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The ev aluations o;f the concentratxon d;xstnbutxons necessary for predxctmg the extents of
~ chemical reaction and mass transfer and the, length of the a,ppaggmg requxred for, abtaining
. the desired completlons of . :the chemical reactlpn and mass transfer . are permltted by a
general theoretlcal tr%tment taken into cqnsldetatlon tb,e effect of Iongxtudmal dispersion
of both fluids for twg;—phase contmuous-ﬂpw systems accompanymg general second order
chemical’ reactmn, mass  transfer and longitudjnal dispersion, The . general soluj;nons for
~ the concentration, dlstrlbutlons were. numerically obtmned by a dlgltal .computer. The
effects of stage numbey,in the . finite cpjference eqpatxon, chemigal rg@ct«m rate and residence
time on the concentration dlstnbutlon were shown by numencal calculations through Equa-
tions (11) to (13).

“The influence of chemxcal reactxon rate on the concentratxon dlsmbutlon is less as the
" resistance to mass transfer in phase wnth chetmcaL reaction is less . than that in the other
phase without chemical reaction and for example. the reaction rate or the mass transfer
rate in the phase with chermcal reactxon is. higher The conpentratum dxstrlbut—mn can be
estimated analytically in the case . where, ‘the res;sbnnce to mass’ transfer in the phase with-

. out chemical reaction is controlhng or, tﬁg degr;:e Qf bng;tuqhml dlsperslon is, vsryx hlgh

(Recelved Jnly 18, 1966)

It is w:dely known that sunu]tanequs mass transfer and chemxcal reaction in
contnnuous~ﬂ¢w operations is a very.important process in pharmaceutical and other
chiemical industries. In continuous-flow operations such as absorption, extraction and
chemical reaction, it is generally recognized that the efficiencies of mdsé ‘transfer and
c};gmxcal reaction are lowered by the éndnie Hetion "‘fdﬁ‘éi idinal ‘aisiserslbn, especially
1f a high deggee of com.pletion is ,ngeded, xhe phenomencm has great influence on

r:formance and :scale-up. of ‘the: appnrat-us PRRTE

~‘Even though much attention 'has 'been paid to dxspérslbn xii single—phase flow
operatlons very limited study has been ma@e so far ;}g k’:ﬁnfimiods—ﬂow two-phase
operations, Mathematical solutions’ were devglqped by Miyam;m@ gt aly ,a,nd authors®
for two-phase mass transfer aceomapanied . hxmlmgutv.dm“dﬁmsswnamd farst. order
reaction with ‘moderate rate and' second ofder reaction with.very rapid rdte in continu-
ous flow' opera’tions dnd the solutionis were" proved by* *a‘ﬂthdrs"’ xperimen‘ts ‘of gas
~ ébsotption with chemical reaction “in pp.cked cotus umns. " ‘But ‘the 'apalysis has never
develaped. for the general .chemical, reaction, of m—th and. n—tﬁ order w,nth respect to two
reactants. It was proved by:Hikita, et.al.®. that the rate of .gas. absorptmn in stagnant
liquid: aeoompanied by an irreversible ¢hemical reaction of m-th and n-th: order with
respect to dlssélwng gas ‘and reactdﬁt h l‘i‘duid, ﬁhase resqectxvei‘y, cou}a He approximate-
1y derived by analogous method to- $he one, for the rate of gas absorption with first
and first, order 1rreversab1e reactlon wmh respect to dxs%qlvmg gas and reactant in
liquid phase: et
i Methods of predlcting the éoﬂt’entratidh dxstributxgsﬁ‘ ‘neéessary for evaluatmg the
extents of chemxcai reaction’ ‘and maés iransf” and’ the ‘requijred’ lepgth of the
apparatus are developed here for. on.erﬁxmenawnal ax;al ﬂow systems,.of two-phase

! ’I’dyonaka Osaka~fu (""m B

1) T Miyatichi, K. Nakano, K. Obata, s Kimura: 'Chém. ‘Eng. (Japan), 28, 999' (1962)."
2) Y. Miura, S. Hirota, M. Nakajima : Ibid., 27, 815 (1963).

3) H. Hikita, S. Asai: Ibid., 27, 823 (1963).
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accompanying general first and first order chemical reaction with respect to two
reactants respectively, mass transfer and longitudinal dispersion. General solutions
for the concentration distributions are obtained numerically and the theoretical
analyses developed in former part of this paper are confirmed by actual calculatlons
through a digital electronic computer KDC-1,

Analyses of Basic Equations

It is here considered that a component A diffuses from X-phase to Y-phase and
reacts irreversibly with a component B in Y-phase and each one mole of components.
A and B produce one mole of a product P and the reaction is first order for components
A and B respectively and totally second order. The transfer rate of a component A
per unit volume of the apparatus is given by Equation (1) and the relationship between
the overall volumetric mass transfer coefficient and the volumetric mass transfer
coefficient of individual phase is expressed by Equation (2) :

NAZKX/a[CAX—(b+chY>] ' (1)

1 1 m ' :
Kad = Tk T Bha (2)

where 8 is the so-called reaction factor defined as the ratio of mass transfer coefficients
with and without chemical reaction, ky'[ky, and a linear-distribution equ1l1br1um
expressed as cp¥=b-+mc,y* is assumed.

The theoretical expression for the reaction factor, B, for the mass transfer with
second order irreversible reaction was derived by van Krevelen, ef al. on the assump-
tion of steady state mass transfer across the stagnant fluid film at the interface as

B=1rn/tanh(ry) ’ (3)
where 7= kD syl by (4)
1=~ (Bo=B) | (Bo=T) | (5)

In Equation (5), 8. is the reaction factor for the mass transfer with second order
very rapid irreversible reaction and it is expressed by the following equation based
on steady state mass transfer theory® :

Bu=1+(Dgy cay)/(Day €ax™®) (6)

The reaction factor based on the unsteady state mass transfer theory was derived
by Hikita, ef a/.» But it is unimportant from the practical standpoint whether the
steady state model or the unsteady state model is assumed in the derivation of the
theoretical expression for B since B based on the steady state theory is practically
equal to B based on the unsteady state theory.

For single-phase continuous-flow systems Damkohler® has given the equation of
continuity,

%4 = —iv(~D, grad c,)~div(uc;)~¢(c,) (7)

4) D.W. van Krevelen, P.J. Hoftijzer : Rec. trav. chim., 67, 563 (1948).

5) S. Hatta: J. Soc. Ind. Chem. (Japan), 31, 869 (1928).

6) G. Damkohler ¢ ¢ Der Chemie-Ingenieur,” A. Eucken and M. Jakob eds., Vol. 3, Part 1, p. 366,
Akademische Verlagsgesellshaft, Leipzig, 1937. :
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where u is the linear velocity of the fluid, ¢, is the concentration of the j~th component
at the point of interest, D; is its diffusion coefficient, ¢ is time and ¢ (c;) is a reaction-
rate term. For one-dimensional steady-state flow systems in which constant velocity
and constant diffusivity of the j-th component can be assumed, Damkéhler’s equation
becomes
\ \
DL 1 % e =0 (8)

Two-phase continuous-flow systems can be treated by an extension of this equation.
When the reaction rate, ¢ (c;), is replaced by a rate of mass transfer linking the two
phases X and Y accompanied by chemical reaction in phase Y, basic equations for
concentrations of components A, B and P in phases X and Y are expressed as follows
by introducing mean longitudinal dispersion coefficients analogous to diffusion coefficients
and mean velocities for both phases :

2 {y'a [ |
2 ‘a | ]
Ey ddiszY Tuy d;‘l;Y - Klz}ya Cax—(b+mcyy)| =0 (9)

2 4 B 1
By G Br® o ptmes) | =0
In compound sign of above equations, the positive sign denotes the counter current,
and the negative sign denotes the parallel current. After this, the case of the counter
current is discussed. The concentration of component A in the bulk of phase Y has
been assumed negligible since here the mass transfer with irreversible - reaction in
phase Y is discussed and rearranging above equations into dimensionless form, the
following equations are obtained :

d*C dC
! dZAzX.__MX déx —MxNoxCAX=O
d? d
Lo My o MNWC=0 | (10)
d*C dacC
G MG M=o |
where
—b —Cpy* L
_uyL _ Ky'al _M =2
W= N ha M= 7L

The reaction factor, §, is a function of %, c,y*, cgy, D,y, and Dgy, as shown in Equa-
tions (3) to (6). Although the apparatus can be kept so that temperature might be
constant and k, D,y and Dyy might be almost constant, c,y* and czy are changed by
simultaneous mass transfer and chemical reaction and therefore the reaction factor is
changed through the apparatus. Consequently N,y and N,, are functions of z since
Nox and Nyy are functions of the reaction factor, f. Therefore, Equation (10) cannot
be solved analytically and must be solved numerically.

In the present reaction the reacted moles of component B are equal to the produced
moles of component P and the concentration distributicn of component P'is obtained by
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that of component B. Basic differential Equations for components A and B in Equation
(10) being rearranged into finite difference form with n stages, one has the following
equations : for the first stage,

1 N,
Cszza,—{ <1+0‘x+ ;Lm )CAX1+C(AX}
X 1 N (11)
CBY2=CBY1+< T¥ay >( 1(’);” >CAX1
for the i-th stage,
Caxin= c} {(1+2ax‘|‘ Z\izm )CAXi'__(l'*“aX)CAXi—l}
Xl N (12)
CBYi+1:W{ (1+2ay) Cyys + ;LYZ CAX‘Z—aYCBYi—l}'i
for the n-th stage,
Ciur = (1+ax) Caxn-
A3 1+ ax+ (Noxa/n)
1 Nooos (13)
CBYn'_'W(CBYI'— zlyn Caxn + aYCBYn—l)
where
_n _L _n 1
T T2 TN, TS
_ (Ky'a),L _ (Ky'a)L
Noyi= Heuty NOYi—————-HW

The method for calculating the above finite difference equation is as follows : (1)
assume C,x; and Cgy, in the first stage or C,x, and Cgy, in the n-th stage and obtain
Cax: and Cyy, by Equation (11) or Csx,-1 and Cgy,-; by Equation (13), (2) obtain succes-
sively C,x and Cyy in the next stage by Equation (12), (3) examine if the relation of
Equation (13) or (11) is satisfied, (4) assume again C,y, and Cyy; or C,y, and Cgy, until
the relation of Equation (13) or (11) is satisfied and repeat the calculations of above (1)
to (3). It takes long time to make the above-mentioned calculation without using the
electronic computer.

Considering the case where the degree of longitudinal dispersion in one phase is
negligible low, concentrations of components in the phase at the inlet have not to be
assumed for the above-mentioned calculation of finite difference equations as shown by
Miyauchi, et al.® For example, in the case where longitudinal dispersion in phase X
is very low and My is converted to infinity, assuming only Cyy; make the next calcula-
tion for solving the finite difference Equations. The first assumed value of Cgy, is
estimated by assuming that C,y, is equal to Ciy which is dimensionless term for the
concentration of reactant A in the feed of phase X, since C,y, is very near by Cly
when the degree of longitudinal dispersion in phase X is very low. It gives good
approximation for calculating the concentration distribution to assume that M is
converted to infinity when the value of M for the phase is greater than about ten as
shown in later part. :

Case of High Longitudinal Dispersion or X-phase
Resistance Controlling

When the degree of longitudinal dispersion is high and the value of M is small,
numerical solutions close by exact solution of Equation (10) are obtained by calculating
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the finite difference Equations (11) to (13) with comparatively less stages because higher
longitudinal dispersion makes the change of concentration less through the apparatus.
The less the number of stages gets, the shorter the time for the calculation of
Equations (11) to (13) gets. When longitudinal dispersion become very high and an
average concentration of each component through the apparatus can be used as its
representative value and the Ny and N,y for the representative values of c,y* and cgy
can be uced for calculating the concentration distribution, the Equation (10) can be
soived analytically.

In the case where the resistance to mass transfer in X-phase where chemical
reaction does not take place is greater than the resistance in Y-phase where chemical
reaction takes place, the influences of the rates of mass transfer and chemical reaction
in Y-phase on the concentration distribution decrease. For example, when the rate of
chemical reaction or mass transfer in phase Y is much higher and g or kya is much
greater and then the following relation is yielded, the influences of 8 and kya on over-

1 m
kea = Phva 14

all mass transfer volumetric coefficient Ky'a are very small. Therefore, in above-
mentioned conditions, the concentration distribution can be estimated by analytical
solution of Equation (10) for the representative value of the reachon factor, ,B, as
verified in later part.

Solving Equation (10) for the representative values of Nyx and N,y so as to satisfy
the boundary conditions suitable for the case where the rate of longitudinal dispersion
in the apparatus is much higher than that in the incoming and outgoing streams away
from the apparatus, one obtains the following solutions analogous to those obtained by
Miyauchi, et al.”® :

Cox—

Crx=—13 Cax— :i}Ai\exp(iiz/L)' ]

1

nL -

Cpy—Chy

&b B exp(d zZ/L)J

where

2(1—a)exp(Mx(1—a)/2]
(1—a)’exp(Mx(1—a)/2]—(1+a)’exp(Myx(1+a)/2)

2(1 —{—a)eXpEMX(l +a)l2]
(1+a)’exp(Mx(1+a)/2] —(1—a)’exp(Mx(1—a)]2)

W=Me(1+0)[2, h=My(1-a)j2
B,= — (My) ™ (Bo{ Mx(1+0)| 2+ My Yexp{My(1+4)/ 2} +
B{Mx(1~a) |2+ My)exp{My(1~a) |2})

A=

A=

4AM Ny

M TS e
B,= oMy {B3(1+a)+B4(1 a)} B;= My(1+a){Mx(1+a)+2My}
B — 4A2MyN0y 51=0’ 52_—_— —MY,
U My(-af{Mx(1-a)+2My}  G5=4, 0,=2,

a=n/1+4N,y[ My

7). T. -Miyauchi : US-AEC-UCRL, 3911, Aug. (1957).
8) T. Miyauchi, T. Vermeulen : Ind. Eng. Chem., Fundamentals, 2, 113 (1963).

NII-Electronic Library Service



No. 6 745

Solving Equation (10) for the representative N,y and N,y so as to satisfy the
boundary conditions suitable for the case where the degree of longitudinal dispersion
in the apparatus is as small as outside of the apparatus, the following solutions are
obtained as shown by authors in the previous paper? :

CAXE—EQ—X:—b— :?;‘IA{ exp(4z/L)

cx—b
T as)
_ Cpy—Cpy '
CPY:_:ngb_:i=1Bi eXp(B.Lz/L)
where
| A= (1—a)exp(Mx(1—a)/2)
VT (1—-a)exp(My(1—a)[2) — (1+a)exp(Mx(1+a)/2)
A = (1+a)exp(My(1+a)/2)

2 T 1A+a)expMy(1+a)/2) —(1—a)exp(Myx(1—a)]2]
B,/ = —(2My) ™[ B,/{ My(1+a)exp(— My) +2Myexp(My(1+a)/2)}+
B, {Mx(1—a)exp(— My)+2Myexp(Mx(1—a)/2)}]
B,, B/, B/

b

2, 0; and a are same as B, B, B, 2, 0, and a in Equation (15).
General Solution

Fig. 1. to 3. show some examples of numerical solution of Equation (10) which
were obtained by calculating the finite difference Equations (11) to (13) with forty stages

in the case where L/[uy=0.02(hr.]), L/uy=1(hr.], kya=>500{kg-moles/(m?)(hr.) (_lg_g_;n__gqli) ]

kya=20 (kg-moles/(m?)(hr.) (%” m=1, Dyy|Day=1, Cix=200, » F({a—b)Day/ly

The solutions shown in Fig. 1. to 3. indicate the influence of My on the concentra-
tion distributions. The influence of M, on the concentration distribution was similar

1.0
8 -~
61 My=5 —
4 7 200, T T T T S0
1
2 2 1 19 40
Sé 3
M 4 _
0.1- x _
s (1| o1 =~ 180 E
6~ 2 1 = Qﬁ Qg
4 22 170 20
4] 5
5110
o |6 4 160 10
| 6
0.01 | ] i L 150! 0l ! ! ! !
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 - 0.2 0.4 0.6 0.8 1.0
' z z ; z
Fig. 1. General Solutions for Fig. 2. General Solutions for Fig. 3. General Solutions for
the Concentration Distributions the Concentration Distribu- the Concentration Distribu-
tions tions
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to that of My shown in Fig. 1. to 3., although that of M, is not presented here.
Those results show that the extent of mass transfer with chemical reaction is
decreased by increase of degree of longitudinal dispersion. It is also indicated from
results shown in Fig. 1. to 3., that the concentration distributions under greater My
than about ten can be approximately estimated by calculating on the assumption of
infinite My as predicted in above part. It diminishes the trouble of the numerical
calculation for concentration distribution as shown in above part to convert the value
of M in one phase to infinity.

Effect of Number of Stag}es in the Finite Difference Equation
The effect of number of stages in the finite difference Equations (11) to (13) on the

concentration distribution is shown in Fig. 4. and 5., where the results were
obtained by calculating the concentration distributions through the finite difference

1.0
8.
o
4 200 T 1 ,.
2 o Mx=My=5 .
%
Q0.1
ol 180 ]
>
6 . S =
4 ] 170t = .
2 - , 1 160f ;ﬁ
0.01L: 1 L . 150 L . . .
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 06 08 1.0
Fig. 4. Effect of Number of Fig. 5. [Effect of Number of
Stages in the Finite Differ- Stages in the Finite Differ-
ence Equation on the Con- ence Equation on the Concen-
centration Distribution tration Distribution
200, T T o
190+ Mx=My=1 1
S — . - ] . 180¢
6 MX=MY=1 LQg:
gl 170
160
0.1 . . : . 150 . . :
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Z VA
Fig. 6. Effect of Number of Fig. 7. Effect of Number of
Stages in the Finite Differ- Stages in the Finite Differ-
ence Equation on the Con- , ence Equation on the Concen-
centration Distribution tration Distribution
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Equations (11) to (13) with divisions of five, ten, twenty and forty on the condition that
My and M, are equal to five and the other factors are same as shown in Fig. L
to 3. It is found from the results shown in Fig. 4. and 5. that stages of about
five give good approximation enough to obtain only the concentrations at the outlet
which are necessary for evaluating total extents of mass transfer and chemical
reaction. The approximation gets better as the value of M gets less as shown in
Fig. 6. and 7. which indicate the concentration distributions under the condition
that My and My are equal to unity and the other factors are same as shown in
Fig. 1. to 3. The above-mentioned results indicate that the less stages for calculat-
_ing the concentration at the outlet and total extents of mass transfer and chemical
reaction give good approximation as the degree of longitudinal dispersion increases
and it shortens the time for the calculation to make the stages less.

Effect of Chemical Reaction Rate and Residence Time

Fig. 8. and 9. show the effect of chemical reaction rate on the concentration
distributions, changing values of &/k(c%,—0)D,, /ky as 0.5, 1, 2 and 5 in the case
where My and M, are infinity and five and other factors are same as shown in
Fig. 1. to 8. It is obvious from Fig. 8. and 9. that the extent of mass transfer
with chemical reaction is increased with higher rate of chemical reaction although that

is natural. .
The influences of residence time on the concentration distributions are shown in

Fig. 10. and 11. where the residence times of both phases are varied as shown in
tables on the same figures and the changes of the volumetric mass transfer coefficients
for phases X and Y, kya, kya are assumed to follow to the change of residence times
of both phases as shown in the same tables and values of MW/!@Y, My and
M, are equal to five and Ci, is ten and the other factors are same as shown in
Fig. 1. to 3. The results shown in Fig. 10. and 11. indicate that the extents of
mass transfer with chemical reaction are increased by increasing the residence time,
although that is natural.

When the resistance to mass transfer in phase X where chemical reaction does
not take place is greater than that in phase Y where chemical reaction takes place,
the effect of the reaction rate on the concentration distribution decrease as predicted
in above part. For example, comparing the effect of reaction rate on the concentration
distribution about the data of curve 3 on Fig. 10. and 11. where kya is greater
than kya gives the results as shown in Fig. 12. which indicates that the decrease
of resistance to mass transfer in phase Y gives less influence of reaction rate on the
concentration distribution than that shown in Fig. 8. where kya is greater than kya
and then the resistance to mass transfer in phase Y is greater than that in phase X.
According to above comparison, it is guessed that when the volumetric mass transfer
coefficient of one phase with chemical reaction is much greater than that of the other
phase without chemical reaction or the reaction rate is very high and then the
resistance to mass transfer in the phase without chemical reaction is controlling, the
influences of the mass transfer rate in the phase with chemical reaction and the
reaction rate on the concentration distribution are much less and then the concentration
distribution can be obtained analytically with good approximation by using the
representative values of the mass transfer coefficient and the reaction rate as
predicted in above part.
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Comparison between Numerical and Analytical Solutions.

Regarding the average values of N,y and N,y obtained by using the arithmetical
mean of outlet and inlet values of c,y and c¢zy as the representative values of Ny
and N,, through the apparatus, the approximate concentration distributions were
evaluated by Equation (15) at My of one tenth to five and by Equation (16) at My of
ten under the same conditions as those of Fig, 1. to 3. Those results are shown
by full curves in Fig. 13. and 14. where the numerical solutions obtained by
Equations (11) to (13) are also shown by dotted curves. The differences between the
approximate solutions by Equations (15) and (16) and the numerical solutions obtained
by Equations (11) to (13) get less as the degree of longitudinal dispersion is greater as
shown in Fig. 13. and 14.,, which indicate that the concentration distribution is
estimated with good approximation by the analytical solution for the case of less M
than about two.

1.0 T T T T
8 —
6 -]
AN L/uy=0.4(hr), L/uy=0.2(hr.)
kx, =50(hr1), ky. =100(hr-1)
2 L. -
0.1
8 -
6_
4,.
5 7
&)
0.01
8 19
61 6
ar 4
2r K Cax—b) Day/ by 2
1 0.5
0.001+ |2 1 20.1
& I3 2 S sk
6 |4 5 6
4 4}
2r N )
0.0001 I L : ! ) ) ) .
¢ 02 04 06 08 10 57 oa 05 08 10
z z
Fig. 12. Effect of Chemical Fig. 13. Comparisons between
~ Reaction Rate on the Concen- : Analytical and  Numerical
tration Distribution : Solutions

Fig. 15. indicates the differences between the approximate analytical solutions
shown by full curves and tlie numerical solutions shown by dotted curves under the
same conditions as those in Fig. 12, It is verified from the comparisons shown in
Fig. 15. that estimations by Equation (15) or (16) give good approximation for the
concentration distributions in the case where the resistance to mass transfer in one
phase with chemical reaction is. much less than that in the other phase without
chemical reaction as predicted in above part.
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L/ux=0.4 L/uy=0.2_
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Fig. 15. Comparisons between
Analytical and Numerical Solu-
tions
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Fig. 14. Comparisons between
Analytical and Numerical Solu-
tions

Nomenclature

a : effective interfacial area per unit volume of the apparatus [m?/m?3]
b: constant in the equilibrium distribution relation '
C : dimensionless term for the concentration defined below Eqaution (10)

¢ : concentration (kg-moles/m?}
D : diffusion coefficient (m?/hr.]
div : divergence function

E: longitudinal dispersion coefficient (m?/hr.]

exp : exponential function defined as exp (x)=e"
grad : gradient
Hx, Hy: holdup of phases X and Y, respectively

Ky’ : overall coefficient for mass transfer with chemical reaction based on phase X [(m/hr.]

kx,ky : mass transfer coefficients for phases X and Y, respectively ' [m/hr.]

ky’' : Y-phase coefficient for mass transfer with chemical reaction ' {m/hr.]

k: reaction rate constant for second order reaction (m?/(kg-mole) (hr.)]

L : total length of the apparatus (m.]
ul.  uxL

and urL respectivel

E ' Ex ' Ey ' P v
m : constant in the equilibrium distribution relation

Na : rate of mass transfer with chemical reaction per unit volume of the apparatus

(kg-moles/(m3) (hr.)]

, respectively

M,Mx,My : dimensionless terms defined as

ﬁﬁdal, Eﬁ(alf
and

Hxux Hvyuy

7 : number of stages in the finite difference equation

Nox,Noy : - dimensionless terms defined as
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mean linear velocity defined as L/6 (m/hr.]
ratio defined as z/L '
axial distance from the inlet of phase X through the apparatus (m)

dimensionless term defined as (n/M)~—(1/2)

reaction factor defined as ky'/ky '

ratio defined as »/kcgyDavy/ky

: residence time (hr.])
Subscript : '

A,B: refer to reactants A and B, respectively

i, n: refer to the values in the i-th and z-th stages of the finite difference equation
P: refers to product P :

X, Y: refer to phase X and Y, respectively

Superscript ;

0: refers to the values in the feed to one side of the apparatus, i.e. Z=0

1: refers to the values in the feed to the other side of the .apparatus, i.e. Z=1

* : refers to the values at X-Y interface

=R N NR
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