(Chem. Pharm. Bull.) 12(10)1189~1192(1964)

UDC 547.92.07:577.17

165. Shunsaku Noguchi, Masayuki Imanishi, and Katsura Morita: Steroid [16,17-c]isoxazoline.*1

(Research Laboratories, Takeda Chemical Industries, Ltd.*2)

The biological activity of the steroids produced by fusion of a pyrazol ring to 2,3-positions of androstanes and 19-norandrostanes was first announced by Clinton, *et al.*¹⁾ Syntheses of similar compounds involving isoxazole,²⁾ thiazol,³⁾ pyrimidine,²⁾ triazol,⁴⁾ pyrrole,⁵⁾ indole,⁵⁾ quinoline,⁶⁾ oxazine,⁷⁾ and pyridine⁸⁾ moieties were thereafter reported by other groups. In this connection, we have already reported the synthesis of steroid-[16,17-c]pyrazoles by the reaction of 16,20-dioxosteroids with hydrazine hydrate.⁹⁾ The present paper deals with the synthesis of steroid[16,17-c]isoxazolines from 20α -hydroxy-16-oxosteroids.

A selective oxidation of 16β , 20α -dihydroxysteroids to 20α -hydroxy-16-oxosteroids was described in the previous paper. Thus 3β , 20α -dihydroxy- 5α -pregnan-16-one 3-acetate (Ia) was obtained from 5α -pregnane- 3β , 16β , 20α -triol 3-acetate (Ia), and 3β , 20α -dihydroxypregn-5-en-16-one 3-acetate (Ib) from pregn-5-ene- 3β , 16β , 20α -diol 3-acetate (Ib), respectively.

Ia was treated with hydroxylamine to give the 16-oxime (IIa). When IIa was treated with tosyl chloride or acetic anhydride in pyridine, that is, under the conditions of the Beckmann rearrangement, a crystalline product was obtained in good yield. The product was positive for Kraut-Dragendorff reagent¹¹⁾ and the elementary analysis was in agreement with the formula $C_{23}H_{35}O_3N$. After hydrolysis with potassium bicarbonate, the resulting 3β -hydroxy compound showed no car-

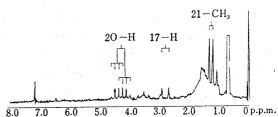


Fig. 1. 60-Mc. Nuclear Magnetic Resonance Spectrum of Va in Deuteriochloroform with Tetramethylsilane (TMS) Internal Standard at 0°

bonyl band in the infrared spectrum. Eventually the nuclear magnetic resonance spectrum (Fig. 1) led us to the assignment of 3β -acetoxy-5'-methyl-5 α -androstano[16,17-c]-isoxazoline (Na) to the reaction product.

^{*1} This paper constitutes Part XXXIII of Takeda Laboratories' series entitled "Steroids"; Part XXXII: This Bulletin, 12, 1180 (1964).

^{*2} Juso-nishino-cho, Higashiyodogawa-ku, Osaka (野口俊作, 今西正之, 森田 桂).

R.O. Clinton, A.J. Manson, F.W. Stonner, A.L. Beyler, G.O. Pous, A.J. Arnold: J. Am. Chem. Soc., 81, 1513 (1959).

²⁾ J. A. Zderic, O. Halpern, H. Carpio, A. Ruiz, D. D. Limon, L. Magana, H. Jiménez, A. Bowers, H. J. Ringold: Chem. & Ind. (London), 1960, 1625.

N. J. Doorenbos, C. P. Dorn, Jr.: J. Pharm. Science, 50, 271 (1961); Idem: Ibid., 51, 414 (1962);
 J. A. Zderic, H. Carpio, A. Ruiz, D. C. Limon, F. Kincl, H. J. Ringold: J. Med. Pharm. Chem.,
 6, 195(1963).

⁴⁾ G. Nathansohn, E. Testa, N. DiMola: Experientia, 18, 57 (1962).

⁵⁾ E.W. Warnhoff, P. Nanonggai: J. Org. Chem., 27, 1186 (1962).

⁶⁾ A. Hassner, M. J. Haddadin: *Ibid.*, 27, 1911 (1962).

⁷⁾ M.E. Kuehne, E.A. Konopka, B.F. Lambert: J. Med. Pharm. Chem., 5, 281 (1962).

⁸⁾ M. Shimizu, G. Ohta, K. Ueno, T. Takegoshi: This Bulletin, 12, 77 (1964).

⁹⁾ K. Morita, S. Noguchi, K. Hiraga, T. Kishi, H. Nawa, T. Miki: *Ibid.*, 11, 144 (1963).

¹⁰⁾ S. Noguchi, M. Imanishi, K. Morita: Ibid., 12, 1180 (1964).

¹¹⁾ A. Zaffaroni, et al.: J. Biol. Chem., 177, 109 (1949).

Furthermore, from the nuclear magnetic resonance spectrum of Va (Fig. 1) it was deduced that the hydrogens at C-17 and C-20 should be *trans*, because the coupling constant ($J_{17H,20H}$ =12 c.p.s.) was reasonably large. This also implied that the cyclization took place with retention of the original configuration at C-20. The most plausible explanation for the cyclization process from \mathbb{I} a to \mathbb{N} a would therefore be as shown in Chart 2, wherein the starting oxime (\mathbb{I} a) would provably be an *anti*-form. If the cyclization had taken place from the *syn* oxime isomer as shown in Chart 3, the resulting isoxazoline

would have the reverse configuration at C-20, which is quite unfavorable on the basis of the nuclear magnetic resonance spectrum of the product.

Similarly, Δ^5 -unsaturated compound (Ib) was converted to the corresponding isoxazoline compound (Vb) by treatment of the intermediate 16-oxime derivative (Ib) with tosyl chloride in pyridine followed by hydrolysis. Va and Vb were oxidized with $\text{CrO}_3\text{-H}_2\text{SO}_4$ reagent¹²⁾ to afford the corresponding 3-oxo-compounds (Va and Vb), respectively.

Treatment of Wb with alkali finally gave 5'-methylandrost-4-eno[16,17-c]isoxazolin-3-one (Wb), which showed an α,β -unsaturated carbonyl absorption band in the ultraviolet spectrum.

Experimental*3

 3β , 20α -Dihydroxy- 5α -pregnan-16-one 3-Acetate 16-Oxime (IIIa) — To a suspension of 5.0 g. of 3β , 20α -dihydroxy- 5α -pregnan-16-one 3-acetate¹⁰) (IIa) in 75 ml. of pyridine and 750 ml. of 95% EtOH was added 2.5 g. of NH₂OH·HCl and the mixture was heated under reflux on a steam bath for 3 hr., during this period crystals of IIIa separated. After cooling, the crystalline product was collected, washed with H₂O and then with MeOH to give 4.2 g. of IIa, which was recrystallized from CH₂Cl₂-Me₂CO, m.p. 273° (decomp.). Anal. Calcd. for $C_{23}H_{37}O_4N$: C, 70.55; H, 9.53; N, 3.58. Found: C, 70.67; H, 9.37; N, 3.56.

 3β , 20α -Dihydroxypregn-5-en-16-one 3-Acetate 16-Oxime (IIIb) — Oximation of 5.0 g. of 3β , 20α -dihydroxypregn-5-en-16-one 3-acetate¹⁰⁾ (IIb), according to the procedure for the preparation of IIa from IIa, and recrystallization of the resulting product from CH_2Cl_2 -Me₂CO afforded 4.2 g. of IIb, m.p. 260° (decomp.). Anal. Calcd. for $C_{23}H_{35}O_4N$: C, 70.92; H, 9.06; N, 3.60. Found: C, 70.98; H, 9.11; N, 3.90.

 3β -Acetoxy-5'-methyl-5 α -androstano[16,17-c]isoxazoline (IVa)—a) To a solution of 1.0 g. of $\mathbb{H}a$ in 20 ml. of pyridine was added 1.0 g. of TsCl and the mixture was allowed to stand overnight at room temperature. The reaction mixture was poured onto ice and the resulting precipitates were collected and washed with H_2O to give 0.9 g. of crude $\mathbb{N}a$, m.p. $175\sim180^\circ$. Recrystallization from CH_2Cl_2 -hexane raised the melting point to 185° . Anal. Calcd. for $C_{23}H_{35}O_3N$: C, 73.95; H, 9.45; N, 3.75. Found: C, 74.00; H, 9.13; N, 3.81.

b) Treatment of Ma with Ac₂O in pyridine also gave Na, but the yield was much lower compared with the procedure (a).

 3β -Acetoxy-5'-methylandrost-5-eno[16,17-c]isoxazoline (IVb)—Treatment of 1.0 g. of IIb with TsCl in pyridine, according to the procedure (a) for the preparation of Na from IIa, gave 0.85 g. of crude Nb, m.p. $165\sim172^{\circ}$. Recrystallization from CH₂Cl₂-MeOH gave an analytical sample of Nb, m.p. $180\sim182^{\circ}$. Anal. Calcd. for C₂₃H₃₃O₃N: C, 74.30; H, 8.95; N, 3.77. Found: C, 74.41; H, 8.95; N, 4.17.

5'-Methyl-5α-androstano[16,17-c]isoxazolin-3β-ol (Va)—To a solution of 1.0 g. of Na in 100 ml. of MeOH was added 20 ml. of 5% aq. K_2CO_3 and the mixture was refluxed on a steam bath for 30 min. After cooling, the reaction mixture was diluted with H_2O and the resulting precipiates were collected and washed with H_2O to give 0.7 g. of crude Va. Recrystallization from CH_2Cl_2 -AcOEt gave an analytical sample of Va, m.p. $208\sim209^\circ$. Anal. Calcd. for $C_{21}H_{33}O_2N$: C, 76.09; H, 10.03; N, 4.23. Found: C, 76.21; H, 10.01; N, 4.29.

5'-Methylandrost-5-eno[16,17-c]isoxazolin-3 β -ol (Vb)—Hydrolysis of 1.0 g. of Nb with K₂CO₃, as described above, gave 0.7 g. of crude Vb. Recrystallization from CH₂Cl₂-AcOEt gave an analytical sample of Vb, m.p. 184 \sim 186°. Anal. Calcd. for C₂₁H₃₁O₂N: C, 76.55; H, 9.48; N, 4.25. Found: C, 76.35; H, 9.52; N, 4.44.

5'-Methyl-5 α -androstano[16,17-c]isoxazolin-3-one (VIa) — To a solution of 1.0 g. of Va in 100 ml. of Me₂CO was added 1.1 ml. of 8N CrO₃-H₂SO₄ solution. After 2 min., the excess of CrO₃ was decomposed with MeOH. The resulting green solution was diluted with H₂O and concentrated *in vacuo* until crystalline product separates. The product was collected and washed with H₂O to give 0.9 g. of crude Via, m.p. 155 \sim 163°. Recrystallization from Et₂O gave an analytical sample of Via, m.p. 165 \sim 167°. Anal. Calcd. for C₂₁H₃₁O₂N: C, 76.55; H, 9.48; N, 4.25. Found: C, 76.52; H, 9.61; N, 4.88.

5'-Methylandrost-5-eno[16,17-c]isoxazolin-3-one (VIb)—To a solution of 1.0 g. of 100 ml. of Me₂CO was added 1.2 ml. of 8N CrO₃-H₂SO₄ solution. N₂ gas was bubbled through all the reaction solutions before and during the oxidation. After 2 min., the reaction mixture was diluted with H₂O and the resulting precipitates were collected and washed with H₂O to give 0.7 g. of crude Vb, m.p. 158~161°, which was used for the subsequent reaction without further purification.

^{*3} All melting points are uncorrected.

¹²⁾ C. Djerassi, R. R. Engle, A. Bowers: J. Org. Chem., 21, 1548 (1956).

5'-Methylandrost-4-eno[16,17-c]isoxazolin-3-one (VIIb) — To a solution of 1.0 g. of crude Vb (m.p. $158\sim161^{\circ}$) in 50 ml. of MeOH was added 5 ml. of 10% aq. K_2CO_3 and the mixture was heated under reflux on a steam bath for 20 min. After cooling, the reaction solution was diluted with H_2O and the resulting precipitates were collected and washed with H_2O to give 0.8 g. of crude Vb, m.p. $154\sim156^{\circ}$. Recrystallization from CH_2CI_2 -hexane gave an analytical sample of Vb, m.p. $159\sim162^{\circ}$, V : V

The authors express their deep gratitude to Dr. S. Tatsuoka, Director of these Laboratories, for his encouragement, to Dr. Y. Abe for his guidance. Thanks are also due to Mr. H. Kamio for spectral determinations and Mr. M. Kan for elemental analysis.

Summary

5'-Methyl-5 α -androstano[16,17-c]isoxazolin-3 β -ol (Va) and 5'-methylandrost-5-eno[16, 17-c]isoxazolin-3 β -ol (Vb), were obtained by treatment of 3 β ,20 α -dihydroxy-5 α -pregnan-16-one 3-acetate 16-oxime (IIa) or 3 β ,20 α -dihydroxypregn-5-en-16-one 3-acetate 16-oxime (IIb) with tosyl chloride in pyridine followed by alkaline hydrolysis. Oxidation of Va and Vb gave the corresponding 3-oxo-compounds, Va and Vb. Vb was further isomerized to 5'-methylandrost-4-eno[16,17-c]isoxazolin-3-one (VIb).

(Received July 3, 1964)

(Chem. Pharm. Bull.) 12(10)1192~1197(1964)

UDC 615.412-011

166. Keiji Sekiguchi, Keiji Ito, Eiji Owada,*1 and Keihei Ueno*2: Studies on the Method of Size Reduction of Medicinal Compounds.

II.*3 Size Reduction of Griseofulvin by Solvation and Desolvation Method using Chloroform (2).*4

(Faculty of Pharmaceutical Sciences, School of Medicine, Hokkaido University*1 and Oji Pharmaceutical Works, Nippon Kayaku Co., Ltd.*2)

It was recently found that when griseofulvin was administered orally, its blood level was increased in proportion to the logarithm of the specific surface of the drug particles.¹⁾ Thus, the same therapeutic effect as achieved with larger crystals was demonstrated with lesser dose of finely powdered preparation of griseofulvin.²⁾ In the preceding paper, the authors reported that the particle size of the antibiotics could be reduced to a degree of several microns, if ordinary crystals of the drug were treated with chloroform or its vapor and were subsequently dried by heating in vacuum. On the basis of this simple phenomenon, a new method of size reduction of griseofulvin was successfully established on an industrial scale.

^{*1} Kita-12-jo, Nishi-5-chome, Sapporo, Hokkaido (関口慶二, 伊藤圭二, 大和田栄治).

^{*2 3-31,} Shimo, Kita-ku, Tokyo (上野桂平).

^{*3} Part I: Yakuzaigaku, 23, 284 (1963).

^{*4} Partly presented at the Hokkaido Branch Meeting of Pharmaceutical Society of Japan, June 22nd, 1963.

¹⁾ R.M. Atkinson, et al.: Nature, 193, 588 (1962); Antibiotics & Chemotherapy, 12, 232 (1962).

²⁾ J. Pettit: Brit. J. Derm., 74, 62 (1962).