Chem. Pharm. Bull. 14(6) 583~587 (1966)

UDC 577.154; 547.918.04

82. Kazuo Yoshida, Takako Kamada, Nobuko Harada,*1 and Keitaro Kato*2: Hydrolysis of Aryl β -D-Glucofuranoside by Almond Emulsin β -Glucosidase.

(Daiichi College of Pharmaceutical Sciences,*1 Faculty of Pharmaceutical Sciences, Kyushu University*2)

Many reports have been made on the specificity of almond emulsin β -glucosidase for β -D-glucopyranoside^{1,2)} and it has been concluded that β -D-glucopyranosides are substrated for this enzyme. Its specificity for β -D-glucofuranosides was observed as early as 1914 and 1932 by Fischer³) and Haworth⁴) respectively. They reported that both methyl β -D-glucofuranoside and ethyl β -D-glucofuranoside did not undergo hydrolysis by emulsin. Since then, it has been considered that it is not β -D-glucofuranoside but β -D-glucopyranoside that is a substrate for almond emulsin β -glucosidase. The authors have previously studied the specificity of β -glucuronidase for 2-naphthyl β -D-glucofuranosiduronic acid and clarified that β -D-glucofuranosiduronic acid as well as β -D-glucopyranosiduronic acid is a substrate for β -glucuronidase.⁵)

In view of the above mentioned facts for β -glucuronidase, it appeared of interest to reinvestigate the specificity of almond emulsin β -glucosidase for β -D-glucofuranosides. This paper deals with the synthesis of several new β -D-glucofuranoside derivatives and their reactions with almond emulsin β -glucosidase.

Materials and Methods

Materials—The substrates used in this study were prepared by the methods referred in Table unless otherwise specified. Aryl β -D-glucofuranosides were prepared according to the method of Kato, *et al.*⁶⁾ as follows: aryl di-O-acetyl- β -D-glucofuranosidurono- γ -lactone are yielded by fusing phenols with tri-O-acetyl- β -D-glucofururono- γ -lactone in presence of p-toluensulfonic acid and converted to aryl β -D-glucofuranoside by reduction with lithium aluminum hydride.

Phenyl β -p-glucofuranoside, m.p. 78°; $[\alpha]_{D}^{15}$ -145.2° (c=0.25, H₂O). Anal. Calcd. for C₁₂H₁₆O₆: C, 56.25; H, 6.25. Found: C, 56.35; H, 6.36.

Guaiacol β -p-glucofuranoside, m.p. 122°; $(\alpha)_D^{15}$ -132.8°(c=0.25, H₂O). Anal. Calcd. for C₁₃H₁₈O₇: C, 54.55; H, 6.29. Found: C, 54.50; H, 6.38.

m-Cresyl β-p-glucofuranoside, m.p. 100°; $[\alpha]_D^{15}$ -143.6°(c=0.25, H₂O). Anal. Calcd. for C₁₃H₁₈O₆: C, 57.78; H, 6.66. Found: C, 57.61; H, 6.50.

The mixed melting point determinations of these aryl β -p-glucofuranosides with corresponding pyranoside derivatives showed a marked depression of melting point and the IR spectra of these furanoside derivatives were not identical with those of corresponding pyranoside derivatives. Ring structure of these aryl β -p-glucofuranosides were confirmed by periodate oxidation according to preceding papers. 6,7)

Enzyme Preparation—Almond emulsin was obtained from Sigma Chemical Co. Nitrogen content of this preparation was 14.6%.

Methods—After enzymic hydrolysis of the substrates at appropriate pH and temperature, the liberated aglycon was determined as follows. 2-Naphthol was determined according to the method of Goldbarg, et al. in which liberated aglycon was converted to a blue azo dye by reaction with tetrazotized o-dianisidine.⁸⁾

^{*1} Tamagawa-cho, Takamiya, Fukuoka (吉田和夫, 鎌田喬子, 原田信子).

^{*2} Katakasu, Fukuoka (加藤敬太郎).

¹⁾ B. Helferich: Ergeben. Enzymforsh., 2, 74 (1933).

²⁾ W. W. Pigman: Adv. Enzymol., 4, 41 (1946).

³⁾ E. Fischer: Ber., 47, 1980 (1914).

⁴⁾ W. N. Haworth, C. R. Porter, A. C. Waine: J. Chem. Soc., 1932, 2254.

⁵⁾ K. Kato, K. Yoshida, H, Tsukamoto: This Bulletin, 12, 670 (1964).

⁶⁾ Idem: Ibid., 12, 664 (1964).

⁷⁾ Idem: Ibid., 10, 1242 (1292).

⁸⁾ J. A. Goldbarg, et al.: Gastroenterology, 36, 193 (1959).

The absorbancy at $560~\text{m}\mu$ was measured in Hitachi photoelectric spectrophotometer. Phenol, guaiacol and m-cresol were determined with Folin-Ciocalteu reagent. Liberated phenol, guaiacol and m-cresol were extracted with 10 ml. of benzene, and the benzene extract was extracted with 2 ml. of 1% NaOH. To the extract was added 5 ml. of Folin reagent, followed by 15 ml. of 20% Na₂CO₃ and 8 ml. of H₂O. The mixture was allowed to stand at room temperature for 20~min, and then the absorbancy at $520~\text{m}\mu$ was measured in Hitachi photoelectric spectrophotometer.

Fig. 1. Course of Enzymic Hydrolysis of Aryl β -D-Glucofuranoside in Relation to Time

The system consisted of 1 ml. of 0.2M phosphate -0.1M citrate buffer, pH 5.0, 0.5 ml. of 0.004M aryl β -p-glucofuranoside and 0.5 ml. of enzyme solution. The incubation was carried out at 30°.

Results

Hydrolysis of Aryl β -D-Glucofuranoside by Almond Emulsin β -Glucosidase—Table I shows that aryl β -D-glucofuranoside can be hydrolyzed by almond emulsin β -glucosidase and the hydrolysis is inhibited by glucono-1, 4-lactone and glucono-1,5-lactone. Inhibitory effect of glucono-1,5-lactone is stronger than that of glucono-1,4-lactone.

Time Course of Hydrolysis—In an experiment to determine the course of hydrolysis with time, 0.001 M aryl β -D-glucofuranoside in phosphate-citrate buffer, pH 5.0, was hydrolyzed by almond emulsin β -glucosidase for the periods of time varying from 40 minutes to 160 minutes. The graph shown in Fig. 1 demonstrates that during this period of time the velocity of hydrolysis is constant, and linearity is maintained.

pH Optimum—The pH optimum for the hydrolysis of aryl β -D-glucofuranoside and corresponding glucopyranoside was determined in 0.2 M phosphate-0.1 M citrate buffer

Table I. Hydrolysis of 0.001M Aryl β -p-Glucofuranoside by Almond Emulsin β -Glucosidase and Inhibition of the Hydrolysis by 0.0001M Gluconolactone

Substrate	Inhibition	Aglycon liberated (γ)	Inhibition (%)	
2–Naphthyl β–p–glucofuranoside ⁶⁾	none	45. 5		
<i>"</i>	glucono $-1,4$ -lactone a)	36.6	19.6	
"	glucono $-1,5$ -lactone $^{b)}$	19.8	56. 5	
Phenyl β-p-glucofuranoside	none	74.0		
<i>"</i>	glucono-1,4-lactone	53.0	28.9	
"	glucono-1,5-lactone	26.0	65. 1	
Guaiacol β -p-glucofuranoside	none	65. 5		
"	glucono-1,4-lactone	43. 5	33.6	
"	glucono-1,5-lactone	17. 5	73.3	
m -Cresyl β -p-glucofuranoside	none	58. 0		
"	glucono-1,4-lactone	42.5	26. 7	
,, ,,	glucono-1,5-lactone	15. 0	74. 1	

Incubation mixture contained 1 ml. of 0.2M phosphate -0.1M citrate buffer, pH 5.0, 0.5 ml. of 0.004M substrate solution and 0.5 ml. of enzyme solution. To inhibition test of the hydrolysis, 1 ml. of buffer contained gluconolactone in a final concentration of 0.0001M was employed. Incubation was carried out for 1 hr. at 30°.

a) Glucono-1,4-lactone was prepared as described by Hedenburg. 10)

b) Glucono-1,5-lactone was purchased from Tokyo Kasei Co.

⁹⁾ O. Folin, V. Ciocalteu: J. Biol. Chem., 73, 629 (1927).

¹⁰⁾ O. F. Hedenburg: J. Am. Chem. Soc., 37, 345 (1915).

between pH 4.0 and 6.0. The pH optimum of 2-naphthyl, phenyl, guaiacol and m-cresyl β -p-glucofuranoside is between pH 5.0 and 5.25. The pH-activity curves of corresponding glucopyranosides resemble very closely those obtained for glucofuranosides. The pH-activity curves are given in Fig. 2.

Fig. 2. Effect of pH on the Hydrolysis of 0.001M Phenyl, Guaiacol and m-Cresyl β -p-Glucoside and 0.0008M 2-Naphthyl β -p-Glucoside in 0.2M Phosphate-0.1M Citrate Buffer

Influence of Substrate Concentration on Activity of Almond Emulsin β -Glucosidase — Fig. 3 shows the effect on the activity of the enzyme at pH 5.0 varying 2-naphthyl β -D-glucofuranoside concentration. The results were analyzed by the graphical method of Lineweaver and Burk, plotting 1/S against 1/V. The results in Fig. 3 gave a value of 2×10^{-3} M for Km, the dissociation constant of active enzyme-substrate complex

¹¹⁾ H. Lineweaver, D. Burk: J. Am. Chem. Soc., 56, 658 (1934).

(Fig. 4). Phenyl, guaiacol and m-cresyl β -D-glucofuranoside were also tested in the same method as above. Table I shows the values of Km for almond emulsin β -glucosidase and aryl β -D-glucoside. From comparison of Km values shown in Table I, it is considered that the aryl β -D-glucofuranoside have a lower affinity for almond emulsin β -glucosidase than the corresponding glucopyranoside. The ratio of relative hydrolytic velocity of pyranoside to furanoside by almond emulsin β -glucosidase at pH 5.0 was 15.6:1 in 2-naphthyl β -D-glucoside, 9.2:1 in phenyl β -D-glucoside, 67.8:1 in guaiacol β -D-glucoside and 19.2:1 in m-cresyl β -D-glucoside, using 0.0025 M 2-naphthyl β -D-glucoside and 0.01 M phenyl, guaiacol and m-cresyl β -D-glucoside.

Fig. 3. Effect of Substrate Concentration on the Rate of Enzymic Hydrolysis of 2–Naphthyl β-p-Glucofuranoside

The system consisted of 1 ml. of 0.2M phosphate -0.1M citrate buffer, pH 5.0, 0.5 ml. of the glucofuranoside, and 0.5 ml. of the enzyme. The incubation was carried out for 1 hr. at 30°.

Fig. 4. Effect of Substrate Concentration on the Rate of Enzymic Hydrolysis of 2–Naphthyl β –p–Glucofuranoside

Data of Fig. 3 plotted according to Lineweaver and Burk. The Michaelis-Menten constant was $2 \times 10^{-8} M$.

Table II. Dissociation Constants (Km) of the Activity Enzyme–Substrate Complex for Almond Emulsin β -Glucosidase and Various Aryl β -D-Glucosides

Compound	Km (M)	Compound	Km (M)
2-Naphthyl β -p-glucofuranoside Phenyl β -p-glucofuranoside Guaiacol β -p-glucofuranoside m -Cresyl β -p-glucofuranoside	2.0×10^{-3} 6.2×10^{-2} 5.5×10^{-2} 5.0×10^{-2}	2–Naphthyl β –p–glucopyranoside ¹²⁾ Phenyl β –p–glucopyranoside ¹²⁾ Guaiacol β –p–glucopyranoside ¹²⁾ m –Cresyl β –p–glucopyranoside ¹²⁾	$1. \ 4 \times 10^{-3}$ $4. \ 0 \times 10^{-2}$ $3. \ 2 \times 10^{-2}$ $2. \ 2 \times 10^{-2}$

Discussion

Fischer applied emulsin to syrupy methyl β -D-glucofuranoside, but the solution did not reduce Fehling solution. On the other hand, Haworth did not write his experimental method. However, hydrolysis of methyl α -D-glucofuranoside by 0.01 N hydrochloric acid was described in the report, in which the polarimetric change was measured. So it is likely that the same method was used in his experiment in which ethyl β -D-glucofuranoside was applied to emulsin. If aryl β -D-glucofuranoside was used as a substrate, it is possible to determine aglycon liberated by enzymic hydrolysis as low as 10 γ and to study the kinetics.

¹²⁾ E. M. Montogomery, N. K. Richtmeyer, C. S. Hudson: J. Am. Chem. Soc., 64, 690 (1942).

Ezaki found that glucono-1,4-lactone was an inhibitor of almond emulsin β -glucosidase, but he did not test glucono-1,5-lactone. Conchie and Levvy per reported that both glucono-1,4-lactone and glucono-1,5-lactone were strong inhibitors of β -glucosidase from rumen and limpet. In our experiment, almond emulsin β -glucosidase was inhibited by glucono-1,5-lactone as well as by glucono-1,4-lactone. The inhibitory effect of glucono-1,5-lactone was stronger than that of glucono-1,4-lactone. The pH-activity curves of aryl β -D-glucofuranosides as a whole resemble very closely those obtained for the hydrolysis of corresponding glucopyranoside, with optima at pH 5.0 \sim 5.25. Aryl β -D-glucopyranosides had higher affinities for almond emulsin β -glucosidase than corresponding glucofuranosides, while in the case of 2-naphthyl β -D-glucofuranoside, the affinity was higher than that of phenyl β -D-glucopyranoside. From these experiments it may be concluded that almond emulsin β -glucosidase hydrolyses glucofuranoside.

Summary

- 1. β -D-Glucofuranosides of 2-naphthol, phenol, guaiacol and m-cresol were hydrolyzed by almond emulsin, and the hydrolysis was inhibited by glucono-1,4-lactone and glucono-1,5-lactone.
- 2. The kinetics of the hydrolysis of aryl β -D-glucofuranoside by almond emulsin β -glucosidase was investigated. The pH optimum of the β -D-glucofuranoside is between 5.0 and 5.25 in phosphate-citrate buffer at 30°. The Michaelis-Menten constant is : 2-naphthyl β -D-glucofuranoside, 2.0×10^{-3} M; phenyl β -D-glucofuranoside, 6.2×10^{-2} M; guaiacol β -D-glucofuranoside, 5.5×10^{-2} M; m-cresyl β -D-glucofuranoside by the enzyme was also investigated. The pH optimum is approximately the same as furanoside. The Michaelis-Menten constant is : 2-naphthyl β -D-glucopyranoside, 1.4×10^{-3} M; phenyl β -D-glucopyranoside, 4.0×10^{-2} M; guaiacol β -D-glucopyranoside, 3.2×10^{-2} M; m-cresyl β -D-glucopyranoside, 2.2×10^{-2} M.
- 3. In view of the above facts, it was concluded that β -D-glucofuranoside could be a substrate for almond emulsin β -glucosidase.

Received September 27, 1965)

¹³⁾ S. Ezaki: J. Biochem., 32, 107 (1940).

¹⁴⁾ J. Conchie, G. A. Levvy: Biochem. J., 65, 389 (1957).