deeply, the thiourea began to solidify as a compact, solid mass. Purification by recrystallization from dil. MeOH yielded between 70% and 80% of the theoretical amount.

Synthesis of N-Alkyl-4-morpholinecarboxamidine Sulfate——A mixture of 0.1 mole of N-alkyl-4-morpholinethiocarboxamide and 6.4 g. (0.05 mole) of Me₂SO₄ was refluxed at 110° in an oil bath for 1 hr. The S-methylisothiourea sulfate was then dissolved in 20 cc. of water, and cleared with charcoal. To the filtrate was added, all at once, 20 cc. of NH₃-water. Under agitation, the solution was gently warmed on a water bath over 3 hr. After a great part of MeSH was evolved, the solution was boiled, discolored with charcoal, and then concentrated under reduced pressure until it was anhydrous. The syrupy residue was covered with a layer of dry Me₂CO or anhyd. MeOH, and chilled for several days, whereupon it set to crystallize.

Summary

The eight compounds of N-alkyl-4-morpholinecarboxamidine sulfate were synthesized via N-alkyl-4-morpholinethiocarboxamide from alkyl isothiocyanate, wherein alkyl group stands for H, CH₃, C₂H₅, C₃H₇, C₄H₉, C₅H₁₁, C₆H₁₃, or cyclohexyl.

Any of the compounds synthesized was found inactive on any of polio, measles and influenza virus.

(Received July 23, 1962)

UDC 547.92:577.176.3

106. Keiichi Takamura, Chifuyu Isono, Sakae Takaku, and Yoshihiro Nitta:

Studies on Steroids. I. The Preparation and Properties of 17β-(N-Substituted 2-Amino-4-thiazolyl)-androst-4-en-3-one Series.

(Research Laboratory, Chugai Pharmaceutical Co., Ltd.*1)

At the time of this investigation it had already been shown that modification of 17-position of androstane could give a various biological activity. Recently, Ralls and his co-workers¹⁾ described on the synthesis of 17β -(2-substituted 4-thiazolyl)androst-4-en-3-one series possessing pharmacological activity as cardiac glucoside. On the other hand, Schaub, *et al.*²⁾ also reported on the synthesis of 17β -(2-amino-4-thiazolyl)androst-4-en-3-one series having no significant activity. The present authors attempted to prepare a various kinds of 17β -(N-substituted 2-amino-4-thiazolyl)androst-4-en-3-one series in order to examine the structure-activity relationships.

Synthesis of 17β -(2-alkylamino-(or 2-arylamino- or 2-N,N-alkylarylamino-)-4-thiazolyl)-androst-4-en-3-one Series

21 Mesylates (II) of Reichstein's compound S, cortisone and desoxycorticosterone, were prepared by treatment of the parent compounds with methanesulfonyl chloride in pyridine at low temperature respectively.

The conversion of II to 21-iodides derivatives (III) were carried out with use of sodium iodide in acetone. 21-Iodides (III) were condensed with thiourea, N-alkylthiourea

^{*1} Takadaminami-cho, Toshima-ku, Tokyo (高村圭一, 磯野千冬, 高久 栄, 新田義博).

¹⁾ J. W. Ralls, M. Grove, C. G. Bergstrom: U.S. Pat. 2,793,207 (1957).

²⁾ R.E. Schaub, M.J. Weiss: J. Org. Chem., 26, 1223 (1961).

or 2-N,N-alkylarylthiourea in acetone to give the corresponding 17β -(2-amino-(or 2-N-alkylamino- or 2-arylamino- or 2-N,N-alkylarylamino-)-4-thiazolyl)androst-4-en-3-one hydroiodides (IV).

 17β -(2-amino-(or 2-alkylamino- or 2-arylamino- or 2-N,N-alkylarylamino-)-4-thiazolyl)androst-4-en-3-one (V \sim VII) were obtained in excellent yield by treatment of IV with sodium bicarbonate under an atmosphere of nitrogen.

These compounds $(V \sim WI)$ were also obtained in excellent yield by condensation of 21-iodide (III) with thiourea, a various N-alkylthiourea, N-arylthiourea or N,N-alkylarylthiourea in the presence of basic catalyst such as, sodium bicarbonate, potassium bicarbonate, sodium carbonate, sodium acetate or sodium hydroxide in boiling acetone under a current of nitrogen. The physical constant of the compounds are listed in Table I.

Schaub, et al.²⁾ also reported the preparation of 17β -(2-amino-4-thiazolyl)androst-4-en-3-one series from 21-tosylates of corticoid steroids by refluxing with thiourea in ethanol.

The author's attempt to prepare 17β -(2-amino-4-thiazolyl)androst-4-en-3-one derivatives by the condensation of 21-mesylate (II) with thiourea according to the above condition was unsuccessful.

However, 17β -(2-amino-(or 2-N-alkylamino-)-4-thiazolyl)androst-4-en-3-one series (V) was obtained by the condensation of II with thiourea in anhydrous dimethylformamide, followed by treatment of the reaction mixture with sodium bicarbonate under an atmosphere of nitrogen and the purification by chromatography through florisil. These synthesis sheet was illustrated in Chart 1.

$$\begin{array}{c} \text{CH}_2\text{OH}. & \text{CH}_2\text{OSO}_2\text{CH}_3 & \text{CH}_2\text{I} \\ \text{CO} & \text{CO} & \text{CO} \\ \\ \text{R} & \text{CO} & \text{R}_1 \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} & \text{R}_1 \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} & \text{R}_1 \\ \\ \text{CO} & \text{R}_1 \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} & \text{R}_1 \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} & \text{R}_1 \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} & \text{R}_1 \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} \\ \\ \text{CO} & \text{CO} \\ \\ \text{CO} & \text{CO} \\ \\$$

Ultraviolet spectra of these compounds ($V \sim VII$) have an absorption maximum in the range of 239 \sim 245 m μ due to Δ^4 -3-keto group. These compouds ($V \sim VII$) were substantiated by examination of the infrared spectra which showed disappearance of the 20-carbonyl band at 1710 cm $^{-1}$ and the presence of strong absorption near 1590 \sim 1500 cm $^{-1}$ due to thiazol ring. The 2-alkylamino-4-thiazolyl derivatives of $V \sim VII$ were

		$\lambda_{ m max}^{ m EOH} \ { m m} \mu ({ m log} \ { m arepsilon})$	949 E. 945 (4.94)	ന	$242.5\sim244.5(4.09)$	$242.3\sim245$ (4.07)	$242.3\sim245$ (4.29)	$241.5\sim243.5(4.32)$	$243.2\sim244.2(4.29)$	239. $8\sim242$ (4. 21) 289 ~292 (4. 20)	$241.5\sim242.5(4.28)$ 296 (4.25)	$\begin{array}{ccc} 241 & \sim 242.5(4.24) \\ 296 & \sim 298 & (4.22) \end{array}$	$\begin{array}{cccc} 240 & \sim 242 & (4.16) \\ 293 & \sim 296 & (4.25) \end{array}$	$\begin{array}{ccc} 240 & \sim 242.5(4.10) \\ 293 & \sim 296 & (3.87) \end{array}$	239. $8\sim241.8(4.16)$	$5\sim 241.5 \sim 295.5$	$240.5 \sim 242.5 (3.85) \\ 296 \sim 298 (3.89)$	236 \sim 237 (3.97) 296 \sim 299 (3.89)
		$\left[oldsymbol{lpha} ight]_{ m D}^{ m CBCl_3}$	5	+105.4 (c=0.8126)	+102.0 (c=0.9831)	+105.2 (c=1.077)	+109.9 (c=1.0159)	+ 96.4 (c=1.0195)	+100.5 (c=0.932)	+ 98.0 (c=0.400)	$+103.4 \ (c=0.847)$	+100.2 (c=0.600)	+102.4 (c=0.629)	+102.4 (c=0.688)	+ 81.1 $(c=0.073)^{a}$	$+$ 58.1 $(c=0.206)^{(a)}$	$+131.1 (c=0.240)^{a}$	+ 81.8 $(c=0.397)^{a}$
		Yield	(%)	94.4 97.5	88.7	92.8	92.8	96.5	9.68	96.1	92.5	92.5	7.68	83.3	85.5	98.1	92.0	86.2
TABLE I.	HC-S _{C-N} ^R C-N [*] C-N [*] R ₁	Analyses (%) Calcd. Found	C H N C H N	8.05 7.00 68.86 8.12		70.09 8.41 6.54 69.74 8.36 6.68	70.09 8.41 6.54 69.97 8.55 6.43	70.59 8.59 6.33 70.59 8.62 6.47	70.59 8.59 6.33 70.28 8.75 6.49	72.69 7.40 6.05 72.74 7.57 6.35	70.73 7.32 5.69 70.94 7.43 5.37	71.15 7.51 5.53 70.88 7.81 5.51	73.07 7.61 5.87 73.29 7.85 6.05	73.07 7.61 5.87 73.13 7.85 5.65	67.67 6.65 5.67 67.95 6.88 5.43	67.67 6.65 5.67 67.92 6.65 5.62	67.67 6.65 5.67 67.78 6.91 5.89	63.28 6.03 5.27 63.56 6.05 5.49
		Formula		$C_{22}H_{32}O_2N_2S_1 \ C_{23}H_{32}O_2N_2S_1$	$\mathbf{C}_{24}\mathbf{H}_{34}\mathbf{O}_{2}\mathbf{N}_{2}\mathbf{S}_{1}$	$\mathbf{C}_{25}\mathbf{H}_{36}\mathbf{O}_2\mathbf{N}_2\mathbf{S}_1$	$\mathbf{C}_{25}\mathbf{H}_{36}\mathbf{O}_2\mathbf{N}_2\mathbf{S}_1$	$\mathrm{C}_{26}\mathrm{H}_{38}\mathrm{O}_{2}\mathrm{N}_{2}\mathrm{S}_{1}$	$\mathbf{C}_{26}\mathbf{H}_{38}\mathbf{O}_{2}\mathbf{N}_{2}\mathbf{S}_{1}$	$C_{28}H_{34}O_{2}N_{2}S_{1}$	$\mathrm{C}_{29}\mathrm{H}_{36}\mathrm{O}_3\mathrm{N}_2\mathrm{S}_1$	$\mathrm{C}_{30}\mathrm{H}_{38}\mathrm{O}_{3}\mathrm{N}_{2}\mathrm{S}_{1}$	$C_{29}H_{36}O_2N_2S_1$	$\mathrm{C}_{29}\mathrm{H}_{36}\mathrm{O}_{2}\mathrm{N}_{2}\mathrm{S}_{1}$	$\mathrm{C}_{28}\mathrm{H}_{33}\mathrm{O}_{2}\mathrm{N}_{2}\mathrm{S}_{1}\mathrm{Cl}_{1}$	$C_{28}H_{33}O_2N_2S_1Cl_1$	$C_{28}H_{33}O_2N_2S_1Cl_1$	$\mathbf{C}_{28}\mathbf{H}_{32}\mathbf{O}_{2}\mathbf{N}_{2}\mathbf{S}_{1}\mathbf{C}\mathbf{I}_{2}$
		m.p.	(b.p. °C)	227.0	211.0	184.0	187.5	153.5	139.0	247.0	195.0	185.0	217.0	213.5	202	210	204	243
		R		$_{ m H}$	C_2H_5	C_3H_7	$iso-C_3H_7$	C_4H_9	sec - C_4H_9		-\\\\\-\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\	$- \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - 0 C_2 H_5$	-CH ₃		ĊH ₃		-5 Ç	5 5
		22	ŧ	ΞΞ	Н	Н	H	Н	Н	Н	н	Н	Ħ	H	· #	H	Н	H
		Com-	poniid	< < a	٧c	٨d	Ve	Λf	δN	Vh	Vi	٧j	٧k	V V	Vm	νν	0 N	ďΛ

95.6 $+102.6 (c=0.336)^{a_1}$ $236.5\sim 238.5 (4.05)$ $293.5\sim 295.5 (3.95)$	96.1 $+109.0$ (c=0.785) $240.5 \sim 242.5(4.40)$ (3.99)	$+114.5 \ (c=1.612)$	+ 79.0 (c=0.3275) $242.0\sim244.0(4.25)$		(c=0.309) 240.5~242	(c=0.802) 239 (4.26)	323) 264 (3.77)	(31) $241.5 \sim 296 (3.79)$		662) 242.5 (4.24) 241 ~ 243 (4.16)	$295 \sim 298$ $241 \sim 242$ $296 \sim 299$
			- 79.0 (c=0.3275)		(c=0.309)	0.802)	323)	(12)		662)	945)
95,6	96.1		-1-		+163.1	+171.6 (c=	+ 11.7 (c=0.323)	$+141.0 \ (c=1.031)$		+132.7 (c=0.662)	
	٠.	96.2	83.5		91.0	90.0	89.0	86.5		83.9	93.1
$C_{28}H_{33}O_{8}N_{8}S_{1}Cl_{2}$ 63.28 6.03 5.27 63.48 6.26 5.12	$C_{29}H_{36}O_2N_2S_1$ 73.44 7.81 5.71 73.29 7.72 5.72	$C_{30}H_{38}O_{2}N_{2}S_{1}$ 73.08 7.61 5.88 73.32 7.73 5.97	$C_{28}H_{40}O_{2}N_{2}S_{1}$ 71.76 8.60 5.98 71.72 8.65 5.99	HC-S _{CN} (R C-N R ₁	7.05 7.00 66.25 7.23 7.	$C_{23}H_{30}O_{3}N_{2}S_{1}$ 66.64 7.30 6.78 66.39 7.70 6.87	$C_{29}H_{24}O_{3}N_{2}S_{1}$ 70.57 6.77 5.88 70.60 6.47 5.98	C ₃₀ H ₃₆ O ₃ N ₂ S ₁ 71.00 6.99 5.71 70.97 6.88 5.48	HC-S _{C-N} C-N(R ₁ C-N/R	C ₂₃ H ₃₂ ON ₂ S ₁ 71.84 8.39 7.29 72.00 8.54 7.24 C ₂₄ L ₂ ON ₂ S ₂ 75 30 7 67 6 97 75 40 7 76 6 91	75.91 8.08 5.90 76.07 8.13 6.
223	185	151	219			243	247	214		219	
	CH ₃ CI	C_2H_5	(H)			CH_3		I_3		СН3	C_2H_5 C_3H_6 O
Vq H	Vr C	$V_{\mathbf{S}}$ $C_{\mathbf{z}}$	Vt H			VIb H	VIC H	VId CH ₃		Wa H	

					72.1 m monosubstituted benzene	<i>p</i> -substituted benzene	"		0-substituted benzene 6-substituted benzene	p-substituted benzene	m-substituted	1,2,3-substituted benzene	1,2,5-substituted benzene	702m monosubstituted benzene	"	ν _{C-H} (benzene)		s 715 s monosubstituted	s 697 s		" s 689 s	s 697 s	
	(benzene)				757 m 721 m		824m	821m	m1c/ 826m	754 m	775m 723m	780m	801 m	769m 702m	765m 697m	Benzene ring (be		1533 s 752 s	1517m 769 s		1498 s 745 s	1513 s 767 s	
Infrared Absorption of $V \sim V\!I\!I$ (KBr disk) (cm ⁻¹)	zene ring				1500 s)			58 IS148 1490s	3	1514	s 1515 s	s 1507 s	1495 s	s 1515 s		w w	s 1563m	s 1586m	so.	$\stackrel{\sim}{s}$ 1604 s	m 1598 s	
	ν _{c=c} I band of Benzene ring				-	1562			Sect	1600 s		1590 s	1595 s		1595 s	II band of thia- zol ring	1532 1585	1553 s	1535 s		$1550 \sim 1530~\mathrm{s}$	1586m	
		1511 s 1540 s 1540 s	1558 s 1541 s	1570 s	1563 s 1557 s	1550 s	1536 s	1550 s	1540m	1530 s	1531 s	1520 s	1530 s	1520 s	1585 s 1550 s	${\scriptstyle {\scriptstyle \mathcal{V}_{\mathrm{C}}} \subset \mathrm{C}} \atop (\mathcal{A}^4)}$	1616 w 1617 w	$1600\mathrm{w}$	1601 w	1611 w	1604 s	1611 w	
	$ u_{C=C}$	1620 w 1610 w 1610 w	1612w 1615w	$1607 \mathrm{w}$	1611m 1606m	1610m	1613m	1613m	1610m	1606m	1598 w	$1607 \mathrm{w}$	1610 w	1615 w	1615 w 1617 w	δин	1641 s						
	у би-н	1650 s														(11-C=0) (A 3C=0)	1661 s 1670 s	1662 s	1648 s	1660 s	1660 s	1669 s	
	(4*3C=0)	1665 s 1664 s 1662 s	1671 s 1649 s	1665 s	1661 s 1667 s	1658 s	1665 s	1664 s	1650 s	1634 s	1662 s	1664 s	1667 s	$1680 \mathrm{s}$	1665 s 1665 s	11-C=0)	1700 s 1700 s	1703 s	1696 s				
	УС-Н Н УЗС-Н	2862 s 2862 s 2877 s	$2872~ ext{s}$ $2884\sim$	2927 s	2870 s 2857 s	2867 s	2865 s	2867 s	2887 s 2809m	2875 m	2860 s	2880 s	2882 s	2870 s	2858 s 2885 s	\$ C-H	2875 s 2880 s	2870 s	2880 s	2875 s	2870 s	2880 s	
TABLE II.	Vas C-H	2937 s 2927 s 2942 s	$2937~ ext{s}$ $2979 \sim$	2949 s 2947 s	2935 s	2930 s	2940 s	2932 s	2937 S	2925 s	2910 s	2925 s	2937 s	2925 s	2925 s 2930 s	Vas C-H	2945 s 2940 s	2980 s	2948 s	2940 s	2935 s	2935 s	eak
	of $\nu_{\rm C-H}$				3177 w 3107 w	3200m	3105m	3022 w	3027 W	3020 w	3080m	$3025 \mathrm{w}$	3107 w 3022 w		$3102\mathrm{w}$	of $\nu_{\text{c-H}}$		$3087 \mathrm{w}$			$3120 \sim 3020 \mathrm{w}$		w: weak
	Overton of $\nu_{\rm C-H}$ benzene				3177 w	320	310	3122 w	3127 W 3190 w	3042 w	3180m	$3095 \mathrm{w}$	$3107 \mathrm{w}$		31(Overton of $\nu_{\rm c-H}$ benzene		3128w			$3200\mathrm{w}$	$3122\mathrm{w}$	medium
	Vas N-H Vs N-H	3342 s 3257 s 3367 s 3367 s	3372 s 3369 s	3327 s	3325 s 3322 s	3463~3367 s	3490 s	$3377 \sim 3322 \text{m}$	3327 m 3300m	$3420 \sim 3330 \text{m}$	3295 s	3330m	3277 m			V _{N-H} Vas N-H Vs N-H	3200 s 3130 s 3280 s	3280 s		3315 s	3306 s		strong m: m
	$^{\nu_{\rm OH}}_{(17-\rm OH)}$	3507 s 3502 s 3522 s	3520 s 3514 s	3472m	3425m 3552m	3513 s	3495 s	3537 m	3527 m 3500 m	3500m	3515m	$3535\sim 3460\mathrm{m}$	$_{3427\mathrm{m}}^{3617}$	$3570 \sim 3460 \mathrm{m}$	3360m 3200m	ν _{ο· ΙΙ} (17-OH)	3455m 3480m	3502m	3409m				s : st
	Com-		۷d ۷e	Λf	> \ S \ P \		>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-		0 /	ďΛ	٧ď	Vr	Vs Vt	Com-	VIa VIb	VIc	MId	VIIa	VIII	VIIC	

control digitoxine 10-5

Иb

Fig. 1. The Changes of Contractile Force of Isolated Frog Heart

VIIIb

 $T_{\texttt{ABLE}} \ \, \mathbb{II}. \ \, \text{Toxicity by Pigeon and Frog method}$

		Frog LD mg./g.					
No.	Pigeon LD mg./kg.	after 4 hr.	after 12 hr.				
Digitoxin	0.60	0.001	0.001				
Gitoxin	1.21						
Digoxin	0.45	0.001	0.001				
Va	11.30	0.030^{a}	0.030^{a}				
V b	6.00	0.030^{a}	0.030^{a}				
Vс	5.80	0.030	0.030				
٧d	16.70	0.030^{a}	0.030^{a}				
V e	5.33	0.030^{a}	0.030^{a_0}				
Vf	16.70	0.030^{a}	0.030^{a}				
Vg	18.70	0.030^{a}	0.030^{a_0}				
V h	4. 67	0.030^{a}	0.030^{a_0}				
V i		Q. Q30 1/3 ^{b)}	0.030 1/3 ^b >				
Vj	10.70						
V k	9.70	0.030^{a_0}	0.030^{a_0}				
V1	7.00	0.030^{a}	0.030^{a}				
Vr	5. 20	0.030^{a}	0.030^{a_0}				
Vs.	4.76	0.030^{a}	0.030^{a}				
Vt		0. 060 1/3 ^{b)}	0.060				
VIa	15.30	0. 030 1/3 ^{b)}	0. 030 1/3 ^b >				
VIb	16.00	0.028	0.028				
VIc		0. 030a)	0.030^{a}				
VId	12.70	0. 93 0	0.030				
₩a	7. 10	0. 030	0.030				
VIIb	2. 15	0. 030 1/3 ^{b)}	0. 030 1/3 ^b >				
VIIc	4.70	0. 030 1/3 ^b)	0. 030 أَرُغُ كُ				

- a) This indicates that the animals did not die until each dose was injected.
- b) killed animals/treated animals.

	TABLE IV.	Effect on Isolated Fr	og Heart of Compound	s
No.	Concentration	Dose cc./10 g.	Contractile Force inhibit — increase +	Heart Rate diminish — increase +
Va	10^{-4} $10^{-4} \times 2.5$	0.2 0.2	<u>-</u>	
VЪ	10-4	0.2	+	
			T	
٧c	$10^{-2} \times 5$ $10^{-3} \times 5$	0.2 0.05	<u>±</u>	
	10-4	0.2	+	
	$10^{-4} \times 2.5$	0.05		<u></u>
	$10^{-4} \times 2.5$	0.1	 -	
	$10^{-4} \times 2.5$	0.2	-	_
Vα	10-4	0.1	<u>+</u>	
	10^{-4}	0.2	土	
Vе	10-4	0.2		
	10^{-4}	0.3		
Vf	10-4	0.1		
	$10^{-4} \\ 10^{-4} \times 2$	0.2 0.2	$-2 \\ +$	-2
			T	
Vg	10^{-4} 10^{-4}	0.1 0.2	<u>+</u>	
Vh	10^{-4}	0.05	no effect	no effect
	10^{-4}	0.2		
Vi	10^{-4}	0.05	no effect	no effect
	10-4	0.2	no effect	no effect
Vk	10^{-4}	0.05	no effect	
	10^{-4}	0.2		
	$10^{-4} \times 5$ $10^{-4} \times 5$	0.2 0.2	no effect +	no effect
			T	
V1	10^{-4} 10^{-4}	0.1 0.2		
Vr	10-4	0.2	no effect	no effect
Vs	10-4	0.1	_	_
	10^{-4}	0.2		
Иb	$10^{-3} \times 5$	0.05	+	
	$10^{-3} \times 5$	0.2	no effect	
	10^{-4} 10^{-4}	0.05 0.1	no effect + weak	
	10^{-4}	0.1	± weak	
	10-4	0. 2	+	
	10-4	0.2	+	_
	10-4	0.2	no effect	and the second
	10-4	0.55 cc./body	+	
	$10^{-4} \times 2.5$	0.05	±	· · · · · · · · · · · · · · · · · · ·
	$10^{-4} \times 2.3$	0.1	no effect	-
	$10^{-4} \times 2.5$	0.2	no effect	_
VIIa	10-3	0.2	-	
VIIb	10-4	0.2	+	· <u> </u>
	10-4	0.3	. -	·
VIIc	10^{-4}	0.2		_
	10-4	0.2	-	-2
	$10^{-4} \times 2$	0.2	+	

confirmed by examination of infrared spectra which showed an absorption band near $3500\,\mathrm{cm^{-1}}$ due to N-H stretching, whereas the 2-N,N-alkylarylamino-4-thiazolyl derivatives of V \sim VII did not show the corresponding absorption in the region. Furthermore, the 2-arylamino-4-thiazolyl derivatives of V \sim VII showed absorption band near 290 mm in the ultraviolet spectrum due to benzene ring and absorption band near 1595 \sim 1520 cm $^{-1}$ and near 826 \sim 697 cm $^{-1}$ due to substituted benzene. Infrared data of V \sim VIII are summarized in Table II.

Pharmacological Test

Screening tests of the compounds described above, were determined on the toxicity of pigeon method and the contractile force of isolated frog heart (Engelmann's test).

The compounds were compared with cardiac aglycone by using these test, as shown in Table III, and IV and in Fig. 1.

Toxicity of the compounds determined by pigeon method was compared with that of cardiac aglycone and these results indicated that their toxicity is lower than that of cardiac aglycone, as shown in Table III.

As shown in Fig. 1, it was indicated that the patterns of the compounds in Engelmann's test are same as that of cardiac aglycone.

As can be seen in Table III and IV, these compounds are believed to possess cardiac aglycone-like properties in pigeon method and Engelmann's test.

Experimental

Reichstein's Compound S 21-Mesylate (IIa)—A solution of 1 g. of Reichstein's compound S in a mixture of 5 cc. of pyridine and 1 cc. of methanesulfonyl chloride was allowed to stand overnight at $0\sim5^{\circ}$.

The reaction mixture was poured slowly, with stirring, into ice water. The precipitate thereby obtained was collected on a filter, washed with water, and recrystallized from MeOH gave colorless crystals, m.p. 184° (decomp.), yield, 74.5% (800 mg.). UV $\lambda_{\rm max}^{\rm EOH}$: 240 m μ . [α] $_{\rm D}^{25}$ +120°(c=0.242, EtOH). IR $\lambda_{\rm max}^{\rm KBr}$ cm $^{-1}$: 1750, 1670, 1610, 1360, 1170. *Anal*. Calcd. for $C_{22}H_{32}O_6S$: C, 62.25; H, 7.68. Found: C, 62.27; H, 7.55.

Cortison 21-Mesylate (IIb)——Treatment of 5 g. of cortisone in 22.7 cc. of pyridine with 5.7 g. of methanesulfonyl chloride, as described above for the preparation of cortisone 21-mesylate (Π b) afforded 4 g.(74%) of product, m.p. 192° (decomp.). Anal. Calcd. for $C_{22}H_{30}O_7S$: C, 60.27; H, 6.84. Found: C, 58.24; H, 7.45.

Desoxycorticosterone 21-Mesylate (IIc)—Treatment of 5 g. of desoxycorticosterone in 30 cc. of pyridine with 14 g. of methanesulfonyl chloride, as described above for the preparation of desoxycorticosterone 21-mesylate (Π c) afforded 3.5 g. product, m.p. $200\sim201^{\circ}$ (decomp.).

Reichstein's Compound S 21-Iodide (IIIa)—To a solution of 3 g. of Π a in 50 cc. of Me_2CO was added 2.6 g. of NaI. After a few min., sodium mesylate began to separate. The mixture was refluxed for 30 min., and sodium mesylate was filtered, Me_2CO was removed from the both under reduced pressure, the residue was washed with water, and afforded yellow crystals, m.p. 151.5° (decomp.). Yield, 87% (2.8 g.). Anal. Calcd. for $C_{21}H_{29}O_3I$: C, 55.26; H, 6.45. Found: C, 55.34, H, 6.54.

Cortisone 21-Iodide (IIIb)——Treatment of $4\,\mathrm{g}$. of $11\,\mathrm{g}$ in $118\,\mathrm{cc}$. of Me₂CO with 1.9 g. of NaI, as described above for the preparation of cortisone 21-iodide afforded 2.7 g. (78.7%) of product, m.p. 190° (decomp.).

Desoxycorticosterone 21-Iodide (IIIc)—Treatment of $3.5 \,\mathrm{g}$. of IIc in $100 \,\mathrm{cc}$. of Me₂CO with $2.5 \,\mathrm{g}$. of NaI, as described above for the preparation of IIC afforded $2.7 \,\mathrm{g}$. (71.6%) of product, m.p. 125° (decomp.).

17α-Hydroxy-17β-(2-amino-4-thiazolyl)androst-4-en-3-one Hydroiodide (IV)—A solution of 1 g. of III a in 50 cc. of Me₂CO was added 0.3 g. of thiourea. The mixture was refluxed under an atmosphere of N_2 for 2 hr. The crystalline material that separated was collected and washed several times with Me₂CO and recrystallized from MeOH-Me₂CO (2:1) afforded colorless crystals, m.p. 240° (decomp.). Yield, 1.1 g. (98%). Anal. Calcd. for $C_{22}H_{31}O_2N_2S_1I$: C, 51.36; H, 6.03; N, 5.24. Found: C, 51.18; H, 6.01; N, 5.35.

17 α -Hydroxy-17 β -(2-amino-4-thiazolyl)androst-4-en-3-one (Va)—A solution of 1 g. IV in 100 cc. of 70% MeOH containing 1% NaHCO₃ was refluxed under an atmosphere of N₂ for 1 hr.

The resulting mixture was concentrated to a small volume and was added a small amount of water, a crystalline began to separate.

The cooled solution was filtered to give 0.73 g. (97.3%).

Recrystallization from EtOH gave white crystals, m.p. 226° (decomp.). $\lambda_{\text{max}}^{\text{EiOH}}$: $242.5 \sim 245 \text{ m}_{\text{H}}$ (log ε 4.24). Anal. Calcd. for $C_{22}H_{30}O_2N_2S_1$: C, 68.35; H, 7.82; N, 7.24. Found: C, 68.43; H, 7.99; N, 7.39.

17β-(2-Alkylamino-(or 2-arylamino- or 2-N,N-alkylarylamino-)-4-thiazolyl)androst-4-en Series (V \sim VII)—To a solution of 0.01 mol of $\rm IIIa\sim$ c and 0.012 mol of N-substituted thiourea or N,N-disubstituted thiourea in 40 cc. of Me₂CO was added a solution 0.012 mole of basic catalyst such as, NaHCO₃, KHCO₃, NaOH, Na₂CO₃, NaOAc. The mixture was refluxed under an atmosphere of N₂ for 2 hr. and then concentrated to a small volume and chilled. The resulting mixture was filtered to give crystals. Recrystallization from EtOH gave crystals. Yield, 80 \sim 90%.

Va from IIa with Thiourea—A solution of $5\,\mathrm{g}$. of Πa and $1.5\,\mathrm{g}$. of thiourea in $50\,\mathrm{cc}$. of dry dimethylformamide was refluxed under an atomosphere of N_2 for $3\,\mathrm{hr}$. The resulting mixture was concentrated to dryness under a reduced presure.

This was dissolved in dry CHCl₃, chromatographed through silica gel, eluted with CHCl₃ and a mixture of CHCl₃-MeOH (1:1), from the CHCl₃ layer, 3.3 g. of 17α -hydroxy- 17β -(2-amino-4-thiazolyl)-androst-4-en-3-one methansulfonate was obtained IV m.p. 265° (decomp.).

To a solution of 3.3 g. of IV in 50 cc. of 70% MeOH containing 1% NaHCO₃ was refluxed under an atmosphere of N_2 for 1 hr. was distilled off, and the residue was recrystallized from EtOH. M.p. 226° (decomp.). Yield, 90% (2.3 g.). The IR of this products were essentially identical of Va.

The authors express their deep gratitude to Dr. S. Hayashi, Managing Director of this Company, and Mr. G. Tatsui, Director of this Laboratory, for their kind encouragement.

Thanks are also due to Mr. N. Ogikubo and Miss R. Tomii for ultraviolet and infrared spectral measurements, and Miss M. Ishii and Miss M. Oikawa for carrying out in microanalyses.

Summary

17\(\beta\)-(2-alkylamino-(or 2-arylamino- or 2-N,N-alkylarylamino-)-4-thiazolyl)androst-4-en-3-one derivatives were prepared from Reichstein's compound S 21-iodide, cortisone 21-iodide and desoxycorticosterone 21-iodide or corresponding 21-mesylate with N-alkylthiourea, N-arylthiourea or N,N-alkylarylthiourea respectively.

Some of these compounds were found to have a digitalis-like properties (cardiac glucoside properties) as a result of pharmacological test.

(Received August 29, 1962)