TABLE VI	$I. J_{trans}$	Values	of Disubstituted	Ethylene	Derivatives	(cng)11)
----------	----------------	--------	------------------	----------	-------------	----------

R ₁	R_2	Jealed.	Jobs.
C_6H_5	СНО	16.7	$15.6^{g)}$
Me	CO_2Et	14.9	15.4^{j})
Me	CHO	15.7	15.5^{h})
F	\mathbf{F}	6.5	9.5%
Br	\mathbf{F}	8.9	11.0^{d})
${ m Me}$	F	10.5	11.1^{e}
Cl	CI	10.1	12.2^{f}
CO_2Et	CO_2Et	15.3	15.5^f)
C_6H_5	Me	15.5	15.6^{k}
Me	CO_2H	14.9	14.9^{j}
$C_{10}H_{21}$	OMe	11.8	$12.5^{i)}$

Table VII. J_{gem} . Values of Disubstituted Ethylene Derivatives (cps)¹¹⁾

R ₁	R_2	$J_{ m calcd}.$	$J_{ m obs}.$
Me	Br	2.2	$2.0^{l)}$
Me	CI	1.8	1.3^{l}
${f Me}$	СНО	2.2	1.5^{l}
${ m Me}$	${ m CO_2Me} \ { m COMe}$	1.3	1.88)
${f Me}$	COMe	1.4	$0.7^{8)}$

Coupling Constants of Disubstituted Ethylene Derivatives

In this section, the observed coupling constants^{11a-m}) of disubstituted ethylene derivatives are compared with those of calculated values estimated from the data summarised in Table V, and it is concluded that J_{trans} and $J_{gem.}$ are expressed in the form of $J_{c_2H_4} + \sum \Delta J_i + \sum \Delta J_{\pi}$, whereas J_{cis} is $J_{c_2H_4} + \sum \Delta J_i$ (cf. Table VI, VIII, VIII).

Chem. Pharm. Bull. 18(7)1482—1484(1970)

UDC 547.728.1.07:577.15.02:615.33.011.5

An Alternative Synthesis of (\pm) -Dehydrogriseofulvin by Enzymic Phenolic Oxidation by Homogenized Potato Peelings¹⁾ (Studies on the Syntheses of Heterocyclic Compounds. CCCLIII²⁾)

Tetsuji Kametani, Satoshi Hibino, and Seiichi Takano

Pharmaceutical Institute, Tohoku University3)

(Received March 10, 1970)

(+)-Griseofulvin (IV) was first isolated from the mycellium of penicillium griseofulvum.4) It was subsequently shown to be a metabolic product of many species of penicillia.5) Barton

3) Location: Aobayama, Sendai.

¹⁾ Preliminary Communication was reported in *Chem. Comm.*, 1969, 131, by T. Kametani, S. Hibino, and S. Takano.

²⁾ Part CCCLII: T. Kametani, F. Satoh, H. Agui, K. Ueki, K. Kigasawa, M. Hiiragi, H. Ishimaru, and S. Horie, Chem. Pharm. Bull. (Tokyo), 18, 1161 (1970).

⁴⁾ A.B. Oxford, H. Raestrick, and P. Simonart, Biochem. J., 33, 240 (1939).

⁵⁾ M.W. Miller, "The Pfizer Handbook of Microbial Metabolites," McGraw-Hill Book Co., Inc., New York, 1961, p. 207.

and Cohen first suggested that in the biogenesis of the antibiotic (+)-griseofulvin (IV), the griseophenone A (I) could conceivably be converted to the spiran type, (-)-dehydrogriseofulvin (III), via phenolic oxidative coupling through the formation of the intermediate biradical (II).6) Chemical synthesis of (±)-dehydrogriseofulvin using one-electron oxidizing agent supports this hypothesis.7-9)

The final step was the stereospecific enzymic reduction of (—)-III to form (+)-IV. 10-12)

We have reported^{13–15)} that enzymic C-O-C head-to-tail coupling of 1,2,3,4-tetrahydro-1-(4-hydroxyphenethyl)-6-methoxy-2-methyl-7-isoquinolinol (V) and N-methylcoclaurine (VI) were achieved with homogenized potato peelings-hydrogen peroxide and that the C-O-C headto-head coupling was observed in case of phenolic oxidation of V with homogenized rhizome of Wasabia Japonica-hydrogen peroxide. Furthermore, Okuda, et al. 16) have reported that griseophenone A (I) was converted to (±)-dehydrogriseofulvin (30%) and (+)-dehydrogriseofulvin (20%) with Formosan Laccase of Lacker and microbial growing cell suspension (Coriolus), respectively.

Since the formation of (-)-dehydrogriseofulvin (III), a precursor of (+)-griseofulvin (IV), has been assumed to be due to phenol oxidation of griseophenone A (I),6) many attempts to obtain III in vitro by phenol oxidation of I with potassium ferricyanide^{8,9)} and horseradish peroxidase-hydrogen peroxide¹⁷⁾ have been carried out. Hereby, we wish to report an alternative conversion of I into III in good yield with homogenized potato peelings-hydrogen peroxide.

A phosphate-buffered solution (pH 7.6—7.7) of griseophenone A (I) was mixed with homogenized potato peelings in the presence of hydrogen peroxide and ethanol and the mixture was set aside for 2 days at 24-28°. A further and similar quantity of homogenised potato peelings was then added to the above mixture.

The mixture was worked up after 4 days, by the result of which a mixture of the starting material (I) and (\pm) -dehydrogriseofulvin (III) was given.

In the above case the reaction did not take place with boiled homogenized potato-peelingshydrogen peroxide or in the absence of homogenized potato peelings.

⁶⁾ D.H. Barton and T. Cohen, "Festschrift A Stoll," Birkhauser, Basle, Switzerland, 1957, p. 117.

A. Brossi, M. Baumann, M. Gercke, and E. Kyburz, Helv. Chim. Acta, 43, 1444, 2071 (1960).

⁸⁾ A.C. Day, J. Nabney, and A.I. Soctt, J. Chem. Soc., 1961, 4067.

⁹⁾ D. Jauf, C.H. Kuo, H.L. Slates, and N.L. Wender, Tetrahedron, 19, 1 (1963).

¹⁰⁾ J.A. Grove, Quat. Rev., 17, 1 (1963).

¹¹⁾ W.B. Whally, "Biogenesis of Natural Compounds," P. Bernfeld, ed., Macmillan Co., New York, 1963, p. 797.

¹²⁾ R.M. Evans, "The Chemistry of Antibiotics used in Medicine," 1st ed., Pergamon Press, New York, 1965, p. 120.

¹³⁾ T. Kametani, S. Takano, and T. Kobari, Tetrahedron Letters, 1968, 4565; T. Kametani, S. Takano, and T. Kobari, J. Chem. Soc. (C), 1969, 9.

¹⁴⁾ T. Kametani, H. Nemoto, S. Takano, and T. Kobari, J. Heterocyclic Chem., 7, 181 (1970).

¹⁵⁾ T. Kametani, S. Takano, and T. Kobari, J. Chem. Soc. (C), 1969, 2770.

¹⁶⁾ The Summary of the 23rd Annual Meeting of the Pharmaceutical Society of Japan, 1969, p. 227.

¹⁷⁾ A. Segal and E. Taylor, J. Pharm. Sci., 57, 874 (1968).

Experimental

(\pm)-Dehydrogriseofulvin (III)—A mixture of griseophenone A (I) (425 mg), phosphate buffer (31, pH 7.6—7.7) [prepared from 20.4 g. of KH₂PO₄, 2.4 g of KOH and distilled water], 0.3% H₂O₂ (30 ml), 95% ethanol (30 ml) and potato peelings (40 g) was allowed to stand for 2 days at 24—28°. A further and similar quantity of homogenized potato peelings was then added. The mixture was worked up after 4 days. After the reaction mixture had been filtered with celite, 10% AcOH (20 ml) was added to the filtrate and the resulting acidic solution was extracted with CHCl₃. The extract (150 ml \times 5) was washed with water (200 ml \times 2), dried over Na₂SO₄ and concentrated to a volume of 150 ml, which was extracted with 2% KOH (50 ml \times 2) in order to remove the starting material.

The above aqueous layer was acidified with conc. HCl (30 ml) and extracted with CHCl₃ (100 ml \times 2). The extract was washed with water (100 ml \times 2), dried over Na₂SO₄ and evaporated to give 150 mg of a yellow crystalline substance (I), whose spectroscopic data were superimposable on those of an authentic starting material.

The CHCl₃ layer was washed with water (100 ml \times 2), dried over Na₂SO₄ and evaporated to give 150 mg (35.3%) of a colorless powder (III), mp 288—289° (from benzene) [lit., 9) 288—290°], $[\alpha]_{\rm b}=0$ ° (in CHCl₃), in 35.3% yield, 18) whose IR (in CHCl₃) and NMR (in CDCl₃) spectra were superimposable on those of an authentic sample.

Acknowledgement We thank Dr. M. Murakami and Mr. R. Kawata, The Central Research Laboratory, Yamanouchi Pharmaceutical Co. Ltd., for a gift of natural griseofulvin. We thank Miss Y. Tadano for NMR spectral measurement.

¹⁸⁾ The yield in the previous paper¹⁾ was reported as 12%, but it was improved by repeated experiments.