occurred as doublets with the large coupling constants (8 Hz), a fact which indicated it to be a β -anomer. The rotation contribution of the glucose component in pteroside B ([M]_D of pteroside B-[M]_D of the aglycone (III)=-107) showed that the glucose involved is of the D series.³⁾

On the basis of the above evidence, pteroside B is concluded to be 2(R), 5,7-trimethyl-4-(2'-hydroxyethyl)-indan-1-one 2'- β -D-glucopyranoside (I).

Acknowledgement We are greatly indebted to Dr. K. Kuriyama, Research Laboratory, Shionogi & Co., Ltd., for the CD data and discussion.

Pharmaceutical Institute, Tohoku University Aoba-yama, Sendai

Received April 1, 1970

HIROSHI HIKINO
TAEKO TAKAHASHI
SHIGENOBU ARIHARA
TSUNEMATSU TAKEMOTO

(Chem. Pharm. Bull.) [18(7)1489—1491(1970)]

UDC 547.212.04:547.213.04

C-13 Resonance Chemical Shift for Substituted Ethyl and Isopropyl Derivatives

Recently, the C-13 resonance chemical shifts for organic compounds have become of interest from the physical, chemical, and biological view point.¹⁾ Numerous C-13 chemical shifts for liquid ethyl and isopropyl derivatives are presented in Tables I and II.

Table I. C-13 Chemical Shifts for C₂H₅R Derivatives Ref. CS₂ (ppm)

R	α-C	β-С		:
$\mathrm{NEt_2}$	145.8	180.5		
NHEt	148.9	177.6		
OH	135.5	175.1		
OEt	127.4	178.3		
OCOMe	133.1	179.1	$173.0 \; (OCO^{13}Me)$	
Ph	163.8	177.3		
C1	153.2	174.0		
Br	165.1	173.1		
CO_2H	165.6	184.6		
$CO_{\mathbf{z}}^{\mathbf{z}}\mathbf{M}\mathbf{e}$	166.1	184.4	$142.3 (CO_2^{13}Me)$	
CHO	156.0	187.1		
COMe	156.8	185.7	$164.4 \text{ (CO}^{13}\text{Me)}$	
COEt	158.0	185.6		
CN	71.2	182.4		
NO_2	122.4	181.6		
\mathbf{H}^{a}	188.0	188.0		
Me^{b})	177.8	178.3		•

a) H. Spiesecke and W.G. Schneider, J. Chem. Phys., 35, 722 (1961)
 b) D.M. Grant and E.D. Paul, J. Am. Chem. Soc., 86, 2984 (1964)

³⁾ W. Klyne, Biochem. J., 47, xli (1950).

¹⁾ J.W. Emsley, J. Feeney, and L.H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy," Vol. II Chapter 12, Section 2, Pergamon Press, London, 1966.

TABLE II.	C-13 Chemical	Shifts for Me ₂ CHR Derivatives	Ref. CS _o (ppm)

\mathbf{R}	α-С	β -C	
ОН	129.4	167.7	
OCOMe	125.3	170.8	$171.6 \; (OCO^{13}Me)$
Et	161.4	171.4	163.3 (CH ₂)
			181.9 (CH ₃)
Cl	133.1	165.7	, (0/
Br	148.2	164.1	
$\mathrm{CO_2Me}$	159.3	174.4	$142.2 (CO_2^{13}Me)$
CO_2H	159.1	174.7	4 -7
$\mathbf{C}\mathbf{N}$	173.2	173.2	69.3 (CN)
COMe	151.9	175.3	166.3 (CO ¹³ Me)
$\mathrm{NO_2}$	114.2	173.0	. ()
$\mathbf{H}^{a)}$	177.8	178.3	
Me^{b})	169.1	169.1	

<sup>a) H. Spiesecke and W.G. Schneider, J. Chem. Phys., 35, 722 (1961)
b) D. M. Grant and E.D. Paul, J. Am. Chem. Soc., 86, 2984 (1964)</sup>

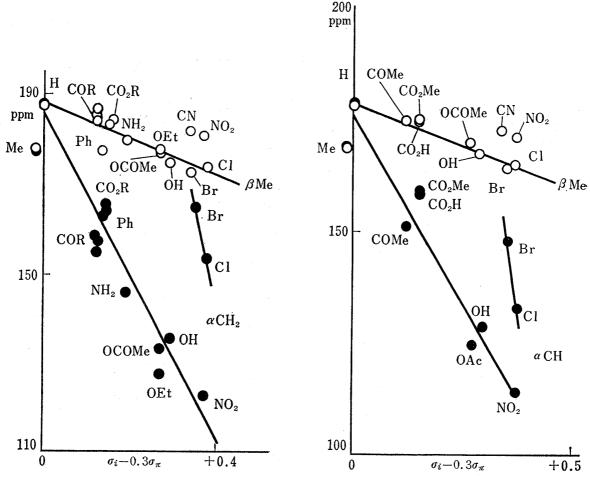


Fig. 1. C-13 Chemical Shifts for Substituted Ethyl Derivatives

Fig. 2. C-13 Chemical Shifts for Substituted Isopropyl Derivatives

They were all determined by the normal and proton decoupling technique using Hitachi Perkin-Elmer Model R-20A spectrometer equipped with 15.085 MHz transmitter. These shifts are arranged by the linear combination of the substituent constants σ_i and σ_{π} , and linear relations among both α - and β -C-13 chemical shifts with respect to σ_i —0.3 σ_{π} are observed as shown in Fig. 1 and 2.

Our previous study³⁾ confirmed that the α -H-1 chemical shifts for substituted methyl and ethyl derivatives are linear with σ_i —0.25 σ_{π} , whereas those in the β - position, separated from the substituent group by three σ bonds, for ethyl and isopropyl derivatives are linear with σ_i , and from this fact it has been expected that the π -electronic effect, in other words, the delocalization effect, is effective through two σ bonds.

In the present, the same conclusion was verified for the β -C-13 resonance chemical shifts for substituted ethyl and isopropyl derivatives. Details of this work will be published in due time.

Naka Works, Hitachi Ltd.
Katsuta, Ibaragi, 312, Japan
Faculty of Pharmaceutical Sciences,
Osaka University
Toneyama 6–5, Toyonaka, Osaka, 560, Japan

GOH MIYAJIMA

Yoshio Sasaki Miyoko Suzuki

Received April 13, 1970

Chem. Pharm. Bull. [18(7)1491—1493(1970)]

UDC 547.854.83.07:547.918.07

Synthesis of 2-Thiouridine and 6-Methyl-3-(\(\beta\)-p-ribofuranosyl)-2-thiouracil

Recently several 2-thiopyrimidine nucleosides have been identified as the minor constituent of transfer ribonucleic acids (t-RNAs). 5-Methylaminomethyl-2-thiouridine and 2-thiocytidine were found in t-RNA of *E. coli*¹⁾ and 5-methoxycabonylmethyl-2-thiouridine was in t-RNA of baker's yeast.²⁾ 2-Thiocytidine has been prepared by the extended Hilbert–Johnson procedure from 4-amino-2-methylthiopyrimidine and a ribosyl chloride *via* the ribosyl pyrimidinium intermediate³⁾ and by the mercuri–procedure starting from diacetyl-2-thiocytosine.⁴⁾ Mercuric cyanide procedure⁵⁾ has recently been applied.⁶⁾ 2-Thiouridine, which had been prepared by the transformation of uridine through anhydronucleoside,⁷⁾ has been reported to be prepared by the mercuri–procedure starting from acetylated 2-thiouracil.⁴⁾ More recently, the silyl–procedure has been reported to be effective for 2-thiouridine synthesis.⁸⁾ These recent developments to the synthesis of 2-thiopyrimidine nucleosides prompted us to

²⁾ Y. Yukawa and Y. Tsuno, Nippon Kagaku Zasshi, 86, 873 (1965).

³⁾ Y. Sasaki and M. Suzuki, Chem. Pharm. Bull. (Tokyo), 16, 2128 (1969).

¹⁾ J. Carbon, H. David, and M.H. Studier, Science, 161, 1141 (1968).

²⁾ L. Baczynskyj, K. Biemann, and R.H. Hall, Science, 151, 1481 (1968).

³⁾ T. Ueda and H. Nishino, J. Am. Chem. Soc., 90, 1678 (1968).

⁴⁾ H-J. Lee and P.W. Wigler, Biochemistry, 7, 1427 (1968).
5) a) N. Yamaoka, K. Aso, and K. Matsuda, J. Org. Chem., 30, 149 (1965); b) K.A. Watanabe and J.J. Fox, J. Heterocycl. Chem., 6, 109 (1969).

⁶⁾ G.T. Rogers and T.L.V. Ulbricht, Chem. Commun., 508 (1969).
7) a) D.M. Brown, A. Todd, and S. Varadarajan, J. Chem. Soc., 3028 (1958); b) A modified procedure has been devised in our hands; T. Ueda and S. Shibuya, Chem. Pharm. Bull. (Tokyo), 18, 1076 (1970).

⁸⁾ H. Vorbrüggen, P. Strehlke, and G. Schulz, Angew. Chem. Intl., 8, 976 (1969); H. Vorbrüggen and P. Strehlke, Angew. Chem. Intl., 8, 977 (1969).