On the Characterization of 4-Nitropyridazine 1-Oxide and the N-Oxidation of 4-Methoxypyridazines

When pyridazine 1-oxide (I) was nitrated with the mixed acid at the elevated temperature, a single nitration product corresponding to mononitropyridazine 1-oxide (II), m.p. 151° (*Anal.* Calcd. for C₄H₃O₃N₃: C, 34.05; H, 2.14; N, 29.79. Found : C, 34.13; H, 2.07; N, 30.09), was obtained^{1,2} in 22% yield. In order to characterize this nitropyridazine 1-oxide and correlate it to the known pyridazine derivative, a series of reactions starting from 4-methoxy-3,6-dichloropyridazine (III) was carried out.¹

4-Methoxy-3,6-dichloropyridazine (III) was treated with perphthalic acid in an ethereal solution. Two kinds of its N-oxide, (IV), m.p. $174 \sim 175^\circ$, and (V), m.p. $162.5 \sim 164^\circ$, were obtained in 12% and 5% yields respectively, accompanied with a small amount of 4 (or 5)-6-chloro-3(2H)-pyridazinone (VI), m.p. 286° (decomp.) (Anal. Calcd. for $C_5H_5O_2N_2$ -Cl: C, 37.40; H, 3.14; N, 17.45. Found: C, 37.33; H, 3.41; N, 16.89. IR: $\nu_{\text{max}}^{\text{KBr}}$ 1662 cm⁻¹). One of these N-oxides (IV) (Anal. Calcd. for $C_5H_4O_2N_2Cl_2$: C, 30.79; H, 2.07; N, 14.37. Found: C, 31.08, H, 2.35; N, 14.24) was converted to 3,4,6-trimethoxypyridazine 1-oxide (VII), whose structure had been established by Igeta,³⁾ so that the structure of (IV) was confirmed to be 4-methoxy-3,6-dichloropyridazine 1-oxide. This fact has suggested that the other product (V) (Anal. Calcd. for $C_5H_4O_2N_2Cl_2$: C, 30.79; H, 2.07; N, Found: C, 31.10; H, 2.17; N. 14.68.) was undoubtedly 2-oxide of (III) with con-14.37. sideration of its infrared spectrum (IR : $\nu_{\text{Max}}^{\text{Max}}$ 1330 cm⁻¹; no OH and no CO) and the ready formation of 4-methoxypyridazine (W)⁴) by catalytic hydrogenation. Catalytic hydrogenation of the former N-oxide (IV), 4-methoxy-3, 6-dichloropyridazine 1-oxide, gave 4-methoxypyridazine 1-oxide, which was found to be identical with methoxypyridazine

¹⁾ T. Itai, S. Natsume : in press.

Recently, Nakagome reported the same nitro compound, yet the rigorous structural proof has, been missing. T. Nakagome: Yakugaku Zasshi, 82, 253 (1962).

³⁾ H. Igeta: This Bulletin, 8, 550 (1960).

⁴⁾ K. Eichenberger, R. Rometsch, J. Druey: Helv. Chim. Acta, 39, 1755 (1956).

N-oxide derived from the nitration product (II) of pyridazine 1-oxide. Consequently, (II) was established to be 4-nitropyridazine 1-oxide.

In a continuation of our study concerning to this subject, the N-oxidation reaction of 4-methoxypyridazine (VIII) itself was next examined. (VIII) was heated with hydrogen peroxide in acetic acid at 70°, followed by the usual treatment of the reaction mixture. Two kinds of its N-oxide, (IX), m.p. $124 \sim 124.5^{\circ}$, and (X), m.p. 111° , were obtained by the chromatographical separation of the chloroform extract, and from the alkaline aqueous solution, 4(1H)-pyridazinone (XI),⁴ m.p. 252°, was isolated as a by-product, which was merely the hydrolyzed product of (VIII) with this reaction medium. This type of hydrolysis has been already observed^{5,6}) in the case of the N-oxidation reaction of 3alkoxy-6-chloropyridazine with hydrogen peroxide-acetic acid. The former N-oxide (IX), was identical with the above-mentioned 4-methoxypyridazine 1-oxide by mixed melting points and comparison of the infrared spectra, and the latter (X), m.p. 111°, possessed analytical values corresponding to 4-methoxypyridazine oxide (Anal. Calcd. for $C_5H_6O_2N_2$: C, 47.62; H, 4.80; N, 22.22. Found: C, 47.88; H, 4.51; N, 22.32.) and its infrared spectrum supported an N-oxide structure (IR : $\nu_{\text{Max}}^{\text{KBr}}$ 1241 cm⁻¹; no OH and no CO), so that, (X) is no doubt 4-methoxypyridazine 2-oxide. In order to make sure of this conclusion, 4-methoxy-3,6-dichloropyridazine 2-oxide (V) was hydrogenated over palladized charcoal in an alkaline medium and the reduction product was proved to be identical with the When the N-oxidation of (VIII) was carried out at 100° , the formation of N-oxide (X). 1-methyl-4(1H)-pyridazinone $(II)^4$ was observed, though in a small yield, in addition to these three products.

Furthermore, N-oxidation of 6-chloro-3,4-dimethoxypyridazine (XII) was carried out. (XII) (m.p. 126°. Anal. Calcd. for $C_6H_7O_2N_2CI$: C, 41.27; H, 4.04. Found: C, 41.37; H, 4.01.) was synthesized by the reaction of (III) with an equimolar amount of sodium methoxide and the structure of (XII) was determined by the formation of 3,4-dimethoxypyridazine (XIV) (hygroscopic needles, m.p. 55~57°. Anal. Calcd. for $C_6H_8O_2N_2$: C, 51.42; H, 5.75. Found: C, 50.99; H, 5.82. Picrate, m.p. 151°. Anal. Calcd. for $C_6H_8O_2N_2 \cdot C_6 + H_8O_7N_8 :$ C, 39.03; H, 3.00. Found: C, 39.25; H, 3.18), which was identical with the hydrogenated product of known 3,4-dimethoxypyridazine 1-oxide (XV).³⁾ When (XII) was treated with perphthalic acid in ethereal solution, an N-oxide (XVI) (m.p. 190°. Anal. Calcd. for $C_6H_7O_8N_2CI$: C, 37.81; H, 3.70. Found: C, 37.80; H, 3.80.) was isolated in 50% yield as a sole product. Since (XVI) gave known 3,4-dimethoxypyridazine 1-oxide³⁾ by

⁵⁾ T. Itai, S. Sako: in press.

⁶⁾ T. Nakagome: Yakugaku Zasshi, 82, 244 (1962).

catalytic hydrogenation in an alkaline medium, the structure of (XVI) was shown to be 1-oxide of 6-chloro-3,4-dimethoxypyridazine.

Table I summarized the above-mentioned experimental results. The N-oxidation reactions of (III) and (VIII) do not give so preferentially 1-oxide to 2-oxide in both cases as expected, while in the case of (XIII), the oxidizing agent seems to attack almost selectively to 1-nitrogen as observed in the N-oxidation of 3-methoxy-6-chloropyridazine.^{5,6}) Thus, it may be concluded that the methoxyl group in 4-position of the pyridazine ring exhibits only a weak polar effect to the ring nitrogen.

National Institute of Hygienic Sciences, Tamagawa-yoga, Setagaya-ku, Tokyo. Takanobu Itai (板井孝信) Sachiko Natsume(夏目幸子)

May 21, 1962.

UDC 547.92

Preparation of 3β -Acetoxy- 14β , 15β -epoxy- 5β -card-20(22)enolide

It has been reported that resibufogenin possessed a stimulating effect of respiratory center.¹⁾ In order to compare the pharmacological action of the corresponding cardenolide derivative with that of resibufogenin, partial synthesis of the 14β , 15β -epoxide of cardenolide was made using " β "-anhydrodigitoxigenin acetate as the starting material.

" β "-Anhydrodigitoxigenin acetate (I) was oxidized with monoperphthalic acid to give 3 β -acetoxy-14 α ,15 α -epoxy-5 β -card-20(22)-enolide (II), m.p. 199~206°, $[\alpha]_D^{21} + 12.0°$ (CHCl₃), UV : λ_{max}^{EOH} 216 m μ (log ε 4.20). Hydrolytic cleavage of (II) with perchloric acid afforded a *trans*-glycol, 15 α -hydroxydigitoxigenin 3-acetate (IV), m.p. 247~250°, $[\alpha]_D^{25} + 35.6°$ (CHCl₃). Treatment of (IV) with mesyl chloride in pyridine and purification of the resulting product by chromatography on alumina gave a sulfur-free compound (V), $C_{25}H_{34}O_5$, m.p. 180~181°, $[\alpha]_D^{24} + 34.4°$ (CHCl₃). Since (V) showed no hydroxyl band in its infrared spectrum and gave a negative reaction with hydroxylamine, this compound (V) was assumed to be 14 β ,15 β -epoxide isomeric with (II).

The structures of the compounds (II), (IV) and (V) were proved by the following experiments: (a) The configuration of the 14,15-epoxy group of (II) was α , since (II) was converted into the known methyl 3β -acetoxy- 14α , 15α -epoxy- 5β -etianate²⁾(II) by oxidation

¹⁾ M. Okada: Nippon Yakurigaku Zasshi, 57, 160 § (1961).

²⁾ A. Lardon, H.P. Sigg, T. Reichstein: Helv. Chim. Acta, 42, 1457 (1959).