(Chem. Pharm. Bull.) 15(2) 248 ~ 250 (1967)

UDC 615.711.5:547.92.07

Studies on Digitalis Glycosides. The Structure of Digiprogenin. Partial Synthesis of Dihydro-a-digiprogenin Acetate

We have previously reported¹⁾ that the positions of the tertiary hydroxyl groups of γ -digiprogenin (I) and its 17-epimer (α -digiprogenin, II) were both considered to be at C-14 from the results of oxidative cleavage of D-ring. We wish now to describe the establishment of the position of the tertiary hydroxyl group by partial synthesis of dihydro- α -digiprogenin acetate from 11-oxotigogenin acetate.

Catalytic reduction of \mathbb{I} over palladium-charcoal in ethanol gave dihydro-derivative (\mathbb{I} a), m.p. 215~218°, $C_{21}H_{30}O_5$, IR $\nu_{\text{max}}^{\text{CHClb}}$ cm⁻¹: 3583, 1746, 1710. The absorption at 1710 cm⁻¹ appeared with twofold intensity of that at 1746 cm⁻¹, showing that the three carbonyl groups were retained intact. The fact that IR spectrum of the dioxime of \mathbb{I} a, m.p. 236~240° (decomp.), $C_{21}H_{32}O_5N_2$, exhibited an absorption of a six membered ring ketone at 1705 cm⁻¹ supports this consideration. In the NMR spectrum of \mathbb{I} a, the signal of 6-vinyl proton was not observed and the signal of C-3 proton appeared as a broad multiplet at 6.42 τ ascribable to be axial. These data show that 5,6-double bond of \mathbb{I} was hydrogenated from rear side to give \mathbb{I} a. Acetylation of \mathbb{I} a with acetic anhydride in pyridine gave dihydro- α -digiprogenin acetate (\mathbb{I} b), m.p. 200~202°, [α]_D²⁴ -40.2° (c=0.910, MeOH), $C_{23}H_{32}O_6$, IR $\nu_{\text{max}}^{\text{CHClb}}$ cm⁻¹: 3575, 1745, 1720, 1713.

On the other hand, an attempt was successfully made to synthesize compound IIb 3β -Acetoxy- 5α -pregn-16-ene-11.20-dione (\mathbb{N}), starting from 11-oxotigogenin acetate. m.p. 182~184°, derived from 11-oxotigogenin acetate by the known method, 2) was treated with NBS and subsequently with sodium iodide3) to give 3β -acetoxy- 5α -pregn-14,16diene-11,20-dione (V), m.p. 211~212°, $(\alpha)_{D}^{23}$ +306.3° (c=1.044, MeOH), $C_{23}H_{30}O_{4}$, UV λ_{max}^{ErOH} m_{μ} (ε): 303.5 (10480), IR ν_{max}^{Nujol} cm⁻¹: 1722 (Ac), 1706 (six membered ring ketone), 1642 and 1532 (conjugated dienone system), NMR (CDCl $_3$) τ : 8.84 (19-CH $_3$), 8.81 (18-CH $_3$), 7.67 $(21-CH_3)$, 3.79 (1H, t, J=2.0 c.p.s., 15-vinyl proton), 2.76 (1H, d, J=2.0 c.p.s., 16-vinyl) These characteristics correspond to the formula V. Oxidation of V with mproton). chloroperbenzoic acid in chloroform afforded an epoxide (V), m.p. $170\sim173^{\circ}$, $(\alpha)_{D}^{23}+144.4^{\circ}$ $(c\!=\!0.943,\ MeOH),\ C_{23}H_{30}O_5,\ UV\ \lambda_{max}^{\text{EtOH}}\ m\mu\ (\mathcal{E}):\ 240\ (7595),\ IR\ \nu_{max}^{\text{Nujol}}\ cm^{-1}:\ 1729\ (Ac),\ 1715$ (six membered ring ketone), 1665 and 1595 (α,β -unsaturated aliphatic ketone grouping), NMR (CDCl₃) τ : 8.89 (19–CH₃), 8.65 (18–CH₃), 7.75 (21–CH₃), 6.03 (1H, d, J=1.5 c.p.s., 15 proton bearing epoxide), 3.04 (1H, d, J=1.5 c.p.s., 16-vinyl proton). These data show that W is a 14,15-epoxide. As it is known^{4,5)} that epoxidation of pregn-14,16-dien-20one type compounds gave predominantly 14β , 15β -epoxides, the structure 3β -acetoxy- 14β , 15β -epoxy- 5α -pregn-16-ene-11, 20-dione can be assigned to V.

Oxidative cleavage of the epoxide ring in \mathbb{V} with chromium trioxide in acetic acid gave a hydroxyketone (\mathbb{W}), m.p. $165\sim168^{\circ}$, $[\alpha]_{\rm b}^{23}-46.0^{\circ}$ (c=0.522, MeOH), $C_{23}H_{30}O_{6}$, UV $\lambda_{\rm max}^{\rm EOH}$ m $_{\rm w}$ (\mathcal{E}): 241 (11000), IR $\nu_{\rm max}^{\rm CHCls}$ cm $^{-1}$: 3540 (OH), 1716 (broad, Ac, α,β -unsaturated five membered ring ketone, and six membered ring ketone), 1693 and 1596 (α,β -unsaturated aliphatic ketone grouping), NMR (CDCl $_{3}$) τ : 9.15 (19-CH $_{3}$), 8.60 (18-CH $_{3}$), 7.61 (21-CH $_{3}$), 3.40 (1H, s, 16-vinyl proton). The new hydroxyl group in \mathbb{W} is tertiary because it resisted oxidation. The absorption in UV and IR spectra of \mathbb{W} indicated the presence of α,β -unsaturated ketone. The signal of 15 proton observed in NMR spectrum of \mathbb{W}

¹⁾ D. Satoh, S. Kobayashi, M. Horie: This Bulletin, 14, 552 (1966).

²⁾ G.P. Mueller: Nature, 76, 771 (1958).

³⁾ A. J. Sole, B. Singh: J. Org. Chem., 30, 1658 (1965).

⁴⁾ Pl. A. Plattner, L. Ruzicka, H. Heusser, E. Angliker: Helv. Chim. Acta, 30, 385 (1947).

⁵⁾ H. Mitsuhashi, T. Nomura: Steroids, 3, 271 (1964).

disappeared in that of \mathbb{W} , and the signal of 16-vinyl proton changed from doublet to singlet. These data indicate that the oxidative cleavage of the 14β , 15β -epoxide of \mathbb{W} afforded a 14-hydroxy-15-ketone grouping, and hence \mathbb{W} has a partial structure of 14-hydroxy-16-ene-15, 20-dione. Since, 16-ene-14, 15-epoxide⁶ as well as 16-saturated 14, 15-epoxides^{7,8} was reported to give 14β -hydroxy-15-ketone on chromium trioxide oxidation, compound \mathbb{W} is considered to have the structure 3β -acetoxy-14-hydroxy-5 α , 14β -pregn-16-ene-11, 15, 20-trione. Reduction of \mathbb{W} with zinc powder and acetic acid at room temperature gave a dihydro compound, m.p. $199\sim201^\circ$, $C_{23}H_{32}O_6$, IR $\nu_{\max}^{\text{CHCl}_5}$ cm⁻¹: 3568, 1745, 1721, 1712. The UV and IR spectra of this compound show that 16, 17-double bond in \mathbb{W} has been saturated. This dihydro product proved to be identical with \mathbb{W} by

⁶⁾ H. Mitsuhashi, M. Fukuoka: This Bulletin, 14, 809 (1966).

⁷⁾ A. Lardon, T. Reichstein: Helv. Chim. Acta, 45, 943 (1962).

⁸⁾ M. Okada, M. Hasunuma: Yakugaku Zasshi, 85, 822 (1965).

250 Vol. 15 (1967)

mixed melting point and comparisons of thin-layer chromatography and IR spectra. This result established the 14-position of the tertiary hydroxyl group in digiprogenin.

The formation of β -digiprogenin (\mathbb{W}) from α -digiprogenin (\mathbb{I}) with acid may be explained*¹ by 1,4-elimination of water in the sequence indicated in Chart 1 from \mathbb{X} to \mathbb{X} . An analogous elimination of water was recently reported with erythrophleguine by Norin, *et al.*⁹)

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan Daisuke Satoh (佐藤大助) Setsuko Kobayashi (小林節子)

Received August 9, 1966

(Chem. Pharm. Bull.) 15(2) 250 ~ 252 (1967)

UDC 581. 19; 582. 38; 547. 94

Structure of Serratine

In previous publication,^{1,3)} we have described the isolation and characterization of four new alkaloids, serratinine, serratine and serratanine from *Lycopodium* serratum Thunb. var. Thunbergii Makino ($\sharp \gamma \not : \uparrow \uparrow \uparrow \gamma \not :$) and the structures of serratinine (I)²⁾ and serratinidine (II)³⁾ which are unique among the lycopodium alkaloids, have been established.

Serratine (II), m.p. 253°,*1 $C_{16}H_{25}O_3N$,*2 $(\alpha)_D^{22}-15.0^\circ$ (c=1.02 in EtOH), IR,*3 $\nu_{\rm max}$ cm⁻¹: 3185 (OH), 1730 (C=O), NMR*3: in pyridine, 8.69 τ (3H, s., \Rightarrow C-CH₃).

At the beginning of this study, it was anticipated that serratine would possess the serratinine skeleton because the mass spectrum of this alkaloid showed the prominent peaks at M^+ -28 (in this case, m/e 251), m/e 152 and m/e 150 which seem to be diagnostically important fragments for the mass spectra of serratinine type alkaloids.*4

Acetylation of serratine (II) with Ac_2O -pyridine at room temperature for six days afforded monoacetylserratine (N), m.p. $264\sim265.5^{\circ}$, $C_{18}H_{27}O_4N$, IR, ν_{max} cm⁻¹: 3550 (OH), 1718 (ester and ketone carbonyl groups), NMR: 8.79 (3H, s., \Rightarrow C-CH₃), 8.05 (3H, s., -CO-CH₃), 5.21 (1H, m., \Rightarrow CH-OAc). Further treatment of (N) with Ac_2O -pyridine at

^{*1} Prof. C. W. Shoppee informed us in private communication that he developed independently the same explanation of this dehydration.

⁹⁾ O. Lindwall, F. Sandberg, R. Thorsén, T. Norin: Tetrahedron Letters, No. 47, 4203 (1965).

^{*1} All melting points were observed on a microscopic hotstage and are uncorrected.

^{*2} The molecular weight establishment by mass spectrometry made revision of the earlier proposed molecular formula, $C_{17}H_{27}O_3N$, of serratine to the present one. All compounds given by molecular formulae gave satisfactory elementary analyses.

^{*3} IR spectra were measured on Nujol mulls and unless otherwise noted, NMR spectra were taken in CDCl₃ on a Varian A-60 at 60 Mc. Chemical shifts are reported in τ values, using tetramethylsilane as an internal reference.

^{*4} The mass spectrometric analyses of this series of alkaloids will be presented in elsewhere.

¹⁾ Y. Inubushi, Y. Tsuda, H. Ishii, T. Sano, M. Hosokawa, T. Harayama: Yakugaku Zasshi, 84, 1108 (1964).

²⁾ Y. Inubushi, H. Ishii, B. Yasui, M. Hashimoto, T. Harayama: Tetrahedron Letters, No. 14, 1537 (1966); Y. Inubushi, H. Ishii, B. Yasui, T. Harayama: *Ibid.*, No. 14, 1551 (1966).

³⁾ B. Yasui, H. Ishii, T. Harayama, R. Nishino, Y. Inubushi: Tetrahedron Letters, No. 33, 3967 (1966).