(Chem. Pharm. Bull.) 15(8)1261~1262(1967)

UDC 547.963.3.07

Synthesis of Purine Cyclonucleoside having 8,3'-O-Anhydro Linkage*1

Since the first purine cyclonucleoside has been reported, 1) a number of purine nucleosides having 8,2'-(S- and -O)-, $^{2^{-4}}$, 8,5'-(S- and -O)-, 5,6 , and $8,3'-S-^2$, anhydro linkage were synthesized. However, the synthesis of a cyclonucleoside having 8,3'-O-anhydro linkage could not be performed, mainly because of the difficulty in the cyclization of 3'-tosylated 8-oxyadenosine presumably due to a large steric distortion. As the first 2,3'-cyclonucleoside has been synthesized in the pyrimidine deoxyribonucleoside, 7 we attempted to synthesize 8,3'-anhydro-8-oxy-9- $\beta-$ D-(2-deoxythreopentofuranosyl)adenine (I) starting from 2'-deoxyadenosine.

8-Bromo-2'-deoxyadenosine⁸⁾ was converted to 5'-trityl derivative*2 (III) (UV: $\lambda_{\text{max}}^{\text{pH 1}}$ 263 m μ , $\lambda_{\text{max}}^{\text{EIOH}}$ 265 m μ , $\lambda_{\text{max}}^{\text{pH 1}}$ 265 m μ . IR: $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1075 (sugar C-O-C), 700 (trityl). Paper chromatography: Rf (A)*3 0.84, Rf (B) 0.91, Rf (C) 0.90) in the yield of 78%.

^{*1} A preliminary account of this study has been presented at the XXI International Congress IUPAC, 1967, Praha.

^{*2} All crystalline compounds appeared in this paper had the elmental analysis value satisfactorily in agreement with the theoretical one.

^{**3} Rf (A) stands for the Rf value in the solvent A. Solvent used were: A, *n*-BuOH-H₂O, 86:14; B, iso-PrOH-ammonia-H₂O, 7:1:2; C, *n*-BuOH-AcOH-H₂O, 5:2:3; D, *n*-PrOH-H₂O (pH 6.5), 3:1; E, EtOH-M NH₄OAc (pH 7.5), 7:3.

¹⁾ M. Ikehara, H. Tada: J. Am. Chem. Soc., 85, 2344 (1963); Ibid., 87, 606 (1965).

²⁾ Idem: This Bulletin, 15, 94 (1967).

³⁾ M. Ikehara, H. Tada, K. Muneyama, M. Kaneko: J. Am. Chem. Soc., 88, 3165 (1966).

⁴⁾ M. Ikehara, K. Muneyama: J. Org. Chem., in press.

⁵⁾ Idem: This Bulletin, 13, 639 (1965).

⁶⁾ Idem: J. Org. Chem., in press.

⁷⁾ D. M. Brown, D. B. Parihar, A. R. Todd, S. Varadarajan: J. Chem. Soc., 1958, 3028.

⁸⁾ M. Ikehara, S. Uesugi, M. Kaneko: Chem. Commun., 1967, 17.

Compound II was then tosylated with 1.5 equivalents of tosyl chloride. 3'-O-Tosyl-5'-O-trityl-8-bromoadenosine (VI) (Prisms from EtOH-dioxane, m. p. 176~177°. UV: $\lambda_{\text{max}}^{\text{PH} \ 1}$ 264, 272 (shoulder); $\lambda_{\text{max}}^{\text{EtOH}}$ 264 m μ ; $\lambda_{\text{max}}^{\text{PH} \ 1}$ 264 m μ . IR: $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1570 (covalent tosylate), 1070 (sugar C-O-C), 700 (trityl). Paper chromatography: Rf (A) 0.87, Rf (B) 0.82, Rf (C) 0.89), thus obtained, was converted to 8-oxy derivative by the treatment with anhydrous sodium acetate in acetic anhydride, which was superior to acetic acid⁹ in preventing cleavage of the glycosidic linkage in 2'-deoxynucleoside. Resulting 8-oxy compound (V) (amorphous powder. UV: $\lambda_{\text{max}}^{\text{PH} \ 1}$ 287 m μ ; $\lambda_{\text{max}}^{\text{EtOH}}$ 283 m μ ; $\lambda_{\text{max}}^{\text{PB} \ 11}$ 267 m μ ; 301 m μ . IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1740~1745 (8-CO), 1700~1710 (acetamide), 1170 (covalent tosylate). Paper chromatography: Rf (A) 0.89, Rf (B) 0.83, Rf (C) 0.90) was finally subjected to cyclization

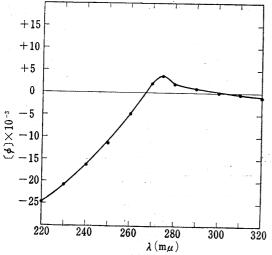


Fig. 1. Optical Dispersion Curve of 8,3'-Anhydro-8-oxy-9-β-D-(2-deoxy*threo*pento-furanosyl)adenine

by the treatment with sodium acetate in DMF. Heating for 1 hour, followed by the ammoniacal removal of N6-acetyl group, afforded a trityl-cyclonucleoside (VI) (m.p. 266° from n-PrOH. UV: $\lambda_{\max}^{pH 1} 264 \text{ m}_{\mu}$, $\lambda_{\max}^{\text{EtOH}} 262 \text{ m}_{\mu}$ ($\varepsilon 15400$), λ_{max} 262 m_w. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 700 (trityl), no covalent tosylate. Paper chromatography: Rf (A) 0.76, Rf (B) 0.70, Rf (C) 0.80, Rf (E) 0.63). Compound VI was refluxed in 80% acetic acid for 15 min. and purified by cellulose column chromatography. Elution with solvent B gave crystalline cyclonucleoside (I) (m.p. 266.5~267°. UV: $\lambda_{\text{max}}^{\text{ph 1}}$ 262 m μ (ε 14200), $\lambda_{\text{max}}^{\text{H20}}$ 263 m μ (ε 14200), $\lambda_{\rm max}^{\rm pH~11}$ 263 m μ (ε 14600). IR: no trityl was found. Paper chromatography: Rf (A) 0.25. Rf (B) 0.54, Rf (D) 0.62, Rf (E) 0.63). The ultraviolet absorption properties shifted slightly toward

bathochromic region from those of 8-methoxyadenosine¹⁰ and elemental analysis data suggested the structure 8,3'-anhydro-8-oxy-9- β -D-(2-deoxythreopentofuranosyl)adenine for compound I. This structure was further supported by the optical rotatory dispersion study of I. As shown in Fig. 1, the optical rotatory dispersion (ORD) curve of I has a positive Cotton effect around 260 m μ . This is in contrast to the natural purine nucleoside, which has negative Cotton effect in the major absorption region.¹¹ The inversion of the Cotton effect could be ascribed to the rotation of base around the nucleosidic linkage and the fixation at certain angle by the anhydro linkage.¹²

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo

Received June 5, 1967

Morio Ikehara (池原森男) Masakatsu Kaneko (金子正勝)

⁹⁾ M. Ikehara, H. Tada, K. Muneyama: This Bulletin, 13, 1140 (1965).

¹⁰⁾ R. E. Holmes, R. K. Robins: J. Am. Chem. Soc., 87, 1772 (1965).

¹¹⁾ T.L.V. Ulbricht, T.R. Emerson, R.J. Swan: Biochem. Biphys. Res. Commun., 22, 505 (1966).

¹²⁾ M. Ikehara, M. Kaneko, K. Muneyama, H. Tanaka: in press.