
UDC 615.782-012

171. Norio Sugimoto, Kentaro Okumura, Noboru Shigematsu, and Goro Hayashi: Studies on the Synthetic Analgesics. XVII. Syntheses of 2-(N-tert-Aminoalkylacylamino)thiophene.

(Osaka Research Laboratory, Tanabe Seiyaku Co., Ltd.*1)

Recently, Wright and co-workers¹⁾ reported a new series of potent analgesics of novel chemical structure, N-*tert*-aminoalkylpropionanilide (A). The compounds in this series are considered as analogs of methadone or isomethadone, in which the quaternary carbon atom and one of the phenyl groups have been replaced by a nitrogen atom. On the other hand, it is well known that the series of 2,2'-(3-tert-amino-1propenylidene)dithiophene (B)²⁾ have the same order of analgesic activities as that of morphine and hence the thienyl group is presumably a pharmacological isoster of the phenyl group in the field of analgesics.³⁾ These two facts prompted us to undertake the synthesis of a series of 2-(N-tert-aminoalkylacylamino)thiophene (C), which may be considered as thiophene-analogs of the anilides (A), for analgesic testing.

The synthesis of the compounds was accomplished according to the route shown in Chart 2. The compounds prepared are listed in Tables I, II, and III. Reduction of 2-nitrothiophene with stannous chloride according to the direction of Steinkopf⁴) afforded 2-aminothiophene hydrochloride as a double salt of stannic chloride. The salt was directly treated with acetic anhydride, propionic anhydride and ethyl chloroformate in the presence of alkali to yield acetyl, propionyl and ethoxycarbonyl amides respectively. The amides were converted to the sodium or potassium salts with sodium hydride or potassium metal, and the salts were condensed with the *tert*-aminoalkyl halides to give the desired 2-(N-*tert*-aminoalkylacylamino)thiophene (C).

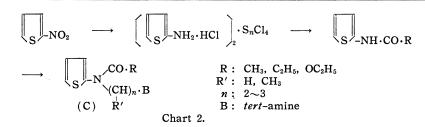
The hydrochlorides of these compounds were submitted to the analgesic test. They were tested according to the mouse hot plate method modified by Woolfe, Mac Donald

3) D.W. Adamson, A.F. Green: Nature, 1950, 122.

^{*1} Kashima-cho Higashiyodogawa-ku, Osaka (杉本典夫, 奥村健太郎, 重松 遥, 林 五郎).

W.B. Wright, H.J. Brabander, R.A. Hardy: J. Am. Chem. Soc., 81, 1518 (1959); J. Org. Chem., 26, 476 (1961); *Ibid.*, 26, 485 (1961).

V.B. Schatz.: Medecinal Chemistry p. 72 (1960) published by Interscience Publishers Inc., New York.


⁴⁾ W. Steinkopf: Ann., 403, 17 (1914).

1002																	voi. 1	.0 (1902)
	ctivity*		mg./kg.	none	>150.0	none	>100.0		ctivity*		EU ⁵⁰ mg./kg	150.0	150.0	32.0	46.5	none	29.9	7.1
	Analgesic activity*		mg./kg.	>150.0	>150.0	>150.0	>150.0		Analgesic activity*		LU ⁵⁰ mg./kg.	>150.0	>150.0	399.0	508.0	>150.0	511.5	265.0
	Aı		Z	14.55	15.52	6.94	6.75		Aı		z	7.82	15.10	7.70	15.04	10.39	6.81	6.59
	Analysis %	Found	Н	3.97	4.78	6.03	6.35		Analysis %	Found	H	6.59	4.43	6.66	4.87	8.67	6.05	6.67
			C	47.72	45.04	57.97	58.79				o	54.20	45.23	55.02	46. 29	62.23	59.52	59.80
OCH3		Calcd.	Z	14.73	15.38	7.14	6.89	$\left(\sum_{s} \right)_{h} - N - COC_{2}H_{5}$			z	7.86	15.38	7.56	14.92	10.44	6. 89	6.66
S R R			Н	3.60	4.65	6.17	6.45	N-N-N		Calcd.	H	6.79	4.65	7.08	4.94	9.02	6.45	6.71
			C	48.00	44.84	58.15	59.10			•	U)	53.92	44.84	55.12	46.05	62.66	59.10	59.99
2-(N- <i>tert</i> -Aminoalkylacetamido)thiophene		Formula		$C_{19}H_{17}O_8N_5S$	$C_{17}H_{21}O_8N_5S$	$C_{19}H_{24}O_{5}N_{2}S$	$C_{20}H_{26}O_5N_2S$	$2-(\mathrm{N-}tert-\mathrm{Aminoalkyl Propionamido})$ thiophene		Formula		$C_{16}H_{24}O_5N_2S$	$C_{17}H_{21}O_8N_5S$	$C_{17}H_{26}O_5N_2S$	$C_{18}H_{23}O_8N_5S$	$C_{14}H_{24}ON_2S$	$C_{20}H_{26}O_5N_2S$	$C_{21}H_{26}O_5N_2S$
alkylacetami		m.p. Recryst. °C solvent		EtOH	-	iso-PrOH	2	alkylpropion	Recryst. solvent			EtOH		"			iso-PrOH	
-Amino				$134 \sim 134 \sim 135$ $113 \sim 114$ 114 $150 \sim 152$		$110\sim$ 111	-Amine		n.p. °C.		$185\sim 188$	$\frac{118}{119}$	$163\sim 164$	$\begin{array}{c} 134 \sim \\ 136 \end{array}$		$139\sim 141$	$^{116}_{122}$	
2-(N <i>-tert</i>		Deriv.		Picrate		Oxalate	-	2-(N-tert		Deriv.		Oxalate	Picrate	Oxalate	Picrate	Base	Oxalate	
TABLE I.	(9	%)pi		50.4	25.1	52.4	63.8	гв Π.	(9	%)p	[9iY	45.5	48.1	66.6	45.2	85.7	80.3	85.7
T	; -	°C/	тт.нg	$138\sim 140/0.04$	$103\sim 106/0.08$	$150\sim 156/0.04$	$165\sim 170/0.04$	TABLE	؛ ب	°C/	mm. Hg	$rac{127}{130/0.09}$	$rac{94\sim}{97/0.08}$	$142\sim$ $145/0.5$	$110\sim 112/0.09$	$rac{122}{125/0.2}$	$158\sim 165/0.07$	$egin{array}{c} 162 \sim \ 167/0.05 \end{array}$
		R	No.	1 -CH ₂ CH ₂ ·N	2 -CH ₂ CH $\cdot N < CH_3$ CH ₃	3 -CH ₂ CH · N $^{CH_3}_{CH_2Ph}$	$\begin{array}{rcl} 4 & -\mathrm{CH}_{2}\mathrm{CH} \cdot \mathrm{N} \begin{pmatrix} \mathrm{CH}_{3} \\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{Ph} \\ \mathrm{CH}_{3} \end{array}$			R	No.	5 -CH ₂ CH ₂ ·N	6 $-CH_2CH \cdot N < CH_3$	7 $-CH_2CH \cdot N$	8 $-CH_2CH \cdot N < CH_3$ CH3	9 $-CH_2CH \cdot N < C_2H_5$	$\begin{array}{c} CH_3\\ 10 -CH_2CH \cdot N\overset{CH_3}{\overset{CH_2}{\overset{Ph}{\overset{O}{\overset{O}}}} \end{array}$	CH3 11 -CH2CH·N>CH3 CH3 CH3

Vol. 10 (1962)

		1															10	03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17.4	45.2	35.4	9.7	none		"		"	57.7		ctivity* icity*	ED ₅₀ mg./kg.	>100.0	none	>100.0	6.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	408.0	468.6	300.0	139.0	>150.0	>150.0	120.0	>150.0	>150.0	>675.0		nalgesic a and tox				>150.0	450.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.75	14.95	7.17	6.55	7.74	8.57	7.44	14.93	6.58	6.53		A		6.95	7.79	6.18		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.52	4.50	6. 05	6.32	6.97	6.74	7.25		6.48	6.84		Found	{ H	7.01	6.45	6.12		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55.18	46.34	59.00	60.25	55.44	50.77	56.62		59.84	60.75	${}_{2}^{2}H_{5}$	ysis %	U)	52.84	49.01	56.64		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.56	14.92	6.89	6.66	7.56	8.48	7.29	14.86	6.66	6.45	-000	Anal	Z	7.25	8.09	6.63		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.08	4.94	6.45	6.71	7.08	6.71	7.34		6.71	6.96		Calcd.	H	6.78	6.40	6.20		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55.12	46.05	59.10	59, 99	55.12	50.90	56.24		59, 99	60.81		-	U)	52.84	48.55	56.86		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$C_{17}H_{26}O_5N_2S$	$C_{18}H_{23}O_8N_5S$	$\mathrm{C}_{20}\mathrm{H}_{26}\mathrm{O}_5\mathrm{N}_2\mathrm{S}$	$C_{21}H_{28}O_5N_2S$	$C_{17}H_{26}O_5N_2S$	$C_{14}H_{22}O_5N_2S$	$C_{18}H_{28}O_5N_2S$	$C_{19}H_{25}O_8N_5S$	$C_{21}H_{28}O_5N_2S$	$C_{22}H_{30}O_5N_2S$	ophenecarban	Formula		$C_{17}H_{26}O_6N_2S$	$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{O}_6\mathrm{N}_2\mathrm{S}$	$\mathrm{C}_{20}\mathrm{H}_{26}\mathrm{O}_6\mathrm{N}_2\mathrm{S}$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	EtOH			iso-PrOH	EtOH				iso-PrOH	EtOH	1001kyl-2-th	Recryst.	1112 102	EtOH				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$169 \sim 170$	$\frac{131}{134}$	${137 \sim \atop 138}$	$\underset{115}{\overset{112\sim}{}}$	$161 \sim 165$	$143\sim 146$	$^{184 \sim}_{185}$	$\begin{array}{c} 142 \sim \\ 143 \end{array}$	$_{126\sim}^{126\sim}$	$\substack{128 \sim \\ 130}$	<i>rt</i> -Amiı	م.n	2	$150\sim 153$	$165 \sim 166$	$\frac{124 \sim}{126}$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	Picrate	Oxalate		=	-		Picrate	Oxalate	*	thyl N- <i>te</i>	Deriv.		Oxalate				
CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ Ph CH ₃ Ph CH ₃ Ph CH ₃ Ph CH ₃ Ph CH ₃ Ph CH ₃ Ph CH ₃ Ph CH ₃ Ph CH ₃ Ph	62.2				90.7		73.	81.6			ш.	(%)pIəi						
12 $-CHCH_2 \cdot N \subset CH_3$ CH_3 $CH_$	$\begin{array}{c} 148 \\ 150 / 0.5 \end{array}$	$100\sim 105/0.07$	$^{175}_{180/0.07}$	$rac{165}{169/0.06}$	$154\sim$ $157/0.4$	$120\sim 123/0.09$	$158\sim 162/0.1$	$125\sim 128/0.4$	$_{175\sim}^{175\sim}$ 178/0.09	$^{183}_{186/0.07}$	T_{ABLE}	b.p. °C/	mm. Hg	$140\sim 145/0.5$	$\underset{117/0.08}{117/0.08}$	$rac{165}{170/0.07}$	nistration	III AUI AUI
	12 $-CHCH_2 \cdot N$	$\begin{array}{c} 13 -CHCH_2 \cdot N < CH_3 \\ CH_3 \\ CH_4 \end{array}$	$\begin{array}{c} 14 -\text{CHCH}_2 \cdot \text{N} \begin{pmatrix} \text{CH}_3 \\ \text{CH}_2 \text{Ph} \end{pmatrix}$	$\begin{array}{c} \mathbf{CH}_{3} \\ 15 -\mathbf{CHCH}_{2} \cdot \mathbf{N} \mathbf{CH}_{3} \\ \mathbf{CH}_{2} \mathbf{CH}_{2} \mathbf{Ph} \\ \mathbf{CH}_{2} \mathbf{CH}_{3} \mathbf{Ph} \end{array}$	$\frac{CH_3}{16} - CH_3 CH_3 \cdot \dot{N}$	17 $-CH_3CH_2CH_2\cdot N \langle CH_3 CH_3 \rangle$	18 $-CH_3CH_3CH \cdot N$	$\begin{array}{c} 19 -CH_2CH_2CH \cdot N < CH_3 \\ CH_3 \\ CH_3 \end{array}$	$\begin{array}{cc} \mathbf{CH}_{3}\\ 20 -\mathbf{CH}_{2}\mathbf{CH}_{3}\mathbf{CH}_{3}\mathbf{CH}_{3}\\ \mathbf{CH}_{2}\mathbf{Ph}\\ \mathbf{CH}_{2}\end{array}$	21 -CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ Ph CH ₂ CH ₂ CH ₂ CH ₂ Ph	C11 3	Я	No.		$\begin{array}{cc} \text{CH}_{3} \\ \text{23} -\text{CH}_{2}\text{CH} \cdot \text{N} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array}$	24 -CH ₂ CH ·N CH_3 CH ₃ Ph ΔH_2 CH ·N CH_2 CH ₂ Ph	013 25 Morphine hydrochloride * suboutaneous administration	

No. 11

and Eddy⁵⁾ and the results obtained are shown in Tables I, II and II. Among these compounds of this series, No. 11 was observed to have the activity approximately equal to that of morphine and No. 12 showed the activity between those of meperidine and codeine. The propionyl group attached to amine was apparently the most important for the activity because several propionamides (Table II) had the analgesic activity while all acetyl (Table I) and ethoxycarbonyl (Table II) amides were devoid of the activity. Variation in the alkylene chain between the two nitrogen atoms affected markedly the analgesic activity. The ethylene group was found to be the most effective for the activity while the propylene group caused to reduce the activity. This structure-activity relationship in this series of compounds was similar to those in the series of methadones and N-*tret*-aminoalkylpropionanilide (A).

Experimental

2-(N-tert-Aminoalkylacetamido)thiophene—The K salts of 2-acetamidothiophenes were prepared by heating with K metal (0.78 g.; 0.02 mole) and 2-acetamidothiophenes (2.28 g.; 0.02 mole) in 28 cc. of anhyd. xylene at $120 \sim 130^{\circ}$ for 2 hr. with stirring.

To this salts solution was added dropwise with stirring at 120° a solution of *tert*-aminoalkyl chlorides (0.026 mole) in 14 cc. of anhyd. xylene and the mixture was kept at $120 \sim 130^{\circ}$ for 2 hr.

After cooling, the reaction mixture was filtered and the inorganic salt washed with xylene. The combined solution was extracted with 5% HCl. The extract was made alkaline with K_2CO_3 , and the oil separated was extracted with Et_2O . After evaporation of the dried Et_2O solution, the remaindal syrup was purified by vacuum distillation.

2-(N-tert-Aminoalkylpropionamido)thiophene To a hot solution of 2-propionamidothiophene (3.1 g.; 0.02 mole) in 35 cc. of xylene was added NaH (0.53 g.; 0.022 mole), and the mixture was heated at $110\sim120^{\circ}$ for about 2 hr. with stirring, when the white crystals of the Na salts of 2-propionamidothiophene were completely separated. To the Na salt suspension was added a solution of *tert*-aminoalkyl chloride (0.026 mole) in 15 cc. of xylene and the reaction mixture was heated at $120\sim130^{\circ}$ for 3 hr. with stirring. Then the mixture was worked up as described above to give the oily crude amide which was purified by vacuum distillation.

Ethyl N-tert-Aminoalkyl-2-thiophenecarbamate — To a solution of ethyl 2-thiophenecarbamate (3.42 g.; 0.02 mole) in 25 cc. of anhyd. toluene was added NaH (0.53 g.; 0.022 mole) with stirring, and then was refluxed for 1.5 hr. when the crystalline Na salt was completely separated. To the Na salt suspension was added a solution of *tert*-aminoalkyl chloride (0.026 mole) in 35 cc. of xylene and the heating of this mixture was continued for 2 hr. For the purification of the crude materials also was used vacuum distillation in this case.

Summary

Acyl-derivatives of thienylaminoethyl (or propyl) amines have been synthesized. Some of the compounds tested for analgesic activity showed the almost equal as morphine.

(Received September 11, 1961)

⁵⁾ N.B. Eddy, D. Leinbach: J. Pharmacol. Expl. Therap., 107, 385 (1953).