-		~
1		
- 1	ARLE	

Reactant	Temp. (°C)	Position of introduced CN	mp (°C)	Yield (%)
Quinoline 1-oxide	75	$2^{a)}$	171	85
Isoquinoline 2-oxide	75	1^{a}	207	85
1,6-Naphthyridine 1,6-dioxide ²⁾	25	$2.5 (dicyano)^{b}$	248 (decomp.)	20
		2^{b}	260 (decomp.)	10
		$5^{b)}$	257 (decomp.)	10
1,6-Naphthyridine 1-oxide ²⁾	25	2^{b})	236 (decomp.)	80
1,6-Phenanthroline 6-oxide ³⁾	25	5 ^b)	220	82
Phenanthridine 5-oxide	50	6^{a}	217	58

 $[\]alpha$) The structures were determined by admixture with authentic samples.

A more quantitative consideration will be made using molecular orbital theory in a full paper.

Tokyo College of Pharmacy, Kashiwagi-4, Shinjuku-ku, Tokyo Yoshiro Kobayashi Itsumaro Kumadaki Haruo Sato

Received January 16, 1970

(Chem. Pharm. Bull.) 18(4) 862-863 (1970)

862

UDC 581.19:547.651.02

The Isolation of Neojusticin from Justicia procumbens Linn.

Justicidin A (I) and B (II), fish-killing components have been reported from *Justicia Hayatai* var. *decumbens*.¹⁾ We now report the isolation of a new lignan named neojusticin from *J. procumbens* Linn. var. *leucantha* Honda (Japanese name, Kitsunenomago).

The ether extract of dried plant on chromatography afforded justicidin A and B as major components. Two of minor components were diphyllin (III)²⁾ and a new compound, neojusticin. Neojusticin, mp 273—275°, $C_{21}H_{14}O_7$ (M+ calcd. 378.074, found 378.074) possesses one methoxy group (δ in CDCl₃ 4.31 (3H, s)), two methylenedioxy groups (6.06 (4H, s)), a γ -lactone methylene (5.10 (2H, s)), and five aromatic hydrogen atoms (7.70 (1H, s), 6.99 (1H, s), 6.95 (1H, d, J=7 cps), 6.78 (1H, s), and 6.72 (1H, d, J=7 cps)). UV $\lambda_{\text{max}}^{\text{CHCh}}$ m μ (log ϵ): 263.5 (4.69), 298 (4.01), 319 (4.03), and 355 (3.47). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1760 (γ -lactone carbonyl), 1605 (aromatic), 933 (methylenedioxy group).

The nuclear magnetic resonance (NMR) signals of aromatic hydrogens and ultraviolet (UV) spectrum of neojusticin resemble those of justicidin A (I), which means the both compounds should have the same substitution pattern. However, the NMR signal of γ -lactone methylene group (5.10) suggested system A rather than system B for neojusticin because Horii and his co-workers³) pointed out that the methylene group in system A appears between 5.08

b) The structures were determined by elemental analyses and IR and NMR spectra.

¹⁾ K. Munakata, S. Marumo, K. Ohta and Y.-L. Chen, Tetrahedron Letters, 1965, 4167; 1967, 3821; idem, Agr. Biol. Chem., 33, 610 (1969).

²⁾ T. Murakami and A. Matsushima, Yahugahu Zasshi, 81, 1596 (1961); Z. Horii, K. Ohkawa, S. Kim and T. Momose, Chem. Commun., 1968, 653.

³⁾ Z. Horii, M. Tsujiuchi and T. Momose, Tetrahedron Letters, 1969, 1079.

and 5.23 ppm whereas 5.32—5.52 in system B. Moreover, the methoxy signal (4.31) comes out in much lower field than justicidin A (3.80, 4.03, and 4.09), which also supports system A for neojusticin. These evidences lead structure (IV) for neojusticin.

Neojusticin would be the sole example of naturally occurring 1-oxygenated-2,3-naphthalide lignan (system A) since the structure of taiwanin E⁴) is represented by VI³) not by V. Neojusticin has fish-killing activity as well as pentachlorophenol.

Faculty of Pharmaceutical Sciences, Nagasaki University Bunkyo-machi, Nagasaki

Received February 9, 1970

Masayoshi Okigawa Takako Maeda Nobusuke Kawano

⁴⁾ Y.-T. Lin, T.-B. Lo, K.-T. Wang and B. Weinstein, Tetrahedron Letters, 1967, 849.