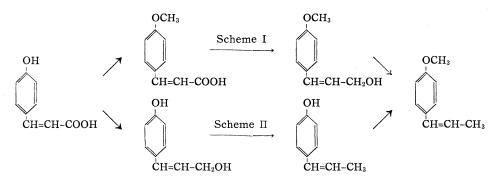
UDC 581.134:547.566.1:582.893


176. Ko Kaneko : Biogenetic Studies of Natural Products. VIII.¹⁾ Biosynthesis of Anethole by *Foeniculum vulgare*. (4).

(Faculty of Pharmaceutical Sciences, Hokkaido University*1)

In the previous papers^{2~4}) of this series on the biosynthesis of anethole by *Foeniculum vulgare*, it was shown that anethole was synthesized from a phenylalanine path through phenylpyruvic acid, cinnamic acid and 4-hydroxycinnamic acid. These results, when estimated by isotopic and enzymatic methods, were in good agreement with those obtained from the biosynthesis of other phenylpropanoide, such as lignin and flavones.^{5~7})

It was from this point of view that the author was interested in the relationship between the reduction of the carboxyl group and the transmethylation of 4-hydroxycinnamic acid.

As regards the reduction and the transmethylation of 4-hydroxycinnamic acid, two possibilities are to be conceivable.

In this paper, an attempt was made to ascertain the actual route by the use of the inhibition method, as described previously.³

Experimental

Cultivation of Plant, Extraction and Isolation of Enzyme System——They were conducted in the same manner as described in the previous paper.³⁾

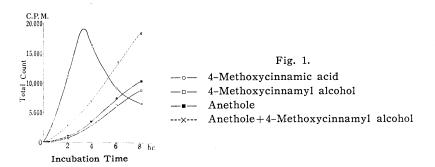
Assay of Enzymatic Synthesis of Anethole and its Assumed Intermediates——The condition of incubation was described in a previous paper.³⁾

The change of the enzymatic reactions was measured at the end of every hour. The aliquots of the reaction mixture were acidified with 10% HCl, treated with 20 mg. of pure anethole, 4-methoxycinnamic acid, 4-methoxycinnamyl alcohol and cinnamyl alcohol, and extracted with Et₂O for 5 hr. They were then treated in the same manner as described in the previous paper.³⁾ 4-Hydroxycinnamic acid and 4-methoxycinnamic acid obtained from the reaction mixture were purified by paper chromatography,³⁾ the Rf values of which were 0.35 and 0.27, respectively.

*1 Kita 12-jo, Nishi 5-chome, Sapporo, Hokkaido (金子 光).

- 2) K. Kaneko: Ibid., 8, 611 (1960).
- 3) Idem: Ibid., 8, 875 (1960).
- 4) Idem: Ibid., 9, 108 (1961).
- 5) S.N. Acerbo, W.J. Schubert, F.F. Nord: J. Am. Chem. Soc., 80, 1990 (1958).
- 6) S.A. Brown, A.C. Neish: Can. J. Biochem. Physiol., 34, 769 (1956).
- 7) D.R. McCalla, A.C. Neish: Ibid., 37, 537 (1959).

¹⁾ Part VII: This Bulletin, 10, 1119 (1962).


Also, 4-methoxycinnamyl alcohol and anethole were purified by silica gel chromatostrip,³) and the Rf values were 0.17 and 0.74, respectively.

Preparation of 4-Methoxycinnamyl Alcohol—Ethyl 4-methoxycinnamate was reduced by LiBH₄, as described by Kollonitsch.⁸⁾

A solution of 1.55 g. of the ester, 2.6 g. of LiI and 0.7 g. of NaBH₄ dissolved in dehyd. tetrahydrofuran was heated at 60° for 2 hr. with vigorous stirring. Then the reaction mixture was evaporated to dryness dissolved in H₂O and extracted with Et₂O. After the Et₂O extract was evaporated, the resulting oily residue was hydrolysed with 5% NaOH for 2 hr. and extracted with Et₂O. After evaporation of Et₂O, the resulting oily residue was destilled in a reduced pressure and the fraction of b.p₂ 132~138° was collected; yield, 0.6 g. This fraction was separated by silica gel chromatography into the original ester and 4-methoxycinnamyl alcohol, which were further submitted to silica gel chromatostrip.³) The Rf values obtained were 0.45 and 0.17, respectively. The lower spot was extracted with Et₂O. Yield, 0.2 g. (18%); its phenylurethane melted at 46°. *Anal.* Calcd. for C₁₇H₁₇O₃N: C, 72.06; H, 6.05. Found: C, 71.97; H, 6.21.

Results and Discussion

The previous paper³) of this series demonstrated that the cell free enzyme system from Foeniculum vulgare synthesized anethole from phenylalanine-[2-14C] in the presence of ATP, DPN, phosphate, and ascorbate. In this study, the enzyme system was also shown to synthesize anethole from 4-hydroxycinnamic acid-[1-14C], and these results coincided with those of the previous one⁴) using phenylalanine-[2-¹⁴C]. The change of radioactivity of 4-hydroxycinnamic acid-[1-14C] in this enzyme reaction is shown in Fig. 1, which shows clearly that after 3 hours the radioactivity of 4-hydroxycinnamic acid-[1-14C] distributed to 4-methoxycinnamic acid in a large quantity, and to anethole and 4-methoxycinnamyl alcohol in a minute amount. This was followed by the rapid decrease in the radioactivity of 4-methoxycinnamyl alcohol and anethole showed a gradual increase and reached its maximum value after 8 hours. From the data given in Fig. 1, it seems to indicate that 4-hydroxycinnamic acid is methylated with methionine and ATP at the first stage in which the rate of reaction is relatively And then, the amount of 4-methoxycinnamic acid reduced gradually resulting high. in the formation of 4-methoxycinnamyl alcohol and anethole.

Experiments were made to observe the effects of 4-methoxycinnamic acid and 4-methoxycinnamyl alcohol on the synthesis of anethole from 4-hydroxycinnamic acid $[1^{-14}C]$ by the inhibition method, as described previously.³⁾

From Table I, it is apparent that 4-methoxycinnamic acid and 4-methoxycinnamyl alcohol have strong dilution effect of the radioactivity which incorporated into anethole from 4-methoxycinnamic acid- $[1-^{14}C]$ hence these compounds have an inhibitory action on this reaction.

⁸⁾ J. Kollonitsch, O. Fushs, V. Gabor: Nature, 173, 125 (1954).

	1	ABLE. I.		
Exp. No.	Addition	$\begin{array}{c} \text{Concentration} \\ (M) \end{array}$	Radioactivity	
			c.p.m./mmole	Ratio
1.	None		8,870	100.0
	4-Methoxycinnamic acid	0.015	3,017	34.1
	4-Methoxycinnamyl alcohol	0.015	2,359	26.6
	Cinnamyl alcohol	0.015	7,896	89.0
2.	None		14,805	100.0
	4-Methoxycinnamic acid	0.015	4,250	28.6
	4-Methoxycinnamyl alcohol	0.015	3, 892	26.6
~				1 54 1403

The incubation mixture contained 10 μ c of 4-hydroxycinnamic acid-[1-¹⁴C]. The assay conditions were described in the previous paper.³⁾ In Exp. 1, each incubation tube contained 135 mg. of protein and in Exp. 2, each tube contained 182 mg. of protein. Both tubes were incubated at 30° for 6 hr.

Scheme II was not examined under an identical condition but it may be concluded that Scheme I will furnish an important route of anethole biosynthesis in Foeniculum plant.

Sincere gratitude is expressed to Prof. H. Mitsuhashi of Hokkaido University for his kind encouragement. A part of the expenses of the present work was defrayed by the Grant-in-Aid for Institutional Research of Education and Rockefeller Foundation Grant which are gratefully acknowledged.

Summary

The anethole biosynthesis, using the cell-free enzyme system of *Foeniculum* plant was established as follows: 4-Hydroxycinnamic acid-4-methoxycinnamic acid-4-methoxycinnamyl alcohol→anethole.

(Received September 2, 1961)

UDC 547.314.07:547.853.4

177. Yasuo Yura : Studies on Acetylenic Compounds. XXV.*2 Ring Closure. (5). New Synthetic Method of Heterocyclic Compounds from α -Amino- and α -N-substitued Aminoacetylenic Compounds.

(Takamine Laboratory, Sankyo Co., Ltd.*1)

In the previous paper^{1,2}) the author reported that 2-aminothiazole, 2-thiazolethiol, and 2-aminoimidazole derivatives were easily synthesized by refluxing alcoholic solution of α -haloacetylenic compounds with thiourea, ammonium dithiocarbamate, and guanidine. respectively. As a general application of this reaction to another new ring closure, α haloacetylenic compounds were allowed to with urea, amide, thioamide, or S-benzylisothiourea to obtain derivatives of imidazole, oxazole, or thiazole, respectively. In these

^{*1} Nishi-shinagawa, Shinagawa-ku, Tokyo (由良靖雄).

^{*2} Part XXIV. I. Iwai, T. Konotsune : Yakugaku Zasshi, 82, 601 (1962).

¹⁾ Part XXI. Y. Yura: This Bulletin, 10, 372 (1962).

²⁾ Part XXII. Idem : Ibid., 10, 376 (1962).