Notes

Chem. Pharm. Bull. 19(4) 831—832 (1971)

UDC 547.475.2.04:541.515

On the Free Radical Intermediates formed during the Oxidation of L-Ascorbic Acid

YUTAKA KIRINO and TAKAO KWAN

Faculty of Pharmaceutical Sciences, University of Tokyo1)

(Received August 31, 1970)

In the foregoing paper,²⁾ an ESR evidence was put forward that at least two types of radicals, denoted as l- and m-species, are formed during the oxidation of ι -ascorbic acid with Ti^{3+} - $\mathrm{H_2O_2}$ in a continuously flowing reaction system. Further works were carried out, using a similar technique and under almost the same reaction condition, to examine whether such radical species are formed also during the oxidation of ι -ascorbic acid with the other oxidizing agents such as the Fenton reagent. In Table I are shown the oxidizing agents investigated and the type of radicals formed together with the result of the earlier work.²⁾

As shown in Table I, the *m*-species were not observable except for the Ti^{3+} - H_2O_2 or Ti^{3+} -EDTA- H_2O_2 system; only *l*-species were detectable in most cases.

0		
Oxidizing agent	Type and relative inter l	sity of ESR spectra
Ti ³⁺ -(EDTA)-H ₂ O ₂	# #	#
$\mathrm{Fe^{3}}$ - $\mathrm{H_2O_2}$	+	<u> </u>
$\mathrm{Fe^{3+}\text{-}EDTA\text{-}H_{2}O_{2}}$	+1-	
$ m VO^{2+} ext{-}H_2O_2$	+	_
Ce ⁴⁺	++	
$\mathrm{Ce^{4+} ext{-}H_{2}O_{2}}$	 +	
K _s CrO _s	1 -	
$KMnO_4$	+	

TABLE I. Type and Intensity of ESR Spectra, l and m, observable during the Oxidation of L-Ascorbic Acid

Norman, et al.³⁾ showed, studying the oxidation of organic compounds with hydrogen peroxide and various metal ions by a rapid-mixing flow technique, that difference in the ESR spectra observable between the Ti^{3+} - H_2O_2 and Fe^{2+} - H_2O_2 systems could be attributable to different oxidizing ability of Ti^{4+} and Fe^{3+} ions produced by the reactions of Ti^{3+} and Fe^{2+} with H_2O_2 .

In order to ascertain their suggestion and also to clarify the difference in the reactivity between metal ions such as Ce^{4+} and OH radicals involved in the Ti^{3+} - H_2O_2 or Fe^{2+} - H_2O_2 system, the following experiments were carried out by means of a T-shaped flow-cell after Norman, et al.³⁾ This type of cell enables us to add the third reactant shortly after the other two reactants have been mixed and before the solution reaches the spectrometer cavity.

Both l- and m-spectra were observed, as described previously,²⁾ when none of the third reactant was introduced. Then, when 0.001 M Fe³⁺ solution, as the third reactant, was in-

¹⁾ Location; Hongo 7-3-1, Bunkyo-ku, Tokyo.

²⁾ Y. Kirino and T. Kwan, Chem. Pharm. Bull. (Tokyo), 19, 718 (1971).

³⁾ R.O.C. Norman and P.R. West, J. Chem. Soc. (B), 1969, 389.

troduced at the second mixing point, only m disappeared specifically. In the first place, this phenomenon may eliminate the possibility of the consecutive reaction, $m\rightarrow l$, because l should also disappear if the species were to be produced from m. Secondly, it indicates that even if both l- and m-species were generated during the oxidation with $Fe^{2+}-H_2O_2$, m-species could not necessarily be detectable because of its short lifetime caused by the rapid oxidation by the Fe^{3+} ion formed. In the case of the $Ti^{3+}-H_2O_2$ oxidation, m could be alive, because of the lower oxidation potential of Ti^{4+} ion (ca. 0.05 V^4) as compared with $Fe^{3+}(0.771\ V^5)$).

On the contrary, specific disappearance of m-species was not observable when a Ce⁴⁺ solution (0.001, 0.005 m) was introduced at the second mixing point into the admixed solution of Ti³⁺, H₂O₂ and L-ascorbic acid; both l-and m-species remained to be unchanged. The oxidation potential of Ce⁴⁺ is known to be as high as 1.61 V⁵⁾ and so Ce⁴⁺ may well be expected to oxidize at leat m-species as Fe³⁺ has been presumed to do so. This was not actually the case. Therefore, the simple redox mechanism that Fe³⁺ oxidizes the m-species is still unsettled.

The *l*-species are quite stable and readily producible with a number of oxidizing agents while the *m*-species are not. The latter species may not be detected, even if produced, because of its short life-time or of absence.

Experimental

Acidified (0.1 M $\rm H_2SO_4$) solutions of 0.005 M $\rm Ti^{3+}$ containing L-ascorbic acid (0.02 M) and of 0.1 M $\rm H_2O_2$ were mixed at the first mixing point, and $\rm Fe^{3+}$ or $\rm Ce^{4+}$ solution, as the third reactant, was introduced at the second mixing point. Usual experimental conditions were as follows: The flow rates of $\rm Ti^{3+}$, $\rm H_2O_2$, and the third reactant solutions were 40, 40 and 30 ml/min, respectively, and the time interval between the first and second mixing was 6 msec, and between the second mixing and the ESR cavity was 9 msec.

Acknowledgement The authors wish to thank Takeda Chemical Industries, Inc. for generous supply of the pure sample of L-ascorbic acid.

Chem. Pharm. Bull. 19(4) 832—836 (1971)

UDC 547.832.07:547.759.07

Synthesis of 1-Substituted-1,2,5,6-tetrahydro-4*H*-pyrrolo(3,2,1-*ij*) quinolin-2-one

TETSUZO KATO, TAKUITSU NIITSUMA and KAZUYO MAEDA

Pharmaceutical Institute, Tohoku University¹⁾

(Received September 17, 1970)

There is considerable litrature dealing with the ring closure reaction *via* intramolecular nucleophilic addition to aryne intermediate. Pioneering work has been done by Huisgen²⁾ and by Bunnett.³⁾ Bunnett and his co-workers^{4,5)} reported the cyclization forming oxindole

⁴⁾ R.B. Heslop and P.L. Robinson, "Inorganic Chemistry," Elsevier Publishing Co., 1960.

⁵⁾ W.M. Latimer, "Oxidation Potentials," 2nd. ed. Prentice-Hall, 1952.

¹⁾ Location: Aobayama, Sendai.

²⁾ R. Huisgen and H. König, Anegew. Chem., 69, 268 (1957).

³⁾ B.F. Hrutfiord and J.F. Bunnett, J. Am. Chem. Soc., 80, 2021 (1958).

⁴⁾ J.F. Bunnett and B.F. Hrutfiord, J. Am. Chem. Soc., 83, 1691 (1961).

⁵⁾ J.F. Bunnett, T. Kato, R.R. Flynn and J.A. Skorcz, J. Org. Chem., 28, 1 (1963).