Chem. Pharm. Bull. 15(5) 596~598 (1967)

UDC 547.833.3.02: 541.63

72. Masao Okamoto: Stereochemistry of Decahydroisoquinolines and Related Compounds. V.*1 Syntheses of Decahydro-2-methyl-8-isoquinolinols. (Supplement continued from page 172)

(Kyoto College of Pharmacy*2)

Experimental*4

8-Acetamino-5-chloroisoquinoline (V)—A solution of N (26.0 g.)⁵⁾ and Ac₂O (130 ml.) was heated for 5 hr. in a boiling water bath. After decomposition of the excess Ac₂O by adding H₂O to the solution, was basified the resulted solution with Na₂CO₃. The precipitate was collected by suction, washed with H₂O and recrystallized from dil. CH₃OH to form colorless needles, m.p. $208\sim210^{\circ}$ (lit.⁶⁾: m.p. $209\sim210^{\circ}$). Yield, 30.5 g. (95%). Anal. Calcd. for C₁₁H₉ON₂Cl: C, 59.86; H, 4.11. Found: C, 60.06; H, 4.36. Gentle boiling a mixture of V and CH₃I in C₂H₅OH gave methiodide, which was recrystallized from C₂H₅OH to form colorless needles, m.p. 245°, in 90% yield.

8-Acetamino-5-chloro-2-methyl-1,2,3,4,-tetrahydroisoquinoline (VI)—To a solution of the methiodide of V (11.3 g.), CH₃OH (500 ml.) and H₂O (50 ml.) was added NaBH₄ (5.0 g.) in small portions with stirring and the solution was gently refluxed for 1 hr. and poured into H₂O (2.5 L.) and then extracted with CHCl₃. The CHCl₃ layer was dried over Na₂SO₄ and evaporated. The residual solid was recrystallized from Me₂CO to form colorless needles, m.p. 190~191°. Yield, 6.5 g. (87.8%). Anal. Calcd. for C₁₂H₁₅ON₂Cl: C, 60.38; H, 6.33. Found: C, 60.39; H, 6.22.

8-Amino-5-chloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (VII)—A solution of VI (6.5 g.) and 10% HCl (130 ml.) was heated on the steam bath for 9 hr. and after cool, strongly basified with NaOH. The precipitate was collected by suction, washed with water, dried and upon recrystallization from petr. ether, formed colorless prisms, m.p. 80~82°. Yield, 4.5 g. (85%).

5-Chloro-2-methyl-1,2,3,4-tetrahydro-8-isoquinolinol (VIII)—A solution of NaNO₂ (0.88 g.) and H₂O (9 ml.) was added to a solution of WI (2.5 g.) and 10% H₂SO₄ (50 ml.) cooled at 0° drop by drop with stirring. The reaction mixture was poured into a boiling solution of Na₂SO₄ (30.0 g.), H₂SO₄ (50 g.), and H₂O (50 ml.) and refluxed until gas evolution ceased. After cool, the mixture was basified with Na₂CO₃, and the resulting precipitate together with dark resinous material was collected by suction and dissolved in ether and ether-insoluble inorganic compounds were discarded. On evaporating the dried ether extract, yellow crystalline mass, m.p. 168~171°, remained and recrystallization from CHCl₃ afforded colorless cubes, m.p. 171.5~172.5°. Yield, 1.9 g. (75.8%). *Anal.* Calcd. for C₁₀H₁₂ONCl: C, 60.75; H, 6.12. Found: C, 60.87; H, 6.12.

2-Methyl-1,2,3,4-tetrahydro-8-isoquinolinol (XIII)—a) A mixture of WI (3.9 g.) and KOH (0.6 g.) in CH₃OH (100 ml.) was catalytically hydrogenated over Raney Ni prepared from Ni-Al alloy (5.0 g.) at 140 kg./cm² (initial H₂ pressure, 110 kg./cm²) and 150° for 4 hr. The filtered solution was evaporated and the residual mass was dissolved into a small amount of water, weakly acidified with 10% HCl, then basified with Na₂CO₃, and extracted with ether. The ether extract was dried over Na₂SO₄ and evaporated. The resulted crystalline mass was recrystallized from C₆H₆ to form colorless cubes, m.p. 177~178°. Yield, 2.1 g. (52%). Beilstein test, negative. Anal. Calcd. for C₁₀H₁₃ON: C, 73.59; H, 8.03; N, 8.58. Found: C, 73.89; N, 8.46.

b) A solution of NaNO₂ (2.9 g.) and H₂O (24 ml.) was dropped little by little into a solution of XI (6.9 g.) and 20% H₂SO₄, previously cooled at 0°, under stirring (30 min.) and then stirring was continued for 30 min. further. The orange diazonium salt solution was poured in small portions into a boiling solution of H₂O (27 ml.), H₂SO₄ (50 g.), and Na₂SO₄ (36.4 g.), and vigorous evolution of N₂ took place. After cool, upon basification of the solution, was collected the precipitate by suction, dried and extracted with hot dehyd. C₂H₅OH. The C₂H₅OH extract was decolorized with Norit, and evaporated. The residual solid was recrystallized from ether or C₆H₆ to colorless cubes, m.p. 176~178°. Yield, 4.9 g. (70%).

8-Acetaminoisoquinoline (X)—According to the method of Ahmad, et al., 6) 100% NH₂NH₂·H₂O (87 ml.) was added to a boiling suspension of N (10.7 g.), Pd-C (3.6 g.) and dehyd. C₂H₅OH (600 ml.) drop by drop during 1.5 hr. In a course of addition of NH₂NH₂·H₂O took place vigorous gas evolution and gentle boiling was continued for 6 hr. The filtered solution, after removal of the solvent, gave yellow crystals, which

^{*1} Part N. S. Kimoto, M. Okamoto: Yakugaku Zasshi, 85, 371 (1965).

^{*2} Nakauchi-cho, Yamashina-misasagi, Higashiyama-ku, Kyoto.

^{*4} All melting points are uncorrected. In column chromatograph, aluminum oxide standardized (Merck) was used. Thin-layer chromatography (TLC) was worked on aluminum oxide G (Merck) by using CHCl₃-CH₃OH (45:4) as a developer and the spots were detected by spraying with the Dragendorff reagent.

were washed with water, dried, and recrystallized from C_6H_6 to give 8-aminoisoquinoline (V) as slightly yellow needles, m.p. $168\sim170^{\circ}(\text{lit.}^6)$: m.p. $173\sim174^{\circ}$). Yield, 7.6 g. (88%). V was converted quantitatively to the acetate (X), m.p. $166\sim168^{\circ}(\text{lit.}^6)$: $168\sim169^{\circ}$) as colorless needles according to usual method. The methiodide, colorless needles, m.p. $252\sim254^{\circ}$.

8-Acetamino-2-methyl-1,2,3,4-tetrahydroisoquinoline (XI)—To a solution of the methiodide of X (22.2 g.), CH₃OH (700 ml.) and H₂O (70 ml.) was added NaBH₄ (10 g.) with stirring under cooling with cold water and the mixture was gently refluxed for 1 hr. After removal of the solvent, a mixture of the residual mass and H₂O (1 L.) was extracted with CHCl₃. The CHCl₃ extract was dried over Na₂SO₄ and evaporated. The residual solid was recrystallized from C₆H₆ to form colorless needles, m.p. 122 \sim 123°. Yield, 11.0 g. (80%). Anal. Calcd. for C₁₂H₁₆ON₂: C, 70.56; H, 7.90; N, 13.72. Found: C, 70.08; H, 8.00; N, 14.06.

8-Amino-2-methyl-1,2,3,4-tetrahydroisoquinoline (XII)—A solution of XI (10.7 g.) and 10% HCl (220 ml.) was gently refluxed for 6 hr., and then became gradually red. After cool, the solution was strongly basified with NaOH and extracted with ether. The ether extract, having light green fluorescence, was dried over Na₂SO₄ and evaporated. Distillation of the residual oil afforded light yellow liquid, b.p₃ 120~122°. Yield, 6.9 g. (81%).

Hydrogenation of 2-Methyl-1,2,3,4-tetrahydro-8-isoquinolinol (XIII) over Platinum Oxide—XII (1.0 g.) in AcOH (20 ml.) was catalytically hydrogenated over PtO₂·H₂O (0.5 g.) at a room temperature and an atmospheric pressure and H₂ uptake (630 ml.) ceased after 2.5 hr. The filtered solution was evaporated *in vacuo*. The residual mass was dissolved in a small amount of water, basified cautiously with a cold NaOH solution under cooling, and extracted with ether. The ether solution was shaken with saturated NaCl solution, dried over Na₂SO₄ and evaporated *in vacuo*. The resulting crystalline mass was recrystallized from petr. ether to give cis-2-methyldecahydro-8-isoquinolinol (XIVa) as colorless prisms, m.p. 78~80°. Yield, 0.8 g. IR $\nu_{max}^{ccl_4}$ cm⁻¹: 3200 (intramolecular associated OH). TLC: Rf, 0.79. The picrate, recrystallized from CH₃OH and the methiodide, recrystallized from EtOH, formed respectively yellow needles, m.p. 181~183° and colorless plates, m.p. 229~231°. *Anal*. Calcd. for C₁₀H₁₉ON·CH₃I: C, 42.45; H, 7.13. Found: C, 42.60; H, 7.21. Evaporation of the mother liquor of recrystallization of the free base left a very small amount of basic oil, and any further examination could not be done at all.

Hydrogenation of 2-Methyl-1,2,3,4-tetrahydro-8-isoquinolinol (XIII) over Raney Ni——XII (4.9 g.) in MeOH (100 ml.) was catalytically hydrogenated at 165 ± 5° and 140 kg./cm² (initial H₂ pressure, 110 kg./cm²) over Raney Ni "W-4," prepared from Ni-Al alloy (5.0 g.) for 5 hr. After cool, the filtered solution was evaporated in vacuo. The residual oil was dissolved in CHCl3. The solution was shaken with a small amount of 40% NaOH, washed with the saturated NaCl solution, dried over Na2SO4, and evaporated in vacuo. Distillation of the residual oil gave two fractions boiling at $88 \sim 93^{\circ}/4$ mm. Hg and at $99 \sim 103^{\circ}/4$ mm. Hg. The former fraction solidified after cool and the solid, on recrystallization from a mixture of ether and petr. ether, gave one of cis-2-methyldecahydro-8-isoquinolinol (XIVa) (1.3 g.) as colorless prisms, m.p. 78 \sim 80°, which was already described above. The latter portion (1.7 g.), b.p. 99~103°, having three spots of nearly same size in TLC, was chromatographed through a column of alumina and eluted with CHCl₃ to give three fractions (TLC: Rf, 0.79, 0.66, 0.59), which on recrystallization from petr. ether, afforded XIVa and two of other trans-decahydro-2-methyl-8-isoquinolinol (XIVb, XIVc), characterized as follows. XIVb: Colorless prisms, m.p. 115°. The methiodide, colorless needles, m.p. 183~185°, recrystallized from a small amount of dehyd. C₂H₅OH. The picrate, yellow prisms, m.p. 235° recrystallized from dehyd. C₂H₅OH. Calcd. for $C_{10}H_{19}ON \cdot C_0H_3O_7N_3$: C, 48.24; H, 5.57; N, 14.07. Found: C, 48.26; H, 5.55; N, 13.72. XIVc: Colorless crystals, m.p. 84°, which was relatively soluble in petr. ether, b.p. 45~50°. methiodide, colorless needles, m.p. 235°. Anal. Calcd. for C₁₀H₁₉ON·CH₃I: C, 42.45; H, 7.13. C, 42.50; H, 7.10. The picrate yellow powders, m.p. 147~150°, recrystallized from a mixture of C₂H₅OH and ether. The approximate ratio of these bases (XIVa, XIVb, XIVc), produced by the hydrogenation, was determined to be 3:1:1 with use of TLC.

Hydrogenation of 5-Chloro-2-methyl-1,2,3,4-tetrahydro-8-isoquinolinol (VIII) over Raney Ni—VII (4.0 g.) in MeOH (100 ml.) was catalytically hydrogenated at $160\pm5^{\circ}$ and $130 \,\mathrm{kg./cm^2}$ (initial H₂ pressure, 94 kg./cm²) over Raney Ni "W-4," prepared from Ni-Al alloy (4.0 g.) in the presence of KOH (0.56 g.) for 5 hr. After cool, the filtered solution was treated in the same manner as described at hydrogenation of XIII and the similar result was obtained.

Oxidation of cis-Decahydro-2-methyl-8-isoquinolinol (XIVa) with Sodium Dichromate in Acidic Solution—To a solution of XIVa (800 mg.), $Na_2Cr_2O_7 \cdot 2H_2O$ (500 mg.) and H_2O (2.0 ml.), was cautiously added 30% H_2SO_4 (3.6 ml.) under cooling with ice-water and the solution was kept standing at a room temperature for 3 hr., then the orange red solution changed to deep green. The reaction mixture was cautiously basified and a small amount of oil was floating and extracted with CHCl₃. The CHCl₃ extract was washed with saturated NaCl solution, dried over Na_2SO_4 , and evaporated. The residual oil was chromatographed through a column of Al_2O_3 , using CHCl₃ as an eluting solvent. The ketonic fractions were combined and evaporated in vacuo, while the unchanged alcoholic base was adsorbed on Al_2O_3 . The residual trans-2-methyl-1,3,4,4a, 5,6,7,8a-octahydro-8(2H)-isoquinolinone (XV) distilled at $114\sim116^\circ/11$ mm. Hg. and after cool solidified. m.p. $40\sim42^\circ$. Yield, 400 mg. The methiodide, colorless needles, m.p. $288\sim290^\circ$. Anal. Calcd. for $C_{10}H_{17}ON$.

 CH_3I : C, 42.74; H, 6.52. Found: C, 42.58; H, 6.46. Extraction of Al_2O_3 , employed for chromatographic separation with MeOH, recovered the unchanged alcohol (XIVa).

Oxidation of a Mixture of trans-Decahydro-2-methyl-8-isoquinolinols (XIVb, XIVc) with Sodium Dichromate in Acidic Solution—A solution of a mixture of XIVb and XIVc (400 mg.), Na₂Cr₂O₇·2H₂O (0.26 g.), H₂SO₄ (0.44 g.) and H₂O (5.0 ml.) was kept standing at a room temperature (about 10°) for 4 days. The reaction mixture was treated in the same manner as described at oxidation of XIVa. The ketonic base obtained was converted to the methiodide, m.p. 288~290°, which was identical by admixture with the authentic sample of XVI.

Hydrogenation of trans-2-Methyl-1,3,4,4a,5,6,7,8a-octahydro-8(2H)-isoquinolinone (XVI)—a) With platinum oxide. A solution of XVI (400 mg.) and EtOH (20 ml.) was shaken with PtO₂·H₂O (50 mg.) in H₂ at a room temperature and atmospheric pressure. The H₂ uptake (1 mole) ceased after 2 hr. Evaporation of the filtered solution afforded crystalline mass (almost quantitative), m.p. 105~110°, which, upon recrystallization from petr. ether, gave XIVb, m.p. 115°.

b) With NaBH₄. To a solution of XVI (50 mg.) and CH₃OH (20 ml.), and H₂O (2 ml.), was added NaBH₄ (0.5 g.) with shaking and the mixture was kept standing for 2 hr. After evaporation of the solvent *in vacuo*, was extracted the residual mass with ether several times and the combined extract was evaporated to dryness. A small amount of viscous oil remained. TLC of the oil: Rf, 0.66 (XIVc), 0.59 (XIVb).

trans-2-Methyl-1,3,4,4a,5,6,7,8a-octahydro-8-isoquinolinone Dithioethylene Ketal (XVII)—Into a solution of XVI (400 mg.), dithioethylene glycol (1.0 g.) and AcOH (4.0 ml.) was bubbled dry HCl in a cold water bath. The mixture was kept standing overnight and diluted with H_2O . The separated oil was extracted with ether and the ether extract was discarded. The aqueous layer was cautiously basified with NaOH and extracted with ether. The ether extract, dried over Na₂SO₄, was evaporated and the residual oil, after cool, solidified. m.p. $55\sim57^{\circ}$. The methiodide, m.p. $232\sim234^{\circ}$. Anal. Calcd. for $C_{12}H_{21}NIS$: C, 40.51; H, 6.28. Found: C, 40.38; H, 6.16.

A mixture of the ketal (XVII) (200 mg.), Raney Ni (prepared from Ni-Al alloy (1.0 g.)), EtOH (20 ml.) was refluxed for 5 hr. The filtered solution was evaporated *in vacuo*. The residual oil distilled at 100° (oil bath temperature)/10 mm. Hg. The distillate was converted to the picrate, m.p. 232°, which was identical with the authentic picrate of *trans*-decahydro-2-methylisoquinoline (XVIII) by admixture.