Chem. Pharm. Bull. 19(11)2259—2261(1971)

UDC 547.854.81.04.057

Synthesis of 1,3-Dialkylcytosine Derivatives

SADAO NISHIGAKI, KEITARO SENGA and FUMIO YONEDA

Pharmaceutical Institute, School of Medicine, Keio University¹⁾
(Received March 26, 1971)

The reaction of 1,3-dialkyl-6-amino-uracils with phosphorus oxybromide gave 1,3-dialkyl-6-bromo-cytosines in good yields. The latter served as starting materials for several nucleophilic reactions.

The imino-type pyrimidines have customarily been prepared by alkylation of the parent aminopyrimidines,²⁾ however the yields were generally recorded as low. As a part of the exploitation of the synthetic methods of iminopyrimidines, we have recently developed a new synthesis of 1,3-dimethylcytosine derivatives.³⁾ Our procedure consisted of treatment of 6-amino-1,3-dimethylcytosine with phosphorus oxychloride as a key step to give 6-chloro-1, 3-dimethylcytosine, which undergoes several transformation reactions. We describe in this paper the synthesis of 6-bromo-1,3-dialkylcytosines and further derivatives derived from them.

Heating of 6-amino-1,3-dimethyluracil (I) with phosphorus oxybromide at 205° for 5 min, under much milder conditions than those in the chlorination of I,3 afforded 6-bromo-1, 3-dimethylcytosine (Ia) in 70% yield. Satisfactory analytical and spectral data were obtained for Ia: The infrared spectra of Ia were quite similar with those of 6-chloro-1,3-dimethylcytosine. The nuclear magnetic resonance spectrum (CF₃COOH) showed singlets at 3.68 (CH₃), 3.85 (CH₃) and 6.78 ppm (C₅ H in pyrimidine), and two broad bands at 7.75 and 7.99 ppm (=N⁺H₂).

Similarly, treatment of several 1,3-dimethyl-6-secondaryaminouracils with phosphorus oxybromide gave the corresponding 6-bromo-1,3-dimethylcytosines in good yields (Table I). 6-(2-Hydroxyethylamino)-1,3-dimethyluracil (II) as one exception gave 6-bromo-4-N-(β -bromoethyl)-1,3-dimethylcytosine (IIa).

These 6-bromo-1,3-dimethylcytosines could be obtained by bromination of the corresponding 6-chloro-derivatives. For example, treatment of 6-chloro-1,3-dimethylcytosine with phosphorus oxybromide at 210° for 15 min gave Ia in 61% yield.

Some nucleophilic reactions were carried out to get further derivatives in addition to previously reported 6-substituted-1,3-dimethylcytosines.³⁾ The reaction of Ia with 2 equivalents of benzylamine yielded 4-N-benzyl-6-benzylamino-1,3-dimethylcytosine (VII). Reaction of Ia with sodium ethoxide, ethyl mercaptan and benzenethiol gave 6-ethoxy-1,3-dimethyl-cytosine (VIII), 6-ethylthio-1,3-dimethyl-cytosine (IX) and 1,3-dimethyl-6-phenyl-thiocytosine (XI), the latter two of which yielded 1,3-dimethyl-6-thiocytosine (XI)³⁾ in excellent yields on reaction with sodium hydrosulfide. Although the imino group of the 1, 3-dimethylcytosines described above was generally stable against acid hydrolysis, IX and X were sensitive to hydrolysis and they were converted into the corresponding uracils even on recrystallization from water.

Reaction of 6-amino-1,3-diethyluracil with phosphorus oxychloride and phosphorus oxybromide gave 6-chloro- (XIV) and 6-bromo-1,3-diethylcytosine (VIa), which was converted into 1,3-diethyl-6-thiocytosine (XII) and 6-anilino-1,3-diethylcytosine (XIII).

¹⁾ Location: 35, Shinanomachi, Shinjuku-ku, Tokyo.

²⁾ D.J. Brown, "The Chemistry of Heterocyclic Compounds, The Pyrimidines," Interscience Publishers, A. Weissberger, ed., 1962, p. 356.

³⁾ K. Senga, F. Yoneda and S. Nishigaki, J. Org. Chem., 36, 1829 (1971).

$$\begin{array}{c} Br \\ O = P \\ Br \\ O = N \\ O = N$$

TABLE I. 6-Bromo-1,3-dialkylcytosines

Compound No.	Substituent R_1 R_2		Yield (%)	mp (°C)	Recrystn. solvent	Formula	Analysis (%)					
							Calcd.			Found		
							С	H	N	С	H	N
Ia	CH ₃	Н	70	190 (dec.)	benzene	C ₆ H ₈ ON ₃ Br	33.05	3.69	19.27	33.22	3.65	19.29
IIa	CH _a	CH ₂ CH ₂ Br	63	121—122	EtOH	$C_8H_{11}ON_3Br_2$	29.56	3.41	12.93	29.58	3.46	12.95
Ша	CH ₃	CH ₂ CH ₂ CH ₃	48	68	CH ₃ CN- ether	$C_9H_{14}ON_3Br$	41.56	5.42	16.15	41.32	5.58	15.97
IVa	CH _a	C_6H_{11}	67	128129	CH ₂ CN	$C_{12}H_{18}ON_3Br$	48.01	6.04	14.00	48.16	6.31	14.14
Va	CH ₃	$CH_2C_6H_5$	85	90 92	a)	$C_{13}H_{14}ON_3Br$	50.66	4.58	13.64	50.68	4.63	13.83
VIa	C_2H_5	Н	93	97— 98	ether	C ₈ H ₁₂ ON ₃ Br	39.04	4.87	17.07	39.21	4.78	17.28

a)purification by sublimation; 200-210° at 1 mm Hg

Experimental4)

General Procedure for Synthesis of 1,3-Dialkyl-6-bromo-cytosines (Ia-VIa)—A mixture of 0.002—0.003 mole of 6-amino-1,3-dialkyluracil and 3—5 g of POBr₃ was heated at 190—210° for 5—15 min. The reaction mixture was poured into 5 ml of 2n HCl under cooling, and the precipitates were filtered off. The filtrate was made alkaline with 5% aq. NH₃, extracted with CHCl₃, dried over Na₂SO₄, and concentrated to dryness. The residue was recrystallized from an appropriate solvent.

⁴⁾ All melting points are uncorrected.

When crystals were separated from the alkaline solution, they were collected by filtration, washed with H_2O , dried and recrystallized from an appropriate solvent.

Preparation of 6-Bromo-1,3-dimethylcytosine (Ia) from 6-Chloro-1,3-dimethylcytosine—A mixture of 0.52 g (0.003 mole) of 6-chloro-1,3-dimethylcytosine and 5.2 g of POBr₃ was heated at 210° for 15 min and treated in the same manner as described above to give 0.4 g (61%) of pale yellow plates.

4-N-Benzyl-6-benzylamino-1,3-dimethylcytosine (VII)—A mixture of 1.09 g (0.005 mole) of Ia and 1.07 g (0.01 mole) of benzylamine was heated at 190° for 2 hr. After cooling, the reaction mixture was crushed in 30 ml of H₂O. The precipitates were collected by filtration, washed with H₂O and dried to give 0.75 g (45%) of pale brown crystals. Recrystallization from EtOH-H₂O gave colorless needles, mp 110—112°. Anal. Calcd. for C₂₀H₂₂ON₄: C, 71.83; H, 6.63; N, 16.76. Found: C, 71.63; H, 6.46; N, 16.81.

6-Ethoxy-1,3-dimethyl-cytosine (VIII)——A mixture of 0.87 g (0.004 mole) of Ia in 10 ml of EtOH containing 0.092 g (0.004 mole) of NaOEt was refluxed for 2 hr. After the reaction mixture was evaporated to dryness, the residue was extracted with CHCl₃. The extracts were dried over Na₂SO₄, evaporated to dryness and the residue was recrystallized from benzene to give 0.6 g (82%) of colorless needles, mp 141—142°. Anal. Calcd. for C₈H₁₃O₂N₃: C, 52.44; H, 7.15; N, 22.94. Found: C, 52.46; H, 7.33; N, 23.19.

6-Ethyl-1,3-dimethyl-thiocytosine (IX)——A mixture of 1.09 g (0.005 mole) of Ia and 0.62 g (0.01 mole) of ethylmercaptan was maintained for 2 hr at room temperature under stirring. The resulting clear solution was made alkaline with 5% aq. NH₃ and extracted with CHCl₃. The extracts were dried over Na₂SO₄, evaporated to dryness and recrystallized from CHCl₃ to give 1 g (100%) of a pale yellow powder, mp 66°. Anal. Calcd. for C₈H₁₃ON₃S: C, 48.23; H, 6.58; N, 21.10. Found: C, 47.97; H, 6.53; N, 20.82.

Its infrared (IR) spectrum shows a secondary amino stretching absorption band at 3260 cm⁻¹. The mass spectrometry reveals a parent ion $(m/e\ 199)$. This compound is very sensitive to hydrolysis; recrystallization from H₂O gave 6-ethyl-1,3-dimethyl-thiouracil, mp 127—128°. Anal. Calcd. for C₈H₁₂O₂N₂S: C, 47.50; H, 5.98; N, 13.86. Found: C, 47.40; H, 6.00; N, 13.89.

1,3-Dimethyl-6-phenylthiocytosine (X)——A mixture of 1.09 g (0.005 mole) of Ia and 0.55 g (0.005 mole) of thiophenol in 10 ml of EtOH was maintained under stirring at room temperature for 4 hr. The reaction mixture was evaporated under reduced pressure to dryness, and the resulting residue was dissolved in 10 ml of 2N HCl with warming and neutralized with 5% aq. NH₃. The separated crystals were collected by filtration, washed with H₂O and dried to give 0.9 g (73%) of a yellow powder. Recrystallization from CHCl₃ gave a yellow powder, mp 96°. Anal. Calcd. for C₁₂H₁₃ON₃S: C, 58.29; H, 5.30; N, 17.00. Found: C, 58.17; H, 5.23; N, 16.79.

This compound is also very sensitive to hydrolysis; recrystallization from EtOH-H₂O gave 1,3-dimethyl-6-phenylthiouracil, mp 131°. Anal. Calcd. for C₁₂H₁₂O₂N₂S: C, 58.04; H, 4.83; N, 11.28. Found: C, 58.12; H, 4.82; N, 11.26.

1,3-Dimethyl-6-thiocytosine (XI) Method A——A mixture of 0.36 g (0.0018 mole) of IX and 0.28 g (0.0018 mole) of 40% aq. NaSH in 10 ml of EtOH was refluxed at 95° for 4 hr. The reaction mixture was evaporated to dryness and 30 ml of H₂O was added to the residue. The separated crystals were collected by filtration, washed with H₂O and dried to yield 0.29 g (94%) of a pale yellow powder. Recrystallization from DMF-H₂O (1:1) gave pale yellow crystals, mp 260° (dec.). Anal. Calcd. for C₆H₉ON₂S: C, 42.09; H, 5.30; N, 24.54. Found: C, 41.87; H, 5.24; N, 24.61.

A comparison of its IR spectrum with that of an authentic sample of 1,3-dimethyl-6-thiocytosine³) showed the two materials to be identical.

Method B—A mixture of 0.25 g (0.001 mole) of X and 0.14 g (0.001 mole) of 40% aq. NaSH in 5 ml of EtOH was refluxed for 3 hr at 95°. The reaction mixture was treated as described in Method A to give 0.17 g (100%) of a yellow powder.

1,3-Diethyl-6-thiocytosine (XII)—A mixture of 0.74 g (0.003 mole) of VIa and 0.42 g (0.003 mole) of 40% aq. NaSH in 10 ml of $\rm H_2O$ was heated at 80° for 3 hr. After cooling, the precipitates were collected by filtration, washed with $\rm H_2O$ and dried to give 0.84 g (95%) of a yellow powder. Recrystallization from DMF- $\rm H_2O$ gave pale brown plates, mp 174—175°. Anal. Calcd. for $\rm C_8H_{13}ON_3S$: C, 48.21; H, 6.57; N, 21.09. Found: C, 48.19; H, 6.77; N, 21.13.

6-Anilino-1,3-diethylcytosine (XIII)——A mixture of 0.74 g (0.003 mole) of VIa, 0.28 g (0.003 mole) of aniline and 2 drops of conc. aq. HCl was heated for 1 hr at 170°. After cooling, the reaction mixture was suspended in 10 ml of 2n HCl and made alkaline with 5% aq. NH₃. The alkaline solution was maintained on steam bath for 5 min, and allowed to stand overnight at room temperature. Crystals which separated were collected by filtration, dried and recrystallized from EtOH-H₂O to give colorless needles, mp 203—204°. Anal. Calcd. for $C_{14}H_{18}ON_4$: C, 65.09; H, 7.02; N, 21.69. Found: C, 64.79; H, 7.10; N, 21.99.

6-Chloro-1,3-diethylcytosine (XIV)—A mixture of 5.5 g (0.03 mole) of 6-amino-1,3-diethylcytosine 155 ml of POCl₃ was refluxed for 5 hr at 240°. After excess POCl₃ was removed in vacuo, the resulting residue was dissolved in 50 ml of H₂O and made alkaline with 5% aq. NH₃ and allowed to stand overnight at room temperature. The separated crystals were filtered, washed with H₂O and dried to give 2.72 g (45%) of pale yellow crystals, mp 105—106°. Anal. Calcd. for C₈H₁₂ON₃Cl: C, 47.65; H, 6.00; N, 20.83. Found: C, 47.52; H, 6.05; N, 20.90.