Note

Chem. Pharm. Bull. 21(11)2566—2567(1973)

UDC 547.466.1.057:547.298.71.04

Studies on Peptides. XXXVII.1) Suppressed Racemization in Peptide Synthesis by the Use of p-Chloro or p-Nitrobenzenesulfohydroxamic Acid

HARUAKI YAJIMA, KOUKI KITAGAWA and MASAYUKI KUROBE

Faculty of Pharmaceutical Sciences, Kyoto University²⁾

(Received March 22, 1973)

The use of esters of N-hydroxyphthalimide and N-hydroxysuccinimide in peptide synthesis was introduced by Nefkens and Tesser³⁾ and Anderson, et al.,⁴⁾ respectively. It was pointed out by Weygand, et al., 5) that peptide synthesis with dicyclohexylcarbodiimide (DCC) in the presence of N-hydroxysuccinimide suppresses the rate of racemization during the amide forming step. Despite of this advantageous property, it was found later that the reaction of N-hydroxysuccinimide with DCC gave succinimidoxycarbonyl-β-alanine-N-hydroxysuccinimide ester⁶⁾ and in the presence of amino components, succinimidoxycarbonyl- β -alanine amide derivatives⁷⁾ can be isolated as a side reaction product in some instance. Considering an analogous situation in N-hydroxyphthalimide, a number of other N-hydroxy compounds was investigated.8)

We have now examined the degree of racemization caused by DCC in the presence of benzenesulfohydroxamic acid (I) and two of its derivatives: p-chlorobenzenesulfohydroxamic acid (II) and p-nitrobenzenesulfohydroxamic acid (III). The system of Bodanszky and

 $III: R=NO_2$

Conklin⁹⁾ was adopted for this purpose. During the coupling reaction of Ac-L-Ile-OH with H-Gly-OEt, racemized Ac-allo-D-Ile-Gly-OEt, can be detected, after acid hydrolysis, by the Spackman-Stein-Moore method¹⁰⁾ of amino acid analysis. The results are listed in Table I.

No remarkable improvement could not be achieved by the addition of benzenesulfohydroxamic acid. However addition of p-

chloro or p-nitrobenzenesulfohydroxamic acid suppressed the racemization of this coupling reaction in great extent and these values seem comparable to or somewhat better than that of N-hydroxysuccinimide.

¹⁾ Part XXXVI: H. Yajima, M. Kurobe and K. Koyama, Chem. Pharm. Bull. (Tokyo), 21, 1612 (1973).

²⁾ Location: Sakyo-ku, Kyoto.

³⁾ G.H.L. Nefkens and G.I. Tesser, J. Am. Chem. Soc., 83, 1263 (1961); G.H.L. Nefkens, G.I. Tesser and R.J.F. Nivard, Rec. Trav. Chim., 81, 683 (1962).

⁴⁾ G.W. Anderson, J.E. Zimmerman and F.M. Callahan, J. Am. Chem. Soc., 86, 1839 (1964).

⁵⁾ F. Weygand, D. Hoffmann and E. Wünsch, Z. Naturforsch., 21b, 426 (1966).

⁶⁾ H. Gross and L. Bilk, Tetrahedron, 24, 6935 (1968).

⁷⁾ F. Weygand, W. Steglich and N. Chytil, Z. Naturforsch., 23b, 1391 (1968).

⁸⁾ B.O. Handford, J.I.J. Jones, G.T. Young and T.F.N. Johson, J. Chem. Soc., 1965, 6814; E. Hoffmann and I. Faiferman, J. Org. Chem., 29, 748 (1964); T.R. Govindachari, S. Rajappa, A.S. Akerker and V.S. Iyer, Tetrahedron, 23, 4811 (1967); G. Losse, K.H. Hoffmann and G. Hetzer, Ann. Chem., 684, 236 (1965); M. Fujino, S. Kobayashi, M. Obayashi, T. Fukuda, S. Shinagawa, I. Yamazaki, R. Nakayama, W.F. White and R.H. Rippel, Biochem. Biophys. Res. Commun., 49, 698 (1972) and other references there-of and see also review articles: M. Bodanszky and M.A. Ondetti, "Peptide Synthesis", Interscience Publisher, New York, 1966, p. 104; E. Schröder and K. Lübke, "The Peptides", Academic Press, New York, N.Y. 1965, p. 105.

⁹⁾ M. Bodanszky and L. Conklin, Chem. Commun., 1967, 773.

¹⁰⁾ D.H. Spackman, W.H. Stein and S. Moore, Anal. Chem., 30, 1190 (1958).

TABLE I. Des	(T)	
	ree of Racemization	า .
TADED IN POS		

Reagent	Benzenesulfo- hydroxamic acid	p-Chloro- benzenesulfo- hydroxamic acid	p-Nitro- benzenesulfo- hydroxamic acid	N-Hydroxy- succinimide
Racemizationa) %	22.3	9.0	8.1	14.8

a) lit. DCC 27.4%1) 37%9)

In the preceding paper,¹⁾ we described that 5-chloro and 5,7-dichloro-8-hydroxyquinoline are both effective as racemization depressants. Reagents bearing such property possess an ability to suppress the formation of acylurea, the by-product of the DCC condensation reaction of acylpeptide fragment. The use of these adducts in the DCC coupling reaction seems to open a way of peptide synthesis *via* these types of active esters as intermediates.

Experimental

p-Chlorobenzenesulfohydroxamic Acid—According to Gattermann,¹¹⁾ a solution of hydroxylamine (prepared from 10.0 g of the hydrochloride with sodium ethalate) in EtOH (20 ml) was added dropwise to a solution of p-chlorobenzenesulfonyl chloride (10.5 g) in EtOH (20 ml). After stirring for 1 hr, the solution was condensed in vacuo and the residue was dissolved in ether, which was washed with H₂O, dried over Na₂SO₄ and then evaporated. The solid residue was recrystallized from ether; yield 6.1 g (61%), mp 128—129°. Anal. Calcd. for C₆H₆O₃NSCl: C, 34.04; H, 2.91; N, 6.75. Found: C, 34.32; H, 2.89; N, 6.63.

p-Nitrobenzenesulfohydroxamic Acid—The reaction was performed as described above. Instead of p-chlorobenzenesulfonyl chloride, p-nitrobenzenesulfonyl chloride was employed; yield 65%, mp 154—155°. Anal. Calcd. for C₆H₅O₅N₂S: C, 33.04; H, 2.77; N, 12.84. Found: C, 33.27; H, 2.68; N, 12.78.

Coupling Reaction of Ac-L-Ile-OH with H-Gly-OEt—Condensation reaction was performed as described previously.¹⁾ The crude product, after drying over P₂O₅ in vacuo, was hydrolyzed by 6N HCl and the hydrolysate was submitted for quantitative amino acid analysis. The results were listed in Table I.

¹¹⁾ L. Gattermann, "Die Praxis des Organischen Chemikers," Walter De Gruyter & CO., Berlin, 1962, p. 169.