Chem. Pharm. Bull. 15(3) 363 ~ 366 (1967)

UDC 547.831.1.07;547.751.07

Reaction of Aromatic N-Oxides with Indoles in the Presence of an Acylating Agent

The recent report by Colonna and Bruni¹⁾ on the reaction of indoles with activated aromatic N-oxides prompts us to communicate our results from a similar study. As an extention of researches on the reaction of aromatic N-oxides with enamines,²⁾ we applied indoles to quinoline and pyridine N-oxides in the presence of an acylating agent, and obtained the results shown in Table I under refluxing conditions, while no reaction was observed at room temperatures. Some representative reactions are shown in Chart 1.

Table I. Reaction of Indoles with Aromatic N-Oxides in the Presence of an Acylating Agent

Indole Indole	Aromatic N-oxide Quinoline	Acylating agent BzCl	Solvent	Reflux period (hr.)		Product ^{a)} Yield (%)		
			CHCl ₃	2	Ia	(67)		
		TsCl	"	2	Ia	(57),	$\prod b)$	
		Ac_2O		10	Ιb	(10)		
1-Methylindole	<i>"</i>	BzC1	CHCl ₃	7	Ιc	(56),	Πa	(10)
		TsC1	"	7	Ιc	(12),	\mathbb{N}^{c}	(55)
	4-Chloroquinoline	BzC1	"	3	Ιd	(54)		• •
	2-Chloroquinoline	"	"	10	IIb	(65),	V	(16)
2-Phenylindole	Quinoline	"	"	5	Ie	(40)		
Indole	Ethyl nicotinate	"	"	2.5	VI	(30)		
	-	TsCl	"	5	VI	(5),	∏ b)	(17)

specimen prepared from diindole and tosyl chloride.89

a) Satisfactory analyses were obtained for all the products.
b) II: The structure of II was confirmed by comparison with

b) III:

N
Ts
N
H

c) ▼: carbostyril.

3-(2-Quinolyl)indole (Ia), m.p. 190~191°, IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 3300 (NH), 1603 (indole C=C), UV $\lambda_{\rm max}^{\rm EIOH}$ m $_{\mu}$ (log ε): 215 (4.71), 267 (4.32), 302 (4.11), 355 (4.19), was proved to be identical with a specimen prepared from 1-indolylmagnesium bromide and 2-chloroquinoline in a very poor yield.⁴⁾ 1-Acetyl-3-(2-quinolyl)-indole (Ib), m.p. 194~194.5°, IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 1703 (NCOCH₃), 1605 (indole C=C), might be formed by acetylation of Ia

in view of the reaction condition employed.

1–Methyl-3–(2–quinolyl) indole (Ic), m.p. 182 \sim 183°, IR $\nu_{\rm max}^{\rm Nujol}$ cm $^{-1}$: 1588 (indole C=C), UV $\lambda_{\rm max}^{\rm EIOH}$ m $_{\mu}$ (log ε): 215 (4.74), 267 (4.31), 310 (4.11), 355 (4.21), showing the ultraviolet

¹⁾ M. Colonna, P. Bruni: Boll. Sci. Fac. Chim. Ind. Bologna, 23 (4), 401 (1965); C. A., 64, 17536 (1966).

²⁾ M. Hamana, H. Noda: This Bulletin, 13, 912 (1965), 14, 762 (1966).

³⁾ G. F. Smith: Chem. Ind., 1954, 1451; H. F. Hodoson, G. F. Smith: J. Chem. Soc., 1957, 3544.

⁴⁾ G. M. Reinecke, H. Johnson, J. F. Sebastian: Tetrahedron Letters, 1963, 1183; J. C. Powers: J. Org. Chem., 30, 2534 (1965).

⁵⁾ D. A. Shirley, P. A. Roussel: J. Am. Chem. Soc., 75, 375 (1951). They did not elucidate but only deduced the structure of WI; as shown above, we confirmed its structure by the Fischer's synthesis.

$$\begin{array}{c} R_3 \\ R_3 \\ R_4 \\ R_5 \\ R_6 \\ R_1 \\ \end{array} \begin{array}{c} \text{acylating} \\ \text{agent} \\ \end{array} \begin{array}{c} \text{acylating} \\ \text{agent} \\ \end{array} \begin{array}{c} \text{Ia}: R_1 = R_2 = R_3 = H \\ \text{Ib}: R_1 = Ac, R_3 = R_3 = H \\ \text{Ic}: R_1 = CH_3, R_2 = R_3 = H \\ \text{Id}: R_1 = CH_3, R_2 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_3 = R_3 = H \\ \text{Id}: R_1 = R_1 = R_1 = R_3 = R_3 = H \\ \text{Id}: R_1 = R_2 = R_1 = R_1 = R_1 = R_1 = R_2 = R$$

spectrum closely similar to that of Ia, was shown to be obviously different from 1-methyl-2-(2-quinolyl)indole (W) obtained from another routes. 1-Methyl-3-(4-chloro-2-quinolyl)indole (Id), m.p. 157.8~158°, resulted from a similar reaction of 1-methylindole with 4-chloroquinoline 1-oxide, was converted into Ic by catalytic reduction over palladium-charcoal. These facts are in agreement with the structures assigned to Ic and Id.

2-Phenyl-3-(2-quinolyl)indole (Ie), m.p. 273 \sim 274°, IR $\nu_{\rm max}^{\rm Nuol}$ cm $^{-1}$: 3125 (NH), 1600 (indole C=C), was identified by direct comparison with an authentic specimen prepared by the Fischer's method.

$$\begin{array}{c|c} CH_2 & N & ZnCl_2 \\ \hline -NH-N=C & \\ \hline C_6H_5 & H & Ie \\ \end{array}$$

1-Methyl-3-(4-quinolyl)indole (IIa), m.p, $146\sim147^{\circ}$, IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 1610, 1583, an isomer of Ic, was also obtained by catalytic reduction of IIb, m.p, $140\sim140.5^{\circ}$, IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 1610, 1580, the main product of the reaction between 1-methylindole and 2-chloroquinoline 1-oxide. As 2-chloroquinoline 1-oxide reacts with enamines or their analogues to afford 2-chloro-4-substituted quinolines, e^{0} e.g. 2-(2-chloro-4-quinolyl)cyclohexanone from cyclohexanone enamine, IIa and IIb are most probably assumed to be 3-(4-quinolyl)-indole derivatives.

Of more interest is the formation of 1-benzoyloxy-2-hydroxy-4-(1-methyl-3-indolyl)-1,4-dihydroquinoline (V), m.p. $293\sim293.5^\circ$, IR $\nu_{\rm max}^{\rm Nupl}$ cm⁻¹: 3200, 3100, 3150, 1723, 1690, besides Ib from the same reaction. The structure of V was deduced from its elemental analysis, infrared spectrum and the following sequence of reactions. Treatment of V with 10% ethanolic potassium hydroxide resulted in elimination of benzoic acid to give WI, which was converted by refluxing with phosphoryl chloride into Ib; conversely, Ib was transformed into WI with hot concentrated hydrochloric acid. The formation of V might be rationalized by hydrolysis of the corresponding 2-chloroquinoline derivative (K), which could be formed as an intermediate of the reaction.

Skatol did not react with quinoline 1-oxide under comparable conditions as noticed by Colonna and Bruni.¹⁾

⁶⁾ M. Hamana, H. Noda: This Bulletin, in press.

Attempted reactions between acyl-adduct of pyridine 1-oxide or 1-methoxypyridinium iodide and indoles under various conditions failed and the starting materials were recovered. However, application of ethyl nicotinate 1-oxide to quinoline 1-oxide resulted in formation of ethyl 2-(3-indolyl)pyridine-5-carboxylate (VI), m.p. $169\sim170^\circ$, IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 3250 (NH), 1690 (ester C=O), 1600 (indole C=C). The structure of VI was deduced from its conversion with potassium permanganate to pyridine-2,5-dicarboxylic acid, followed by transformation into the diethylester.

Faculty of Pharmaceutical Sciences, Kyushu University, Katakasu, Fukuoka

Masatomo Hamana (浜名政和) Itsumaro Kumadaki (熊懐稜丸)

Received November 22, 1966

(Chem. Pharm. Bull.) **15**(3) 366 ~ 369 (1967)

UDC 547.722.5.07

1,3-Dipolar Cycloaddition of 5-Nitro-2-furonitrile Oxide

As a part of a continuing study¹) of 5-nitrofuran antimicrobials, an interest in the 1,3-dipolar cycloaddition of 5-nitro-2-furonitrile oxide (I) has led to the synthesis of (5-nitro-2-furyl)isoxazole derivatives, which possess excellent antimicrobial activities. We now report examples of this reaction with various olefinic dipolar ophiles involving a series of enamines* 1 (III) of aldehydes and ketones, although the reaction of enamines as the dipolar ophile had been reported²) recently using other dipolar species.

5-Nitro-2-furonitrile oxide (I) was generated by the addition of triethylamine to 5-nitro-2-furhydroxamoyl chloride³⁾ (II) and isolated as an unstable liquid (IR ν^{liq} cm⁻¹: 2240). The cycloaddition, however, was conveniently effected by mixing equimolar amounts of I, the enamine (III) and triethylamine at room temperature to form easily amino-3-(5-nitro-2-furyl)-4,5-dihydroisoxazole (IV) as the exclusive product in a good yield. Structual assignment of the products was made on the basis of a study of

^{*1} The enamines employed in this experiment were prepared according to the procedure of Mannich (for the aldehyde enamines; C. Mannich, H. Davidsen: Ber., 69, 2106 (1963)) and Stork (for the ketone enamines; G. Stork, et al.: J. Am. Chem. Soc., 85, 207 (1963)). The following are new enamines; 1-piperidino-1-(4-pyridyl)ethylene (b.p₃ 107~110°, IR ν^{11q} cm⁻¹: 1600, 1545), 1-morpholino-1-(3-pyridyl)ethylene (b.p₆ 131~134°, IR ν^{11q} cm⁻¹: 1605) and 1-piperidino-1-(2-pyridyl)ethylene (b.p₃ 117~120°, IR ν^{11q} cm⁻¹: 1585, 1563).

¹⁾ Part VI: Yakugaku Zasshi, 86, 1014 (1966); The present paper constitutes Part VII of the series entitled "Studies on Nitrofuran Derivatives."

²⁾ a) M. E. Munk, Y. KiKim: J. Am. Chem. Soc., 86, 2213 (1964). b) M. E. Kuehne, S. J. Weaver, P. Franz: J. Org. Chem., 29, 1582 (1964).

³⁾ R. Lenaers, F. Eloy: Helv. Chim. Acta, 46, 1067 (1963).