereoisomeric α - and β -3-OH-MHB (α - and β -5-(3-hydroxy-1-cyclohexenyl)-3,5-dimethylbarbituric acid), 3-keto-MHB (5-(3-oxo-1-cyclohexenyl)-3,5-dimethylbarbituric acid), 3-keto-nor-MHB (5-(3-oxo-1-cyclohexenyl)-3,5-dimethylbarbituric acid), 3-keto-nor-MHB (5-(3-oxo-1-cyclohexenyl)-3,5-dimethylbarbituric acid)

^{*1} Katakasu, Fukuoka (塚元久雄, 土岐 智, 金田旭立).

¹⁾ Part XIX. H. Tsukamoto, A. Yamamoto: This Bulletin, 7, 434(1959).

²⁾ H. Tsukamoto, H. Yoshimura, S. Toki: *Ibid.*, 6, 88(1958).

³⁾ M.T. Bush, T.C. Butler, H.L. Dickinson: J. Pharmacol. Exptl. Therap., 108, 104(1953).

⁴⁾ J.R. Cooper, B.B. Brodie: *Ibid.*, 114, 409(1955).

⁵⁾ Y. Tochino: Wakayama Med. Repts., 6, 421(1955).

⁶⁾ Idem.: Ibid., 7, 150(1956).

⁷⁾ H. Tsukamoto, H. Yoshimura, S. Toki: This Bulletin, 4, 368(1956).

⁸⁾ H. Yoshimura: *Ibid.*, 5, 561(1957).