Chem. Pharm. Bull. 19(19)2643—2644(1971) UDC 547.854.5.057 ## A Convenient Synthesis of 1,3-Dialkyl-5,5-dichlorobarbituric Acids ## KEITARO SENGA Pharmaceutical Institute, School of Medicine, Keio University¹⁾ (Received July 5, 1971) A convenient new method for the introduction of two chlorine atoms into the 5 position of pyrimidines has been found in the reaction of 1,3-dialkyluracils or 1,3-dialkylbarbituric acids with sulfuryl chloride which gave 1,3-dialkyl-5,5-dichlorobarbituric acids. These 5,5-dichlorobarbituric acids have customarily been prepared by the reaction of 1,3-dialkylbarbituric acids with chlorine^{2a,b)} or by that of tetraalkylalloxantines with phosphorus pentachloride.^{3a,b)} It is well known that one of the chlorine atoms in 5,5-dichlorobarbituric acids has strong reactivity.⁴⁾ Therefore, 1,3-dialkyl-5,5-dichlorobarbituric acids would be of interest as versatile synthetic intermediates.⁵⁾ Treatment of 1 part of 6-amino-1,3-dimethyluracil (I)⁶) with 10 parts of sulfuryl chloride at room temperature for 30 min gave 5,5-dichloro-1,3-dimethylbarbituric acid (VII)^{2b,8a,3b)} which is isolated by evaporation of the sulfuryl chloride and addition of water in quantitative yield. In complete analogy with the above result, 6-chloro-1,3-dimethyluracil (II)⁷) and 1,3-dimethylbarbituric acid (III)⁷) were converted into VII in high yields. The reaction was extended successfully to 6-amino-1,3-diethyluracil (VI)⁶) to give 5,5-dichloro-1,3-diethylbarbituric acid (VIII)^{2a)} (see Table I). It will be noted that the reaction of 6-amino-1,3-dimethyl-5-phenylazouracil (IV)⁸⁾ or 1,3-dimethyl-5-phenylazobarbituric acid (V)⁸⁾ with sulfuryl chloride gave VII. It is well known that the halogenation of 5-substituted barbituric acid and uracil derivatives such as Starting material Time (min) Temp. (°C) Product Yield (%) I 30 25 VII 100 25 25 25 80 25 VII VII VII VII VIII 92 98 73 57 89 Table I. Reaction of 1,3-Dialkyluracils or 1,3-Dialkylbarbituric Acids with Sulfuryl Chloride II III IV V VI 5 5 10 10 30 ¹⁾ Location: 35, Shinanomachi, Shinjuku-ku, Tokyo. ²⁾ a) K. Sembritzki, Ber., 30, 1814 (1897); b) H. Biltz and T. Humberger, Ber., 49, 635 (1916). ³⁾ a) W. Techow, Ber., 27, 3083 (1894); b) A.C. Cope, D. Heyl, D. Peck, C. Eide and A. Arroyo, J. Am. Chem. Soc., 63, 356 (1941). ⁴⁾ D.J. Brown, "The Chemistry of Heterocyclic Compounds, The Pyrimidines," Interscience Publishers, A. Weissberger, Ed., 1962, p. 162. ⁵⁾ For example, Tishler, et al. reported that the synthesis of alloxazines and isoalloxazines in the reaction of 5,5-dichlorobarbituric acid with o-phenylenediamines: M. Tishler, J.W. Wellman and K. Ladenberg, J. Am. Chem. Soc., 67, 2165 (1945). ⁶⁾ J.H. Speer and A.L. Raymond, J. Am. Chem. Soc., 75, 114 (1953). ⁷⁾ W, Pfleiderer and K.H. Shündehütte, Ann., 612, 158 (1958). ⁸⁾ M. Ishidate, M. Sekiya, Y. Osaki and Y. Harada, Yakugaku Zasshi, 76, 1107 (1956). 5-nitroso-,²⁶⁾ 5-nitro,⁹⁾ 5-acetyl-,¹⁰⁾ 5-benzylidenebarbituric aicd¹¹⁾ and uracil-5-carboxylic acid¹²⁾ gave 5,5-dihalogenopyrimidines. However, there seem to be no previous instances recorded in the literature for the dichlorination with replacement of phenylazo group. $$\begin{array}{c} O \\ R_1-N \\ \hline \\ O \\ \hline \\ R_2 \\ \hline \\ I: R_1=R_2=CH_3, R_3=NH_2, R_4=H \\ \hline I: R_1=R_2=CH_3, R_3=Cl, R_4=H \\ \hline II: R_1=R_2=CH_3, R_3=OH, R_4=H \\ \hline II: R_1=R_2=CH_3, R_3=OH, R_4=H \\ \hline II: R_1=R_2=CH_3, R_3=NH_2, R_4=N_2C_6H_5 \\ \hline V: R_1=R_2=CH_3, R_3=OH, R_4=N_2C_6H_5 \\ \hline V: R_1=R_2=CH_3, R_3=NH_2, R_4=N_2C_6H_5 \\ \hline V: R_1=R_2=CH_3, R_3=NH_2, R_4=H \\ \hline \\ Chart 1 \\ \hline \end{array}$$ ## Experimental¹³⁾ General Procedure for Synthesis of 1,3-Dialkyl-5,5-dichlorobarbituric Acids (VII and VIII)—A mixture of 0.003 mole of 1,3-dialkyluracils or 1,3-dialkylbarbituric acids and 10 parts of SO₂Cl₂ was allowed to stand at room temperature as described in Table I (As one exception, a mixture of V and SO₂Cl₂ was heated for 10 min at 80°). After excess of SO₂Cl₂ was removed under reduced pressure, 10 ml of chilled H₂O was added. After standing for 1 hr at room temperature, separated crystals were collected by filtration, washed with H₂O and dried to give corresponding 5,5-dichlorobarbituric acid. 5,5-Dichloro-1,3-dimethylbarbituric Acid (VII): Recrystallization from EtOH gave colorless scales, mp 156—157° (Lit. mp 157—158°3a,b). Anal. Calcd. for C₆H₆O₃N₂Cl₂: C, 32.02; H, 2.68; N, 12.45. Found C, 32.27; H, 2.57; N, 12.51. 5,5-Dichloro-1,3-diethylbarbituric Acid (VIII): Recrystallization from EtOH-H₂O gave colorless needles, mp 89—90° (Lit. mp 87.5°2a)). Anal. Calcd. for $C_8H_{10}O_3N_2Cl_2$: C, 37.96; H, 3.98; N, 11.07. Found: C, 38.03; H, 4.05; N, 11.03. ⁹⁾ A.V. Baeyer, Ann., 127, 199 (1863). ¹⁰⁾ H. Biltz and H. Wittek, Ber., 54, 1035 (1921). ¹¹⁾ W. Bock, Ber., 55, 3400 (1922). ¹²⁾ T.B. Johnson, J. Am. Chem. Soc., 65, 1218 (1943). ¹³⁾ All melting points are uncorrected.