Chem. Pharm. Bull. 18(11)2204—2207(1970)

UDC 547.787.3.04.07;547.785.507

Derivatives of Imidazo[2,1-b]benzoxazole¹⁾ (Studies on Heterocyclic Compounds. VIII²⁾)

HARUO OGURA, TSUNEO ITOH, and SHINGO SUGIMOTO

School of Pharmaceutical Sciences, Kitasato University3)

(Received March 18, 1970)

Imidazo[2,1-b]benzoxazoles which have a new ring system were synthesized. Condensation reaction of 2-aminobenzoxazole (I) and bromoacetone afforded 2-imino-3-(2-oxopropyl)-2,3-dihydrobenzoxazole (IIa). When phenacyl bromide was used instead of bromoacetone, 2-imino-3-phenacyl-2,3-dihydrobenzoxazole (IVa) was obtained. Cyclization of these imino-derivatives afforded imidazo[2,1-b]benzoxazoles.

On the other hand, imidazo[2,1-b]benzoxazole (XIII) was prepared from 1-(o-chlorophenyl)-2-hydroxyimidazole (XI) via benzyne intermediate.

The derivatives of $\operatorname{imidazo}[2,1-b]$ benzoxazole are interesting heterocyclic compounds possessing a new ring system which has not yet been reported in the literature. Recently, we reported the synthetic studies about $\operatorname{imidazo}[2,1-b]$ benzothiazoles²⁾ and thiazolo[2,3-a]-benzimidazoles.^{4,5)} In this report, we wish to report the preparation of $\operatorname{imidazo}[2,1-b]$ benzoxazoles and to compare with that of $\operatorname{imidazo}[2,1-b]$ benzothiazoles.

Treatment of 2-aminobenzoxazole (I) with α -bromoalkyl ketones in alcohol at room temperature for 2—5 days produced 2-imino-3-(2-oxoalkyl)-2,3-dihydrobenzoxazoles (II) as hydrobromide. When phenacyl bromides were used instead of bromoalkyl ketones in the reaction 2-imino-3-phenacyl-2,3-dihydrobenzoxazoles (IV) hydrobromide was obtained in good yield (Chart 1).

Since 2-aminobenzoxazole may have either amino-form (I) or imino-form (I'), there are two possibilities about the direction of the alkylation. On the similar reaction of 2-amino-benzothiazole, we confirmed that the alkylation occurred at the thiazole ring nitrogen.²)

¹⁾ Presented before the 88th Annual Meeting of the Pharmaceutical Society of Japan, April 1968, p. 100.

²⁾ Part VII: H. Ogura and T. Itoh, Chem. Pharm. Bull. (Tokyo), 18, 1981 (1970).

³⁾ Location: Shirogane, Minato-ku, Tokyo, 108, Japan.

⁴⁾ H. Ogura, T. Itoh, and Y. Shimada, Chem. Pharm. Bull. (Tokyo), 16, 2167 (1968).

⁵⁾ H. Ogura, T. Itoh, and K. Kikuchi, J. Heterocyclic Chem., 6, 797 (1969).

Desai, et al.⁶⁾ reported that I was treated with methyl iodide to yield 2-imino-3-methyl-2,3-dihydrobenzoxazole (VI) (mp 96°) (Chart 2). On the other hand, 2-methylaminobenzoxazole (VIII) (mp 87—88°) was synthesized from 2-chlorobenzoxazole (VII) with methyl amine.⁷⁾ Mixing melting point comparison revealed a marked depression between VI and VIII. These experiments support that the alkylation of I occurred at the oxazole ring nitrogen, 2-amino-benzoxazole having the imino-form (I') in the reaction.

This conclusion is further supported by the infrared (IR) spectrum. Sam, et al.⁸⁾ have reported that the C=N stretching absorption of the amino-form and the imino-form appeared at around 1690—1700 cm⁻¹ in potassium bromide (KBr), and on the other hand, that in chloroform solution the C=N stretching absorption of the amino-form showed a shift to 1660—1665 cm⁻¹. The C=N stretching absorption of 2-imino-3-(2-oxopropyl)-2,3-dihydrobenzoxazole (IVa) in KBr was observed at 1695 cm⁻¹, and this absorption band was not shifted in chloroform solution.

Treatment of II or IV with polyphosphoric acid (PPA) caused cyclization to yield 2-alkyl imidazo[2,1-b]benzoxazoles (IIIa,b,c,d), or 2-aryl imidazo[2,1-b]benzoxazoles (Va,b,c,d) in 55—70% yield. The IR spectra of these compound show the absorptions due to C=N in the range of 1627—1640 cm⁻¹ and those due to C=O=C linkage in the range of 1189—1215 cm⁻¹. Nuclear magnetic resonance (NMR) spectra indicate one proton at 2.65—3.12 τ and mass spectra show molecular ion (M⁺) of each compounds (Table II).

When 1-(o-chlorophenyl)-2-hydroxyimidazole (XI), prepared from o-chlorophenylisocyanate (IX) by the similar method to the preparation of imidazo[2,1-b]benzothiazole,²⁾ was treated with potassium amide in liquid ammonia, imidazo[2,1-b]benzoxazole (XIII), mp 100.5°, was obtained in 42% yield. NMR spectrum reveals double doublet of two protons at 2- and 3-positions, and mass spectrum indicated M+ 158.058 (C₉H₆ON₂, calcd. 158.048). This reaction clearly progressed through a benzyne intermediate (XII)^{2,9)} (Chart 3).

Experimental¹⁰⁾

General Procedure of 2-Imino-3-(2-oxoalkyl)benzoxazole (IIa,b,c,d) and 2-Imino-3-(2-oxoaryl)benzoxazole (IVa,b,c,d) (Table I)——To a solution of 0.01 mole of 2-aminobenzoxazole (I) in ethanol was added 0.01 mole

⁶⁾ R.D. Desai, R.F. Hunter, and A.R.K. Khalidi, J. Chem. Soc., 1934, 1186.

⁷⁾ H. Ogura, S. Sugimoto, and K. Shimura, Yakugaku Zasshi, 90, 796 (1970).

⁸⁾ J. Sam, J.N. Plampin, and G.I. Poos, J. Org. Chem., 23, 1500 (1958).

⁹⁾ J.F. Bunnett and F. Hrutfiord, J. Am. Chem. Soc., 83, 1691 (1961).

¹⁰⁾ All temperatures are uncorrected. NMR spectra were recorded at 60 Mc with a Hitachi-Perkin H-60 spectrometer. Mass spectra were taken with a Japan Electron Optics JMS-01S mass spectrometer operating with continuous ionization, and samples were introduced with a direct inlet system.

of α -bromoalkyl ketones or p-substituted phenacyl bromides with stirring at room temperature for 2—5 days. The separated precipitate (HBr-salt) was collected by filtration and recrystallized from ethanol.

General Procedure of 2-Alkyl Imidazo[2,1-b]benzoxazoles (IIIa,b,c,d) and 2-Aryl Imidazo[2,1-b]benzoxazoles (Va,b,c,d) (Table II)——A solution of 0.01 mole of the salt (III or V) in 15 g of phosphorous pentoxide and 15 g of phosphoric acid, was heated at 120° under stirring for 3 hr. After cooling, the reaction mixture was poured into ice-water, and then was made alkaline by 10% sodium hydroxide. The separated crystals were collected by filtration, and recrystallized from hexane.

Table I. 2-Imino-3-substituted Benzoxazoles

	R (X)	mp°C Yield (decomp.) (%)		max			Analysis (%)						
Com- pound			Yield (%)			Formula	Calcd.			Found			
1	,	1 17 (707		,			ć	Н	N	C	Н	N	
IIa	Н	229—231	90	1720	1695	$C_{10}H_{10}O_2N_2 \cdot HBr$	44.30	4.09	10.33	44.36	4.07	10.50	
Пb	CH_3	211-212	82	1725	1692	$C_{11}H_{12}O_2N_2 \cdot HBr$	46.33	4.60	9.82	46.15	4.58	9.76	
${ m I\!Ic}$	$(CH_2)_3CH_3$	218 - 219	75	1730	1692	$C_{14}H_{18}O_2N_2 \cdot HBr$	51.39	5.85	8.56	51.15	5.85	8.76	
IId	$(CH_2)_4CH_3$	217—218	70	1730	1692	$\mathrm{C_{15}H_{20}O_2N_2\!\cdot\!HBr}$	52.80	6.20	8.21	52.79	6.03	8.23	
Ша	Н	230232	85	1710	1695	$C_{15}H_{12}O_{2}N_{2}\cdot HBr$	54.07	3.93	8.41	54.33	3.62	8.66	
Шь	Cl	239-240	82	1705	1695	$C_{15}H_{11}O_2N_2Cl \cdot HBr$	45.54	3.06	7.08	45.85	3.20	7.21	
$\mathbb{I}_{\mathbf{c}}$	Br	240241	83	1705	1688	$C_{15}H_{11}O_2N_2Br \cdot HBr$	43.72	2.94	6.80	43.55	2.66	6.51	
${\rm I\hspace{1em}I}{ m I}{ m d}$	CH_3	238239	74	1705	1690	$C_{16}H_{14}O_2N_2 \cdot HBr$	55.35	4.35	8.07	55.34	4.16	8.04	

Table II. 2-Substituted Imidazo[2,1-b]benzoxazoles

Compound	R (X)	mp°C (decomp.)	Yield (%)	$\frac{\mathrm{IR} \ \nu_{\mathrm{max}}^{\mathrm{KBr}}}{\mathrm{(cm^{-1})}}$	$\begin{array}{c} { m UV} \; \lambda_{ m max}^{ m EtoH} \; { m m} \mu \ ({ m log} \; arepsilon) \end{array}$	
<u>II</u> Ia	Н	92— 94	70	1630 1200	281.5 (3.83)	
Шь	CH_3	96 97	58	1632 1215	282 (3.57)	
Шc	$(CH_2)_3CH_3$	50 51	60	1640 - 1205	282.2(3.65)	
Шd	$(CH_2)_4CH_3$	56	65	1637 1210	282.3 (3.60)	
V a	Н	182184	65	1630 1206	281.1 (4.40)	
Vъ	Cl	197—198	58	1630 1210	286.1 (4.33)	
$V\mathbf{c}$	Br	190-191	60	1630 1210	286.7 (4.59)	
Vd	CH_3	198—199	56	1627 1205	185.1 (4.46)	

	NMR (τ)	Formula	Analysis (%)						
Compound			Calcd.			Found			
			c	Н	N	ć	Н	N	
Ша	3.12, s CDCl ₃	$C_{10}H_8ON_2$	69.75	4.68	16.27	69.68	4.40	16.30	
Шъ	2.75, s CF ₃ COOH	$C_{11}H_{10}ON_2$	70.95	5.41	15.04	71.20	5.22	15.20	
Шc	3.03 , s, $CDCl_3$	$C_{14}H_{16}ON_2$	73.66	7.06	12.27	73.55	7.14	12.24	
Πd	3.05, s, CDCl ₃	$C_{15}H_{18}ON_2$	74.35	7.49	11.56	743.1	7.53	11.41	
Vа	2.87, s, CF ₃ COOH	$C_{15}H_{10}ON_2$	76.91	7.49	11.96	77.18	4.07	12.05	
Vb	2.65, s, CF, COOH	C ₁₅ H ₉ ONjCl	67.05	3.38	10.43	67.32	3.02	10.31	
Vc	2.75, s, CF ₃ COOH	$C_{15}H_9ON_2Br$	57.53	2.90	8.95	57.71	2.81	8.67	
Vd	2.75, s, CF ₃ COOH	$C_{16}H_{12}ON_2$	77.40	4.87	11.28	77.44	4.98	11.41	

1-(o-Chlorophenyl)-2-hydroxyimidazole (XI)——To a solution of 10 g of o-chlorophenylisocyanate (IX) in 100 ml of benzene was added dropwise 9 g of aminoacetaldehyde diethylacetal in 100 ml of benzene. The reaction mixture was heated under reflux for 45 min. After cooling, the solvent was removed under reduced pressure to yield 11.2 g (60%) of N-(o-chloropyenyl)-N'-($\beta\beta$ -diethoxyethyl)urea (X) as colorless plates, mp 95°. Anal. Calcd. for $C_{13}H_{19}O_3N_2Cl$: C, 54.45; H, 6.68; N, 9.77. Found: C, 54.30; H, 6.77; N, 9.54.

A solution of 5 g of X in 10 ml of 4n hydrochloric acid and 10 ml of ethanol was heated under reflux for 2 hr. After cooling, the solvent was removed under reduced pressure, and the residual solution was made alkaline with 5% sodium hydroxide and then extracted with chloroform. The chloroform solution was washed with water, dried and evaporated. There was obtained 2.7 g (80%) of XI as colorless plates, mp 188—190°. Anal. Calcd. for $C_9H_7\mathrm{ON}_2\mathrm{Cl}\colon C$, 55.54; H, 3.63; N, 14.40. Found: C, 55.66; H, 3.83; N, 14.41.

Imidazo[2,1-b]benzoxazole (XIII) — To a stirred solution of potassium amide in liquid ammonia (prepared from 1.5 g of potassium and 200 ml of liquid ammonia), 5.0 g of XI was added. After stirring for 3 hr at -50° , there was added ammonium chloride and then evaporated. The resulted residue was extracted from chloroform and recrystallized from hexane to yield 1.5 g (42%) of XIII as colorless leaflets, mp 100.5°. NMR τ (CDCl₃): 2.85 (d-d, J=7 cps). UV $\lambda_{\max}^{\text{EIOH}}$ m μ (log ε): 281.2 (3.61). IR ν_{\max}^{KBr} (cm⁻¹): 1630, 1189. Anal. Calcd. for $C_9H_6ON_2$: C_7 (68.35; H_7 3.82; N_7 1.771. Found: C_7 (68.11; C_7 1.749.